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Abstract

Due to the continuous growth in Internet data, cybersecurity practitioners have de-
veloped new defenses based on Machine Learning (ML). ML-based solutions offer
numerous benefits, from learning patterns among large amounts of data to gener-
alizing to unknown data. This dissertation covers three significant aspects derived
from the interaction between machine learning and cybersecurity: (i) definition of
novel Network Intrusion Detection Systems (NIDS), (ii) cybersecurity for web con-
tent monitoring, and (iii) Adversarial Machine Learning (AML).

The first part of the dissertation presents two NIDS themes: XeNIDS, aiming to
study and design cross-networking NIDS, and DETONAR, a NIDS for low-powered
IoT networks. The second part covers cybersecurity for web content monitoring. In
particular, as users interact in forums and Online Social Networks (OSN), their ac-
tivity might threaten others (e.g., hate speech). The dissertation covers two themes:
helpful review prediction, aiming to forecast whether a review from forums (e.g.,
Amazon, Yelp) will be considered helpful, and PRaNA, a heuristic that leverages
videos’ Photo Response Non-Uniformity (PRNU) to spot real videos from their
deepfake versions. The third - and last - part of the dissertation presents two evasion
attacks: ZeW, an evasion attack on Natural Language Processing applications that
leverages invisible UNICODE characters, and CAPA, which discusses real examples
of threats created by OSN’s users that undermined Automatic Content Moderators.
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Chapter 1

Introduction

Cybersecurity is the discipline of protecting digital systems from digital attacks aim-
ing to compromise them. Generally speaking, a cybersecurity incident involves
an intruder using a tool to exploit a vulnerability on an objective, resulting in an
outcome that suits the attacker’s needs. Continuous investment in cybersecurity is
needed as cyber-attacks constantly evolve, threatening many organizations world-
wide. Mirai botnet is only one example of a successful attack that disrupted the In-
ternet [10]. Or similarly, ransomware campaigns undermine worldwide private and
public organizations. The number of ransomware attacks are severe: in 2020 esti-
mated at 304 million, while in 2021, 623 million [270]. Cyber-attacks further evolved
from more traditional system intrusions to threats to users, such as Twitter trends
manipulations [328] and the spread of fake news in online social networks [326].

Cybersecurity tools thus aim to inspect an enormous amount of data generated
on the Internet. Such flows are the results of the communication of networks or
users. As humans cannot keep up analyzing the constantly increasing amount of
data, traditional approaches based on rules are thus gradually replaced by auto-
mated approaches such as Machine Learning (ML) [280, 68, 243]. ML-based strate-
gies are perfect for working with big data and deriving knowledge from it. For
example, signature-based and heuristic-based detection approaches are efficient in
detecting known malware but fail to detect unknown ones. This limitation can be
mitigated with ML-based solutions [17].

There has been a proliferation of successful data-driven approaches in cyberse-
curity literature. For example, Drebin [16] is an Android Malware detection that
extracts statistics from run-time applications and uses such information to predict
whether an application is malicious. Drebin reaches noticeable performance, with
malware detection close to 93% for known, maintaining a low false alarm (1%). Fur-
thermore, Drebin requires only a few samples of a new malware family to produce
reliable detection results. Alternatively, complex and unsolved threats are currently
investigated with ML techniques: popular examples are the fake-news and hate-
speech detection [265, 192].

1.1 Research Motivation and Contribution

This thesis investigates the interplay between cybersecurity and data-driven ap-
proaches, focusing on three major aspects.

1. Network Intrusion Detection Systems: solutions aiming to spot malicious activ-
ities from the network traffic. Chapter 2 presents XeNIDS, a study aiming to
investigate benefits derived from the cross-evaluation of NIDS models among
different datasets. Chapter 3 presents DETONAR, a NIDS for IoT networks
using RPL protocol.
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2. Cybersecurity for web content monitoring: solutions aiming to analyze content
generated by users’ interactions in web applications. Chapter 4 presents a
study of the reviews in online forums (e.g., Amazon, TripAdvisor), aiming
to understand in advance whether a review is helpful. Chapter 5 presents
PRaNA, a forensic tool to analyze deepfake videos.

3. Adversarial Machine Learning: the study of ML-based solutions security.
Chapter 7 presents ZeW, an evasion attack to Natural-Language-Processing
(NLP) applications. Chapter 8 presents CAPA, an evasion attack to Automatic
Content Moderators.

In this dissertation, some passages have been quoted verbatim, and some figures
have been reused from the works [15, 4, 220, 66], all coauthored by the author of the
thesis.

The Cross-evaluation of Machine Learning-based Network Intrusion Detection
Systems

Enhancing Network Intrusion Detection Systems (NIDS) with supervised Machine
Learning (ML) is tough. ML-NIDS must be trained and evaluated, operations re-
quiring data where benign and malicious samples are clearly labelled. Such labels
demand costly expert knowledge, resulting in a lack of real deployments, as well
as on papers always relying on the same outdated data. The situation improved re-
cently, as some efforts disclosed their labelled datasets. However, most past works
used such datasets just as a ‘yet another’ testbed, overlooking the added potential
provided by such availability.

Contributions In contrast, in Chapter 2 we promote using such existing labelled
data to cross-evaluate ML-NIDS. Such approach received only limited attention and,
due to its complexity, requires a dedicated treatment. We hence propose the first
cross-evaluation model. Our model highlights the broader range of realistic use-
cases that can be assessed via cross-evaluations, allowing the discovery of still un-
known qualities of state-of-the-art ML-NIDS. For instance, their detection surface
can be extended—at no additional labelling cost. However, conducting such cross-
evaluations is challenging. Hence, we propose the first framework, XeNIDS, for
reliable cross-evaluations based on Network Flows. By using XeNIDS on six well-
known datasets, we demonstrate the concealed potential, but also the risks, of cross-
evaluations of ML-NIDS.

DETONAR: Detection of Routing Attacks in RPL-based IoT

The Internet of Things (IoT) is a reality that changes several aspects of our daily
life, from smart home monitoring to the management of critical infrastructure. The
“Routing Protocol for low power and Lossy networks” (RPL) is the only de-facto
standardized routing protocol in IoT networks and is thus deployed in environmen-
tal monitoring, healthcare, smart building, and many other IoT applications. In liter-
ature, we can find several attacks aiming to affect and disrupt RPL-based networks.
Therefore, it is fundamental to develop security mechanisms that detect and miti-
gate any potential attack in RPL-based networks. Current state-of-the-art security
solutions deal with very few attacks while introducing heavy mechanisms at the
expense of IoT devices and the overall network performance.
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Contribution In Chapter 3, we aim to develop an Intrusion Detection System (IDS)
capable of dealing with multiple attacks while avoiding any RPL overhead. The
proposed system is called DETONAR - DETector of rOutiNg Attacks in Rpl - and
it relies on a packet sniffing approach. DETONAR uses a combination of signature
and anomaly-based rules to identify any malicious behavior in the traffic (e.g., ap-
plication and DIO packets). To the best of our knowledge, there are no exhaustive
datasets containing RPL traffic for a vast range of attacks. To overcome this issue
and evaluate our IDS, we propose RADAR - Routing Attacks DAtaset for Rpl: the
dataset contains five simulations for each of the 14 considered attacks in 16 static-
nodes networks. DETONAR’s attack detection exceeds 80% for 10 attacks out of 14,
while maintaining false positives close to zero.

A Novel Review Helpfulness Measure based on the User-Review-Item Paradigm

Review platforms are viral online services where users share and read opinions
about products (e.g., a smartphone) or experiences (e.g., a meal at a restaurant).
Other users may be influenced by such opinions when making future choices. The
usability of review platforms is currently limited by the massive number of opin-
ions on many products. Therefore, showing only the most helpful reviews for each
product is in the best interests of both users and the platform (e.g., Amazon). The
current state of the art is far from accurately predicting how helpful a review is.
First, most existing work lacks compelling comparisons as many studies are con-
ducted on datasets that are not publicly available. As a consequence, new studies
are not always built on top of prior baselines. Second, most research focuses only
on features derived from the review text, ignoring other fundamental aspects of the
review platforms (e.g., the other reviews of a product, the order in which they were
submitted).

Contribution In Chapter 4, we first carefully review the most relevant works in
the area published during the last 20 years. We then propose the User-Review-Item
(URI) paradigm, a novel abstraction for modeling the problem that moves the focus
of the feature engineering from the review to the platform level. We empirically val-
idate the URI on a dataset of products from six Amazon categories with 270 trained
models: on average, classifiers gain +5% in F1-score when considering the whole
review platform context. In our experiments, we further emphasize some problems
with the helpfulness prediction task: (1) the users’ writing style changes over time
(i.e., concept drift), (2) past models do not generalize well across different review
categories, and (3) past methods to generate the ground-truth produced unreliable
helpfulness scores, affecting the model evaluation phase.

PRaNA: PRNU-based Technique to Tell Real and Deepfake Videos Apart

Videos are a powerful source of communication adopted in several contexts and
used for both benign and malicious purposes (e.g., education vs. reputation dam-
age). Nowadays, realistic video manipulation strategies like deepfake generators
constitute a severe threat to our society in term of misinformation. While the wide
range of the current research focuses on deepfake detection as a binary task, the iden-
tification of a real video among a pool of deepfakes sharing the same origin is not
widely investigated. While the pool task might be more rare in real-life compared to
the binary one, outcomes that derives from these analyses might let us better under-
stand deepfake behaviours, benefiting binary deep fake detection as well.
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Contribution In Chapter 5, we address the less investigated scenario by investi-
gating the role of Photo Response Non-Uniformity (PRNU) in deepfake detection.
Our analysis, in agreement with prior studies, shows that PRNU can be a valuable
source to identify deepfake videos. In particular, we found that unique PRNU char-
acteristics exist to distinguish real videos from their deepfake versions: real video
autocorrelations tend to be lower compared to their deepfakes versions. Motivated
by this, we propose PRaNA, a training-free strategy that leverages PRNU autocorre-
lation. Our results on three well-known datasets confirm our algorithm’s robustness
and transferability, with accuracy up to 66% when considering one real video in a
pool of four deepfakes using the real video as a source, and up to 80% when only
one deepfake is considered. Our work aims to open different strategies to counter
deepfake diffusion.

Fall of Giants: How popular text-based MLaaS fall against a simple evasion attack

The increased demand for machine learning applications made companies offer
Machine-Learning-as-a-Service (MLaaS). In MLaaS (a market estimated 8000M USD
by 2025), users pay for well-performing ML models without dealing with the com-
plicated training procedure. Among MLaaS, text-based applications are the most
popular ones (e.g., language translators). Given this popularity, MLaaS must pro-
vide resiliency to adversarial manipulations. For example, a wrong translation
might lead to a misunderstanding between two parties. In the text domain, state-
of-the-art attacks mainly focus on strategies that leverage ML models’ weaknesses.
Unfortunately, not much attention has been given to the other pipeline’ stages, such
as the indexing stage (i.e., when a sentence is converted from a textual to a numerical
representation) that, if manipulated, can significantly affect the final performance of
the application.

Contribution In Chapter 7, we propose a novel text evasion technique called
“Zero-Width attack” (ZeW) that leverages the injection of human non-readable char-
acters, affecting indexing stage mechanisms. We demonstrate that our simple yet
effective attack deceives MLaaS of “giants” such as Amazon, Google, IBM, and Mi-
crosoft. Our case study, based on the manipulation of hateful tweets, shows that
out of 12 analyzed services, only one is resistant to our injection strategy. We finally
introduce and test a simple input validation defense that can prevent our proposed
attack.

Captcha Attack: Turning Captchas Against Humanity

The field of Adversarial Machine Learning studies the security related to Machine
Learning (ML) systems. There is little information available about attacks happening
in the real world, whereas most of the literature presents experiments in artificial
settings. Such a gap must be filled urgently. In this work, we focus on the security
of Automatic Content Moderator (ACM), i.e., deployed ML-powered technologies
aiming to prevent the spreading of inappropriate content (e.g., hate speech, nudity
images) in forums and social networks.

Contribution In Chapter 8, we analyzed 4600 potentially toxic Instagram posts,
and we discovered that 44% of them adopt obfuscations that might undermine
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ACM. As these posts are reminiscent of captchas (i.e., not understandable by au-
tomated mechanisms), we coin this threat as Captcha Attack (CAPA). Our contribu-
tions start by proposing a CAPA taxonomy to better understand how ACM is vul-
nerable to obfuscation attacks. We then focus on the broad sub-category of CAPA
using textual Captcha Challenges, namely CC-CAPA, and we empirically demon-
strate that it evades real-world ACM (i.e., Amazon, Google, Microsoft) with 100%
accuracy. Our investigation revealed that ACM failures are caused by the OCR text
extraction phase. The training of OCRs to withstand such obfuscation is therefore
crucial, but huge amounts of data are required. Thus, we investigate methods to
identify CC-CAPA samples from large sets of data (originated by three OSN – Pin-
terest, Twitter, Yahoo-Flickr), and we empirically demonstrate that supervised tech-
niques identify target styles of samples almost perfectly. Unsupervised solutions,
on the other hand, represent a solid methodology for inspecting uncommon data to
detect new obfuscation techniques.

1.1.1 Publications

This section summarizes manuscripts produced during my Ph.D. period and pub-
lished or currently submitted in peer-reviewed journal and conferences. All
manuscript are listed in a chronological order of acceptance and submission.

Journal Publication

1. Agiollo, A., Conti, M., Kaliyar, P., Lin, T. N., & Pajola, L. (2021). DETONAR:
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Service Management, 18(2), 1178-1190. (JCR IF 2019: 5.333)
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(CORE:B, LiveSHINE:A+, MA:A+, Italian GGS 2/A)

• Pajola, L., & Conti, M. (2021, September). Fall of Giants: How popular text-
based MLaaS fall against a simple evasion attack. In 2021 IEEE European Sym-
posium on Security and Privacy (EuroS&P) (pp. 198-211). IEEE. (MA:C)

• Amerini, I., Conti, M, & Pajola, L. PRaNA: PRNU-based Technique to Tell
Real and Deepfake Videos Apart. In Proceedings of the IEEE World Congress on



6 Chapter 1. Introduction

Computational Intelligence (WCCI 2022), in press, Padua, Italy, July 18-23, 2022.
(LiveSHINE:C, MA:B)

• Conti, M., Pajola, L., & Tricomi, P. P. (2022). Captcha Attack: Turning Captchas
Against Humanity. IEEE Conference on Secure and Trustworthy Machine Learning.
Submitted

• Nadeem, A., Vos, D., Cao, C., Pajola, L., Dieck, S., Baumgartner, R., & Verwer,
S. (2022). SoK: Explainable Machine Learning for Computer Security Applica-
tions. IEEE Symposium on Security and Privacy. (CORE:A++, LiveSHINE:A++,
MA:A++, Italian GGS: 1/A++) Submitted

• Tricomi, P. P., Nenna, F., Pajola, L., Conti, M., & Gamberini, L. You Can’t
Hide Behind Your Headset: User Profiling in Augmented and Virtual Reality.
ACM Conference on Human Factors in Computing Systems (CHI). (CORE:A++,
LiveSHINE:A++, MA:A++, Italian GGS: 1/A++) Submitted



7

Part I

Network Intrusion Detection
Systems





9

Chapter 2

The Cross-evaluation of Machine
Learning-based Network Intrusion
Detection Systems

Machine Learning (ML) is advancing at a rapid pace (e.g., [266, 311]), and the cy-
bersecurity domain is also looking at ML with great interest [37]. ML methods can
automatically learn to make decisions by using existing data, representing a valuable
asset to monitor the increasingly mutating IT environments.

Although ML is already deployed to counter some threats (e.g., malware or
phishing [92, 85, 176]), ML methods are still at an early stage for Network Intrusion
Detection (NID). In particular, some Network Intrusion Detection Systems (NIDS)
integrate commercial products that use unsupervised ML (e.g., [72, 167]). Such solu-
tions can be useful to perform correlation analyses or to ‘detect anomalies’, which
are ancillary to true intrusion detection tasks (an anomaly is not necessarily an intru-
sion). The full potential of ML can be appreciated only via supervised methods, which
assume the existence of labels that associate each sample to its ground truth [269].
Specifically in NID, by creating a training dataset where the samples are distin-
guished between benign and malicious, it is possible to develop a fully autonomous
Machine Learning-based Network Intrusion Detection System (ML-NIDS).

Deployment of ML-NIDS involves two stages: the system must first be devel-
oped (i.e., trained), and it must then be evaluated, because any security system that
has not been tested is dangerous [28]. Both of these stages require large amounts of la-
belled data, which can only be collected via the supervision of a human that associates
(and verifies) each sample to its ground truth [12]. While such verifications are sim-
ple in some applications (e.g., any layman can distinguish a legitimate from a phish-
ing website), the inspection of network data requires expert knowledge–which is ex-
pensive [203]. To aggravate the problem, a network can be targeted by many attacks,
each of which must be labelled to assess the detection capabilities of a ML-NIDS. As
a result, the inevitable and costly necessity of comprehensive labelled datasets (usu-
ally numbering millions of samples [247]) discourages deployment of ML-NIDS. We
note that this problem also extends to research. For more than a decade, the only pub-
licly available dataset for ML-NIDS was the KDD99, leading to a plethora of works
always trained and evaluated on such dataset—usually with perfect performance
(e.g., [206]).

To address the lack of labelled data, recent researches on ML-NIDS openly re-
leased their datasets (e.g., [247, 262, 101]), an effort appreciated by related literature
(e.g., [206, 11, 135]). However, most prior works used such datasets as an additional
testbed for their proposals. As a result, such works only confirmed what was already
known: that by training a ML-NIDS on a (large) dataset, such ML-NIDS will detect
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the attacks contained in such dataset. This is because the primary objective was to
‘outperform’ the state-of-the-art, resulting in incremental contributions that do not
foster realistic deployments. In this paper, we aim to broaden such limited scope.

Inspired by a recent paper by Pontes et al. [234], we observe that the current avail-
ability of labelled datasets could be better exploited by ML-NIDS researches. Specif-
ically, we endorse the idea of cross-evaluating ML-NIDS by using malicious samples
captured in different network datasets.1 By performing such cross-evaluations, it is
possible to gauge additional properties of ML-NIDS, allowing a better understand-
ing of the state-of-the-art at no extra labelling cost.

To the best of our knowledge, this is the first effort that focuses on the oppor-
tunity provided by cross-evaluations of ML-NIDS. As such, our primary goal is the
definition of a data-agnostic model that allows to represent such cross-evaluations.
Indeed, using samples from different networks is not straightforward: as stated by
Sommer and Paxson [269], each network has “immense variability”, suggesting that
cross-evaluations have intrinsic risks that must be known to avoid deployments of
unreliable ML-NIDS. Our model acknowledges such risks, but also highlights the
benefits that can be brought by cross-evaluations of ML-NIDS. Such benefits come
in the form of additional types of ‘contexts’ that can be reproduced in research en-
vironments, each representing a distinct realistic use-case. Specifically, our model
highlights the limited scope of the state-of-the-art, whose fixed evaluation method-
ology can only cover 2 contexts, whereas cross-evaluations can span over up to 10
different contexts. Such broad range evidences the concealed potential of the core
idea at the base of our paper.

As stated by Biggio et al. [28], ML systems for cybersecurity must be assessed
in advance. Therefore, proactive cross-evaluations must take into account all the pit-
falls highlighted by our model. To further promote our proposal, we develop the
first framework for cross-evaluations of ML-NIDS, XeNIDS. Our framework aims to
overcome the intrinsic challenges of cross-evaluations, while allowing the reproduc-
tion of all contexts enabled by our model. Specifically, XeNIDS focuses on NetFlow
data, which is popular in the ML-NIDS community (e.g., [255, 234, 247]). However,
using NetFlows from different environments is tough: such data can be generated
in many ways, resulting in heterogeneous formats that may lead to unreliable ML-
NIDS. We address this issue via an original interpretation of NetFlows w.r.t. ML.
Using this interpretation, we provide the guidelines that can increase the reliability
of the results provided by XeNIDS.

As an instructive demonstration, we use XeNIDS to perform a large cross-
evaluation of ML-NIDS spanning over 6 well-known and recent datasets. We aim
to reproduce realistic use cases, which can be assessed via three different context
types enabled by our model. Specifically, we first consider the ‘baseline’ context
commonly adopted by prior work, and show that XeNIDS yields the same perfor-
mance as the state-of-the-art. Then, we assess the context where a ML-NIDS is tested
on malicious samples originating from different networks; such use-case was also
investigated in [234], and XeNIDS matches their performance. Finally, we assess the
context where the ML-NIDS is trained and tested on malicious samples from different
networks, showing a dramatic performance increase. As a final contribution of this
paper, we provide an in-depth analysis of these results, where we investigate their
reliability for practical deployments.

1We stress that our term ‘cross-evaluation’ denotes a different concept than the term ‘cross-
validation’ commonly used in ML researches [256].
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Contribution This is the first paper that addresses the problem of cross-
evaluations of ML-NIDS. As such, the specific contributions are as follows.

• We present the first data-agnostic model that conceptualizes the problem of
cross-evaluation of ML-NIDS.

• We use our model to showcase the benefits and challenges of such cross-
evaluations.

• We propose XeNIDS, the first framework for reliable cross-evaluations focused
on NetFlow data.

• We demonstrate all of the above by cross-evaluating ML-NIDS over 6 distinct
well-known datasets, and analyzing the results’ reliability.

Organization The chapter is organize as follows We motivate our paper in
Section 2.1. We define our cross-evaluation model in Section 2.2. We describe
our XeNIDS framework in Section 2.3. We explain the application of XeNIDS in
Section 2.4. We present our demonstration in Section 2.5. We discuss the results in
Section 2.6. We conclude our paper in Section 2.7.

2.1 Background

This work lies at the intersection of Machine Learning and Network Intrusion
Detection. We first provide some preliminary information on these two areas
(Section 2.1.1). Then, we explain the motivation (Section 2.1.2) of our paper. Finally,
we compare this effort with related work (Section 2.1.3).

2.1.1 Network Intrusion Detection and Machine Learning

The so-called security lifecycle spans over three activities: prevention, detection,
reaction [307]. However, the prevention of any cyber-attack is an impossible task,
while the reaction phase assumes that most of the damage has already taken place.
For this reason, proposals focusing on the detection step have received much more
attention, as timely and accurate identifications of cyber threats can significantly
mitigate the effects of an offensive campaign [231].

In the specific domain of network security (which is of interest to this paper), the
detection of such malicious events is devoted to Network Intrusion Detection Sys-
tems (NIDS). We provide a schematic representation of the typical NIDS deployment
in Figure 2.1, where a NIDS inspects the traffic generated by the monitored network
(and all of its subnetworks). A NIDS can leverage two distinct detection paradigms,
which are based either on fixed rules or on data-driven methods [39]. The former
requires human operators that write specific rules (or signatures) that denote a spe-
cific threat, and exhibit high performance against known and static threats whose
behavior is captured by the hardcoded rules. On the other hand, the latter leverage
automatic data analyses and can detect even unknown and mutating threats if they
present similarities with previously known samples–potentially at the expense of
higher false-positive rates.

The increased growth of data alongside improvements in collaborative comput-
ing resulted in a huge interest in data-driven NIDS, specifically employing machine
learning methods [12, 37]. Such methods involve a training phase where the ML
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Organization
Network

Internet

Border Router

NIDS

FIGURE 2.1: Typical NIDS scenario. The network of the organiza-
tion can be composed of multiple subnetworks. The outgoing traffic
passes through a border router which forwards such traffic to the in-
ternet, but also to a NIDS. The NIDS analyzes the traffic and, if nec-

essary, raises some alerts.

model learns to make decisions from existing data. However, without some refer-
ence information, it is not possible to control what the ML model is actually ‘learn-
ing’ [144]. To specifically address detection (i.e., classification) problems, the training
data must be separated into benign and malicious samples. In such circumstances, it
is possible to develop autonomous ML-NIDS exploiting supervised ML methods.
Such ‘supervision’ comes in the form of a human that must associate each sample in
the training data to its ground truth, i.e., a label [269].

In some domains, labelling is simple (e.g., the popular captchas [42]) or labelled
data can be used for a long period of time (e.g., ImageNet was collected in 2009 and
is still widely used today [321]). However, the Cybersecurity domain is different:
according to Miller et al. [203], a company can only label 80 malware samples per
day. Specifically in NID, ground truth verification of network data is complex [204],
and the concept drift problem requires any ML-NIDS to be continuously updated
with new–labelled–data [143]. To aggravate this problem, deployment of any secu-
rity system requires proactive evaluations conducted in advance, to avoid introducing
a weak link in the security chain [28]. Hence, in the case of ML-NIDS, labelled data
must be obtained both for the initial training, as well as for such evaluation.

The scarcity of labelled data for NID affected both research and practice [5], with
an overall lack of ML-NIDS deployments, as well as a plethora of papers always
based on the only publicly available dataset–the KDD99 [206].

2.1.2 Motivation: Mixing Network Data

The successes of ML renewed the interest of the NID community in these methods,
and in recent years, many labelled datasets were made openly accessible (a survey is
in [247]). However, most related work simply used such data as an ‘additional’ set-
ting to perform their experiments. In contrast, in this paper we promote a different
approach, based on mixing different network data to cross-evaluate ML-NIDS. Such
opportunity, fostered by the recent availability of NID datasets, is of interest both for
research and practice. Let us explain how mixing network data can assist ML-NIDS
deployment. We first by present some high level applications (Section 2.1.2), and
then provide a more specific use-case (Section 2.1.2).
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Applications and advantages

Mixing data from different networks is useful to augment pre-existing datasets that
contain an insufficient amount of labelled samples to develop ML-NIDS. It is also
useful to assess the generalization capabilities of a ML-NIDS against ‘novel’ attacks
not included in the training set (as very recently done by [234]). Such ‘novel’ samples
can also be used extend the detection surface of the ML-NIDS by injecting them in
the training set of the ML-NIDS. Similar strategies are particularly relevant to protect
against the so-called ‘adversarial attacks’ which can evade traditional ML-NIDS [81]:
the (new) training data can be leveraged for adversarial training, therefore realizing
robust ML systems that can detect even subtle perturbations [1]. In this context,
mixing diverse datasets facilitates the application of ensemble techniques (e.g., [324]),
further increasing the resilience of ML-NIDS.

As stated by Biggio and Roli, empirical evaluations are always necessary for real
deployments [31]. In this context, cross-evaluations are advantageous due to their
low opportunity cost—especially when using publicly available data. Indeed, we
observe that great attention has been given to data sharing platforms (e.g., [126]),
and cross-evaluations could greatly benefit from dedicated ‘banks’ of NID data
(e.g., [271]): it is true that the cybersecurity domain has high confidentiality, but
anonymization techniques exists [240], and some recent solutions in federated learn-
ing overcame privacy issues (e.g. [75]). Finally, cross-evaluations can involve even
unsupervised ML methods (e.g., anomaly detectors [88]), which represent the major-
ity of currently deployed ML techniques for NIDS. Although unsupervised methods
would not benefit from the ‘cheap’ labelling, they can still take advantage of the data
diversity of different networks to assess (or improve) their generalization capabili-
ties.

Exemplary use-case

Suppose an organization, O, wants to protect their network, o, with a (supervised)
ML-NIDS. Hence, O collects and verifies some benign traffic data, N, from their net-
work o. However, ML-NIDS also require malicious data, M. The following can hap-
pen w.r.t. such M:

• O may not have any M generated in their network o. Hence, O can ‘use’ some
M generated in a different network than o – potentially of another organiza-
tion.

• O may have some M generated in o, obtained, e.g., by monitoring the be-
haviour of ‘known’ infected machines.

Therefore, O can use such N and M to develop any ML model which, if it obtains
appreciable performance, will be integrated in their security system as a ML-NIDS
that can detect the attacks in M. Having an operational ML-NIDS, O may be willing
to assess whether such system can detect attacks not included in their M, which
can potentially target the network o monitored by the ML-NIDS. To this end, O
can use a small set of malicious data originating from a network different than o, and
containing different attacks than the ones ‘learned’ by their ML-NIDS. By using such
malicious data to evaluate the ML-NIDS, O can assess the generalization capabilities of
their solution. If the assessment shows a weakness of the ML-NIDS, O may acquire
a larger set of such malicious data to extend the detection capabilities of their ML-
NIDS, by using such data in the training stage. We will use the abovementioned
example as basis for our demonstration in Section 2.5.
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2.1.3 Related Work

The idea of cross-evaluating ML-NIDS on different datasets is not new. For instance,
the authors of [44] propose a novel IDS dataset that can be used to evaluate the
‘transferability’ of ML-NIDS, but they do not provide any detailed analysis nor orig-
inal experiment. Similarly, Pontes et al. [234] use a ML-NIDS trained on IDS18

against DDoS19. However, [234] simply limit to test a novel method on a different
dataset, and do not analyze the problem of ‘cross-evaluations’ as a whole, hence not
allowing to highlight the benefits and limitations of such opportunity. For instance,
cross-evaluations can also involve modifications of the training data, which is not
covered by [234] and which is a case included in our demonstration.

Most prior works on ML-NIDS only assess their proposals in a single “con-
text”, that is, the training and evaluation use the same dataset. For instance, the
authors of [21] propose botnet detectors trained and tested on CTU13. In [299] a
ML-NIDS focusing on different attacks is assessed on the IDS18 dataset. To give
a practical explanation, such methodology only allows determining that “the ap-
proach in [299] is effective on the network captured by the IDS18 dataset, against the
attacks contained in the IDS18 dataset”. Other works may consider more datasets
(e.g., [79, 135, 193, 255]), but the problem remains because the assessments are car-
ried out independently on each dataset. Furthermore, all these works highlight that
ML-NIDS require large (labelled) datasets–further motivating the need to explore
novel solutions that mitigate the lack of labelled data. Among these, we mention
semisupervised ML approaches (e.g. [327, 204]), which combine unlabelled with la-
belled data, and are hence orthogonal to our work.

A closely related research effort is [67], proposing a low-level software toolkit for
analyzing NID datasets, forcing the user to abide to its constrained logic. For in-
stance, it only works with data in the form of packet captures (PCAP), which require
huge amounts of storage space and whose payload is often encrypted, making such
data impractical to share (and, also, to analyze). In contrast, our proposed model is
agnostic of the source data format (as long as there is some compatibility); moreover,
our proposed framework operates on Network Flows (NetFlows), which represent a
higher level than PCAP, making it flexible and extendible also to PCAP data—while
not sacrificing performance [32, 21, 11].

We conclude that the idea of cross-evaluating ML-NIDS received only limited
attention so far, and its opportunities and risks are still unknown. This is because no
past research truly addressed such a problem—representing the core of this paper.
Our intention is to provide a complete understanding of all the pros and cons related
to cross-evaluations of ML-NIDS.

2.2 Modelling the Cross-evaluation of ML-NIDS

The intuition at the base of our work is to leverage existing NID datasets, with the
goal of cross-evaluating ML-NIDS using samples from mixed networks. Such idea
is grounded on the following observation (also implicitly adopted by [234]), which
extends the well-known statement by Sommer et Paxson [269]: although every net-
work is unique, the malicious behavior of network attacks is independent of the
target network. For instance, Denial of Service (DoS) attacks always involve either
a large amount of communications with minimal entity, or a smaller set of com-
munications but with a larger entity – both happening in a short time frame [128].
Similarly, a machine infected by Botnet malware will periodically contact the CnC
server, irrespective of what is happening in the ‘compromised’ network [14]. Hence,
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such malicious behaviours can be used by a ML-NIDS to distinguish benign from
malicious activities, regardless of the target network.

As the first effort to investigate this opportunity, we must design a model
(Section 2.2.1) that allows to highlight its benefits (Section 2.2.2) as well as its intrinsic
challenges and risks (Section 2.2.3).

2.2.1 Proposed Model Design

We now introduce all the prerequisites to describe our cross-evaluation model.
Let D be a set of NID datasets which we denote as follows:

D = (D1, D2, ..., Dn), n ≥ 2, (2.1)

where n represents the cardinality of D, and Di represents a dataset collected in a
given network i. Without loss of generality, we assume that each Di ∈ D originates
from a unique network environment—potentially, D can include datasets represent-
ing distinct sub-networks within a larger network. Hence, in the remainder we use
Di and Dj (i ̸= j) to denote two datasets of D originating from two distinct networks
(i.e., i and j). The information captured by each dataset in D must allow one to use
any subset of D and derive a set of common features from such subset. 2

Because our focus is on supervised ML for detection problems, each Di ∈ D must
be provided with ground truth distinguishing benign from malicious data. Hence,
each dataset Di can be seen as a composition of Ni, denoting the benign data of net-
work i, and Mi, denoting the malicious data of network i. A dataset Di can contain
only malicious (or only benign) data; however, across all D there must be at least
a pair Di, Dj for which Ni ̸= ∅ and Mj ̸= ∅. We denote with µ the number of all
malicious classes contained in the entire D. This is because any Di can have a Mi
with a variable number of attacks (i.e., Botnet, DoS, etc), which may overlap (or not)
with those in a different Mj. Therefore, every Mi can be seen as an array of µ ele-
ments Mi =(M1

i , M2
i , ..., Mµ

i ), some of which can be empty if another dataset Dj has
malicious classes not contained in Di. Let N denote the set of all benign samples,
and M denote the set of all malicious samples. We can visualize our model with the
schematic in Figure 2.2, which shows the relationship between D, N and M.

From Figure 2.2, we observe that all sets have n rows, each denoting a distinct
source network dataset. However, while N has only one column because all benign
samples are treated equally, M has µ columns representing all the attacks contained
in D. We provide an example in the caption of Figure 2.2. Such design makes our
model suitable for 1+µ classification ML problems, where a sample is either benign,
or belongs to one among µ malicious classes. This automatically covers binary clas-
sification ML problems if all malicious classes are treated as a single malicious class
(hence, µ=1). Let us now use our proposed model to explain the benefits brought by
cross-evaluations of ML-NIDS.

2.2.2 Benefits: additional Contexts

Deployment of ML components requires a training set T, used to develop a ML
model, and an evaluation set E, used to assess the performance of such model. Hence,

2For instance, it is possible that Di comes as PCAP traces, and Dj comes as NetFlows: in this case,
the PCAP of Di can be processed to derive the NetFlows features of Dj. Similarly, two datasets Di and
Dj can contain NetFlows generated with different software: in this case, the features shared by Di and
Dj can represent the common set.
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FIGURE 2.2: Proposed cross-evaluation model, representing D, N

and M. Example: assume that D has three datasets: D1, D2, D3
(hence n=3). Assume that: D1 has some benign samples but no mali-
cious samples; D2 has no benign samples, but malicious samples of a
botnet attack, and also some malicious samples of a portscan attack; D3
has some benign samples, alongside some malicious samples of the
same botnet attack as D2, but also some malicious samples of a DoS
attack. In this case, N will contain three elements: N1, N2, N3, with
N2 being empty. On the other hand, there are three malicious classes
(µ=3) hence M will have nine elements: M1

2 and M1
3 (the botnet attack

shared by D2 and D3) as well as M2
2 (the portscan attack in D2) and

M3
3 (the DoS attack in D3) will contain some samples; whereas the re-

maining will be empty (i.e., all those with M1, as well as M3
2 and M2

3).
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our idea is composing T and E by drawing from N and M: depending on the draw, a
specific ‘context’ is created that can be used to cross-evaluate a ML-NIDS. The main
benefits provided cross-evaluations of ML-NIDS are due to the increased types of
contexts that can be assessed, which can be highlighted with our proposed model.

Because our model is rooted on Sommer and Paxson statement (Section 2.2), it is
crucial that both T and E use benign samples from the same network3, which should
represent the environment where the ML-NIDS is to be deployed; hence, let o (stand-
ing for ‘origin’) denote such network, and No be the corresponding benign samples.
Then, we observe that there are many ways to compose T and E by choosing the
malicious element from M. Such variability can be modeled through the ‘matrix’ M

in Figure 2.2, by pinpointing which rows and columns are included in T and E. The
following can occur:

• T (or E) can contain malicious samples either from the same or different o (i.e.,
same or different row than No);

• the malicious samples in T and E can come either from the same or different
networks (regardless of No);

• the malicious class(es) in T can be either the same or different than those in E
(i.e., same or different columns).

In particular, let t and e denote two rows of M; and let τ and ε denote two columns
of M; we use such notation to identify two elements of M, i.e., Mτ

t and Mε
e.

Let t⃗, e⃗, τ⃗, ε⃗ be four ordered arrays4, each denoting multiple columns or rows (e.g.,
t⃗ contains multiple t, i.e., rows) of M. Let o⃗ be an unary array including only o
(representing the benign ‘origin’ network from N).

By following such notation, we can represent the training and evaluation sets, T
and E, as the functions in Expression 2.2:

T(⃗o,⃗ t, τ⃗), E(⃗o,⃗ e,⃗ ε). (2.2)

Simply put, T and E are denoted by a single row of N (i.e., o⃗), and the rows and
columns of all the elements of M that they include (i.e., t⃗ and τ⃗ for T, while e⃗ and ε⃗

for E).
We can see a context as a function of T and E. Specifically, a context C is denoted

as the following tuple:

C(T, E) ⇒ C(⃗o,⃗ t,⃗ e, τ⃗,⃗ ε). (2.3)

Depending on the elements from N and M included in T and E, many contexts can
be reproduced, which can be of different type. In particular, let ō, h̄, ē, τ̄, ε̄ denote the
sets of the corresponding arrays (each element of a given set is unique). By cross-
evaluating ML-NIDS, it is possible to assess 10 different context types, which are
denoted by the relationships between ō, h̄, ē, τ̄, ε̄.

We provide the full list of such context types in Table 2.1; we also include a prac-
tical example in the caption of Table 2.1. Specifically, for each context type (denoted
with a number after the letter C), we report the four conditions denoting the rela-
tionships among all the involved components; on the same line of each condition,
we describe the consequences on T and E; we also provide a concrete use case that

3This also serves to reduce false alarms after potential deployments, because the benign samples
always have the same source.

4Such arrays can be of variable length, but |⃗t|=|⃗τ| and |⃗e|=|⃗ε| must be true.
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explains the application of such type of context. We note that all cases where two
sets are not equal can be further split in two: when one set is a superset of the other;
and when they are disjointed.

TABLE 2.1: The 10 types of contexts enabled by the proposed cross-
evaluation model. The table represents the relationship among the
unique elements of N and M included in the training and evaluation
sets, T and E (cf. Expression 2.2), which denote a context (cf. Ex-
pressopm 2.3). The origin of benign samples is always the same in T
and E, hence ō is shared. Contexts of type C1, C2 are those considered
by most prior works; C4 has been considered in [234]. A gray back-
ground denotes the types of context assessed in our demonstration.
Example: consider the setting described in the example of Figure 2.2,
where n=3 and µ=3. Suppose a context denoted by: o⃗=(3), t⃗=(2,3),
e⃗=(3), τ⃗=(1,1), ε⃗=(1). Such context implies that T contains benign sam-
ples from N3, and malicious samples from M1

2 and M1
3; whereas V

contains benign samples from N3 but malicious samples from M1
3.

The resulting context will be of type C5, because ō=(3), t̄=(2,3), ē=(3),
τ̄=(1), ε̄=(1). Hence, (ō = ē) ̸= t̄ and τ̄ = ε̄.

C-type Conditions Effects on T and E Use-case

C1

ō = t̄

ō = ē

t̄ = ē

τ̄ = ε̄

T uses benign and malicious samples from the same network.
E uses benign and malicious samples from the same network.

T and E use malicious samples from the same network.
T and E use the same attack classes.

This is the standard ‘baseline’ case
commonly used in research.

C2

ō = t̄

ō = ē

t̄ = ē

τ̄ ̸= ε̄

T uses benign and malicious samples from the same network.
E uses benign and malicious samples from the same network.

T and E use malicious samples from the same network.
T and E use different attack classes.

Same as the baseline C1
but the ML-NIDS is tested on different attacks.

C3

ō = t̄

ō ̸= ē

t̄ ̸= ē

τ̄ = ε̄

T uses benign and malicious samples from the same network.
E uses benign and malicious samples from different networks.

T and E use malicious samples from different networks.
T and E use the same attack classes.

Using the ML-NIDS on the same attacks,
but targeting hosts from a different network.

C4

ō = t̄

ō ̸= ē

t̄ ̸= ē

τ̄ ̸= ε̄

T uses benign and malicious samples from the same network.
E uses benign and malicious samples from different networks.

T and E use malicious samples from different networks.
T and E use different attack classes.

Testing the generalization capabilities of the NIDS
on completely unknown attacks

(different hosts, different attacks).

C5

ō ̸= t̄

ō = ē

t̄ ̸= ē

τ̄ = ε̄

T uses benign and malicious samples from different networks.
E uses benign and malicious samples from the same network.

T and E use malicious samples from different networks.
T and E use the same attack classes.

When there are too few samples of an attack class
to both train and test a ML-NIDS,

it is possible to borrow some malicious
samples from another network and use them in T.

C6

ō ̸= t̄

ō = ē

t̄ ̸= ē

τ̄ ̸= ε̄

T uses benign and malicious samples from different networks.
E uses benign and malicious samples from the same network.

T and E use malicious samples from different networks.
T and E use different attack classes.

Assessing whether training on new attacks
(different hosts and attack class)

affects the detection on ‘known’ attacks.

C7

ō ̸= t̄

ō ̸= ē

t̄ = ē

τ̄ = ε̄

T uses benign and malicious samples from different networks.
E uses benign and malicious samples from different networks.

T and E use malicious samples from the same network.
T and E use the same attack classes.

Extending the detection surface of the ML-NIDS
by training on attacks originating from different networks

and testing such ML-NIDS against these attacks.

C8

ō ̸= t̄

ō ̸= ē

t̄ = ē

τ̄ ̸= ε̄

T uses benign and malicious samples from different networks.
E uses benign and malicious samples from different networks.

T and E use malicious samples from the same network.
T and E use the different attack classes.

Testing an ‘extended’ ML-NIDS devised by exploiting C7
against other attacks for which not enough samples

are available to train a dedicated detector.

C9

ō ̸= t̄

ō ̸= ē

t̄ ̸= ē

τ̄ = ε̄

T uses benign and malicious samples from different networks.
E uses benign and malicious samples from different networks.

T and E use malicious samples from different networks.
T and E use the same attack classes.

Using the benign samples of a different network
and combining them with ‘owned’ malicious samples

whether the ‘owned’ malicious samples

C10

ō ̸= t̄

ō ̸= ē

t̄ ̸= ē

τ̄ ̸= ε̄

T uses benign and malicious samples from different networks.
E uses benign and malicious samples from different networks.

T and E use malicious samples from different networks.
T and E use different attack classes.

Training a ML-NIDS using benign and malicious sample
from two distinct subnets, and testing the generalization

capabilities of such ML-NIDS against
other attacks targeting a different subnet.

Past works (e.g., [11, 274]) only considered cases where the ‘row’ was fixed, i.e.,
where ō=h̄=k̄, corresponding to the contexts of type C1 and C2. Pontes et al. [234] in-
vestigated C4. In contrast, it is evident from Table 2.1 that our cross-evaluation model
enables the assessment of 7 additional context types, allowing to discern additional
qualities of ML-NIDS and corresponding NID datasets. For instance, all the scenar-
ios envisioned in our motivational example (cf. Section 2.1.2) can be represented by
the context types listed in Table 2.1.
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In our demonstration (Section 2.5), we first assess C1 as ‘baseline’ comparison
with the state-of-the-art; and then we consider C4 (as done by [234]), and C7 (the
latter both in its ‘disjoined’ and ‘extended’ variants). We observe that our cross-
evaluation idea is different from the practice of ‘transferring ML models’ (common
in Computer Vision [217]): in our idea, the benign data always comes from the same
network. The reason becomes apparent in the next section.

2.2.3 Challenges and Risks

The cross-evaluation of ML-NIDS has high potential, but a superficial application
can lead to dangerous consequences—spanning from underwhelming performance
to additional security risks. Indeed, mixing data from different networks presents
several fundamental issues, which must be known when real ML-NIDS deploy-
ments are considered. We stress that our paper lies at the intersection of diverse
research fields (i.e., network traffic analysis, machine learning, cybersecurity) and
some of the following issues may be well-known within each field. Considered the
scope of our paper, it is meaningful to make the entire community aware of such
issues.

We identify the following three performance-related implementation challenges:

1. Removing Network Artifacts. Depending on the considered set of features, some
samples may contain ‘artifacts’ that are unrelated to their benign/malicious
nature5. If not sanitized, such artifacts may be learned by the ML model to
perform its decisions, leading to overfitting and, hence, useless ML-NIDS.

2. Preserving Performance. When a given context involves modifications of T, it is
important not to degrade the baseline False Positive Rate (FPR). Modifications
of T must always be assessed.

3. Maximizing Performance. Assuming that simply adding malicious samples to
T results in a ML-NIDS capable of detecting such attacks is misleading: it has
been shown that ML models for NIDS may yield underwhelming detection
performance in multi-classification settings [11]. It is hence crucial to consider
a ML-NIDS architecture that optimizes the usage of such additional samples.

Finally, we highlight three intrinsic risks that involve security aspects of cross-
evaluations of ML-NIDS.

• Labeling quality. Cross-evaluations are significant only if the samples in N and
in M all report the correct label (i.e., benign or malicious). If, e.g., N contains
malicious samples because the authors of the source dataset did not perform
proper verifications, then the final results may be unreliable. Unless the cross-
evaluation involves unsupervised ML, real deployments should ensure that all
samples are associated to the correct ground truth.

• Exposure to adversarial ML attacks. Although mixing data from different net-
works can result in more resilient ML-NIDS (cf. Section 2.1.2), relying on pub-
lic datasets exposes to ‘poisoning’ attacks. In these circumstances, training a
ML-NIDS on such data would have the opposite effect of adversarial training.
For instance, in [84] the FPR increases by 5 times when only 5% of the data

5The most blatant example is when a dataset has all its malicious samples originating from the same
IP address. If the IP address is considered as a feature, the ML model will only look for the ‘malicious’
IP address, meaning that any attack involving other machines will never be detected.
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is polluted. More subtle poisoning strategies exploit ‘backdoors’ which make
ML-NIDS prone to evasion, as evidenced in [20]—and also in [215] for feder-
ated learning scenarios. Countermeasures include verifying the checksum of
each dataset as provided by the authors; or applying some modifications that
can remove or mitigate the effects of such poisoned samples (e.g., [13]).

• Incompatible Networks. Regardless of the resulting performance, mixing sam-
ples from different networks may not be possible a-priori. If the goal is using
an N from a different network, it is necessary to conduct preliminary analyses
ensuring that the two networks are indeed similar. On the other hand, when
using M from different networks it is necessary to perform follow-up analyses
that question the validity of the cross-evaluation results. This is because high
detection rates at test-time may lead to a ‘false sense’ of security if the mali-
cious activities depend on the underlying network’s behaviour. Such analyses
may include comparing the feature importance between different models; or
complete sanity checks by deploying the ML-NIDS against true attacks–in real
time. Regardless, using the same source of benign samples both in T and E en-
sures that the FPR after deployment will not deviate from the one at test-time.

We can conclude that the additional context types enabled by cross-evaluations
of ML-NIDS are intriguing, but practical applications are not simple and require the
adoption of a rigorous workflow.

2.3 Proposed Framework: XeNIDS

We showed that cross-evaluations of ML-NIDS are enticing but challenging, and
we are not aware of efforts that tackled this problem in an exhaustive way. As a
first step, we propose XeNIDS, a framework for the Cross-evaluation of Network
Intrusion Detection Systems based on machine learning, with a focus on NetFlow
data.

Our proposed framework is rooted in the same design principles described in
Section 2.2.1, and has a threefold goal:

• allowing the simulation of all contexts in Table 2.1;

• facilitating assessments of multiple contexts;

• addressing the challenges discussed in Section 2.2.3.

Of course, we do not claim that XeNIDS is the only way to do all of the above. Our
intention is to further promote the diffusion of cross-evaluations in research, as well
as to increase their realistic value for proactive assessments.

We provide an overview of XeNIDS in Section 2.3.1, which consists in four stages:
standardize (Section 2.3.2), isolate (Section 2.3.3), contextualize (Section 2.3.4), cross-
evaluate (Section 2.3.5).

2.3.1 Overview

The focus of XeNIDS is on NetFlows (Section 2.1.3), enabling inter-compatibility with
PCAP data. NetFlows are metadata generated from packet captures, and summarize
the communications between two endpoints. A NetFlow is defined as:

NetFlow= (srcIP, dstIP, srcPort, dstPort, t, proto, d, ...,), (2.4)
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where srcIP (srcPort) and dstIP (dstPort) are the source and destination IP addresses
(network ports) of the two involved hosts, t is the timestamp of the first connec-
tion, d is the duration of the communication session, proto is the network protocol
of the communication. Depending on the NetFlow software and its configuration,
additional metrics can be computed: the most typical fields include the number of
packets and bytes exchanged during the communication [303].

We present a schematic representation of XeNIDS in Figure 2.3. XeNIDS requires
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FIGURE 2.3: Overview of XeNIDS. The input D is a set of labelled
NetFlow datasets of n distinct networks. The output results should

be further analyzed.

a set of n datasets containing NetFlows, representing D and totalling µ distinct at-
tack classes. These datasets must be provided with the ground truth. XeNIDS as-
sumes that all data in D is verified, trusted and appropriate for the considered de-
ployment scenario (Section 2.2.3).

The framework includes four stages (cf. Figure 2.3):

1. Standardize: the input datasets in D are first cleaned and sanitized, and then
brought into a common ‘language’.

2. Isolate: every standardized dataset is partitioned in its benign and malicious
sets (N and M).

3. Contextualize: M and N are used to compose a context (by generating the cor-
responding T and V).

4. Cross-evaluate: T and V are used to develop and cross-evaluate a ML-NIDS.

The results provided as output by XeNIDS should be further analyzed for practical
deployments (cf. Section 2.2.3).

2.3.2 Standardize

In the first stage, schematically depicted in Figure 2.4, XeNIDS brings all the datasets
Di ∈ D into a common NetFlow format, accounting for potential obfuscations as a
result of anonymization techniques. Essential operations involve data sanitization
(e.g., handling missing values) and filtering: for example, if the goal is the detec-
tion of attacks involving TCP traffic, then all non-TCP traffic can be safely removed.
Then, the focus is on establishing a common feature set6 while simultaneously re-
moving network artifacts that may lead to overfitting. Such procedures are tough,
especially when considering NetFlow records, but necessary. To explain the reasons
of such difficulties and our proposed workarounds, we provide an original interpre-
tation of NetFlows with respect to machine learning.

In simple terms, a NetFlow is the result of two contributors: the communications
(Comm) performed by the involved hosts, and the effects of the environment (Env)

6Taken from the intersection of the features across all D.
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FIGURE 2.4: First stage: Standardize. The initial NetFlows in D are all
standardized to derive a common feature set, and cleaned of any pos-
sible artifact that may lead to overfitting and impractical ML-NIDS.

where the NetFlow is generated. This latter factor (Env) is, in turn, influenced by two
elements: the network identity (NetId), denoting the intrinsic characteristics of the
network where Comm (such as allocated bandwidth, protocols used, common open
ports, periodic services) are captured; and the configuration of the appliance (Con f )
used to generate the NetFlows. Hence, the information captured by a NetFlow is a
function7 F of three components: Comm, NetId, Con f . Formally:

F (Comm, Env) ⇒ F (Comm, NetId, Con f ) = NetFlow (2.5)

The ultimate goal of the standardize stage is to mitigate the effects of Env (repre-
sented by NetId and Con f ) across all the input datasets in D. Indeed, if one dataset
Di has an Env that is significantly stronger than Dj, then a ML model trained on data
from Di and Dj may only learn on the basis of such ‘signature’ Env. These circum-
stances lead to overfitting on Env, resulting in impractical detectors that neglect to
search for malicious behaviours.

Let us explain Expression 2.5 with two practical use-cases on the contribution of
Env.

• Different NetId. Consider two different networks where a host downloads the
same file from the same remote server via SSH: if these two networks use dif-
ferent listening ports for the SSH server (e.g., 22 and 4022), then the NetFlows
of the first network will differ from those of the second network (they will have
different ports).

• Different Con f . Using different NetFlow software and/or settings yields dif-
ferent NetFlows even when the original PCAP traces are identical. For in-
stance, measurement units can differ, resulting in datasets that are not compat-
ible: a dataset Di with d expressed in milliseconds cannot be used alongside a
dataset Dj that uses seconds.

We report in Appendix 2.8.1 an exhaustive explanation of the effects brought by Env
on NetFlows.

By referring to the official NetFlow v9 documentation8, we observe that there are
several fields that can contribute to Env (influenced both by NetId and Con f ), which
require particular care at this stage. We provide in Appendix 2.8.2 some recommen-
dations for reducing the generation of the above-mentioned artifacts, with a focus
on three fields: the IP address, the network ports, and the flow duration.

7The definition of F is software dependent [303], and outside our scope.
8www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/

www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/
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Nonetheless, depending on the considered use-cases, many low-level implemen-
tations are viable to minimize the impact of Env and derive a common feature set.
After this stage, the initial set of datasets D is standardized and ready for the ‘core’
functionalities of XeNIDS.

2.3.3 Isolate

In this stage, XeNIDS isolates the benign from malicious samples of each (standard-
ized) dataset in D to derive N and M (cf. Figure 2.2 in Section 2.2.1). We provide a
schematic in Figure 2.5.

Specifically, XeNIDS first partitions the benign from malicious samples in each
Di, resulting in two distinct sets, Ni and Mi. Then, XeNIDS further partitions the
specific attack samples in Mi according to the individual attack that they represent9

(assuming that µ > 1).
Such design choice enables the development of collaborative ensembles (e.g., [234,

2]) of ML classifiers, each devoted to a specific threat, therefore addressing the
third challenge (cf. Section 2.2.3)—while also allowing to use XeNIDS for multi-
classification ML problems.

We note that the separation can also account for a specific level of granularity. In
this case, the original µ will be changed by ‘aggregating’ attacks of different classes,
potentially even treating all malicious samples as belonging to a single malicious
class. Depending on the use-case, such granularity can vary: it could either be per-
formed at a high-level (e.g., Botnet or DoS attacks) or go at a deeper level (e.g., a
specific Botnet variant). The final choice depends on the actual use-case (e.g., when
there are not enough samples available, they can be aggregated into a macro-class,
or simply discarded).
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FIGURE 2.5: Second stage: isolate. The standardized D is used to
extract the n individual benign N and malicious M sets. The latter are
then split in µ sets on the basis of their attack class. Depending on the
user-provided granularity, it is possible to aggregate sets of different
attack classes into a bigger class, therefore changing the initial µ. The

outputs are the full sets N and M.

This stage produces two outputs: N, containing all the benign network samples
(partitioned in n subsets according to their source dataset); and M, containing all
malicious samples isolated in n × µ subsets of samples according to their specific
attack and source dataset. We recall that some elements of M can be empty, i.e., if a
Di does not contain malicious samples of the same classes as Dj.

9The attack is denoted by the ground-truth labels provided in the input D.
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2.3.4 Contextualize

In the third stage, XeNIDS creates all the sets corresponding to the contexts to sim-
ulate during the cross-evaluation. This is done by using N and M (provided by the
previous stage), alongside some external input, to compose training T and evalua-
tion E sets; all such T and E will be put in two dedicated collections, T and E. We
provide a schematic of this stage in Figure 2.6.

Two user-provided input lists regulate this stage: a 5-dimensional tuple of
context-related parameters (⃗o, t⃗, e⃗, τ⃗, ε⃗); and a pair of splits, s(N) and s(M), used
to partition (e.g., 80:20) any N and M that will be included in a given T and E. The
idea is to facilitate cross-evaluations that consider multiple contexts, by composing
all the necessary T and E before using them for any assessment. Hence, XeNIDS iter-
ates over all the elements in the two input lists: at each iteration, XeNIDS composes
a training and evaluation set according to the user-specified parameters.
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FIGURE 2.6: Third stage: contextualize. XeNIDS uses N and M to
create multiple T and E, according to the context-related parameters
(⃗o, t⃗, e⃗, τ⃗, ε⃗)) and the splits s(N) and s(M). All the composed T and
E are inserted in T and E. Example. Assume that the following user-
provided parameters: o⃗=(1), t⃗=(2), e⃗=(3), τ⃗=(1), ε⃗=(1); s(N)=(80:20),
s(M)=(70:30). XeNIDS chooses N1, and puts 80% of N1 in T and the
remaining 20% in V. XeNIDS then selects M1

2 and puts 70% of its
samples in T; then XeNIDS selects M1

3 and puts 30% of its samples
in V. Such T (and V) is then inserted in T (and V). The operation is

repeated if the user provides additional lists as input.

Specifically, for each tuple (⃗o, t⃗, e⃗, τ⃗, ε⃗), and for each pair of splits, s(N) and s(M),
XeNIDS proceeds as follows.

• XeNIDS uses o to select a specific set of benign samples No from N. XeNIDS
splits No according to s(N), and puts the corresponding partitions in T and E.

• For each (t, τ)∈(⃗t, τ⃗), XeNIDS extracts from M the element Mτ
t , which is split

with s(M) and put in T.

• For each (e, ε)∈ (⃗e,⃗ ε), XeNIDS extracts from M the element Mε
e, which is split

with s(M) and put in E.

• Alltogether, these operations result in two sets, T(⃗o,⃗t,⃗τ) and E(⃗o,⃗e,⃗ε), which are
put in T and E.
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An example of such workflow is in the caption of Figure 2.6. In cases where t=e and
τ=ε, XeNIDS performs the partitioning simultaneously, to avoid overlaps that can
result in the same malicious samples being included in both T and E.

The selection of s(N) and s(M), which can differ for T and E, must be done
to achieve a twofold goal: (i) realize an E that is comprehensive enough to cover
the real data distribution, and hence produce insightful results; and (ii) realize a T
that allows to develop proficient ML-NIDS. For instance, if E does not contain many
benign samples, then the resulting FPR may not correspond to the real FPR after
the ML-NIDS is deployed, At the same time, if T contains only a small number of
samples for a given attack, the resulting ML-NIDS will not be able to capture all the
possible variations of such attack10. After this stage, we obtain two collections of
training and evaluation sets, T and E.

2.3.5 Cross-evaluate

In the last stage, XeNIDS performs the cross-evaluation by using the sets in T and
E to reproduce any user-specified context. Hence, the input parameters are a list of
contexts C (cf. Expression 2.3); as well as a learning ML algorithm to develop the
detectors of the ML-NIDS.
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FIGURE 2.7: Final stage: cross-evaluate. XeNIDS reproduces the user-
specified context(s) and performs the cross-evaluation. Example: as-
sume the following input context: C((1), (1,2), (1,2), (1,1), (2,2)) and a
ML-NIDS that leverages ensembles of binary detectors. XeNIDS first
extracts T((1),(1,2),(1,1)) from T, which is split in two smaller sets,
T(1,1,1) and T(1,2,1). Such sets are used to train two ML-models that
will compose the ML-NIDS. The ML-NIDS can then be tested either
against E((1),(1,2),(2,2)), or against its subsets E(1,1,2) and E(1,2,2), all
of which obtained from E. Any previously trained model (e.g., the

one using T(1,1,1)) can be reused to assess different contexts.

Specifically, for each context C(⃗o, t⃗, e⃗, τ⃗ provided as input, XeNIDS draws the cor-
responding T(⃗o, t⃗, τ⃗) and E(⃗o, e⃗, ε⃗) from T and E. Then, depending on the architecture
of the ML-NIDS, XeNIDS operates as follows.

• If the ML-NIDS leverages a single classifier, XeNIDS uses T(⃗o, t⃗, τ⃗) to train a
single (multi-class) ML-model with a given ML algorithm; such ML-model is
then tested against E(⃗o, e⃗, ε⃗).

10We refer the reader to [327] for a study on how the size of the training set can impact the perfor-
mance of ML-NIDS.
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• If the ML-NIDS leverages ensembles of classifiers, XeNIDS splits T(⃗o, t⃗, τ⃗) into
smaller sets, (e.g., by composing T(o,t,τ) focusing on the specific attack τ con-
tained in t); each of these sets is used to train a dedicated ML-model of the
ensemble. Such procedure can be repeated for E(⃗o, e⃗, ε⃗), i.e., the ML-NIDS can
be tested against the entire E, or against subsets.

The design of XeNIDS enables the assessment of multiple contexts without the need
of training additional ML models. If two contexts require the same T, it is only
necessary to draw a different E from E, and use such E to assess the previously
trained ML-NIDS.

We illustrate this stage in Figure 2.6, where we also provide a complete example
of an ensemble use-case. We anticipate that, in our demonstration, we will always
use ensembles of specialized classifiers.

The results produced as output of this stage should be subject to subsequent
analyses and considerations.

2.4 Application

As a final contribution of this paper, we showcase11 a practical application of
XeNIDS. We do so via a large set of experiments where we cross-evaluate ML-NIDS
by using a total of 6 well-known NID datasets.

We describe our testbed (Section 2.4.1) and explain the preprocessing operations
(Section 2.4.2). Then, we present the common assessment procedure (Section 2.4.3).

2.4.1 Testbed

The aim of our demonstration is reproducing and assessing the use-cases described
in Section 2.1.2. To this purpose, we assess three different context types (cf. Ta-
ble 2.1), namely C1, C4 and C7. However, we differentiate our experiments depend-
ing on the format of the NetFlow data used as input to XeNIDS: specifically, such
data can be either in a uniform or heterogeneous format. Let us explain our rationale
and the differences between these two distinct scenarios.

We recall that XeNIDS operates on existing data in the form of NetFlows. Such
NetFlows can be provided either (a) as PCAP traces, and then exported to NetFlows
using dedicated software; or (b) directly as NetFlows, processed according to the
creators’ specifications. These two scenarios must be treated separately, due to the
different effects that they can have on the results. In the first scenario, the raw PCAP
traces (collected in diverse network environments) can be used to generate uniform
NetFlows by using the same appliance for all PCAP traces; because the NetFlows
share the same format, the results are more reliable due to a lower chance of net-
work artifacts (the contribution of Con f is the same—cf. Expression 2.5). However,
such scenario requires all source data to be fully provided as PCAP, which is a re-
quirement that is hard to meet12. Therefore, it is insightful to consider also the sce-
nario where the source datasets are provided directly as heterogeneous NetFlows (due
to being generated with different software). Such scenario requires a more careful
application of XeNIDS’s standardize stage (Section 2.3.2), but also a more detailed
analysis of the results because the effects of different initial Con f can only be seen
after the ML-NIDS is evaluated.

11Our implementation of XeNIDS: https://github.com/pajola/XeNIDS
12E.g., PCAP data can be truncated [101] or not fully labelled [263].

https://github.com/pajola/XeNIDS
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We hence apply XeNIDS differently for both scenarios, each considering 4 well-
known datasets (n=4 for both scenarios).

• Heterogeneous scenario: here, we use the CTU13 [101], NB15 [210], IDS18 [262],
DDOS19 [263]. These are all provided as NetFlows, but using different appli-
ances.

• Uniform scenario: here, we use the UF-BotIoT, UF-NB15, UF-IDS18,
UF-ToNIoT. These datasets are created in [255] by the PCAP version of existing
datasets and generating the corresponding (labelled) NetFlows using a unified
appliance.

For comparison purposes, two datasets are shared13, whereas two are unique for
each scenario.

We provide in Table 2.2 an overview of these datasets. For each dataset, we re-
port the amount of NetFlows, the overall number of malicious classes, the size of the
provided feature-set, and the performance (as F1-score) achieved by the state-of-the-
art. From this table, we can already observe the effects of Con f on the corresponding
NetFlows: two datasets (i.e., the NB15 and the IDS18) are used by both scenario, but
the amount of samples and features differ. For example, the NB15 has 2.5M sam-
ples in the heterogeneous scenario, and 1.6M in the uniform scenario. Moreover, let
us focus on the performance achieved by past works. We can see that the state-of-
the-art reaches very high F1-scores, which can raise the question of whether there is
any point in improving such values. Nevertheless, we stress that cross-evaluations
have a different objective (cf. Section 2.1.2): assessing the effectiveness of ML-NIDS
against different attacks (not included in the respective datasets), and – if necessary
– improving such ML-NIDS against these attacks. As our results will show, most of
these ML-NIDS will perform poorly against different attacks, but can be strength-
ened; such achievements, however, could only be obtained by cross-evaluations.

TABLE 2.2: Statistics of the analyzed NID datasets.

Scenario Dataset #Samples #Attacks #Features F1-score

Heter.

CTU13 20.7M 5 14 99.1% [11]
NB15 2.5M 9 48 98.7% [135]
IDS18 3.1M 14 80 96.2% [299]
DDOS19 70M 18 80 99.0% [234]

Uniform

UF-BotIoT 600K 4 12 97.0% [255]
UF-NB15 1.6M 9 12 85.0% [255]
UF-IDS18 8.3M 14 12 83.0% [255]
UF-ToNIoT 1.4M 9 12 100.0% [255]

Overall, these datasets contain traffic captured in large networks and the in-
cluded malicious samples belong to a broad range of attacks14 Table 2.3 shows the
attack distribution of the input D for both scenarios. For simplicity, we organize
Table 2.3 on the basis of three ‘families’ of attacks:

• DoS, for Denial of Service attacks (e.g., DoS-Hulk);

• Botnet, for Botnet attacks (e.g., Rbot);

• Other, for remaining attacks (e.g., shellcode, scanning).

13UF-NB15 and UF-IDS18 are generated from NB15 and IDS18.
14For a precise description of each attack, we refer the reader to the source material provided by the

creators of each dataset.
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We remark that, in our implementation of XeNIDS, we always use the specific attack
classes, i.e., we do not ‘aggregate’ multiple attacks into a single class. The differenti-
ation provided in Table 2.3 is for comprehensiveness, because the amount of specific
attacks of our testbed is very broad. As an example, NB15 (and, hence, UF-NB15) has
samples for all families, i.e., 2 different types of Botnet attacks, 1 type of DoS, and
6 types of Other attacks; whereas CTU13 only has samples for 5 different attacks of
the Botnet family. From Table 2.3 we also determine that µ=46 in the heterogeneous
scenario, and that µ=36 in the uniform scenario—this is because all the specific attack
types are distinct across the input D datasets.

TABLE 2.3: Distribution of attacks in each dataset. In our implemen-
tation of XeNIDS, we always use the specific attack classes, and per-

form no merging.

Heterogeneous scenario Uniform scenario
Dataset Botnet DoS Other Dataset Botnet DoS Other

CTU13 5 0 0 UF-BotIoT 0 2 2
NB15 2 1 6 UF-NB15 2 1 6
IDS18 1 5 8 UF-IDS18 1 5 8
DDOS19 0 18 0 UF-ToNIoT 0 2 7

Total 8 24 14 Total 3 10 23

2.4.2 Preprocessing

We now describe the preprocessing computed on each considered NID dataset
Di ∈ D for both scenarios. Such operations represent the first two stages of XeNIDS:
standardize (Section 2.3.2) and isolate (Section 2.3.3). Our low-level implementa-
tion of XeNIDS aims to overcome all the residual challenges in Section 2.2.3—to the
extent this is possible with the current state-of-the-art. The experimental platform
is an Ubuntu 20.04 machine with 64GB RAM and an Intel Xeon E5-2620 CPU. The
development leverages the Scikit-Learn suite.

Standardize. We first associate each sample to its ground truth15. Then, we
derive a common feature set based on the official NetFlow v9 documentation, which
we report in Table 2.4. These features represent the minimum set of common features
obtainable from the source data for both scenarios. We note that some datasets are
provided with more features (e.g., IDS18 has 80), which are left out. However, as we
will show in our experiments, the considered features yield ML-NIDS with state-of-
the-art performance.

To sanitize network artifacts, we follow the recommendations in Appendix 2.8.2.
To avoid overfitting and simulate the application of anonymisation techniques, we
do not use the plain IP addresses or service-ports as features. Instead, we differenti-
ate between internal/external hosts of each network (features 1 and 2 in Table 2.4);
and we categorize the network ports according to the IANA guidelines (features
3 and 4 in Table 2.4). All of these operations are also adopted by recent works
(e.g. [11]). We set the d of all samples in seconds, and we ensure that most sam-
ples fall within the same duration range (i.e., [0-150]s), discarding the few outliers.

Isolate. For each dataset Di in D, we separate benign from malicious samples
using the ground truth label. We do not make any aggregation, hence our µ are
the original ones (i.e., µ=46 for the heterogeneous scenario, and µ=36 for the uniform
scenario). We thus obtain the following:

15We verify the checksum of each dataset, if provided.
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TABLE 2.4: Feature set of our XeNIDS implementation in both sce-
narios.

# Feature Name Type

1 Source IP address internal Bool
2 Destination IP address internal Bool
3 Source port type Cat
4 Destination port type Cat
5 Flow Duration [s] Num
6 Flow Direction Bool
7 Incoming Bytes Num
8 Outgoing Bytes Num
9 Total Bytes Num
10 Incoming Packets Num
11 Outgoing Packets Num
12 Total Packets Num

• for the heterogeneous scenario, N containing 4 elements representing the source
networks of the respective datasets (CTU13, NB15, IDS18, DDOS19), and M con-
taining 184 elements (because n=4 and µ=46);

• for the uniform scenario, N containing 4 elements representing the source net-
works of the respective datasets (UF-BotIoT, UF-NB15, UF-IDS18, UF-TonIoT),
and M containing 144 elements (because n=4 and µ=36).

XeNIDS can now create the contexts to be cross-evaluated.

2.4.3 Assessment

In both scenarios we analyse three context types: C1, C4 and C7 (cf. Table 2.1). Let
us explain the common assessment procedures, focusing on the architecture of the
ML-NIDS and the considered performance metrics.

Parameters and Performance Metrics. We use the same parameters for our im-
plementation of XeNIDS. Specifically, the adopted splits s(N) and s(M) are always
80:20 for both T and E. We use such splits because they are common in related liter-
ature (e.g., [11, 327]), therefore enabling a more fair comparison of our results with
those of past works. We considered different ML algorithms, but we found that
Random Forests consistently provided the best tradeoff in terms of detection perfor-
mance, rate of false alarms, and training time—a result that confirms the state-of-the-
art on the same datasets (e.g., [327, 11, 234, 255]). Hence our results will refer to Ran-
dom Forest as the learning algorithm for each classifier. The performance metrics
of interest are the F1-score (F1) and the False Positive Rate (FPR), defined as follows:

F1=
tp

.5( f p+ f n)+tp
, FPR=

f p
tp+ f n

, (2.6)

where tp, f p, f n denote true positives, false positives, and false negatives, respec-
tively; we consider a “true positive” as the correct detection of a malicious sample.
It is desirable that the application of XeNIDS when considering modifications of the
training set (hence, C7) should preserve the baseline FPR (cf. Section 2.2.3). Finally,
to account for the randomness of each split, we repeat each experiment 5 times, and
in our results, we will report the average of each repetition.

ML-NIDS Architecture. XeNIDS fosters development of ensembles of detectors
(Section 2.3.4), each specialized in a single attack. There are many ways in which
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such detectors can be integrated in a ML-NIDS. In our implementation, we assume
that the NIDS uses ML as a final confirmation of detection. Hence, each sample is
forwarded to the ‘most suitable’ detector of the ensemble, which must determine
whether such sample is really malicious or not. While such selection is straightfor-
ward for contexts of type C1 and C7 (because τ̄ = ε̄), this is not the case for C4, where
the ML-NIDS is tested against ‘unknown’ attacks (because τ̄ ̸= ε̄). Hence, for C4 we
perform a preliminary exploratory operation to identify the most suitable detector
of the ensemble against the unknown attacks; this is to allow a more fair compari-
son with [234], which also investigates C4 by using two datasets considered in our
testbed, IDS18 and DDOS19. Hence, we reserve a portion of the samples of each
unknown malicious class, and test every detector composing the ML-NIDS against
such portion: the one with the best performance is chosen as the candidate for ana-
lyzing the corresponding attack. This is legitimate because the ground truth of such
samples is known, and such samples (i) are never used in E, and (ii) are not added in
T (otherwise it would not be C4). Therefore, when presenting the corresponding re-
sults, we will report the performance achieved by the most optimal detector against
each specific attack.

2.5 Demonstration

Our demonstration aims to simulate the exemplary use-cases described in
Section 2.1.2. Let us discuss how we organize our demonstration by using the three
considered types of contexts (C1, C4 and C7) enabled by the proposed model (cf.
Table 2.1).

Workflow. We follow the same workflow for both the uniform and heterogeneous
scenario.

1. Baseline (Section 2.5.1). We begin by assessing the case where the organization
O has an N and a M collected in their own network o. Such setup corresponds
to context C1. To simulate C1, we use XeNIDS to devise a ML-NIDS for each
dataset; such ML-NIDS is composed by an ensemble of detectors, each trained
on a single attack contained in the same dataset. The ML-NIDS is tested against
all the attacks of the ‘origin’ dataset. The expectation is that the results match
the state-of-the-art.

2. Generalization Section 2.5.2. Having a ML-NIDS, the organization O wants to
assess its effectiveness against different attacks not included in T and origi-
nating from a different network than o. Such setup corresponds to context C4.
We use XeNIDS to test the ‘baseline’ detectors of C1 against all attacks of all
datasets. The expectation is that the performance will decrease substantially.

3. Extension (Section 2.5.3). To compensate for the low performance against un-
known attacks, the organization O borrows more malicious samples to im-
prove the detection capabilities of their ML-NIDS. This corresponds to context
C7 where t̄ extends ō. For each dataset, XeNIDS trains additional detectors by
using the malicious samples of all the other datasets, and adds such detectors
to the ensemble of the ‘baseline’ ML-NIDS. Such ‘extended’ ML-NIDS is tested
against all attacks of the CS. The expected result is an improved performance
w.r.t. C4.

4. Surrogation (Section 2.5.4). If the organization O only has benign samples N
from their own network o but does not have an M, the only option is using an
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M from a different network to develop a ‘surrogate’ ML-NIDS. This is also rep-
resented by C7, but in this case o⃗ and t⃗ are disjointed. Hence, for each dataset,
XeNIDS uses only the additional detectors developed at the previous step to
devise a (new) ‘surrogate’ ML-NIDS. Such surrogate ML-NIDS is then tested
only against the ‘attacks from different networks.

Example. Let us provide a complete example of the workflow above. We adopt
the viewpoint of an organization that owns the UF-UNB15 network (hence, the uni-
form scenario). A total of 9 attacks originate from such network: 2 botnets, 1 DoS,
and 6 others (cf. Table 2.3).

1. XeNIDS uses the 9 attacks of UF-UNB15 to train 9 detectors, representing the
baseline ML-NIDS, which is tested against these 9 attacks.

2. XeNIDS tests the baseline ML-NIDS (with its 9 detectors) against all the attacks
of all datasets. Namely: 4 attacks for UF-BotIoT, 14 attacks for UF-IDS18, 9
attacks for UF-ToNIoT, as well as the 9 in UF-UNB15.

3. XeNIDS trains 27 additional detectors, each using the benign samples of
UF-UNB15 alongside the malicious samples of a specific attack contained in
UF-IDS18, UF-ToNIoT, UF-BotIoT, respectively. Such detectors are combined
with the 9 ‘baseline’ detectors of UF-UNB15, to extend the ML-NIDS. Such ‘ex-
tended’ ML-NIDS is tested against all the attacks of all datasets (36 attacks).

4. XeNIDS uses only the 27 detectors trained in the previous step (representing
the ‘surrogate’ ML-NIDS) and tests them against the attacks contained in the
corresponding networks, i.e., without taking into account the attacks (and the
detectors) in UF-UNB15.

Such workflow is followed 4 times for both scenarios, each time by considering a
different dataset as ‘origin’.

2.5.1 Baseline

We start by assessing C1, and report the results in Table 2.5. Specifically, on the left,
we present the results for the heterogeneous scenario, and on the right, the uniform
scenario. For each dataset, we report the average F1-score obtained against each
family of attacks (cf. Table 2.3). Moreover, we report in the captions the average
FPR achieved by the ML-NIDS of each dataset. Henceforth, all our results will be
reported in the same format as Table 2.5.

TABLE 2.5: Baseline–C1. The table shows the F1-score of the ML-NIDS
for each origin network. The performance matches the state-of-the-
art. The FPR is less than 0.001 for all networks aside from UF-BoTIoT

(FPR = 0.11).

Heterogeneous scenario Uniform scenario
Dataset Botnet DoS Other Dataset Botnet DoS Other

CTU13 98.1 — — UF-BotIoT — 99.9 92.0
NB15 88.6 98.5 98.1 UF-NB15 83.4 91.4 95.8
IDS18 90.1 99.9 96.1 UF-IDS18 99.9 99.1 99.2
DDOS19 — 99.9 — UF-ToNIoT — 99.9 99.7
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From Table 2.5, we observe that there are only two scores for UF-BoTIoT and
UF-ToNIoT, because there are no Botnet samples in these ‘origin’ datasets. Similarly,
CTU13 and DDOS19 presents only one score.

All our baseline detectors match the performance of past works (cf. Table 2.5). As
an example, for the uniform scenario, the ‘worst’ ML-NIDS is trained (and evaluated)
on UF-UNB15, but also in [255] such ML-NIDS achieves an average F1-score of 85%.
Similarly, in the heterogeneous scenario, the ML-NIDS in [234] achieve 99.0 F1-score
on both IDS18 and DDOS19, whereas [11] achieves 99.0 F1 on CTU13—all these results
align with ours, confirming that our XeNIDS implementation is efficient.

2.5.2 Generalization

We then assess the baseline ML-NIDS when they are subject to attacks also contained
in different networks, i.e., C4. We report the detection results in Table 2.6; the FPR is
the same as in the baseline C1 (cf. caption of Table 2.5): this is expected because in C4
uses the same training sets as C1, and also the benign samples of the evaluation sets
are the same as in C1,

From Table 2.6, we observe that the performance decreases because most of the
attacks are ‘unknown’ to the baseline ML-NIDS. However, we can observe some in-
teresting phenomena.

In the uniform scenario, the ML-NIDS of UF-ToNIoT can detect botnet attacks
remarkably well (82% F1-score), despite having no ML-model specialized on bot-
net attacks (because no such attacks are contained in UF-ToNIoT). Such an intrigu-
ing finding could only be appreciated by cross-evaluating the ML-NIDS trained on
UF-ToNIoT against malicious samples from different networks. Furthermore, the
heterogeneous scenario shows that the baseline ML-NIDS of DDOS19 works very well
against DoS attacks from other networks—despite such attacks being performed by
different means.

We also compare some of our results with those in [234], which also investi-
gated C4. Specifically, the ML-NIDS trained on DDOS19 and tested on IDS18 in [234]
achieves 64% F1-score on average, which is similar to ours. Conversely, the ML-
NIDS trained on IDS18 and tested on DDOS19 in [234] achieves an average 78% F1-
score, which is slightly superior than ours. We explain this difference to the differ-
ent conditions in [234]: they only consider a smaller portion of the initial dataset,
whereas we use all of them. Hence, our samples may present a more skewed distri-
bution that makes them more difficult to classify.

TABLE 2.6: Generalization–C4. Each baseline ML-NIDS of C1 is tested
against the attacks of all other networks. Most attacks are not de-
tected, and the F1-score degrades. The FPR is the same as in C1 be-
cause the benign samples are always the same and the training set is

not modified.

Heterogeneous scenario Uniform scenario
Dataset Botnet DoS Other Dataset Botnet DoS Other

CTU13 80.0 38.1 49.7 UF-BotIoT 47.8 69.0 76.8
NB15 65.8 40.7 75.2 UF-NB15 72.2 52.3 64.1
IDS18 54.9 49.4 76.1 UF-IDS18 68.2 81.0 63.3
DDOS19 54.4 99.5 83.1 UF-ToNIoT 82.1 89.3 85.1
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2.5.3 Extension

Next, we assess C7 when τ̄ extends ō, and report the results in Table 2.7. We observe
that the overall performance increases (w.r.t. Table 2.6) by augmenting the training
sets with the corresponding malicious samples. In the heterogeneous scenario, our
‘extended’ ML-NIDS naturally outperform those in [234], but we cannot claim this
as a contribution because our ‘extended’ ML-NIDS use an augmented training set.
We also appreciate that the FPR remains stable (cf. Table 2.5). We owe such results
to our reliance on ensembles of detectors.

TABLE 2.7: Extension–C7. By augmenting the training set of the ML-
NIDS with the malicious samples, the F1-score improves w.r.t. C4. The
average FPR is lower than 0.001 for all networks aside from UF-BotIoT

(FPR = 0.01).

Heterogeneous scenario Uniform scenario
Dataset Botnet DoS Other Dataset Botnet DoS Other

CTU13 98.8 99.9 98.9 UF-BotIoT 99.7 99.9 99.2
NB15 97.1 99.9 99.1 UF-NB15 88.9 99.2 98.7
IDS18 98.5 99.7 97.7 UF-IDS18 99.9 99.4 97.8
DDOS19 99.9 99.9 98.6 UF-ToNIoT 99.7 99.9 99.9

2.5.4 Surrogation

Finally, we assess C7 when τ̄ and ō are disjointed, and report the results in Table 2.8.
From this table, we observe that all detectors exhibit very high F1-scores, imply-
ing that the malicious samples are considerably different than the benign samples.
Sometimes, the F1-score reaches 99.9%, but is not perfect: we believe such occur-
rence to be positive because an F1-score of 100% could be related to overfitting.

TABLE 2.8: Surrogation–C7. We exclude all malicious samples (and
detectors) from the each ‘origin’ network. The extremely high perfor-
mance must be investigated. The average FPR is less than 0.001 and
0.0001 for all networks of uniform and heterogeneous scenarios, respec-

tively.

Heterogeneous scenario Uniform scenario
Dataset Botnet DoS Other Dataset Botnet DoS Other

CTU13 99.9 99.9 98.9 UF-BotIoT 99.7 99.9 99.9
NB15 99.9 99.9 99.9 UF-NB15 99.9 99.9 99.9
IDS18 99.6 99.6 99.8 UF-IDS18 99.9 99.9 99.9
DDOS19 99.9 99.9 98.6 UF-ToNIoT 99.7 99.9 99.9

2.6 Discussion

We now discuss the results presented in Section 2.5. We first summarize the main
findings (Section 2.6.1), and then make some considerations reliability of the results
(Section 2.6.2 and Section 2.6.3). We then present the main limitations of our demon-
stration, as well as possible workarounds (Section 2.6.4).
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2.6.1 Preliminary Analysis

We appreciate that, in general, our results show the effectiveness of XeNIDS in pro-
ducing baselines with state-of-the-art performance, while also extending the detec-
tion surface. It is intriguing that, in some cases, it is possible to detect attacks without
training on the related malicious samples. To further stress the advantages of cross-
evaluations, we provide an in-depth look at our results by focusing on the CTU13

dataset. This dataset contains only botnet attacks and, from Table 2.2, the state-of-
the-art (e.g., [11]) achieves 99.1% F1-score against such attacks. A similar perfor-
mance may suggest that improvements can be incremental at best; however, no past
works have assessed how ML-NIDS trained on CTU13 can detect different botnet at-
tacks (not included in CTU13). By applying the proposed XeNIDS framework, we
discover that similar ML-NIDS perform much worse: as shown by Table 2.6 (Sec-
tion 2.5.2), the F1-score of such ML-NIDS drops by 20% against botnet attacks of
diverse datasets; even worse, it is unable to detect DoS attacks (F1-score of 38%).
Such poor performance could only be assessed via cross-evaluations. To make it better, the
performance against these – different – attacks can be increased by training on the
respective samples: by observing Table 2.7, the F1-score can be restored to 99% via
cross-evaluations. Also noteworthy is that the FPR always remains within accept-
able levels (below 0.001). Such FPR will resemble the one after deployment (because
the source of benign samples is always the same).

However, as stated in Section 2.2.3, it is necessary to further analyze the results
of XeNIDS. This is to avoid relying on a false-sense of security, given by high perfor-
mance at test-time which does not correspond to the performance after the ML-NIDS
is deployed. We specifically focus on contexts of type C7 because they involve mod-
ifications of the training data, which can lead to ‘network artifacts’ that affects the
Env component of NetFlows (cf. Expression 2.5 in Section 2.3.2) and, potentially,
lead to overfitted ML-NIDS.

2.6.2 Reliability: Uniform scenario

In this scenario, by definition, the Env is affected only by NetId because Con f is
the same for all datasets; such characteristic implicitly reduces the risk of network
artifacts. Nevertheless, we find instructive to analyze the results of the surrogate ML-
NIDS, reported in the right-side of Table 2.8. In particular, we consider the UF-UNB15
network. We observe that the ‘surrogate’ detectors focused on botnet attacks achieve
a near-perfect F1-score, which is higher than both their ‘extended’ and ‘baseline’ vari-
ants (cf. Tables 2.7 and 2.5). This implies that benign samples of UF-UNB15 are very
similar to the (malicious) botnet samples of UF-UNB15, making such botnet samples
harder to classify by the UF-UNB15 ML-NIDS w.r.t. the botnet samples in other net-
works. Such occurrence can be a sign of overfitting, because the UF-UNB15 ML-NIDS
could be detecting the botnet samples from other networks on the basis of network
artifacts. However, a more detailed analysis can remove such doubt. Indeed, in
the uniform scenario, the only other source of ‘botnet’ samples is UF-IDS18, where
the baseline performance is also perfect (cf. Table 2.5), a result also confirmed by
the state-of-the-art [255]. Simply put, the ‘botnet’ samples in UF-IDS18 are easy to
identify. Such observation reduces the chance that the surrogate (or the extended)
ML-NIDS of UF-UNB15 are affected by artifacts from UF-IDS18.
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2.6.3 Reliability: Heterogeneous scenario

This scenario assumes NetFlows generated via different means, hence the Env com-
ponent is affected by both NetId and Con f . Such characteristic increases the chance
that some artifacts ‘evaded’ XeNIDS standardize stage. To find a trace of such ar-
tifacts, we compare the feature importances of each ML-NIDS (all ML-NIDS use the
same feature set).

Intuitively, the most important features for detecting an attack in its ‘origin’ net-
work should denote the malicious behavior–hence, such features should be also the
most important when the attack is ‘transferred’ to train a different ML-NIDS (which
is the case in C7). We provide in Figure 2.8 a comparison of such importances, fo-
cusing on the detectors specialized on the Rbot botnet attack (contained in the CTU13
network). Specifically, Figure 2.8 shows the importances of the top6 most important
features (out of 12–cf. Table 2.4) for all the Rbot detectors among the four different
networks.
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FIGURE 2.8: Feature importances of the Rbot detectors (Heteroge-
neous CS).

From Figure 2.8 we observe that the detectors can either ‘agree’ or ‘disagree’
on the importance of such features. Specifically, we observe that the ‘origin’ CTU13
detector (blue bars) places a great importance on the tot_bytes, denoting agreement
with the other detectors; however, there is disagreement on the duration, which is less
important for the CTU13 detector. The general trend in Figure 2.8 is that the detectors
disagree on most features: therefore, we cannot exclude that some underlying effects
of Env are still present.

2.6.4 Limitations and Future Work

To increase the reliability of the detection performance, it is necessary to assume the
perspective of the owners of each network. As a practical example that could remove
any doubt, the owners of the NB15 network should infect their machines with the
Rbot botnet (contained in CTU13), and verify whether their ML-NIDS (trained on the
Rbot samples from CTU13) can detect such attack. Doing such verifications is not
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possible for our scientific paper, as they require a complete control and overview of
the monitored network. Moreover, the CnC servers of the Rbot botnet are no longer
active. Our experiments are for demonstrative purposes, but realistic deployments
should integrate such verifications–which must be done regardless of the origin of
the malicious samples (i.e., both in ‘traditional’ and in ‘cross’ evaluations).

Moreover, we note that each considered context type is an independent use case.
Indeed, our focus is not on developing systems that outperform the state-of-the-art:
it would be unfair to claim that our ML-NIDS generated via C7 are better than those
in [234]. In contrast, our goal is to demonstrate the contexts that can be assessed by
mixing different network datasets, showcasing the potential of such cross-evaluation
for the state-of-the-art. As such, we can consider our results as a ‘benchmark’, allow-
ing future cross-evaluation studies to compare their results with those in our paper.

Finally, an intriguing future research direction is the assessment of cross-
evaluations in adversarial settings: for instance, how would a ML-NIDS poisoned
with samples from a different network perform (cf. Section 2.2.3)? Answering a
similar question would be beneficial to the ML-NIDS research area.

2.7 Summary

Despite many successes, the integration of supervised Machine Learning (ML) meth-
ods in Network Intrusion Detection Systems (NIDS) is still at an early stage. This is
due to the difficulty in obtaining comprehensive sets of labelled data for training and
evaluating a ML-NIDS. The recent release of labelled datasets for ML-NIDS was ap-
preciated by the research community; however, few works noticed the opportunity
that such availability provides to the state-of-the-art.

Inspired by the necessity of proactive empirical evaluations and the recent re-
lease of more open datasets, we promote the idea of cross-evaluating ML-NIDS by
using existing labelled data from different networks. Such approach has been ap-
plied before, but no past work specifically tackled this problem. As a result, all the
benefits of cross-evaluations, as well as their intrinsic risks, are still unexplored.

We address all of these issues in this paper. We begin by presenting the first
model for cross-evaluation of ML-NIDS, which is data-agnostic and general enough
to cover both supervised and unsupervised ML-NIDS. By using such model, we
highlight the limited scope adopted by most related works, and showcase the bene-
fits provided by cross-evaluations of ML-NIDS. We also present all the challenges
and limitations of such opportunity, which must be known and adequately ad-
dressed in order to provide actionable results.

To foster proactive cross-evaluations, we develop XeNIDS, the first framework
for cross-evaluations of ML-NIDS. XeNIDS aims to mitigate all the hazards arising
from using data from different networks. Specifically, XeNIDS focuses on NetFlow
data, which is popular in the ML-NIDS community due to its flexibility and suitabil-
ity for detection purposes.

Finally, we elucidate the potential of cross-evaluations via a large set of experi-
ments, where we use XeNIDS to cross-evaluate ML-NIDS on 6 well-known datasets.
In our demonstration, we show the capability of XeNIDS to retain the ‘baseline’ per-
formance of past ML-NIDS, while illustrating some additional use-cases enabled by
cross-evaluations, such as ‘extending’ the detection surface of ML-NIDS. We con-
clude our demonstration with a follow-up discussion where we question the relia-
bility of the results, which is necessary for realistic deployments of ML-NIDS.
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Our paper will hopefully inspire future works on ML-NIDS, and is oriented to
both researchers and practitioners. The former can make better use of open datasets
to cross-evaluate past and future ML-NIDS, allowing broader assessments of the
state-of-the-art; the latter can use future research results, or completely integrate
cross-evaluations in their proactive assessments, to develop or improve Machine
Learning-based Network Intrusion Detection Systems—without incurring in extra
labelling procedures. We believe that cross-evaluations – supported by data-sharing
platforms and federated learning techniques – represent a pragmatic way to over-
come the specificity of NIDS and realize ‘general’ ML-NIDS.

2.8 Appendix

2.8.1 Contributors to NetFlows

Let us illustrate the role played by Comm and Env (i.e., NetId and Con f ) in the
generation of the corresponding NetFlows (see Expression 2.5). Assume that two
organizations, O1 and O2, have two distinct networks both having a pair of hosts
(h1

1 and h2
1 for O1, h1

2 and h2
2 for O2); such hosts communicate with each other within

their own networks. It is straightforward that if these two pairs of hosts exchange
different information (viz., resulting in different Comm) then the resulting NetFlows
generated in O1 and O2 will differ. Let us focus on the case where the the pairs of
hosts exchange the same information (viz., same Comm). For simplicity, assume that
the first host of each pair (h1) sends exactly the same file of 100MB to the second host,
using exactly the same protocol and ports. Let us assume that the hosts in O1 are
allocated a bandwidth of b1 Mb/s, and that those in O2 are allocated a bandwidth
of b2 Mb/s. Finally, let us assume that the organizations use the same NetFlow
generation software, configured to allow the maximum duration of a NetFlow to be
d1 for O1, and d2 for O2. We identify four scenarios.

• b1=b2 and d1=d2 → same NetId and same Con f (viz. same Env). For instance,
if b1 = b2 = 100Mb/s and d1 = d2 = 10s, then the file will be transferred in the
same amount of time (8s) in both O1 and O2, resulting in similar NetFlows
(with a duration of 8s).

• b1 ̸= b2 and d1 = d2 → different NetId but same Con f (viz. different Env). For
instance, if b1=100Mb/s and b2=1Mb/s, then the file will be transferred in 8s
in O1 but in 800s in O2, resulting in different NetFlows.

• b1 = b2 and d1 ̸= d2 → same NetId but different Con f (viz. different Env). For
instance, if b1= b2=100Mb/s while d1=10s and d2=1s, then the transfer will
take 8s in both O1 and O2; but in O1 there will be 1 NetFlow of 8s, while in O2
there will be 8 NetFlows of 1s.

• b1 ̸= b2 and d1 ̸= d2 → different NetId and different Con f (viz. different Env).
This is self-explanatory.

Of course, there are many other factors that affect NetId and Con f (aside from
the bandwidth and maximum duration). The above-mentioned example is just for
demonstrative purposes.
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2.8.2 Guidelines for Standardize

To avoid generating network specific artifacts (discussed in Section 2.3.2), we pro-
vide some recommendations on three common NetFlow fields: the IP addresses, the
service ports, and the duration.

IP addresses. There are two issues that may arise when standardizing the IP
addresses of two distinct datasets:

• different networks use different subnet masks. For instance, the internal IP
addresses of Di may present the structure “192.168.x.x”, whereas those in Dj
are “175.32.x.x”;

• the malicious traffic of a given dataset may be entirely produced by just few
machines.

Neglecting these issues may result in ML models that distinguish legitimate from
anomalous samples on the sole basis of the IP address of a host, without giving the
due importance to the remaining traffic characteristic. This is a problem because if a
real attack involves a machine with a different IP address, the detector would never
identify it. We hence propose to standardize each dataset by separating internal from
external hosts. The ML model will use these features, instead of the IP addresses, to
perform its analyses. The information to perform this separation can be obtained
either from the documentation of a dataset, or by inferring it from the data using
expert knowledge; if such information is not obtainable, then we suggest not to use
any IP-related feature.

Service Ports. Handling the service ports of distinct datasets presents similar
issues to the IP addresses discussed above: different networks may adopt different
port policies; and the attacks captured by a given dataset may rely just on a restricted
(or unique) set of ports. We thus propose to standardize each dataset by categorizing
each port on the basis of the IANA guidelines, i.e., well-known [0-1023], registered
[1024-49151] and dynamic [49151-65535].

Duration. Besides verifying that all datasets use the same measurement units,
standardizing the NetFlow duration (d) of distinct datasets is a challenging task. On
the one hand, datasets may be created with different NetFlow tools and/or differ-
ent configuration parameters. For example, setting the maximum duration (dmax)
of a NetFlow to 1000 or 100 seconds would lead to significantly different results16.
On the other hand, there may be some underlying traits of a given network that
lead its machines to generate flows of different duration. To address these issues,
we propose three possible solutions, all involving the identification of the smallest
maximum duration across all datasets, min(dmax):

• Outlier removal. This approach assumes that (i) the duration of the majority of
samples (from all considered datasets) falls within a reduced range [dl , dt], and
that (ii) the top limit dt of this range is lower than min(dmax). In these circum-
stances, it is possible to remove the few “outliers” that have extremely high
durations with respect to the remaining samples. Despite the consequential
loss of samples, removing outliers does not necessarily reduce the prediction
performance.

• Threshold setting. This solution avoids data loss problems. If a dataset Di has
dmax ≫ min(dmax), its samples having d > min(dmax) will have their duration

16This issue can be overcome if the datasets are provided in PCAP format by properly setting the
NetFlow generation tool.
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set to min(dmax). However, it is important to store the original value of d if
it is needed to compute some derived metrics, such as the packets per second.
This approach may be unpractical for ML leveraging sequential analyses as it
disrupts the sequence of samples.

• Flow splitting. This technique enables the application of sequential ML meth-
ods. The intuition is to split those flows that exceed min(dmax). Given a Di
with dmax > min(dmax), the idea is to truncate all flows of Di with duration
d > min(dmax) into multiple flows. As a practical example assuming dura-
tion expressed in seconds, if min(dmax)=300 and Di has dmax=1000, and if a
given flow in Di has d=700, the approach truncates this flow in three distinct
flows, with d=(300, 300, 100). When performing the split, it is important to also
update some metrics, such as the transferred bytes or packets (which can be
adjusted proportionally) as well as the start and finishing times of the flow.

We observe that, in our experiments, we adopt the outlier removal strategy. Despite
being lossy, such technique still allows to devise ML-NIDS with performance match-
ing the state-of-the-art (see Table 2.5 and compare it with Table 2.2).

2.8.3 Symbol Table

To facilitate the readability, we report in Table 2.9 the major notation used through-
out the main sections of our paper.

We also further explain the difference between some of our symbols introduced
in Section 2.2, and specifically the difference between the arrays and sets (e.g., t⃗ and
t̄). Let us assume a scenario where n=3 and µ=3, meaning that M is a 3x3 matrix.
We use the ordered arrays t⃗, τ⃗ (or e⃗, ε⃗) to answer the question “which elements of M

are included in T (or E)?”. A possibility is that t⃗=(1,1,2) and that τ⃗=(2,3,3). This
means that T will contain M2

1, M3
1, M3

2. Hence, t̄=(1,2) because t̄ is the set denoting
the (unique) ‘malicious’ networks included in T. At the same time, τ̄=(2,3) because
τ̄ is the set denoting the (unique) attacks included in T.

Finally, we stress that, in our cross-evaluation model, ō=⃗o=o, because the origin of
the benign samples must be the same for both the training and evaluation partitions
(i.e., T and E, respectively).
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TABLE 2.9: Table of relevant notation used in this paper.

SYMBOL DESCRIPTION REF

O An organization Section 2.1.2
o The network of the organization O Section 2.1.2
N A set of benign network samples Section 2.1.2
M A set of malicious network samples Section 2.1.2

D A collection of datasets, each generated in a specific network Section 2.2.1
n The cardinality of D, i.e., the number of different networks included in D Section 2.2.1
Di The set of samples generated by network i (

⋃
iDi =D) Section 2.2.1

Ni, Mi The set of benign and malicious samples included in Di (Ni∪Mi =Di) Section 2.2.1
µ The number of all attacks included in D Section 2.2.1

Mα
i The samples of network i corresponding to the attack α (

⋃
α Mα

i =Mi) Section 2.2.1
N, M The collection of all N and M included in D Section 2.2.1

T, E The training and evaluation sets of a ML-NIDS Section 2.2.2
No The benign samples (from the same network o) used in both T and E Section 2.2.2
Mτ

t An element of M used in T Section 2.2.2
Mε

e An element of M used in E Section 2.2.2
t̄, ē The set of all networks included in T and E Section 2.2.2
τ̄, ε̄ The set of all attacks included in T and E Section 2.2.2

T(ō, t̄, τ̄) The function describing the training set T Section 2.2.2
E(ō, ē, ε̄) The function describing the evaluation set E Section 2.2.2

C(ō, t̄, ē, τ̄, ε̄) A context is defined by the relationships between ō, t̄, τ̄, ē, ε̄ Section 2.2.2

Comm The contribution to a NetFlow of the communications of the involved hosts Section 2.3.2
Env The contribution to a NetFlow of the network environment of its two hosts Section 2.3.2

NetId The intrinsic properties of a network influencing Env Section 2.3.2
Con f The configuration of the NetFlow appliance influencing Env Section 2.3.2
T, E The set of all T and E generated by XeNIDS Section 2.3.4
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DETONAR: Detection of Routing
Attacks in RPL-based IoT

The revolution of the internet world is happening in recent years, bringing the name
of the Internet of Things (IoT). Initially studied as the evolution of Wireless Sen-
sors Networks (WSNs) [194], recently IoT has gained much popularity and scientific
community attention. The new paradigm introduced by IoT has shown the broadest
range of applications, from industrial scenarios [36, 69], to smart homes [95, 275],
intelligent healthcare [139], and smart cities [323].

The importance of Internet of Things (IoT) applications introduces the need to
secure IoT networks[285, 150]. Indeed, many examples of attacks and vulnerabil-
ities can be found for these networks. For instance, in October 2016, the largest
Distributed-Denial-of-Service (DDoS) attack was launched using an IoT botnet. This
specific attack leveraged the Mirai malware [158]. In 2017, a study developed by
the US Food and Drug Administration confirmed that some cardiac devices present
serious vulnerabilities that, if exploited, could allow unauthorized access to the de-
vices [61].

There exists a broad variety of communication protocols commonly used in IoT
networks, e.g., WiFi [171], IEEE 802.15.4 [74], RFID [141], Bluetooth [62]. Depending
on the considered devices, the surrounding environment, and the required com-
munication range, different protocols are leveraged. In this paper, we consider the
standardized Routing Protocol for Low Power Lossy Networks (RPL). RPL is con-
sidered the de facto routing protocol for IoT and can be efficiently used in different
applications, including but not limited to healthcare, smart environments, transport,
industry, and military applications [151, 100, 155]. RPL is a proactive protocol devel-
oped to allow communication in wireless networks with low power consumption
and generally susceptible to packet loss. In particular, we inspect the identified vul-
nerabilities of RPL. In recent years, research efforts shed light upon routing attacks
against RPL (e.g. rank attack, version attack, etc.) [304, 233, 241, 64].

Given the wide variety of attacks available against this protocol, its secure
deployment is difficult. Moreover, RPL’s popularity in IoT applications renders
the security problem of this protocol of paramount importance. In the recent
past, some works have been proposed aiming at securing RPL with alternate suc-
cess [232, 282, 99, 261, 6, 147, 65]. Although showing acceptable detection perfor-
mances, state-of-the-art security systems focus only on few attacks while introduc-
ing communication overhead and computation performance issues. Therefore, there
is a lack of a reliable and comprehensive IDS that can identify more attacks with low
overhead. To this end, we propose DETONAR1, an Intrusion Detection System used
to DETect rOutiNg Attacks in RPL. DETONAR leverages traffic analysis technique.

1DETONAR is a Venetian dialectal word that stands for detonating a bomb, as the proposed IDS
aims at detonating any possible attacks against RPL.
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Only a few works explore this concept in RPL security, such as [319, 34]. However,
these works focus only on the identification of a few attacks. The proposed IDS aims
to identify the maximum number of attacks while introducing zero RPL overhead
and zero computations at IoT devices. DETONAR leverages traffic sniffer devices
and traffic analysis techniques in order to build a centralized IDS. The DETONAR
detection scheme’s centrality allows it to overcome state-of-the-art drawbacks like
RPL overhead and computational power requirements of IoT devices. Moreover,
DETONAR introduces a hybrid approach relying on the combination of anomaly-
based detection and signature-based classification techniques. Combining these
techniques allows DETONAR to reach reliable attack detection while maintaining
low false positives.

Given the unique nature of DETONAR and its use of network traffic analysis
techniques, we need to introduce a novel dataset of attacks against RPL, called
RADAR, to evaluate its performances. We consider 14 well-known routing attacks
against RPL and use the NetSim tool [287] to implement these attacks and extract the
corresponding dataset (see Section 3.2). The dataset consists of the packet trace files
for each simulation. These files contain the packets that each device has sent dur-
ing the communication period. The simulation implementation considers only static
scenarios, given their popularity among RPL’s applications and medium-sized net-
works (i.e. 16 nodes). To the best of our knowledge RADAR represents the biggest
and most comprehensive dataset of routing attacks in RPL. Its introduction repre-
sents a step forward in security research as it allows to study a wide variety of at-
tacks simultaneously.

Contribution To summarize, the contributions that our work brings to IoT security
are the following:

• We present RADAR, a novel Routing Attacks Dataset for RPL. To the best of
our knowledge, RADAR represents the first dataset containing RPL traffic for
a vast range of attacks. The dataset (see Section 3.2 for more details) contains
network traffic of simulations for 14 well known attacks. Thanks to NetSim,
we make the dataset publicly available2. RADAR contains 80 different simu-
lations, each of length 1500 seconds, obtaining on average more than a million
packets for each simulation.

• We present DETONAR, a novel IDS developed to detect routing attacks in RPL
and identify intruders. Due to its novel sniffing approach and the centralized
computation paradigm, DETONAR (see Section 3.3 for more details) maintains
zero communication overhead at RPL level and requires no device computa-
tions or firmware update.

• We show the effectiveness of DETONAR on the proposed RADAR dataset and
shows its applicability to small-scale networks. DETONAR’s true positive de-
tection exceeds 80% for 10 attacks out of 14 (see Section 3.4.2 for more details),
while requiring relatively small computation time, due to its hybrid approach.

Organization This chapter is organized as follows. Section 3.1 discusses the
basic concepts of RPL, also presenting the known attacks against it in IoT net-
works. Section 3.2 presents RADAR in details, explaining its most relevant fea-
tures. Section 3.3 describes the proposed IDS, its workflow, and the main advantages

2https://spritz.math.unipd.it/projects/detonar/
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that it brings. Section 3.4 presents the attack detection parameters optimization pro-
cess and the performance analysis of our proposed IDS over different IoT scenarios.
Finally, Section 3.5 provides conclusions and insight of possible extensions of our
work.

3.1 Background and Related Work

In this section we briefly introduce the routing protocol for Low Power Lossy Net-
works (LLNs), called Routing Protocol for Low Power Lossy Networks (RPL) (see
Section 3.1.1). Section 3.1.2 then summarizes well known networking attacks against
RPL and their workflow. Finlly, in Section 3.1.3 we present the available IDSs and
their limitations, motivating our work.

3.1.1 Routing Protocol for LLNs (RPL)

RPL is the routing protocol standard for LLNs. This protocol was developed by the
IETF ROLL task force and is specified in the Request For Comment (RFC) 6550 [308].
The development of RPL was commissioned by IEEE to bridge the existing gap in
routing for IoT scenarios. The RPL protocol has been specifically designed to meet
the requirements of resource, power, and bandwidth constrained devices.

The fundamental concept standing at the base of RPL is the topological notion
of Destination Oriented Directed Acyclic Graphs (DODAGs). The DODAG is a directed
graph-oriented towards a root node without loops. The nodes providing access to
the internet (gateways) are considered root nodes. All other nodes link to them
directly or through a series of parent nodes. Each node selects a preferred parent
that is used to forward application packets. It is selected depending on the rank
value that can be obtained by a device. This value represents the position of a node
in the DODAG. Rank depends on both, the distance of the node from the root, and
the objective function (OF). It describes how distance and signal-to-noise ratio are
used to compute rank.

RPL introduces new control packets leveraged to build and maintain the
DODAG and the communication routes. RPL control packets are defined as a new
type of Internet Control Messages Protocol version 6 (ICMPv6) control packets. In
particular, DODAG Information Solicitation (DIS) packets are used by a node to ask for
information regarding neighbourhood status, and DODAG Information Object (DIO)
packets are used to discover RPL instances, learn DODAG configurations, select
preferred parent, and maintain DODAG structure. Destination Advertisement Object
(DAO) packets are used to advertise reverse routes information, creating upward
and downward paths between any nodes, and the Destination Advertisement Object
(DAO-ACK) packets are sent in response to a DAO packet.

RPL supports different communication paradigms, that includes Point-to-
multipoint (P2MP), point-to-point (P2P) and multipoint-to-point (MP2P). It also pro-
vides two modes of operation. In storing mode, the preferred parent will store routing
information in a routing table. Using this mode, application packets reach the closest
common parent before being redirected to destination. In non-storing mode, the root
node is the only device that maintains a routing table. Using this mode, application
packets reach root node before being redirected to destination. Full explanation of
RPL implementation details is out of the scope of this paper. Interested readers may
find more comprehensive literature on RPL protocol in [308, 154].



44 Chapter 3. DETONAR: Detection of Routing Attacks in RPL-based IoT

3.1.2 Attacks on RPL

There exist many networking attacks against RPL. Even if traditional security pro-
tocols are implemented (IPSec [244], SSL [145], etc.), RPL does not guarantee com-
munication and routing security. Malicious user can take possession of a device,
modify the DODAG structure, or block application packets. To study networking
attacks against RPL, we refer to [304, 233, 241]. To the best of our knowledge, there
exist 16 well-known attacks, each of them presenting specific behaviours.

• Blackhole and Selective Forward attacks. The attacker may drop all (blackhole) or some
(selective forward) application packets received from its children. Goal: Denial-of-
Service.

• Sinkhole, Rank, and Continuous Sinkhole attacks. A malicious user can fake its rank
value, modifying or disrupting network structure. Goal: DODAG modification.

• HELLO flooding, and DIS attacks. A malicious device forges and sends a high
amount of control packets (DIO or DIS). Forged messages keep the neighbours
busy trying to process them. Goal: Network flooding.

• Clone ID and Sybil attacks. An attacker can advise himself as one or multiple dif-
ferent devices, stealing the identity of a legitimate node. Goal: Eavesdropping.

• Wormhole attack. Multiple attackers can collaborate to create a tunnel. The created
tunnel allows the two malicious nodes to intercept and divert many applications
packets. Goal: Routes modification.

• Version, Local repair, DODAG inconsistency and Storing mode attacks. A malicious
user can forge modified control packets containing anomalous parameters. These
packets provide to disrupt communication. Goal: DODAG disruption.

• Replay attack. An attacker can replay old control packets received from other de-
vices. Settings inconsistencies make neighbours unable to communicate. Goal:
DODAG disruption.

• Worst Parent attack. An attacker can select a new parent without changing its rank.
The new parent is chosen to be the worst possible, creating sub-optimal paths.
Goal: DODAG modification.

• DODAG Inconsistency attack. An attacker can misuse RPL’s DODAG repair mech-
anism to attack the network. Manipulation of few packets’ flags can trigger a
DODAG repair mechanism, making it impossible for devices to communicate
properly. Goal: DODAG disruption.

• Storing Mode attack. This attack requires RPL to run in storing mode. An attacker
can advise many non existing routes to a legitimate device. The advised routes
saturate the routing table of the compromised device, preventing it from building
correct routes. Goal: Routes disruption.

Table 3.1 shows the characteristics of each well known routing attack against
RPL. In particular, we consider if a strategy is influencing or disrupting the DODAG
structure. We also study if an attack behaviour increases the end-to-end delay due
to long queues created at each device or by producing sub-optimal routes. Packet
reception may also be influenced due to high packet drop rate or communication
overhead. Finally, we also consider if collaboration between attackers, or packet
forgery are required for a specific attack.
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TABLE 3.1: Main features of attacks against RPL. These features help
to understand attacks behaviour and to classify them.

Attack DODAG Queueing Delay Routing Delay Packet Loss Directly Packet Loss via Overhead Collaboration Forgery

Blackhole ✓

Selective forward ✓

Sinkhole ✓ ✓

Continuous Sinkhole ✓ ✓

HELLO flooding ✓ ✓ ✓

Clone ID ✓ ✓

Sybil ✓ ✓

Wormhole ✓ ✓

Version ✓ ✓ ✓ ✓

Replay ✓ ✓ ✓ ✓ ✓

Rank ✓ ✓

Worst parent ✓ ✓

DIS ✓ ✓ ✓

Local repair ✓ ✓ ✓ ✓

DODAG inconsistency ✓ ✓ ✓

Storing mode ✓ ✓ ✓ ✓

3.1.3 State-of-the-art Intrusion Detection Systems

Knowing the importance of security issues in RPL, many systems have been pro-
posed to patch this protocol. Intrusion Detection Systems (IDSs) are the most popu-
lar mechanisms to detect security threats in a network [7, 177, 124]. These are used to
find any possible intruder in the IoT network. In particular, anomaly based IDS aims
at identifying non-legitimate behaviour, knowing how the network works when no
attacker is present. These systems can work properly having the knowledge of le-
gitimate network traffic only. On the other hand, any fluctuation from the legitimate
behaviour is considered an anomaly. Therefore, anomaly based systems are char-
acterized by high false positive rate. Signature-based IDS instead utilizes signatures
of attacks behaviour to identify intruders. These systems are capable of obtaining
low false positive rate, but are not flexible. Signatures are found for specific attack
patterns, requiring their full knowledge.

Raza et al. [245] proposed a system based on report packets, which contain net-
work information and are sent by IoT devices to the root node upon request, to
secure RPL. Reports obtained by root node are then used to reconstruct the DODAG
and find anomalies in its structure. DODAG and network information are used to
detect sinkhole, blackhole, and selective forward attacks. In [232], the authors pro-
pose a system based on device location knowledge to identify wormhole attacks.
Cervantes et al. [46] propose a modification of the RPL protocol to detect sinkhole
attacks by using an IDS mechanism which is based on network clusterization. An
extension of [46] was proposed by Surendar et al. [282]. Authors aim decrease over-
head and increase packet delivery ratio. Gara et al. [99] focuses on mobile Wireless
Sensor Networks (WSNs), in which they try to identify possible selective forward
attacks. Authors in [261] propose an IDS that is based on game-theory strategies.
The particular approach aims to decrease false positive rate, energy consumption,
and overhead. A trust-based security mechanism was presented by Airehrour et
al. [6] that was tested against rank and sybil attacks. Authors in [319] proposed a
deep learning framework based on traffic analysis to detect rank, hello flooding and
version attacks. Finally, Mayzaud et al. [199] proposed a distributed security mech-
anism based on monitoring devices, capable of sniffing network traffic, to detect
version attacks.

The state-of-the-art systems show different possibilities to secure RPL based net-
works. Although showing some advantages, these mechanisms also present draw-
backs, which are as follows.

1. Scarn variety of attacks. Existing IDSs are able to detect few class of attacks
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compared to the well known ones. Table 3.2 shows the attacks that each state-
of-the-art IDS can detect.

2. High overhead. Most of the existing systems introduce high communication
overhead, resulting inapplicable on real RPL-based IoT scenarios.

3. Computations required at IoT devices. Security protocols are executed inside IoT
devices to secure RPL. This is not desirable when dealing with constrained
devices.

With our work, we aim to propose a comprehensive system (i.e., DETONAR) that
is capable of protecting RPL against 14 different attacks. It represents an enormous
increment with respect to state-of-the-art mechanisms. Moreover, the application of
state-of-the-art mechanisms increases network communication overhead, which is
not acceptable in most real world applications because it renders the deployment
of security mechanism unfeasible and leads to the disruption of communication be-
tween devices. Finally, most of the existing solutions require installation of new
protocols inside IoT devices. This adds computational requirements which are un-
bearable for most networks, as IoT devices are usually power constrained. The intro-
duction of security systems at device level requires also the installation of software
and updates. Companies that produce IoT devices would be required to introduce
security firmwares on their products, while final users would need to periodically
update their devices only to maintain network safeness. Device users usually lack
security awareness, reducing utility of state-of-the-art security systems [90]. DET-
ONAR, on the other hand, introduces a novel sniffing approach to identify possible
attacks. Its new approach allows DETONAR to introduce virtually zero overhead,
while requiring no computations or new protocols at IoT devices. The obtained
system is applicable to any IoT scenario, avoiding further consideration regarding
communication reliability, power availability and device maintenance.

TABLE 3.2: State-of-the-art IDSs and corresponding detected attacks.
We can see that several attacks are not covered.

Attack [245] [232] [46] [282] [99] [261] [6] [319] [199]

Blackhole ✓ ✓

Selective forward ✓ ✓

Sinkhole ✓ ✓ ✓ ✓

Continuous Sinkhole
HELLO flooding ✓ ✓

Clone ID
Sybil ✓ ✓

Wormhole ✓ ✓

Version ✓ ✓

Replay
Rank ✓ ✓

Worst parent
DIS

Local repair
DODAG inconsistency

Storing mode
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3.2 RADAR: Routing Attacks Dataset for RPL

In this section, we present RADAR, a novel Routing Attacks DAtaset for RPL. To
the best of our knowledge, there exist no exhaustive datasets containing RPL traffic
for a vast range of routing attacks. We aim at filling this lack proposing RADAR.
This dataset represents a novelty both in terms of variety of considered routing at-
tacks and extracted traffic. We use Netsim [287] to implement five simulations for
14 of the attacks presented in Section 3.1.2. Only DODAG inconsistency and stor-
ing mode attacks are not implemented due to NetSim’s software limitations. NetSim
does not implement specific RPL flags that are required for these two attacks to be
simulated. These flags have been introduced in later developments of RPL and are
not required for its proper functioning. To the best of our knowledge, RADAR repre-
sents the biggest dataset for routing attacks in RPL. No previous dataset considered
this amount of attacks in RPL.

RADAR contains five simulations for each attack considered. Implemented
networks deploy 16 IoT devices and a single border router, belonging to a single
DODAG structure. RADAR also contains ten legitimate simulations. For each sim-
ulation, NetSim allows to keep track of a packet trace file which contains a list of
packets that have been exchanged throughout the simulation. Table 3.3 shows the
average amount of packets that are recorded for simulations of different attacks It is
possible to notice that the amount of packets recorded on average depends on the
attack considered. Attacks that aims at disrupting DODAG structure or influence
control flow introduce high amount of packets. On the other hand, attacks that aim
at diverting traffic or steal information, do not introduce heavy traffic, resulting in
smaller simulation traces. For each of the packets recorded in the simulation, Netsim
records the following features: packet type, application name, source, destination,
transmitter and receiver identities, arrival and start time for application, network,
data link, and physical layers, and payload size for the same layers. Source, desti-
nation, gateway, and next-hop IP addresses are also recorded along with the rank
and version values for RPL control packets. All the features considered by NetSim
can be extracted from un-encrypted network traffic. Un-encrypted mode is usually
deployed in RPL-based networks thanks to its lightweight requirements and for the
heavy constraints of IoT devices. On the other hand, even if encrypted versions of
RPL are considered, our system would be capable of extracting the necessary in-
formation from the network traffic if the centralized server have the knowledge of
security keys. This requirement is not heavy as the centralized server serves for the
security of the network and its role can be compared to the role of certificate authori-
ties. The knowledge of the packet trace file corresponds exactly to the deployment of
sniffing devices capable of redirecting network traffic to the centralized IDS server.

RADAR contains simulations that last 1500 seconds each. Attacks are set to start
at a random time between 500 and 700 seconds. The reason behind the attack start
time is to be found in the setup time for most security systems. Indeed, RADAR is
primarily meant and designed for IDS performance testing. To work properly, most
security systems require some calibration time that should be attack free. We consid-
ered an interval of 500 seconds over a simulation of 1500 seconds to be long enough
to satisfy most IDS’s calibration time requirements. Except for wormhole attack, one
attacker was selected for each simulation. Attackers are selected specifically to show
the effects of the attack on the network. Otherwise, an attack which does not affect
the network in any way is not worth identifying for obvious reasons. For example,
a blackhole attack on a leaf node would not drop any application packet. Therefore,
its significance level would be null.
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TABLE 3.3: RADaR’s simulated scenarios and the corresponding av-
erage amount of packets collected. For each packet specific features

like source, destination, rank, etc. are collected.

Scenario Average number of packets Average number of control packets Average number of application packets

Legitimate 657K 624K 33K
Blackhole 1.8M 1.8M 27K

Selective forward 1.8M 1.8M 29K
Sinkhole 1.6M 1.6M 33K

Continuous Sinkhole 2.3M 2.3M 29K
HELLO flooding 1.0M 1.0M 33K

Clone ID 185K 151K 33K
Sybil 185K 151K 33K

Wormhole 257K 218K 38K
Version 2.3M 2.2M 34K
Replay 3.3M 3.2M 32K
Rank 2.3M 2.3M 34K

Worst parent 185K 152K 33K
DIS 220K 187K 32K

Local repair 2.3M 2.2M 35K

To represent as precisely as possible real scenarios, IoT devices, in RADAR’s sim-
ulations, send application packets periodically with period of 1 second [36, 291].
Moreover, the pathloss in RADAR’s simulations follows a Friis free space pathloss
model with exponent equal to 2. The given simulations settings allow RADAR to
represent real scenarios faithfully while being reasonably sized. The extraction of
RADAR was completed using a Windows 10 machine with 64 GB of RAM and an
Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz processor. RADAR required around
400 hours of run-time to complete all simulations.

To summarize, RADAR’s characteristics are the following:

• RADAR contains packet trace files of 80 different simulations, with more than
a million packets stored on average for each simulation.

• 14 well known attacks and legitimate scenarios are simulated. Five simulations
for each attack (see Section 3.1.2) and 10 simulations for legitimate scenarios.

• Each simulation contains 16 IoT devices and a single border router that build
a single DODAG structure. The considered devices are static, to recall most
common RPL real world applications.

• Each IoT device forwards application packets with period of one second. This
setup recalls RPL real world applications in which IoT devices periodically
reports information to final users.

• Each simulation lasts for 1500 seconds. In attack simulations the malicious
behaviour starts randomly between second 500 and 700.

3.3 Proposed RPL attacks detector: DETONAR

In this section, we propose DETONAR, a novel security mechanism to DETect
rOutiNg Attacks in RPL. We first present an overview of the proposed mecha-
nism in Section 3.3.1, followed by a detailed explanation of DETONAR’s pipeline:
traffic collection in Section 3.3.2, features extraction in Section 3.3.3, anomalies detec-
tion in Section 3.3.4, attack classification in Section 3.3.5 and attacker identification in
Section 3.3.6.
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3.3.1 Overview

State-of-the-art detection mechanism introduces several challenges in RPL detector
systems (see Section 3.1.3). We now summarize a list of properties that an RPL de-
tector system should guarantee:

P1 No RPL-communication overhead. RPL networks suffer from communications’
overhead (see Section 3.1.2). The desired detection system should be an RPL-
network independent entity, and it should not use RPL-communication chan-
nels.

P2 No RPL-nodes overhead. The addition of operation in RPL-nodes increases their
energy consumption. The desired detection system should not impact nodes’
computational processes.

P3 Attacks Resistant The desired detection system should face several RPL net-
work attacks.

P4 Network Independent. The desired detection system should work with different
RPL network’ topologies (i.e., nodes’ connection, nodes’ numerosity).

P5 Implementation flexibility. Already existing RPL networks should integrate the
detection system easily.

DETONAR’s design aims to face properties P1-P5. However, in this work we do not
focus on P4, while we test DETONAR only on small-size networks. We now briefly
introduce DETONAR’s pipeline, consisting of 5 steps, as shown in Figure 3.1.

1. Traffic Sniffer (Section 3.3.2). An ensemble of packet sniffers sense networks’
traffic and forward it to a server. The sniffers are RPL-networks independent.

2. Feature extraction (Section 3.3.3). Extraction of a set of features describing the
collected network traffic.

3. Anomaly detection (Section 3.3.4). A mechanism that analyzes nodes’ traffic pat-
terns to find potential anomalies.

4. Attack classification (Section 3.3.5). A signature-based mechanism that analyzes
anomalies to identify potential attacks.

5. Attacker Identification (Section 3.3.6). A signature-based mechanism that identi-
fies compromised nodes.

3.3.2 Traffic Collection

DETONAR employs sniffing devices to capture RPL networks’ traffic. The optimal
placement of these devices can follow [140, 24]. The collected traffic is then for-
warded through secure channels (e.g., SSL) to an external server on-site or in the
cloud. The transmission is conducted periodically, with time windows of a pre-
defined size ω[s]. ω is a DETONAR’s hyperparameter. Information retrieved by
sniffing devices contains general knowledge of packets exchanged by RPL devices.
This information contains the type of packet sent (e.g., DIO, DIS, DAO, DAO-ACK,
application), the address of the sender, receiver, source, and destination devices. If
control packets are sniffed, additional information is considered as rank and version
values.
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FIGURE 3.1: DETONAR deploys sniffing devices to sense the net-
work traffic and forward it to the centralized IDS server. IDS server is
in charge of detecting possible anomalies, attacks, and compromised

devices.

Sniffing devices do not rely on the underlying RPL network to communicate
the retrieved information with the server. Otherwise, the quality of the RPL com-
munication would be affected by DETONAR’s workflow. Passive sniffing devices
can communicate securely with the external server, leveraging various communi-
cation protocols (e.g., 4G, satellite). These protocols allow the safe deployment of
DETONAR, introducing reasonable costs. The design and cost of specific commu-
nications between sniffing devices and external servers are not in the scope of this
paper.

The introduction of RPL-agnostic sniffing devices allows us to achieve P1 and P2.
Moreover, DETONAR achieves P5 since RPL-nodes do not require any additional
computational effort (e.g., software update).

3.3.3 Features Extraction

DETONAR monitors each RPL node’s activities through the received traffic collected
in the last time window. Formally, be N an RPL network with |N | nodes and Wt

i the
traffic collected at time window t for the i− th node ni. Starting from Wt

i , DETONAR
defines a set F of 11 features as described in Table 3.4. F describes quantitatively
and qualitatively the sensed traffic. Features f1 − f8 are quantitative, as they express
the amount of received or forwarded packets by each RPL device (e.g., number of
forwarded/received DIO). Quantitative features give a measure of the traffic den-
sity that each node sustains. Features f9 − f11 are qualitative, as they express the
considered node’s information (e.g., rank).

DETONAR represents Wt
i as a feature vector Ft

i

Ft
i = [ f1(Wt

i ), ..., f11(Wt
i )]. (3.1)
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TABLE 3.4: Selected features of our IDS. It is possible to notice that
each feature helps detect one or more attacks.

# Feature Attacks Detected

f1 Number of DIO received
HELLO flood, Local repair,

Sinkhole, Continuous Sinkhole,
Rank, Replay, DIS

f2 Number of DIO transmitted
HELLO flood, Local repair,

Sinkhole, Continuous Sinkhole,
Rank, Replay, DIS

f3 Number of DAO received
Worst parent, Sinkhole,
Rank, Replay, Version

f4 Number of DAO transmitted
Worst parent, Sinkhole,
Rank, Replay, Version

f5 Number of DIS transmitted DIS

f6
Number of application

packets received
Blackhole, Selective forward,
Wormhole, Clone ID, Sybil

f7
Number of application

packets transmitted
Blackhole, Selective forward,
Wormhole, Clone ID, Sybil

f8
Transmitted vs Received

applications rate HELLO flood, DIS

f9 Rank
Sinkhole, Continuous Sinkhole,

Rank, Replay, Local Repair
f10 Version Version
f11 Next hop IP Wormhole, Worst parent

The extracted feature vector Ft
i is finally appended in the node ni behavioral

history Bi:
Bi = [F0

i , ..., Ft
i ]. (3.2)

Figure 3.2 shows the network representation schema. Each node n has its own his-
tory, with a different pattern across the various features.

Figure 3.3 shows an example of different patterns between features f6 and f2
(i.e., the number of received applications and the number of forwarded DIO) among
three nodes (i.e., the root node, sensor 5, and sensor 12) at different depths of the
RPL’s structure in a RADAR simulation.

3.3.4 Anomalies Detection

As previously introduced, DETONAR relies on a hybrid approach: i) detection of
anomalous traffic behaviors and ii) identification of the corresponding attack and
compromised device(s). This section describes the anomaly detection stage, aiming
to inspect each node’s activities to find inconsistencies between its past and current
status. This stage allows DETONAR to be resilient to different unknown attacks, as
shown in [165]. With this component, DETONAR achieves P3.

Based on the extracted features in the previous step at time t (Section 3.3.3), DET-
ONAR’s anomaly detector inspects the minimum set of features FA ⊂ F that allows
identifying the presence of the 14 attacks presented in RADAR. The set FA corre-
sponds to: number of DIO received, number of DAO transmitted, and number of applica-
tions received. The usage of a minimum set of features allows DETONAR to reduce
the number of false alarms and the computational cost.
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Network
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... ...

=

FIGURE 3.2: DETONAR feature extraction overview. Feature vectors
Ft

i are extracted for each node i at each time window Wt
i as the com-

position of the 11 representative features selected. Node behaviour Bi
is built as the composition of feature vectors Ft

i .

One of the challenges in RPL anomaly detection is the different traffic nature that
each node has. To overcome this issue, DETONAR employs an anomaly detection
algorithm Ai,j for each pair ni, f j in N , FA. Formally, given the node ni and its node
behavioral history Bi, Ai,j analyses node’s f j history hi,j:

hi,j = [ f j(Wt−λ
i ), ..., f j(Wt−1

i )], (3.3)

where λ indicates the history size that we consider. λ is a DETONAR’s hyperparam-
eters. In DETONAR implementation, Ai,j is an AutoRegressive Integrated Moving
Average (ARIMA) model [35]. Being an autoregressive technique, ARIMA fits on
previous values of the feature series to predict its future behavior. In ARIMA, an
autoregressive mechanism is applied to the series rendered stationary via differenti-
ation procedure. Autoregression (AR) and error moving average (MA) are leveraged
to predict future values. Once the forecast is computed on the stationary process, the
integration (I) operation is applied to compute the final prediction value. For an in-
depth overview, we suggest [35]. ARIMA is a parametric function over: p, the num-
ber of autoregressive terms, d, the number of differentiation steps needed to make
the series stationary, and q, the number of lagged forecast errors in the prediction
equation. The selection of p, q, and d hyperparameters is fundamental for a correct
fit. There exist automatic search algorithms that have been proposed to optimize
such parameters. In our work, we applied a variation of the Hyndman-Khandakar
algorithm [134], following ARIMA’s implementation proposed in Pmdarima.3

ARIMA estimates f t
j (W

t
i )

′ using past node history hi,j:

f t
j (W

t
i )

′ ± µ = Ai,j([ f j(Wt−λ
i ), ..., f j(Wt−1

i )], α), (3.4)

3https://alkaline-ml.com/pmdarima/index.html
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FIGURE 3.3: DETONAR extracts features from traffic received at a
node to describe device’s behavior. Feature series may differ signifi-

cantly depending on considered feature and device.

where f t
j (W

t
i )

′ is the forecast value, and α is the confidence value (a DETONAR’s hy-
perparameter); µ represent the prediction’s boundary. DETONAR raises an anomaly
for node ni on feature f j at time t if the following condition does not hold:

f t
j (W

t
i )

′ − µ ≤ f t
j (W

t
i ) ≤ f t

j (W
t
i )

′ + µ. (3.5)

Figure 3.4 shows the anomaly detection mechanism applied to the same device and
the same feature f1 in a legitimate and an attack scenario. It is possible to notice
that in legitimate traffic, the ARIMA raises no alarm. While, in the attack scenario,
sinkhole produces an anomalous increment in the number of DIO packets received.
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FIGURE 3.4: ARIMA applied to the number of received DIO packets
of a device in a legitimate and a sinkhole attack scenario.
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We remark that the use of ARIMA introduces the need for a setup period free of
attacks. This setup phase’s size depends on history size λ, a DETONARS’s hyperpa-
rameter, and the time window size ω chosen for feature extraction. Another aspect
to consider is the choice of one ARIMA per node and traffic behavior, which makes
DETONAR limited in the scalability, and thus it does not achieve P4.

3.3.5 Attack Classification

The anomaly detection stage allows DETONAR to detect any potential attack lever-
aging the minimum amount of features. However, it presents a couple of drawbacks:

• High false positives. Any anomalous behavior causes ARIMA to raise an alarm.
There exists no guarantee that an attack causes the alarm. Therefore, we need
to filter out those anomalies caused by slight variations of legitimate behaviors.

• No attack/attacker identification. Alarms raised by the first stage of DETONAR
simply signal that there exist some inconsistencies of behavior. These alarms
do not allow compromised devices to be identified. Therefore, we need to in-
troduce a classification technique that allows DETONAR to locate the attacker
correctly.

To identify attack class, attacker identity and reduce the false positives, solving
anomaly detection’s drawbacks, we use several tests to profile the anomaly. In detail,
once the anomaly detection mechanism raises the alarm, a list of suspected devices
is produced. This list contains the devices which caused the alarm and their neigh-
bors. Some attacks influence only features representing the neighborhood behavior
while leaving attacker behavior features untouched. The list is passed to the attack
classification mechanism, which is in-charge of classifying anomalies into different
classes of attacks. This mechanism is implemented to make it possible to return
false alarms whenever no attack is detected, allowing to identify and discard po-
tential false positive alarms. To classify the attack correctly, DETONAR considers
the 8 unused features of Section 3.3.3. These features consider the device’s behavior
and network structure. In particular, the DODAG is reconstructed at the centralized
server due to the ability to record DAO packets exchanged between devices.

To classify anomalies into attacks and identify attackers, DETONAR implements
a classification flowchart shown in Figure 3.5. For each node of the tree, a different
rule (anomaly or signature-based) is applied to choose the path to follow. We now
describe the different rules used by the classification mechanism:

• Clone Identity - signature. This rule compares active identities at Wt
i with the

legitimate identities collected during the setup phase. In particular, we recall
that DETONAR considers RPL devices sending application packets periodi-
cally (e.g. one packet per second), where each device can have different period.
We define m as the maximum devices’ period. Given the lossyness of RPL net-
works, DETONAR compares the identities between the setup phase and each
possible sub-window of Wt

i of size m · c, where the overlap is set to one second.
Finally, DETONAR identifies a clone identity or a sybil attack if there is at least
one mismatch among the comparisons. m represents an RPL network-related
parameter, while c is a DETONAR’s hyperparameter.

• Changing DODAG - signature. This rule checks if the attack impacts the
DODAG. Since we are considering static scenarios, a modification of the
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DODAG can only be due to an attack. Change in DODAG structure are de-
tected comparing DODAG at time window Wt

i with its predecessor at time
window Wt−1

i This rule helps to identify two macro-categories of attacks: at-
tacks on the DODAG, and attacks on the traffic.

• Changing Rank - signature. This rule allows to detect attacks that leverage the
modification of the rank value. DETONAR filters the DIO packets sent by each
device to check this rule, extracting the corresponding advised rank. A device
advising a different rank in a static scenario is considered an attacker.

• Changing Version - singature. If no rank value has changed while the DODAG
has been modified, advised versions are checked in this rule. Version values
can be extracted from control packets in the same way as ranks. If a node
has changed the version, then a version attack is detected. The corresponding
attacker is identified as the first device which advised a new DODAG version.
If no version and no rank values have been changed, but the DODAG was
modified, then a worst parent attack is detected. The attacker is then detected
as the device which changed the preferred parent.

• Changing Transmitted Applications Rate - anomaly. DETONAR checks if the con-
sidered node saw any change in the application packets that it transmitted.
This rule is considered since attacks aiming at traffic can either manipulate
application traffic or control traffic. Like the changing DODAG rule, this one
helps to subdivide attacks against the traffic into attacks against application
traffic and attacks against control traffic. This rule consists of an anomaly-
based detection scheme. Indeed, DETONAR applies ARIMA on the series of
transmitted application packets. This approach is identical to anomaly detec-
tion, but it changes only the considered feature.

• Children Changing Destination - signature. If an attack against application traffic
is detected, the proposed rule checks if any node is changing its next-hop. If
this happens, then the node changing next-hop is considered to be part of a
wormhole attack. With respect to the state-of-the-art the proposed approach is
the simplest enabling the detection of wormhole attacks. No considerations re-
garding devices’ positions or power of transmission is done, and the resulting
performances are surprising.

• Incoming vs Outgoing Traffic - anomaly. When no change in next-hop is detected,
our IDS checks the ratio between received and transmitted application pack-
ets. In legitimate scenarios, this ratio’s trend should remain almost constant.
Instead, in blackhole and selective forward attacks, it decreases significantly.
DETONAR applies anomaly-based detection scheme (i.e., ARIMA) to identify
possible anomalies in this ratio sequence. If an anomaly is found, then the
attacker is the device analyzed by the ARIMA. Otherwise, a false alarm is sent.

• Produce New Control Packets - signature. When no attack against application
traffic is detected, the proposed rule checks if any node produces unnecessary
control packets. The forged control packets may be either DIO or DIS. The
same check is done for DIO and DIS control packets. DETONAR considers the
number of control packets sent by a suspected device in the last time window
Wt

i . If this value is bigger than the previous maximum value of control packets
transmitted in a time window W j

i with j ∈ [1, t − 1], then an attack is detected.
Otherwise, a false alarm message is raised, as there exists no significant proof
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of an attack on control traffic. Mathematically, an HELLO flooding attack is
detected, if DIO(Wt

i ) > max{DIO(Wt−1
i ), DIO(Wt−2

i ), ...}. Where the DIO
function counts the number of DIO packets transmitted by a device i in the
time window Wt

i .

The combination of the proposed rules allows DETONAR to detect the most known
attacks against RPL. Moreover, the proposed mechanism is flexible against new at-
tacks. New rules may be added to classify novel attacks upon their discovery.

3.3.6 Attacker Identification

A security system should automatically identify attacker’s identity to remove the
malicious device from the network. DETONAR introduces specific rules to iden-
tify the attacker location from the attack class identified following Section 3.3.5. The
knowledge of attack class is sufficient to identify the attacker correctly since the at-
tacker behavior of different attacks is specific. We now present the attacker identifi-
cation mechanism that is used for each class of attacks:

• Clone ID and Sybil attacks. As already mentioned, DETONAR’s check on active
devices immediately identifies the attacker’s identity. The device missing from
communication corresponds to the attacker’s original identity.

• Attacks on rank. This class of attacks comprehends sinkhole, local repair, rank,
continuous sinkhole, and replay. To find the attacker’s identity DETONAR
checks which is the first device that advised a changed rank. One effect of these
attacks is to change multiple nodes’ ranks. Therefore, to find the attacker, it is
necessary to find the oldest change in rank values. This approach is possible
since the proposed IDS knows each device’s rank from the sniffed DIO packets.

• Version attack. In this case, the approach to identify the attacker is very similar
to the attacks on rank. The proposed IDS identifies the attacker as the first
node that advised a different version in a DIO packet.

• Worst parent attack. To identify the attacker in the worst parent attack, DET-
ONAR checks what device changed next-hop IP in the time window Wt

i . This
straightforward principle effectively detects the attacker in a complex scenario
like the worst parent attack. DETONAR can use such a simple principle due
to the attack classification mechanism that relies on more complex decisions.

• Wormhole attack. DETONAR’s attack classification mechanism detects those
devices that changed next-hop IP and transmitted an anomalous amount of
application packets in wormhole scenarios. This approach by itself allows the
proposed IDS to find attackers’ identities. Attacker devices are the only nodes
that satisfy the two conditions presented above.

• Blackhole and Selective forward attacks. For these two attacks, DETONAR detects
an attack only for those devices that drop an anomalous amount of application
packets. Therefore, DETONAR’s attack classification mechanism is already
identifying attacker identities.

• HELLO flooding and DIS attacks. In HELLO flooding and DIS scenarios, the ma-
licious device sends an anomalous amount of control packets. DETONAR’s at-
tack classification mechanism already identifies the attackers as those devices
transmitting an anomalous amount of control packets.

Figure 3.5 shows the rules for attackers’ identification.
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FIGURE 3.5: DETONAR’s decision flowchart. Each rule is based on
considerations regarding RPL networks that help classify the final at-

tack. Attacker identity depends on the attack classified.



58 Chapter 3. DETONAR: Detection of Routing Attacks in RPL-based IoT

3.4 Implementation and Performance evaluation

This section first presents the implementation details of the DETONAR mechanism
(see Section 3.4.1). Finally, in Section 3.4.2 we present the results obtained using
DETONAR on RADAR dataset. In particular, we present DETONAR’s true detec-
tion percentage, false positives, and the computation time needed by the anomalies
detection step.

3.4.1 Implementation & Hyperparameters tuning

We make our implementation of DETONAR publicly available. DETONAR’s scripts
take as input a packet trace corresponding to a simulation and return as output
DETONAR’s runtime information. This information contains the anomaly detection
mechanism’s decision at each time window Wt

i . If the anomaly detection algorithm
raises the alarm, then the attack classification results are also present in the runtime
information. Running DETONAR’s scripts from the packet trace files belonging to
RADAR corresponds to the real-world application of packet sniffers that communi-
cates with the centralized server.

We now describe the DETONAR’s hyperparameter tuning among the time win-
dow size ω, the test significance α, and the history size λ (see Section 3.3). Tuning
is conducted on a training set containing five legitimate simulations. The goal of
the tuning is to minimize the false positives (FP) of DETONAR. Figure 3.6 shows
the false positives for different ω, α, and λ values. To select ω, we fix λ = 30 and
α = 10−4. ω affects with different trends different features, not giving statistical rel-
evant results. We set ω = 10 due to computational performance reasons only. To
select λ, we fix α = 10−4 and ω = 10. We can notice that when increasing ARIMA
history size, we reduce the false positives. To reduce the setup time as much as pos-
sible while allowing DETONAR to detect eventual attacks accurately, we set λ = 30.
We fix λ = 30 and ω = 10 to select α’s value. A small α lead to small FP. We thus
set α = 10−4. Finally, concerning c, we recall that in RADAR devices are deployed
sending one application packet every second, i.e., m = 1. Therefore, we set c = 3.
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FIGURE 3.6: ARIMA’s false positives are influenced by DETONAR’s
time window size (i.e., ω), history size (i.e., λ) and test significance

(i.e., α).

3.4.2 Results

We now present DETONAR’s performance computed on our proposed dataset,
RADAR. We remark that we do not compare DETONAR with state-of-the-art IDS
since they are not implemented using NetSim and their re-implementation is not

3https://github.com/AndAgio/DETONAR
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trivial. We evaluate three aspects: false positives, attack and attacker(s) detection ac-
curacy, and finally, time performance. We need to make some considerations for the
attack detection accuracy. We know the attack’s starting time τAtt and the compro-
mised device(s) for each simulation. We consider an attack to be detected correctly if
DETONAR raises the alarm and classifies the attack correctly after τAtt. Instead, the
attack is considered misclassified if DETONAR does not raise any alarm or raises an
anomaly correctly, but it does not classify the correct class of attack. We are bound
to consider these metrics for classification’s performance for the following reasons:

• Some attacks start at time τAtt + ϵ since they need the reception of a specific
packet to be triggered. For example, in sinkhole attack, the attacker waits for
the reception of DIO packets to trigger the publication of forged rank value.
No assumption can be made on the duration of ϵ. Depending on the attack
considered, the size of the network and the simulation time ϵ may vary signif-
icantly. Therefore, it is impossible to identify the actual attack starting time.

• No assumption can be made on the label of packets in the network traffic, since
the attacks can indirectly affect the performance of non-victim devices. For
example, sinkhole attack induces the attacker’s neighbors to change their rank,
and the attacker’s neighbors advise new rank values in forged DIO packets.
The aftermath is in a complex labeling process, which we avoid.

False Positives Performances

To analyze FP, we test DETONAR over five legitimate simulations (separate from
the five used for tuning) and measure the number of identified attacks (∼2000 pre-
dictions). In detail, we measure the FP in both anomaly detection and attacker iden-
tification stages (see Section 3.3). Table 3.5 shows the FP rate results. In particular,
the anomaly detection stage based entirely on ARIMA has high FP, while the second
stage with both anomaly and rule-based signature pushes the score close to zero.

TABLE 3.5: False positives for Anomaly Detection (AD) and AD + At-
tack Classification (AC) of DETONAR in five legitimate simulations.

Simulation ID AD AD + AC

6 2.13% 0%
7 1.83% 0.10%
8 3.06% 0%
9 2.08% 0.05%

10 5.19% 0.05%

Overall 2.86% ± 1.24 0.04% ± 0.04

Detection and Identification Performances

We test the ability of DETONAR to identify the attack and attacker(s) over five sim-
ulations for each of the 14 attacks presented in RADAR. Table 3.6 summarizes the
detection performance. DETONAR successfully detects with 100% of accuracy 8 out
of 14 attacks; in these attacks, the attacker is always successfully identified. DET-
ONAR seems to suffer only blackhole, continuous sinkhole, and local repair attacks.
Concerning blackhole attack, we notice that in some simulations, the attack affected
nodes with few application packets, resulting in challenging detection. In continu-
ous sinkhole and local repair, instead, DETONAR misses the detection only for those
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TABLE 3.6: DETONAR can detect most attacks with satisfactory ac-
curacy both in terms of attack detection (DET) and attacker identifica-
tion (ID). In wormhole, ID contains the number of attackers identified

correctly out of the two existing.

Attack 1 2 3 4 5 Overall

DET ID DET ID DET ID DET ID DET ID DET ID

Blackhole ✓ ✓ ✓ ✓ ✓ ✓ 60% 60%
Selective Forward ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100% 100%

Sinkhole ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100% 100%
Continuous Sinkhole ✓ ✓ ✓ ✓ ✓ ✓ 60% 60%

HELLO Flooding ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100% 100%
Clone ID ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100% 100%

Sybil ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100% 100%
Wormhole ✓ 2/2 0/2 ✓ 2/2 ✓ 2/2 ✓ 1/2 80% 70%

Version ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 80% 80%
Rank ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100% 100%

Replay ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100% 100%
Worst Parent ✓ ✓ ✓ ✓ ✓ ✓ ✓ 80% 60%

DIS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100% 100%
Local Repair ✓ ✓ ✓ ✓ ✓ ✓ ✓ 40% 100%

simulations in which the attack does not produce any change in the DODAG struc-
ture; in these scenarios, DETONAR identifies reasonably a hello flooding attack.

Time Performances

Finally, we analyze DETONAR’s time performance. We find the computational bot-
tleneck in ARIMA models (see Section 3.3, anomaly detection stage), which are ap-
plied for each window Wt

i . We measure ARIMA performance on 170 thousand pre-
dictions using a standard laptop (i.e., Intel Core i5-3230M CPU, 8 GBs DDR3 RAM).
The average prediction time is 1.1 seconds. Given this performance, and the possibil-
ity to distribute the computation among several cores, we can state that DETONAR
can be deployed in real-world small-scale networks.

3.5 Summary and Future work

In this work, we implement and detect 14 well-known routing attacks against RPL
in IoT networks. Using the various network logs obtained while simulating these
attacks, we build our RADAR dataset. RADAR represents the largest and most sig-
nificant dataset of routing attacks against RPL. We believe that the availability of
such a comprehensive dataset is a step forward in the research field of IoT security.
Based on the RADAR dataset, we propose a novel and complete security mecha-
nism called DETONAR, capable of detecting 14 well-known attacks. The simulation
results show that DETONAR provides excellent attacker identification results (i.e.,
low false positives) with no RPL communication overhead, thanks to its sniffing
approach. DETONAR does not require any heavy computation or firmware modi-
fication at IoT devices, which makes it a practical solution. It also introduces future
flexibility as, upon discovering novel attacks, one can modify the attack classifica-
tion mechanism by adding new rules to previously unknown attack rules. Finally,
DETONAR’s flexibility allows its quick deployment on the underlying network, as
it does not require any IoT devices update. In the future, we plan to do a more
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in-depth analysis of DETONAR concerning the following aspects: (i) test its perfor-
mance on a real-world testbed, (ii) investigate its performance in dynamic networks,
(iii) extend its attack detection algorithm to generalize features behaviours among
different devices, (iv) test its performance on large-scale networks, and (v) compare
its performance with state-of-the-art IDS implementation using NetSim.
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Part II

The role of cybersecurity in web
web platforms
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Chapter 4

A Novel Review Helpfulness
Measure based on the
User-Review-Item Paradigm

Online Review Platforms (RPs) provide valuable information about others’ opinions
about products they bought or experiences they had. Thus, if someone considers
having dinner at a restaurant, s/he can first look at other people’s opinions and then
decide accordingly. Today, there are specialized RPs for diverse entities: hotels and
restaurants (e.g., Yelp, Trip Advisor), products (e.g., Amazon, E-bay), and movies
(e.g., IMDb). An example of a product on Amazon product and its top review is
shown in Figure 4.1. The number of reviews is increasing: TripAdvisor had 200M
reviews in 2014 and a billion in 2021 [273]. As a single item may have thousands
of reviews, there is a critical need to find the reviews that users might find most
helpful. Moreover, reviews directly impact product sales [58, 83], making the need
to identify helpful reviews critical for the integrity of reviewing platforms.

Much work has been done to estimate a review’s helpfulness score. In particular,
prior works primarily used user judgment as a ground truth: given a review, users
can express feedback about whether the review was helpful or not. Such scores can
be expressed as numerical values, e.g., “5 out of 10”, meaning that among ten votes,
five were positives. Leveraging such a “helpfulness ratio” (HR), we can generally
find three types of predictors [78]: regressors, whose aim is to predict the exact HR,
classifiers, whose aim is to predict if a review is helpful (i.e., the HR exceeds a thresh-
old) or not, and rankers, whose aim is to order reviews from the most to the least
helpful. In general, most past works extract features from the review text or the
context in which the reviews are written.

Literature limitations Our work started with the following question: what makes
a review helpful? We investigated the literature in this area, and noticed that an-
swering this question is difficult. Indeed, it nontrivial to even clearly understand
the state of the art. The problem was first raised by Diaz et al. [78], where the au-
thors identified three major causes:

1. A historical problem as studies goes back to early 2000. Furthermore, the analy-
ses were conducted on different datasets, most of which are not publicly avail-
able. This limits the reproducibility of past methods, adversely affecting efforts
to compare current work with past ones.

2. Lack of proper comparisons, as newly proposed models are not always compared
with the state of the art baselines.
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(A) Product.

(B) Review.

FIGURE 4.1: Example of an Amazon’s product and its top review.

3. Lack of evaluations, where the effect of new proposed features is not adequately
investigated (e.g., with ablation studies).

Though hundreds of papers have been written on this topic, the above three flaws
make it a herculean task to compare past efforts carefully. Diaz et al. [78] make an
important first attempt in this direction. A second important survey by Du et al. [82]
investigates the predictive effect of a large set of state-of-the-art features. The study
is conducted on the open-source dataset Amazon 5-cores [122].

Contributions Our goal is to carry out the most comprehensive survey of past
work on review helpfulness surveys. While the three limitations listed by Diaz et
al. [78] (and described above) are valid, the lack of publicly available code is another
significant drawback of past work. This is a major issue, especially when custom
features are extracted from a dataset. We found that, in general, prior studies textu-
ally (and usually briefly) described the extraction phase, leading to many possible
interpretations. For example, suppose we wish to compare an approach that only
textually describes the feature extraction and works on a dataset that is not publicly
available. In that case, the replication of such a baseline might be prone to errors. A
second (but no less critical) major issue relates to the model validation strategy: indeed,
most of the works validate their model with k-fold cross-validation. This can be er-
roneous for temporal data (reviews are timestamped) because a training fold might
contain reviews from a future time t2 compared to some reviews in a test-fold which
may be posted at a time t1 < t2). In this case, such efforts might use information from
the future (t2) to train on and predict the past (t1). Moreover, the helpfulness score
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of a review may be related to past reviews written on the same product. Zhou et al.
demonstrated that the order in which reviews are written could influence whether
a review is marked as helpful or not [331]. Intuitively, a product might have thou-
sands of reviews, and thus a well-written review might not be noticed. We address
such validation issues by adopting a proper temporal splitting strategy.

We further propose a novel way to describe the helpfulness of a review based on
the User-Review-Items (URI) paradigm. Most past works approach the helpfulness
prediction task with a review-centric model, i.e., the features adopted in the base-
lines only describe the review item. URI, on the other hand, focuses on the platform
as a whole. We demonstrate how useful information can be gleaned from the context
in which the review is published (e.g., relationship with past product reviews). In a
study using six Amazon categories datasets, we validate URI using 270 models and
show that classifiers gain +5 points in F1 scores on average using URI.

Our contributions can be summarized as follows:

• We propose the User-Review-Item (URI) paradigm, a graph-based representa-
tion of Review Platforms. We use this representation to organize the space of
possible features derivable from RPs.

• We carefully summarize 20 years of prior work on the topic.

• We present an open-source feature extractor framework that implements most
of the features discussed in the helpful reviews literature and derivable from
Amazon reviews. We release code (i.e., feature extractor, training procedures)
and processed data upon publication.

• We empirically demonstrate the advantages of the URI framework with an
extensive analysis considering six Amazon datasets [122], with a total of 270
trained models involved. On average, models gained +5 percentage points in
their F1-score. We further investigate several challenges of the task.

Organization This chapter is organized as follows. Section 4.1 presents our vision
of features that describes a User-Review-Item (URI) paradigm. Section 4.2 summa-
rizes 20 years of prior work on the topic. Section 4.3 describes our experimental
settings, as well as our feature extraction framework. Section 4.4 shows how tem-
poral dynamics can impact different features. Section 4.5 shows the performance of
different classification algorithms. Section 4.6 studies whether deep neural networks
outperform simple baseline classifiers. Finally, sections 4.7 and 4.8 describe related
works and conclusions, respectively.

4.1 The Users-Reviews-Items (URI) Paradigm

Section 4.1.1 first introduces our User-Review-Item (URI) paradigm and shows how
this can help organize the vast number of features studied in past work. We then
describe the features according to their URI category: Section 4.1.2 presents user
graph features, Section 4.1.3 presents review graph features, Section 4.1.4 presents
item graph features, and Section 4.1.5 presents multi-graph features. It concludes
Section 4.1.6 with a visual summary figure of these features.

4.1.1 The User-Review-Item (URI) Paradigm

In this paper, we represent an RP via a graph consisting of three subgraphs: one
each about users, reviews, and items being reviewed as shown in Figure 4.2. We call
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this the User-Review-Item (URI) paradigm. Nodes in a URI might have two types of
connections: intra-connections, if the connection is between two nodes of the same
type (e.g., two users), and inter-connections, if the connection is between two nodes
of different types (e.g., from a user to a review).

Intra-connections can be defined in many ways. For instance, two users might be
connected if their Jaccard similarity w.r.t. products they both reviewed exceeds a
bound. Two reviews might be connected if sentence-level embedding vectors have
a similarity exceeding a given bound [45]. Two products might be connected if they
are similar (e.g., two cell phones might be connected).

We define Inter-connections in two ways: users-reviews connections and reviews-
items connections. The nature of users-reviews connections might vary based on the
review platform. The linkage may be defined by the relationship users have with
reviews, e.g., “authored” (the user posted a review), or “voted” (the user judged a
review). Similarly, we might have different type of links among reviews and items,
e.g., item-based (the reviews belongs to the same item), category-based (the reviews
belong to similar items). We do not discuss user-item connections in this paper since
such links can be derived by combining information about users-reviews connections
and reviews-items connections.

GG

Users graph Reviews graph Items graph

Users-Reviews
connections

Reviews-Items
connections

FIGURE 4.2: This figure illustrates the User-Review-Items (URI)
Paradigm of a review platform.

Formally, a URI contains the following nodes:

• User Graph. Nodes in the user graph consist of registered users of the RP. Users
have one of two roles: reviewing an item and voting whether a review is help-
ful or not. Furthermore, user nodes can have connections. The nature of the
connection varies based on the RP or on the knowledge we have of user in-
teractions. For example, in Amazon, a connection can be drawn if a user ui
votes for a review written by the user uj; however, only Amazon has this level
of knowledge. On the other end, in RPs like Ciao, users can create explicit
relationships with one another (e.g., a user ui follows a reviewer uj).

• Review graph. Nodes are reviews in the RP. Generally, a review has several
meta-features, such as the review’s title, star rating, and textual description.
Different RPs may offer different metadata: a common example is when multi-
ple features of a product are evaluated via star ratings. For example, a restau-
rant may get star ratings for food, service, ambiance, and more. A review
graph might link reviews together via edges, e.g. if a review mentions or
replies to another review.

• Item graph. This is the set of items that can be reviewed in an RP. Different
RPs may offer different types of items. For example, on Amazon, we might
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evaluate products we can buy. On Yelp and TripAdvisor, we might review
restaurants and hotels. On IMDb, we might evaluate movies. The items graph
may connect two items using different rules, e.g., two items are connected if
they belong to the same brand, or the same category (e.g., genre for movies).

From each individual graph (i.e., user, review, and item graphs) and type of connec-
tion (i.e., intra or inter), we can derive features that may depend heavily on the RP.
For example, the Amazon and IMDb platforms may share some common features
derivable from their reviews (e.g., review length, star rating), but may also have
unique features (e.g., Amazon review product rank, film location on IMDb). In the
rest of the section, we summarize features adopted in prior baselines using a URI or-
ganization. The organization follows the following hierarchy: graph-level - item level
(i.e., nodes or edges) - feature category.

Before discussing the various features in detail, we first comment on the popu-
larity of various feature families. In particular, we analyze the distribution of fea-
tures described in prior works we describe in Section 4.2. The Sankey diagram in
Figure 4.3 shows that ∼ 70% of features come from the review graph. This implies
that most past works focused on features derivable from review text without con-
sidering the RP information carefully.

Review Graph

Multi Graphs

User Graph
Product Graph

Node

Edges

FIGURE 4.3: Feature families popularity in prior works.

4.1.2 User Graph

We now describe the features derivable from the URI user-level subgraph.

Node-level

Identity Disclosure Identity disclosure-based features include boolean variables
for the following: if the reviewer uses a real name, has a real profile photo, has a
nickname, hobbies, birthday, location, a link with his/her webpage, interests, biog-
raphy, and the logical or of the above information [102, 239, 331].

Reviewer Rank The reviewer rank provided by an RP indicates the reliability and
quality of authored reviews [102, 187, 284, 168, 331]. This information is often dis-
played in reviews or in reviewer profiles. Some studies found ranking to be linked
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to review quality [284], but others disagree [168]. Different types of features can
be derived from the reviewer rank, e.g., if a reviewer is a top k reviewer. Using
this knowledge, we can derive binary variables indicating if reviewers are listed in
top10, top50, top100, and top1000 [102]. Similarly, Yelp shows elite reviewers [331].

Edge-level

Social Connections In RPs, users interact with each other. For example, ui might
like (or dislike) someone else’s review. Similarly, an RP might allow social connec-
tions, such as a friendship between two users. While potentially useful, this category
of features is highly dependent on the RP. For instance, Amazon can keep track of a
helpfulness vote (i.e., ui likes or dislikes a review written by uj); however, an external
viewer cannot see this.

Several past studies used Ciao as the RP as it explicitly shows user-user
links [284, 187]. Using Ciao, Lu et al. derived users’ in-degree and out-degrees [187].
Tang et al. [284] captured the relationship between voters (i.e., users judging re-
views) and review authors. They hypothesize that users tend to vote the same way
as their connections. Voters and reviewers may also share similar preferences. A
preference context metric is introduced to capture such similarities. A few Yelp stud-
ies used the number of friends as a proxy for a reviewer’s reputation [239, 331].

4.1.3 Review Graph

In the case of review graphs, we only discuss node-based features — we saw no use
of edge based features in such graphs. We categorize node-based features into three
families.

• Content. Set of properties about the review’s text (e.g., sentiment, emotions).

• Style. Set of properties that capture stylistic characteristics of the written re-
view (e.g., description length).

• Meta-features. Set of properties derivable from the metadata (e.g., star rating).

Content

Content-based features can be expressed via patterns, embeddings, and emotions.

Content-based patterns. Such features capture the presence of specific words or
topics in a sentence. A popular approach uses the Bag-of-Words and its variants,
like binary occurrence [213],term occurrence [213], term frequency [213], and TF-IDF
statistics based on unigrams [156, 82, 213, 317] or bigrams [156, 82]. At a paragraph
level, Liu et al. counted the number of paragraph separators (e.g., pros, cons, the
good, the bad) [181].

One would expect a good review to describe specific characteristics of the
reviewed products. For example, when reviewing a digital camera, a desirable topic
of interest might be the quality of the zoom. Defining interesting properties of a
product a priori is not trivial, and different works counted the number of product
properties cited in a review text as a feature [156, 125, 181]. Similarly, we can count
the number of sentences containing product-related information [181]. Here, the
authors estimate both the number of brands in reviews, number of brands in titles,
number of products in the review, and number of products in titles. Finally, a review
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topic can be modeled using a Latent Dirichlet Allocation [33] representation which
is a topic distribution [82]. Liu et al. [184] uses a document profiling model to identify
product features contained in a review; this approach is built on top of the one
presented by Lim et al. [178]. The authors then extract several features: the number
of products referenced in the review, number of product features per sentence,
number of sentences with at least one product feature, number of product features
divided by the number of sentences with at least one product feature, and number
of sentences with at least one product feature divided by the number of sentences
in the review. Similarly, Min et al. count the number of product mentions [205].

Content-based features are related to the RP or the class of products being re-
viewed (e.g., hotels, restaurants). For example, Mahony et al. quantified the number
of review-template questions (e.g., “would you recommend this hotel?”) answered
in the review [218]. Furthermore, the authors also quantified the number of optional
personal details and purpose of visit details contained in the review. Dominant
terms contained in a given review are a feature proposed are investigated by Tsur
et al. [294]. They propose an unsupervised review ranking based on the similarity
between the dominant terms in a given review and an “ideal” perfect review vector.
The intuition is that a review should contain some terms that describe the product,
and the closer to an ideal review, the better.

Word embeddings. Word embeddings are a powerful representation based on
deep neural networks that converts a textual review into an embedding vector. Du
et al. [82] use two types of embeddings: skip-gram with negative sampling [202] and
global vectors [229]. The review embedding is defined as the average of the review
word embeddings.

Emotion-based. These features capture feelings and emotions in reviews. As
stated by Du et al. [82], state of the art systems primarily use one of the following
tools: Linguistic Inquiry and Word Count dictionary (LIWC) [228], General Inquirer
(GI) [277], Geneva Affected Label Coder (GALC) [257], Opinion Lexicon [130], Senti-
WordNet [19], SentiStrength [288], and VADER [133]. Such tools capture sentiments
and/or emotions. Many tools merely count the number of words in a category of
words associated with an emotion. For example, if a selected tool determines if a
sentence is positive or negative, the result is a bi-dimensional vector. The first di-
mension is the number (or ratio) of positive words contained in the review. The
second dimension does likewise for negative words. Emotional vectors are adopted
in many works [196, 317, 82, 86, 187, 181].
Another direction is to measure emotions by extracting the number of objective and
subjective sentences in a given review [184, 102, 329].

Style

Stylistic features describe how a review is written. We identified four major groups:
char statistics, length, readability, and syntax statistics.

Char statistics This family of features identifies specific patterns of characters that
might be associated with the utility of a review. Examples of such features are the
number of exclamations marks [156, 317], number of HTML bold tags [156], num-
ber of HTML line breaks [156], the ratio of special tags (i.e., <br>, <p>) [219], the
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ratio of upper and lower characters to other characters in the review text [218], the
ratio of upper to lower characters in the review text [218], percentage of upper and
lower characters [219], percentage of upper characters [219], ratio of capitalized sen-
tences [187].

Length-based features These features capture the depth of a review. The hy-
pothesis is that useful reviews should contain a lot of information — if so, users
would prefer longer reviews to shorter ones. The length can be captured in sev-
eral ways. Popular metrics are the number of words [156, 218, 196, 82, 184, 168,
102, 161, 239, 331, 219, 86, 131, 317, 187, 181], number of characters [82, 168, 223],
number of sentences [156, 196, 82, 184, 102, 219, 317, 187, 181], average sentence
length [156, 82, 184, 168, 102, 219, 317, 187, 181], average number of characters per
word [168], number of paragraphs [181], average paragraph length [181].

Readability. We expect that a good review will be well-written and easy to read.
It is thus necessary to capture readability aspects. Readability measures can be cap-
tured with metrics such as the Flesch–Kincaid Reading Ease score, Flesch–Kincaid
Grade Level, Gunning Fog Index, Simple Measure of Gobbledygook, Automated
Readability Index, and Coleman–Liau Index. These features are adopted in several
baselines [196, 82, 161, 219].

Readability can be further measured by counting the number of one-letters
words, the number of two to nine-letter words, and the number of words with ten
or more letters [168, 219]. Analogous to the readability score features, the review’s
grammatical correctness might play a role in whether a review is considered helpful
or not. Grammatical correctness can be measured by counting the number of mis-
spelled words [82, 184, 102] or the number of misspelled words divided by the total
number of characters in the review [168].

Syntax statistics. These features capture properties of the review syntax such as
the percentage (or the count) of question sentences [156, 317, 82] and the percentage
(or the count) of exclamatory sentences [82]. Lu et al. [187] defined the vocabulary
richness of a review as the ratio of unique words to the number of words in a review.

Part-of-Speech (PoS) tokens are often used. For example, we can quantify (e.g.,
percentage, count) the number of nouns, verbs, and adjectives contained in a re-
view [156], or quantify (e.g., count, percentage) specific parts of speech [156, 196,
184, 82, 205, 329, 125, 187, 183]. Hong et al. [125] hypothesized that volitive auxiliary
words might be linked to unreliable reviews. However, the authors did not find any
correlation between this feature and review helpfulness. On the other hand, they
found tense-based features to be linked to review helpfulness.

Meta-features

We can also extract features from review metadata. We identify two groups of fea-
tures: miscellaneous (i.e., generic features) and star rating related features.

Miscellaneous. This family contains meta-features that are strictly related to the
reviewing platform used. For example, in the case of TripAdvisor, we can extract
two features that indicate whether the reviewer responded to optional content in
the review, e.g., if the reviewer completed optional liked and disliked forms of



4.1. The Users-Reviews-Items (URI) Paradigm 73

the review [218]. Zhou et al. [331] defined a boolean variable if the review con-
tains pictures. Temporal features like the number of elapsed days since the review
was posted are used in many studies [223, 239, 168]. Different works used Cal-
endar ranges to create a one-hot variable for the year of the review (e.g., if the
dataset contains reviews written between 2005 and 2008, then we have a 4-values
vector) [105, 331].

Star rating. During the review process, RPs usually ask users to evaluate further
the product with a star rating (i.e., a numerical score). For example, on Amazon,
the reviewer can use a scale from one to five stars. Star-rating (or valence) based
features are the star rating itself [156, 196, 161, 211, 218, 223, 239, 236, 86, 105, 131],
or properties that describe the star rating, such as if the rating is moderate (i.e., three
stars) [102].

4.1.4 Item Graph

We can also define features based on the item-item graph.

Node-level

Meta-Features RPs may show products with several properties. We now report on
some of the product info features. A famous example is the product type [211, 168, 223],
i.e., a variable that tells if the product is an experience or a search good. While
found significant by Mudambi et al. [211], the authors also claim that categorizing
products into these two categories is not trivial. Price information can be used in
two forms [168, 102]: the manufacturer’s suggested price and Amazon’s retail price.
Product popularity is another feature that can be retrieved on many RPs. For ex-
ample, on Amazon, we can extract the sales rank of the product [168, 102]. Zhou
et al. defined a dummy variable for the restaurants available in the dataset [331].
Similarly, Chen et al. collected product information (e.g., price, rank, shipping days)
on different dates, e.g., every day since the product release day [54].

4.1.5 Multi Graphs

We now discuss features based on multi graphs. This set of features only consider
connections (i.e., edges) among different types of nodes.

User-Review Connections

The knowledge of users’ past reviews might help in predicting the helpfulness of
their future or current reviews. Mahony et al. [218] defined a set of features re-
trievable from users’ past reviews, i.e., mean and standard deviation of helpfulness
scores of past reviews and the percentage of reviews that received at least T votes.
Similarly, we can extract the number of reviews written by the user and the average
and standard deviation of the number of reviews written by all users in the RP. Such
features are used in many baselines [218, 168, 102, 213, 239, 331, 131, 187, 236]. Ngo-
Ye et al. [213] proposed a recency feature, which is defined as the difference between
the current review date and the date of the last review posted by the reviewer.

Lu et al. [187] proposed the average star rating (excluding the current review) of
reviews rated by the reviewer. This is motivated by the fact that reviewers might
have different reviewing approaches (e.g., someone might be more likely only to
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give positive scores). Similar features were used by Mahony et al. who extracted the
average and standard deviation of sub-scores of hotel reviews [218]. Liu et al. [183],
in a study focused on IMDb movie reviews, captured reviewers’ expertise with ra-
dial basis functions. In particular, the authors exploited past reviews of movie genres
to build such knowledge.

Review-Item Connections

The overall star rating of a product, defined as the average of the star ratings of past
reviews, is often used in prior works. For example, Chen et al. used such an average
as a feature, and several variants derivable from it, such as the average star rating
of those reviews with more than 80% helpful votes, the average number of reviews
written by top1000 reviewers of the platform, and the average star rating of spotlight
reviews (i.e., displayed in the product’s page) [54].

When considering the product’s average star rating and a current review of the
product, we can extract divergences. Some works measured the divergence as the
absolute value of the difference between the current review rating and the average
product rating [156, 70, 168]. Danescu-Niculescu-Mizil et al. used a signed version
of divergence [70]. Similarly Hong et al. studied the divergence between the cur-
rent review’s sentiment and the sentiment in past reviews, where the sentiment is
extracted with WordNet [125].

From the product’s history, we can extract the number of reviews for a given
product and the average and standard deviation of the number of reviews written
for all the products on the review platform [218, 223, 54]. Some works used temporal
information like the elapsed time since the product release [54, 168]. The number of
days since the first review was posted [105, 331] has also been used as a feature. Sev-
eral works also extracted information about the product’s reviews from the product
history. An example is the number of past reviews [168, 102] and the average review
rating over time [168, 102].

Another important aspect highlighted is the review order [105, 331], i.e., how
the reviews are organized and shown to readers. In this study, the review order
negatively impacts the helpfulness score. For example, it seems natural to think that
the first displayed review can be observed (and thus voted on) by more users than
those not displayed on the first page of reviews.

By considering the history of all products, a plagiarism-based tool can identify
nearly-identical review pairs [70]. Zhang et al. [329] argued that a review r should
differ from the official product specification s and the editorial review e. Thus, they
compute the similarity between a given review and the specification/editorial infor-
mation. This measure is based on the cosine similarity among the TF-IDF of the two
variables, i.e., sim(r, s) and sim(r, e). Lu et al. [187] proposed a conformity measure
defined as the KL divergence between a given review and unigram language models
of past reviews. Liu et al. [183] used a radial basis function to model the decay time
of a given product review with the idea that, after a certain time, it is unlikely that a
review will be considered helpful.
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4.1.6 Summary

Reviewing Platform Graph

Users Graph

Nodes

Identity Disclosure [102, 239, 331]

Reviewer Rank [102, 187, 284, 168, 331]

Edges

Social Connections [187, 239, 331, 284]

Reviews Graph

Nodes

Content

Content [156, 181, 294, 218, 125, 205, 184, 213, 317, 82]

Embedding [82]

Emotions [329, 181, 187, 102, 223, 184, 196, 317, 86, 82]

Style

Char Statistics [156, 218, 219, 187, 317]

Length [156, 181, 218, 102, 187, 219, 161, 239, 184, 168, 196, 131, 317, 331, 86, 82]

Readability [219, 102, 161, 184, 196, 168, 82]

Syntax Statistics [156, 329, 183, 187, 125, 205, 184, 196, 317, 82]

Meta-Features

Miscellaneous [218, 223, 105, 239, 168, 331]

Star Rating [156, 196, 161, 211, 218, 223, 239, 236, 86, 105, 131, 102]Products Graph

Nodes

Meta-Features [211, 168, 223, 102, 331, 54]

Multi Graphs

Edges

Users-Reviews [218, 168, 102, 213, 239, 331, 131, 187, 105, 183]

Reviews-Products [54, 156, 70, 168, 125, 218, 223, 105, 331, 102, 329, 187, 236, 183]

4.2 Prior Works

This section provides a chronological summary of relevant prior art.

Kim2006 [156] Kim et al. studied Amazon reviews for MP3 players and digital
cameras, with the overall goal of ranking reviews based on usefulness. They devel-
oped an SVM regression-based ranking system that, given a product and its reviews,
predicted the helpfulness score. This study primarily used structural features. They
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found that review length (i.e., number of tokens), n-gram TF-IDF (i.e., unigram), and
the star rating are important predictive factors.

Zhang2006 [329] This work studied Amazon reviews and predicted helpfulness
using support vector regression and linear regression. They used Part-of-Speech
statistics and counts of the emotion level in the review (e.g., as a count of subjective-
objective words). The results show that the best model uses shallow PoS statistics,
implying that the utility of a review is highly dependent on its linguistic style.

Liu2007 [181] This study first filters low-quality reviews using an SVM trained on
three sets of features: informativeness, readability, and subjectiveness. The experiments
are conducted on Amazon reviews. The authors further discuss three biases. (1)
Imbalance vote: when considering ground truth derivable by the RP (e.g., Amazon),
they noted that users tend to vote positively rather than negatively. (2) Winner circle
bias: only a few reviews get a large number of votes (positive and negative). (3) Early
bird bias: older reviews tend to have higher votes.

Chen2008 [54] This study analyzes the impact of reviews on Amazon’s new books.
Prior to this paper, most research focused on the aggregate numerical review scores
while leaving important questions (e.g., the relationship between helpful reviews
and reviewers) unexplored. Three measures are considered: the quality of the con-
tent (i.e., the helpfulness score), the reviewer’s reputation, and the impact of the
reviews displayed on the product page (spotlight reviews). The findings can be
summarized as follows: (1) higher ratings are associated with higher book sales, (2)
products with a large number of helpful reviews have a stronger impact on con-
sumer purchase decisions, (3) spotlight reviews have a stronger effect on sales, and
(4) no evidence was found that links reviewer reputation with sales.

Liu2008 [183] This study of IMDb reviews presents a predictor that combines three
factors: the reviewer’s expertise, the writing style of the review, and the timeliness
of the review. The authors highlight three major issues in predicting the helpfulness:
(1) Recent product reviews tend to have no votes (or few votes), making it difficult to
predict helpfulness of such reviews (early bird bias [181]). (2) There is a “monopoly
effect” if only highly ranked reviews are shown to users by the RP, preventing even
helpful new reviews from being shown (winner circle bias [181]). (3) The review
labeling process (i.e., if a review is helpful or not) can be affected by wrong voting
(e.g., spam voting [142]).

Danescu- Niculescu-Mizil2009 [70] This seminal 2009 study of Amazon reviews
suggests that the helpfulness of a review depends both on the review and on other
reviews of the same product. The authors investigated four hypotheses.

1. Conformity hypothesis. A review is considered helpful when its star rating is
close to the majority.

2. Individual-bias hypothesis. A review is helpful if the opinion is in agreement
with the reader’s opinions.

3. Brilliant-but-cruel hypothesis. Negative reviewers are considered more reliable
than positive ones.
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4. Quality-only straw-man hypothesis. Review helpfulness depends only on
review-related features.

The first three hypotheses were analyzed by observing the discrepancy between the
review’s star rating (i.e., the one to predict its helpfulness) and the product’s aver-
age star rating (i.e., the product being reviewed by the review we want to predict
helpfulness).

The conformity hypothesis does not hold since the signed value of the difference
between the review’s star rating, and the product’s average star rating is not sym-
metric. For example, the authors considered two groups of reviews with signed
deviation equal to -2 and +2 and found that the median values of their helpfulness
ratios are different. Similarly, the authors highlight that reviews with positive star
ratings tend to have higher helpful scores, which is in contrast to the brilliant-but-
cruel hypothesis: i.e., users positively evaluate more, on average, positive reviews.

To distinguish the individual-bias hypothesis from the conformity hypothesis, the
authors analyzed the signed star rating deviation, where the products are grouped
by the variance of star rating. The idea is to find cases where the opinions (e.g.,
star rating) do not come from the same single-peak distribution. The authors ob-
served that as the variance increases, the distributions move from a single hump
(low variance) to two humps (high variance). The authors validated the individual-
bias hypothesis.

We conclude with the quality-only straw-man hypothesis. The concept is straight-
forward: if a review is considered helpful for a product, a second nearly-identical re-
view for a similar product should have a nearly-identical helpfulness score. Nearly-
identical pairs of reviews were discovered using plagiarism tools. The authors further
group such pairs based on the discrepancy between their star ratings. A statistically
significant difference between the helpfulness ratios of members of such pairs in-
dicates the influence of non-textual factors on the helpfulness score. The authors
showed that the quality-only straw-man hypothesis does not hold and that there are
factors unrelated to text that affect the review helpfulness score. This finding is par-
ticularly relevant since it implies that studies that consider only text-related features
might not be adequate.

O’Mahony2009 [218] Similarly to [156], Mahony and Smyth designed a system in
2009 to recommend the most helpful reviews for a given TripAdvisor hotel. The
proposed JRiP classifier is trained over features derivable from the review text (e.g.,
length) and from the RP (e.g., number of reviews written by the author, number
of reviews written for a hotel). The authors find reputation-based features (e.g.,
average user helpfulness score) to be the most significant ones.

Tsur2009 [294] This study presents RevRank, an unsupervised algorithm for select-
ing the most helpful book reviews. The algorithm retrieves a set of reviews, iden-
tifies a lexicon of dominant terms, and orders the reviews according to a similarity
metric. Since the algorithm is unsupervised, the ground truth (i.e., the ratio of help-
ful votes to total votes) is unnecessary. Given a set of reviews and an externally
balanced corpus, RevRank defines a VC (Virtual Core) review. The VC can be seen
as the best review that we can derive from the given set of reviews. The VC is com-
puted using a set of dominant terms contained in the reviews. Finally, RevRank
computes the similarity between each review vector and the VC vector, and it ranks
the reviews accordingly.
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Lu2010 [187] This work extends the set of features used by prior works (mainly
textual features) with contextual information about reviewers. The authors use a
semi-supervised learning technique that uses a small amount of labeled data and a
large amount of unlabeled data. The approach can be applied even when informa-
tion about reviewers is missing information.

Mudambi2010 [211] This study develops a predictive framework around three fac-
tors: the product type (i.e., search goods or experience goods), the review length,
and the star rating. The research, conducted on 1587 Amazon reviews, presents two
outcomes. (1) The product type denotes different helpfulness patterns, e.g., for ser-
vices, moderate reviews (i.e., reviews with a star rating that is not extreme) are more
helpful, while this is not true for search goods. (2) Review length has a positive
correlation with the helpfulness score. This effect is stronger for search goods.

O’Mahony2010 [219] This paper considers structural and readability features and
evaluates them on Amazon and TripAdvisor reviews. The authors find that the
impact of these two types of features is stronger on Amazon than on TripAdvisor.

Ghose2011 [102] This paper’s contribution is twofold: (1) different factors that im-
pact review helpfulness, and (2) the economic impact (e.g., product sales) of reviews.
The authors study review-based features (e.g., length, readability), information that
can be retrieved from the RP, such as the reviewer history (e.g., number of past re-
views), reviewer identity (e.g., name, bio, hobbies), and product history (e.g., num-
ber of past reviews). The authors adopted a Random Forest Classifier to predict both
impacts on sales and helpfulness score. The researchers find that: (1) The more sub-
jective reviews are, the higher the impact on sales. (2) For some products, the higher
the readability of reviews, the higher the impact on sales. (3) Reviews including
both objective and subjective opinions tend to be more helpful. (4) Reviews with
low readability (and a high number of grammatical errors) tend to have lower help-
fulness scores. (5) Historical reviewer information (e.g., average past helpfulness
score) have a mixed effect on helpfulness score.

Pan2011 [223] This paper analyses the impact of different factors on helpfulness
scores and finds that review length and star rating have a positive effect on the help-
fulness score, but product type can play a confounding role. The results are similar
to those presented by Ghose et al. [102].

Godes2012 [105] This paper investigates the sequential and temporal dynamics
associated with online reviews and considers Amazon book reviews as a case study.
The authors propose (1) a sequential dynamic, defined as the sequence of reviews
ordered by posting time, and (2) a temporally dynamic, defined as the amount of
time since a book is released (and available for review). The results suggest that
both dynamics are impactful factors in online reviews.

Hong2012 [125] This paper develops new features linked to user preferences. Three
categories of user preference features are developed based on the following hypothe-
ses: (1) users prefer reviews that meet their information needs, (2) users prefer cred-
ible reviews, and (3) users prefer reviews that follow the mainstream opinion. The
authors use Amazon reviews to show that these new features improve prediction
performance.
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Korfiatis2012 [161] This work studied the interplay between review helpfulness
and review content. Their analysis is built on top of three elements: conformity, i.e.,
a review is considered more helpful if its star rating is close to the majority score,
understandability, i.e., a review is considered more helpful when it is easier to read,
and expressiveness. The authors’ experiments on Amazon reviews suggest that the
readability of reviews has a greater effect on the helpfulness ratio of a review rather
than other characteristics such as the review length.

Min2012 [205] The authors proposed a novel metric to rank product reviews by
“mentions about experiences”. This metric tries to capture user experiences with the
reviewed product. The idea is that reviewers who provide details about their expe-
riences are more reliable than others that do not.

Preadeep2012 [239] This study shows that feature sets that include both reviewer
and review characteristics are highly correlated with the helpfulness of Yelp reviews.

Qiu2012 [236] This paper studies the role of aggregated ratings (e.g., the average
number of stars) in RPs. It shows that the credibility of reviews decreases as the
difference between a given review’s rating and the average rating increases. The
authors find a stronger effect when the review has a positive score.

Liu2013 [184] This study looks at review helpfulness from the product designer’s
perspective. Its findings suggest that customers’ and designers’ perspectives differ;
thus, building classifiers based on the standard helpfulness ratio based on customer
votes is not appropriate for designers.

tang2013context [284] This study examines the hypothesis that reviews may not be
equally useful to different users. The authors collected a set of graph-based contex-
tual features from RPs, and they modeled the problem as a recommendation system.
The experiments conducted on Ciao reviews suggest that context-based features are
a valuable source for the helpfulness prediction task.

Lee2014 [168] This paper explored the power of neural networks using engineered
features to represent Amazon reviews. They used a standard Multi-Layer Percep-
tron (MLP) trained over 20 features, including product data, review characteristics,
and the textual characteristics.

Martin2014 [196] This work is based on the hypothesis that emotions in reviews
may be linked to helpfulness. The authors compared the predictive power of
emotion-based features with baseline features proposed in past works (i.e., length,
Flesch Reading Ease, and PoS counters). Using data from Amazon, Yelp, and Tri-
pAdvisor, the authors show that emotion-based features outperform all baseline fea-
tures except for part-of-speech-based features.

Ngo-Ye2014 [213] This paper used Amazon and Yelp reviews to show that using
features that capture reviewer engagement (e.g., reputation, commitment, and cur-
rent activity) along with review-based features improves predictive performance.
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Filieri2015 [91] This study uses a questionnaire where participants describe their
behavior when reading reviews. Each question requires answers on a 7-point Likert
scale ranging from strongly disagree to strongly agree. The findings suggest that
users are primarily influenced by the review quality, followed by customers overall
ratings.

Huang2015 [131] This study considers both quantitative measures (e.g., review
length) and qualitative aspects of reviewers (e.g., reviewer experience and impact).
The study uses two Amazon datasets. The first dataset contains random reviews
of specific products, while the second has reviews written by the top 10000 review-
ers. The authors found that: (1) the length of a review is important but only to a
certain extent — but this variable is not important w.r.t. top Amazon reviewers; (2)
when considering top reviewers, factors like reviewer experience or impact are not
significant for helpfulness; (3) star rating is a significant factor.

Yang2015 [317] This study tries to define a helpfulness classifier that can apply to
different datasets and RPs. The authors argue that by mixing text-based features
with non-textual ones, there is a risk of making the model less transferable. Using
experiments on Amazon data, the authors argue that transferability is enhanced by
considering just two specific sets of interpretable semantic features.

Zhou2017 [331] This paper highlights the factor that most prior studies assume
that reviews are mutually independent. Using Yelp data, the authors show that, in
general, the order of reviews is negatively related to the helpfulness score.

Chen2018 [49] This paper studies the limitation that prior work required massive
amounts of ground truth for each domain of interest. They also considered the fact
that “out-of-vocabulary” words might be encountered, i.e., words related to prod-
ucts’ category. The paper uses Convolutional Neural Networks (CNNs) based on
words and characters and show, using Amazon data, that their approach is more
transferrable than previous efforts.

Diaz2018 [78] This survey paper provides an excellent overview of the area. The
authors discussed the difficulty of “organizing” prior research and determining the
state of the art. The authors identified two possible causes: (1) different datasets
(most not publicly available) were used in prior work, and (2) many efforts are not
built on top of prior work. They make several recommendations:

• Task: if the goal is to determine if a given user will find a review to be help-
ful, the helpfulness score might not be appropriate, since users that voted for
reviews might not be aligned with a specific user’s expectation;

• Data: current publicly available datasets might not be optimal for the help-
fulness prediction task. Instead, datasets that contain more information about
voters and reviewers might be needed.

• Baselines: when new algorithms are proposed, all prior features and models
should be considered and evaluated.
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Eslami2018 [86] This study investigated features linked to review length, senti-
ment polarity, and star rating to maximize the review helpfulness. Using an Ama-
zon and Insureye datasets, the authors reported that helpful reviews have medium
length, low review score, and negative or neutral sentiment.

Du2019 [82] This survey[82] studied a wide set of features derivable from “review
nodes”. Using an SVM classifier trained on six Amazon 5-core datasets [122], the
authors experimented with different combinations of features. The best classifier
used all the extracted features.

Fan2019 [89] This study argues that many past efforts ignore essential metadata,
such as the title, the brand, the category, and the description. The authors proposed
an end-to-end deep neural network to model the task. Using Amazon and Yelp data,
the authors show that their approach outperforms baselines.

Qu2020 [237] This paper uses (1) review sentiment and (2) the fact that a reader
might pay more attention to particular parts of a review to develop a neural
network-based predictor that includes an attention mechanism.

Qu2020 [238] The authors propose CA-GNN (Category-Aware Graph Neural Net-
works), a GNN-based model for Taobao. The authors leverage GNNs to capture the
relationships between users and reviews of an RP.

4.3 Experimental Settings

We first present the features we extract (Section 4.3.1), and the datasets (Section 4.3.2)
used in our experiments.

4.3.1 Feature Extraction Framework

In this section, we present the framework we used to extract URI-based features
from Amazon reviews [122]. Table 4.1 shows the families of features used — we
now go into the details of these features.

TABLE 4.1: Description of features available with our framework.

Users Graph Reviews Graph Item Graphs Multi Graphs

Group Dim Nodes Edges Nodes Edges Nodes Edges
Product History 3 ✓

Product Metadata 2 ✓

Review Embedding 700 ✓

Review Emotions 140 ✓

Review Metadata 3 ✓

Review Readability 12 ✓

Review Structure 41 ✓

Reviewer History 4 ✓
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Product History Features When a new review is posted, we need to understand
the review in the context of earlier reviews of the same product. Given a product p,
the history Hp is a sequence of reviews ordered by their posting time:

Hp = {r0, r1, ..., rn}, (4.1)

where rn is the last posted review. For each review ri ∈ Hp, we extract a set of fea-
tures describing older reviews, i.e., {r0, r1, ..., ri−1}. Given a review ri, we extracted
three features: the number of previously posted reviews, their average star rating,
and the divergence between the current review’s star rating and the aforementioned
average star rating.

Product Metadata We used ‘product price’ and ‘product rank’ which are available
in the Amazon Reviews dataset [122].

Review Embedding The text of each review is converted to embedding repre-
sentations, following [82]. We extracted a topic representation using LDA, fixing
the number of topics to 100. The implementation follows [148] and uses Gensim
[246]. We also computed two 300- dimensional vectors using GLOVE (i.e., glove-
wiki-gigaword-300 version) and Word2Vec (i.e., word2vec-google-news-300) repre-
sentations. We set the embedding vector for a review to be the average of word
embeddings associated with words in the review.

Review Emotions Following [82], we extract a set of emotional features. We start
with the GALC lexicon [257], which contains a dictionary of words associated with
38 emotions. For example, ‘annoyed’ is linked to the ‘irritation’ emotion. Similarly,
words like ‘fine’, ‘good’, or ‘nice’ are linked to a ‘positive’ emotion. We decompose
sentences into a list of stemmed tokens, and then count how many tokens belong
to each emotion. Some tokens might not belong to any particular emotion. We
defined another counter that expresses the ‘unknown’ emotion for these cases. Each
emotion count is then divided by the total amount of tokens processed. Thus, a
review is expressed as a GALC feature vector containing 39 values (38 emotions
plus “unknown”).

Sentiment-based features are derived using Opinion Lexicon [130] (OL), Senti-
WordNet [19], and VaderSentiment [133]. We used NLTK [186] to extract a positive
and negative sentiment score. The extraction follows a procedure similar to the one
described with GALC since the NLTK Open Lexicon contains two sets of negative
and positive words. From NLTK, we further extract the SentiWordNet [19] features:
positive, negative, and objective valences. Again, the extraction procedure follows
the one described above. Finally, we extract negative, positive, and neutral valences
of Vader sentiment1. We also used 93 LIWC2015 93 features. 2

Review Metadata We use the star rating (1 to 5 scale) and define a feature that says
if the star rating is moderate [102] (3 or not). We also used the elapsed time since the
review is posted as a feature.

1https://pypi.org/project/vaderSentiment/
2As LIWC is a proprietary software, we do not make it part of our open-source extraction tool.
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Review Readability We counted the number of misspelled words within a review
using Hunspell3. We then computed the ratio of the number of misspelled words
and the total number of characters in the review. We also counted the number of
misspelled words in a review using an extended version of Hunspell containing
Wikipedia titles (i.e., enwiki-latest-all-titles-in-ns0). This feature ensures that brands,
technologies, etc. which are not part of standard English, are also considered. We
also extracted features that describe the complexity of reading a review. We count
the number of words containing only one character, from two to nine characters, and
more than ten characters. Using Textstat4, we measure several readability metrics
like Flesch–Kincaid Reading Ease score, Flesch–Kincaid Grade Level, Gunning Fog
Index, Simple Measure of Gobbledygook, Automated Readability Index, and the
Coleman–Liau Index.

Review Structure We measure the length of a review as the number of NLTK to-
kens, sentences, number of characters, average sentence length, and average char-
acters per word. We further count the number of sentences that are questions and
sentences that are exclamations. Finally, we compute the count and percentages of
different Part-of-Speech tags.

Reviewer History We define features to capture a reviewer u’s past behavior. We
can define u’s activities as a sequence of past written reviews ordered by their post-
ing time:

Hu = {r0, r1, ..., rn}, (4.2)

where rn is the last written review. Thus, for each review ri ∈ Hu, we extract the fol-
lowing describing the reviews written earlier by the author, i.e., {r0, r1, ..., ri−1}: the
number of reviews, the average star rating, the sum of past helpful votes received,
and the average of votes (positive and negative) received.

4.3.2 Dataset

For our experiments, we used the Amazon review dataset [122]. In particular, we
use both reviews 5-cores and product metadata of the following six categories: Cell
Phones and Accessories, Digital Music, Electronics, Pet Supplies, Toys and Games,
and Video Games. The ground truth is defined as:

help f ulness ratio =
#positive votes

#total votes
. (4.3)

We consider a review helpful if the helpful ratio exceeds 0.75. We only considered
reviews with 3 or more votes in our training, validation, and testing sets. We split
each category into training (70%), validation (10%), and testing (20%) sets using a
temporal approach (i.e., based on reviews dates).

Table 4.2 summarizes statistics about the different datasets. For each category
and split, we report the number of samples and the percentage of helpful reviews.
First, we see that in all cases (excluding the Digital Music category), the percentage
of helpful reviews decreases from the training to the validation and testing sets. Sec-
ond, the ground truth is generally imbalanced toward the helpful class (excluding

3https://pypi.org/project/cyhunspell/
4https://pypi.org/project/textstat/

https://pypi.org/project/cyhunspell/
https://pypi.org/project/textstat/
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the ‘Video Games’ category). Third, the percentage of helpful reviews varies by cat-
egory. For example, ‘Pet Supplies’ category has 75% of training samples belonging
to the helpful class, while the same number is 48% in the ‘Video Games’ category.

TABLE 4.2: Dataset statistics. We show dimension and percentage of
helpful reviews for each set.

Train Val Test
Category Dim Help [%] Dim Help [%] Dim Help [%]

Cell Phones and Accessories 11918 65.49 1689 54.35 3421 56.56
Digital Music 20009 53.98 2868 52.82 5725 47.46
Electronics 54018 70.05 7714 54.36 15446 51.28
Pet Supplies 11735 75.88 1669 67.75 3361 68.34
Toys and Games 16070 72.31 2321 59.89 4598 56.31
Video Games 55062 48.59 7891 34.28 15739 29.65

4.4 Temporal Analysis

Each of the datasets (cf. Section 4.3.2) used in our experiments was temporally split
into training, validation, and testing sets using a temporal approach. The oldest
reviews belong to the training set, followed by more recent ones in the validation
set. The newest ones represent the test set. This splitting strategy mirrors real-world
usage: we train a model on past reviews to predict if a future review is helpful or
not. This splitting strategy is also essential in light of [331]’s result that the order of
reviews matters.

Section 4.3.1 presented eight groups of features used in our experiments. While
some groups intrinsically contain temporal information (e.g., user history), others
are independent of time. In this section, we study the relationship between the help-
fulness of reviews and time.

For each Amazon review data in a given category, we obtain the date t0 of the first
written review. Then, for each review in the dataset ti, we compute the quarter (of
a year) number with ⌈(ti − t0)/90⌉. Let us consider ‘Toys and Games dataset’, and
the features number of tokens (or words) and star rating. Figure 4.4 shows that on
average, older reviews tend to be shorter than newer ones. Similarly, older reviews
tend to have a higher star rating. If we compute the Spearman correlation coefficient
between the average number of words in a quarter and the quarter number, we find
a positive correlation 0.55. Similarly, the star rating is negatively correlated −0.85.
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FIGURE 4.4: Temporal analyses on Toys and Game dataset.
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We extended this kind of analysis to all features and dataset combinations. Fig-
ure 4.5 summarizes our findings via a boxen plot. In particular, for each feature
category, we report its Spearman correlation distribution. Ideally, a family is ‘tem-
porally independent’ if its distribution is dense toward 0. We can observe that re-
view emotion, review structure, review metadata, product metadata, and reviewer
history have median values close to 1 (or -1). Instead, review readability and em-
bedding show a more uniform distribution, with a median value close to 0. These
two feature families seem temporal invariant.

Our findings suggest that we are faced with a case of concept drift [295, 96]. Re-
views stylistically changed over time, which might be natural if we think about re-
views written in 2000 compared to those written in 2010. Furthermore, in its early
stage, Amazon was used by a small subset of the world population. By 2010 on the
other hand, Amazon’s popularity has grown exponentially. The number of Amazon
Prime members went from 1 million in 2008 to 31 million in 2014 [235].
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FIGURE 4.5: Distribution of the Spearmann Correlation between dif-
ferent feature categories and quarter number. For each distribution,

we further report the median value.

4.5 Classification Results

The goal of this section is to describe the efficacy of different features in predict-
ing helpfulness. Section 4.5.1 describes our experimental methodology, followed by
classification results in Section 4.5.2. Section 4.5.3 discusses how models generalize
among different Amazon categories. We conclude with Section 4.5.4 by analyzing
the models’ performance at the varying number of voters in the definition of the
ground truth (see Equation 4.3).

4.5.1 Experimental Methodology

We used five well-known supervised classifiers in Scikit-Learn [40]: Logistic Regres-
sion, Decision Tree, Random Forest, AdaBoost, and Gaussian Naive Bayes. For each
dataset, we trained these five models with the nice feature families introduced in
Section 4.3.1 (i.e., eight feature families plus one that combines all of them), plus a
case where all feature types are considered together. The training phase produced
270 models, i.e., 5 models times 6 datasets times 9 feature categories. We applied
a grid search for each model to find an optimal (highest weighted F1-score) config-
uration thorough evaluation of the validation set. Note that the test set was blind
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when these hyper-parameters were learned using the training and validation sets.
The only preprocessing used was the StandardScaler, where each feature is stan-
dardized.5 We now briefly describe the parameters we search.

• Logistic Regression: C = [0.01, 0.1, 1, 10, 10], f it intercept = (True, False), and
class weight = [None, ”balanced”].

• Decision Tree: criterion = [”gini”, ”entropy”], max depth = [None, 2, 3, 4, 5, 10],
class weight = [None, ”balanced”], min samples split = [2, 3, 5], samples lea f =
[2, 3, 4, 5].

• Random Forest: we use the same search of the decision tree, with the addition
of n estimators = [4, 16, 32, 64, 128, 256].

• AdaBoost: n estimators = [2, 8, 16, 32, 64], learning rate = [0.1, 1., 10].

• Gaussian Naive Bayes: var smoothing = [1e − 11, 1e − 10, 1e − 9, 1e − 8, 1e − 7].

4.5.2 Classification Results

We now report the results of our experiments in Figure 4.6. We show a heat-map
presenting the weighted F1-score of the combination of feature families and models
for each dataset. We can immediately see a wide discrepancy between the F1-scores
of different datasets: for example, the ‘Cell Phones and Accessories’ highest score
has an F1-score of 63, while ‘Digital Music’ gets an F1-score of 73. These results
suggest that the underlying mechanism linking a review with its utility score might
differ based on the product type. We further note that classical features derivable
from the review text (i.e., review readability, review structure) do not perform as
well as other feature families (e.g, product history). This highlights the importance
of considering the whole URI for building an optimal classifier.

We now study the impact of families of features and models in predicting help-
fulness. To do so, we average the performance of the various families of features
and models among the different combinations (i.e. of datasets, models, and feature
families). The results are shown in Figure 4.7. Figure 4.7a shows that on average,
models using all features have higher performance compared to those considering
specific families of features. We see that features involving review metadata and
product history show the best performance, only slightly below the case when all
feature families are used. In contrast, product metadata features seem to be poorly
connected with the helpfulness class.

Figure 4.7b shows that there is no real ‘winner’ amongst the 5 predictive models,
i.e., the five models, on average, show similar performance. These results suggest
that the model choice is not particularly relevant. Hence, the focus of future works
might be on defining expressive features.

4.5.3 Cross-Domain Results

An interesting question raised in previous works is understanding the transferability
of a helpful review classifier [317]. In other words, can a model trained in a specific
domain (e.g., ‘Digital Music’) be used for a distinct one (e.g., ’Electronics’)? This
research question seeks to understand if there is a common underlying mechanism
that relates reviews to their helpfulness between different product categories.

5scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.
html

scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
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(F) Video Games.

FIGURE 4.6: Weighted F1-score (the higher, the better) among differ-
ent datasets.
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(4.7b).
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FIGURE 4.8: Cross dataset analysis of Random Forest-based mod-
els. On the left, the average F1-score at features level. In this graph,
the models trained and tested on the same dataset are in blue, while
cross-domain cases are shown in orange. On the right, the heat-map
of models using ‘ALL’ features. The dataset name is reported with
a compressed format. Starting from the left, Cell Phones and Acces-
sories (CP), Digital Music (DM), Electronics (EL), Pet Supplies (PS),

Toys and Games (TG), and Video Games (VG).

As Section 4.5.2 shows that all 5 predictive models have similar performance,
we focused only on Random Forest-based models in this experiment. Another rea-
son for this choice was that the Random had the lowest standard deviation of the
5 classifiers. Figure 4.8a shows the average F1-score produced by Random Forests
when used with different families of features. First, we see that cross-domain per-
formance is lower (as expected) compared to those where the test set belongs to the
same category as the training data. Furthermore, some feature families seem to be
strongly related to their original domain; for example, review metadata and review
readabilities tend to have higher variance in their performance.

Finally, we focus on understanding the transferability among different datasets.
We consider Random Forest-based models trained over all the feature families.
Figure 4.8b shows the performance of the cross-comparison. The diagonal repre-
sents classifier performance when tested on the same category on which it was
trained. We first see that there are only a few cases with poor transferability, e.g.,
‘Digital Music’ and ‘Pet Supplies’ cases. Similarly, models tested on ‘Pet Supplies’
and, vice-versa, the model trained on ‘Pet Supplies’ and test on the other categories
have poor transferability. On the other hand, several models tend to be consistent in
their performance: for example, ‘Cell Phones and Accessories’ model shows similar
performance among different datasets.

4.5.4 The impact of the ground-truth

We derived the ground truth using the number of positive votes and the total num-
ber of votes (see Equation 4.3) provided in the Amazon dataset. To have reliable
ground truth, most works, including ours, discard samples that do not have at least
N votes. In our case, we set N = 3. Nevertheless, this labeling process allows hav-
ing ground truth with different weights of credibility. For instance, a helpful ratio of
0.75 may be derived from 3 positive votes out of 4, or with 30 positive votes out of
40. Naturally, the review with 40 votes is intuitive ‘more credible’, and our model
should better learn to predict such an instance rather than the one with 4 votes. A
straightforward solution is to increase N (i.e., the threshold), from three to 10, for
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example. However, this approach would reduce the number of data samples. In
fact, the Amazon review dataset presents a long-tailed distribution of the number of
votes, e.g., Figure 4.9 shows the distribution of the number of votes in the Toys and
Games category.
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FIGURE 4.9: Long-tailed distribution of the ‘number of votes’ feature
for the ‘Toys and Games’ dataset.

To understand if the number of votes has an impact in our models, we measure
the performance of our models at different level of voters: low credibility, if the
number of voters is in between three and five, medium credibility, if the number of
voters is between 6 and 10, and high credibility, if the number of voters is greater
than 10. In this phase, we tested only Random Forests considering all extracted
features.

We report the results in Figure 4.10. Generally, reviews with a high number of
votes tend to have a higher F1-score compared to those with fewer votes. Compared
to low credibility reviews, on average, the improvement in F1-score is +6.97 when
considering medium credibility reviews and +14.03 pp when considering high cred-
ibility reviews. Such discrepancies are significant and suggest that reviews with a
small number of voters might be wrongly labeled. This phenomenon, combined
with the long-tail distribution, might hide the true quality of classifiers. This finding
suggests that future works must carefully consider the definition of ground truth.
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FIGURE 4.10: F1-score when varying of the ground-truth credibility.
Starting from the left, Cell Phones and Accessories (CP), Digital Music
(DM), Electronics (EL), Pet Supplies (PS), Toys and Games (TG), and

Video Games (VG).

4.6 Deep Neural Networks for Helpfulness Classification

In the last 10 years, Deep Neural Networks (DNN) have been widely applied in
many domains ranging from healthcare [87] to autonomous vehicles [114]. In this
section, we analyze whether the helpful review classification task might benefit from
recent techniques proposed in NLP. Section 4.6.1 presents the experimental settings.
Section 4.6.2 presents the results.

4.6.1 Experimental Settings

Our experiments use the datasets presented in Section 4.3.2 and compare three types
of models: baselines, i.e., the best performing models from Section 4.5, fine-tuned,
i.e, pre-trained models that are fine-tuned for the helpfulness prediction task, graph
neural networks, i.e., a DNN which is modeled leveraging the URI representation.
Following the outcomes discussed in Section 4.5.4, for each model we report the
weighted F1-score among the 4 dataset categories: low credibility, medium credibil-
ity, high credibility, and overall. We now briefly describe the experimental settings
of the three models we test.

Baselines We consider the top three type of classifiers presented in Section 4.5.1:
Adaboost (AB), Logistic Regression (LR), and Random Forest (RF). We use all fea-
tures as that led to the best performance.

Deep Neural Networks The Review Platform Graph (URI) structure can be mod-
eled with Graph Neural Networks (GNN). We are not the first to apply GNNs to
this problem. Qu et al. [238] used GNNs to better model the impact of product cate-
gories in classifying helpfulness. In our implementation, we transform each dataset
into a unique graph, where the vertices are the reviews. Two reviews vi and vj are
linked if the two reviews are written by the same author or if they both belong to
the same product. Each review is represented as an embedding containing the fea-
tures we presented in Section 4.3.1. We model the task as semi-supervised learning,
where at training time, only part of the nodes ground-truth is known. The model is
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implemented using Torch-Geometric6. We used a grid-search to find the number of
Graph Convolutional Networks (1, 2), number of linear layers (0, 1, 2), and hidden
dimension (32, 64, 128, 256, 512). An early stopping mechanism is set with patience
equal to 5 epochs. Each model is trained for a maximum of 200 epochs.

Secondly, a popular research strand involves the use of transfer learning and fine-
tuning. In the first, the knowledge acquired for a problem is used to solve a similar
task. In the second, a model pre-trained for a problem is further trained with a very
low learning rate for the target task. We focused on fine-tuning, which has previ-
ously shown strong performance in several NLP tasks [129]. We studied whether
we can leverage state-of-the-art techniques to predict the helpfulness score by us-
ing the review text only. We use HuggingFace’s [310] implementation of DistilBert
(DB) [254]. For each dataset, we fine-tuned the model for a maximum number of 10
epochs and applied an early stopping mechanism with patience equal to 3 steps.

Finally, we include a MultiLayer Perceptron (MLP) classifier, as done by Lee et
al. [168]. Our implementation uses the MLP deployed by Scikit-Learn. Parameter
selection is conducted over the number of hidden layers [(905, ), (905, 452), (452, )],
activation functions [tanh, relu], alpha [0.0001, 0.05], and learning rate scheduler
[constant, adaptive].

4.6.2 Classification Results

Table 4.3 presents the results of the tested classifiers for the different datasets. For
each dataset, we also analyzed the performance at different credibility levels, accord-
ingly to the methods in Section 4.5.4. The best weighted F1-scores are highlighted.
Generally, we see that baseline models outperform DNN models in 21/24 cases.
DNNs present an outstanding performance in 3 of 24 cases. In general, AdaBoost
and Logistic Regression obtain the best results. These results suggest that future
works should pose their main focus on feature extraction and problem modeling
rather than model selection.

6https://pytorch-geometric.readthedocs.io/
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TABLE 4.3: F1-scores with varying the ground-truth credibility on the
following Amazon categories: Cell Phones and Accessories (CP), Dig-
ital Music (DM), Electronics (EL), Pet Supplies (PS), Toys and Games
(TG), and Video Games (VG). This table contains the performance
of the following classifiers: Adaboost (AB), Logistic Regression (LR),
Random Forest (RF), Graph Neural Network (GNN), DistilBert (DB),

and MultiLayer Perceptron (MLP). Highlighted, the best F1 scores.

Dataset Baseline DNN
AB LR RF GNN DB MLP

CP

low 59.3 59.3 58.3 58.0 57.8 59.1
medium 67.3 64.5 66.3 63.6 65.1 61.6
high 73.8 72.1 73.1 76.3 74.5 69.9
overall 63.0 62.2 62.0 61.8 61.3 61.0

DM

low 67.5 66.5 67.1 66.6 66.5 65.4
medium 73.5 71.3 72.1 70.4 70.0 71.0
high 82.5 81.9 81.3 81.4 80.4 79.5
overall 72.9 71.7 72.1 71.4 71.0 70.4

EL

low 61.2 62.2 62.3 61.3 61.3 60.6
medium 65.5 67.5 66.8 66.4 64.9 64.3
high 74.9 75.9 73.4 74.7 72.3 71.1
overall 65.2 66.4 65.8 65.4 64.5 63.6

PS

low 66.6 66.3 66.1 66.3 66.6 66.2
medium 79.1 80.0 77.8 77.5 78.0 78.7
high 85.1 80.2 82.1 76.0 83.9 81.7
overall 70.5 69.9 69.5 69.0 70.1 69.7

TG

low 57.0 55.7 55.0 54.1 54.2 55.6
medium 62.7 61.7 61.1 61.1 62.8 61.8
high 73.1 75.7 73.0 72.4 72.0 69.9
overall 61.0 60.4 59.4 58.7 59.1 59.2

VG

low 68.3 67.4 66.5 66.6 66.8 65.2
medium 72.5 73.3 73.1 72.0 72.0 72.2
high 76.7 77.0 76.6 76.3 75.4 73.4
overall 71.9 72.0 71.3 70.9 70.7 69.5

4.7 Related Research Areas

Though this paper has already provided a comprehensive survey on work on pre-
dicting helpfulness of reviews, we briefly discuss two related bodies of work in-
volve: (1) opinion spamming and (2) fake reviews generation.

Opinion Spamming Reviews are a powerful weapon that can affect the opinions
of the crowd, making them an easy target for malicious actors and fraudulent be-
haviors.

Crowdturfing platforms are perfect for achieving such manipulations since they
are related to illegal activities [209, 305]. For example, such actors can leverage
crowdturfing campaigns to spread control reviews on target products.
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Fake Review Generation Opinion spamming can be automated when combined
with the power of generative language models, e.g., malicious applications that gen-
erate fake Yelp reviews [318, 146]. Yao et al. [318] showed that character-based LSTM
artifacts are indistinguishable from real reviews and that human beings cannot spot
such reviews. Furthermore, such sentences evaded fake reviews detectors proposed
before their study that adopted supervised ML algorithms based on linguistic fea-
tures and plagiarism checkers.

Building on top of [318], Juuti et al. [146] showed that the latter’s char-LSTM
generator is hampered because they generate fake reviews without considering the
target, e.g., the model generates a review for Italian restaurants while the target is
Japanese cuisines. The authors thus proposed a Natural Machine Translation that
encodes a list of targeted review’s properties in an n-dimensional vector (i.e., latent
space) to overcome this issue. Then, a decoder generates a review containing such
desired requirements.

4.8 Summary

This paper has organized the literature on helpful review classification with several
significant contributions listed below:

1. The novel URI paradigm provides a single framework within which to con-
sider the helpfulness prediction problem. Our experiments show that examin-
ing the whole review platform, not just the text of reviews, helps significantly
improve the performance of algorithms to predict the helpfulness of reviews.
The experiments presented in Section 4.5.2 show this conclusively.

2. The systematic review of past works in the area presented in Section 4.2 can
better guide future researchers. The underlying mechanism that links a review
to its helpfulness score is determined both by the intrinsic quality of the review
quality as well as other contextual factors such as past reviews of the product,
the type of product, and so on. The URI framework presented in this paper
formalizes the combination of intrinsic review quality — and the context in
which the review is written.

3. From a validation perspective, we found that strategies like random split and
cross-validation might lead to erroneous results. Indeed, (3) helpfulness score
analyses should adopt temporal splitting as a validation procedure. As shown
in Figure 4.4, some features tend to change over time, meaning that reviews
written ten years ago might be stylistically different compared to nowadays
reviews. The notion of helpfulness review might be temporally affected as
well. This outcome might inspire future research.

4. Only a few previous efforts offer repositories to study and replicate experi-
ments. We invite future research to reverse this trend. Allowing reproducible
baselines might allow future researchers to properly replicate and evaluate
them, which is mandatory to identify the state of the art. The data, features
and source code used in this paper will be made publicly available when this
paper is published.

5. The classification results discussed in sections 4.5 and 4.6 suggest that the no-
tion of helpfulness varies from one dataset category to another. What defines
a helpful review in a video game might differ from a smartphone scenario.
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While the search for a universal classifier might be valuable, it is equally valu-
able to improve the performance that we presented (and that can be found in
previous works). The definition of new features for prediction might be just as
important or more important than focusing on model selection.

6. The helpfulness prediction tasks hide distinct challenges that might limit
proper understanding of the problem. As discussed in Section 4.4, proper-
ties that describe a review might change over time. Future researchers should
thus focus on developing a solution that considers this aspect and proposes a
model adaptable over time. Second, as discussed in Section 4.5.4, the credi-
bility of ground truth might lead to error. It may be well worth it to explore
unsupervised or semi-supervised learning techniques, limiting the impact of
‘low credible’ reviews.
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Chapter 5

PRaNA: PRNU-based Technique to
Tell Real and Deepfake Videos
Apart

In the last decade, video content has become an enormous part of the Internet’s data
traffic. Videos are a handy form of communication, and as they increase their popu-
larity, the number of contexts and ways in which they appear rapidly expands. On-
line news reports are increasingly delivered through video segments rather than ar-
ticles, and politicians often make statements and communicate through live streams
on their social media accounts. With the rise in popularity and availability, video
content can now be used to hold individuals accountable for their words and ac-
tions.

The communication power of videos also attracted malicious activities such as
revenge porn dissemination [276] and malicious video content manipulations [300].
In this work, we focus on this last domain application and, in particular, on deep-
fake videos detection. Deepfake videos rely on advanced techniques related to Deep
Learning (DL) [292], like the Generative Adversarial Networks (GAN) [110] used
to produce those artificial contents. Realistic face and voice swapping software are
thus a potent and harmful tool in the wrong hands, as a well-placed manipulated
video can easily attribute words, actions, or even just location to targeted/unaware
people. Usually, deepfake generation processes require the victim face and a target
video (see Section 5.1.2), where the nature of the video itself could negatively influ-
ence victims’ lifestyles (e.g., public shaming, career destruction, and crime implica-
tions). For example, Figure 5.1 shows a frame taken from a deepfake video, where
the authors of the clip control the speech of Barack Obama [300]. Target videos can
be retrieved from various web sources, from blogs and social networks to video
channels like YouTube.

The detection of such manipulation is thus fundamental, raising the interest of
both research and industrial areas demonstrated by the Kaggle Deepfake Detection
Challenge [80]. The current state of the art of deepfake detection methods is for-
mulated as a binary classification problem and it is divided into two families, as
reported by the surveys [292, 298] based on: i) Hand-crafted features, where the de-
tection relies on the analysis of properties that can distinguish deepfakes from real
videos (e.g., anomalous eye blinking [172], heart rate variations [60]), and ii) DL-
based features, where the detection relies on analyses of properties extracted by DL-
based architectures [214, 173].

While DL-based methods show promising results, they also show limited ability
to generalize, i.e., difficulty to be robust on unseen data [152]. Moreover, the train-
ing procedure involves a non-trivial amount of data. In contrast, not much attention
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has been put on identifying real videos among deepfakes counterparts (more then
one). We believe that this trend (i.e., binary classification) is the result of the task
demand, where usually we aim to analyze a single video. Vice versa, in real life we
may think it is unlikely to have a pool of deepfakes originated by the same source
and the source itself but it is not hard to find such artificial pool. For example, pop-
ular deepfake detection challenges like CelebDF [174] and DFDC [80] defined their
task in this way, i.e., one benign video has one or multiple deepfake counterparts.
Nevertheless, analyses of artificially created deepfake pool might uncover peculiar
deepfake behaviours, and the findings might lead to increasingly more robust deep-
fake detectors.

Contributions In this paper, we address the deepfake detection task from the point
of view of multiple-instances by leveraging on hand-crafted features from a set of
videos that share the same source. In particular, we use the Photo Response Non-
Uniformity (PRNU), a type of pattern noise that is present and unique in all the
images acquired by a certain digital imaging sensor (e.g., a specific camera or smart-
phone). The first deepfake video detection strategy leveraging PRNU has been pro-
posed in [159], where the mean normalized cross correlation is shown to be effective
to discriminate real videos from deep fakes. However, different studies showed that
PRNU being ineffective on more accurate deepfake video techniques [76, 188].

In this paper, we observe that classical PRNU features (e.g., normalized cross
correlation) are not effective in a binary task, in agreement with [76, 188]. However,
when similar analyses are applied to a pool of deepfake, we found a unique feature
able to distinguish deepfake from their real counterparts. Using this finding, we
design PRaNA, an algorithm to discriminate fake videos from their real version with
an high accuracy.

We can summarize our contributions in two major points:

• We propose PRaNA, a new strategy able to discriminates real videos from
deepfakes counterparts that share the same video source.

• An empirical evaluation of PRaNA among three datasets is given: the Deep-
fake Detection Challenge Dataset [80], the Celeb-DF [174], and FaceForensics-
Deep Fake Detection [248].

5.0.1 Organization

The paper is organized as follows. In Section 5.1 we introduce basic concepts of
PRNU, deepfakes generation and detection. In Section 5.2 we describe the datasets
used in our analyses. We then describe and evaluate PRaNA, in Section 5.3 and
Section 5.4, respectively. We conclude with Section 5.5.
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FIGURE 5.1: A frame related to a deepfake video of Barack
Obama [300].

5.1 Background & Related Works

In this section we introduce the Photo Response Non-Uniformity noise (Sec-
tion 5.1.1), followed by the deepfake generation procedures (Section 5.1.2), and the
deepfake detection methods in Section 5.1.3.

5.1.1 Photo Response Non-Uniformity

Photo Response Non-Uniformity (PRNU) is a pattern noise present on all photos
taken by digital cameras. The nature of the pattern is given by different light sensi-
tivities in each sensor of a camera’s sensor array. The sensors’ manufacturing process
causes these variations, and the resulting pattern is unique to each device. PRNU is
applied in image and video forensic in several applications, such as source identi-
fication and various manipulation detection types [189, 53]. We now describe the
PRNU extraction process, which involves N images of a target camera.

The estimation process involves modeling the noise components of a photo.
PRNU is multiplicative to the intensity of the captured light as it is a result of the
altered sensitivity of imaging sensors. We can represent the final image I as

I = I(0) + I(0)K + Θ, (5.1)

where I(0) is the natural light signal coming into the camera, K the PRNU, and Θ is an
additive noise signal composed by other noise sources (e.g., random shot noise, dark
current noise). To deal with different noises, a denoising filter is applied. The final
estimated PRNU K̂ is obtained by the residuals W through maximum likelihood:

K̂ =
∑N

k=1 Wk Ik

∑N
k=1(Ik)2

. (5.2)

From now on we refer to K as the estimated PRNU component K̂. At test time we
can measure the amount of correlation between the noise residual of an image with
K using different metrics such as the Normalized Cross Correlation (NCC), and the Peak
to Cross Energy (PCE), where the higher the measure, the higher the correlation [106].

On videos, the PRNU is estimated on extracted frames from the media. Such es-
timation is more challenging on videos respect to images due to encoding processes
that compress the resource, which affects the noise components. In video content,
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we can find three different types of frames: Intra frames (I-type), i.e., frames inde-
pendently coded that maintain a high amount of data, and Predictive frames (P-type)
or Bidirectionally predictive frames (B-type), i.e., frames compressed with motion vec-
tors obtained from their referent I-frame. The choice of the type of frames for the
fingerprint calculation has an impact on the PRNU estimation process [286]. Even
though videos shows challenges, in [162], the authors show that PRNU estimation is
feasible even on heavily compressed YouTube Videos as long as the predictive blocks
have a nonzero motion compensation and present their enhancement to estimation
in that context.

5.1.2 Deepfake Generation

Following the notation introduced in [292], deepfake videos are divided into four
families: Entire Face Synthesis, Identity Swap, Attribute Manipulation and Expression
Swap. We focus on the identity swap because of its popularity and potential for
harm. Identity swap techniques are divided into two generations of methods [174],
based on their performance and visual achievements. While the first generation pro-
duces easy to spot videos due to coarse inconsistencies, the second one is much more
challenging to detect (for humans and machines).

We now briefly describe the deepfake generation process. The reader might refer
to [174] for more details. In the deepfake generation process, we have a target video
(or origin) with a subject used as a base and a donor video with the victim’s face. The
goal is to transfer the victim’s face of the donor video to the target one. Standard
deepfakes techniques involve two autoencoders that learn to reproduce both the
target and donor’s faces. Here, the encoder E projects faces in the latent space, and
the output feeds one of the two independent decoders: Dscr and Dtrg. As E is shared
between the decoders and both are trained simultaneously, it is forced to learn to
create a code representation of the faces that are identity-independent, capturing
more abstract features about faces, like facial expressions. At test time, the target’s
latent representation is fed to Dsrc, resulting in a face substitution. Generally, both
encoder E and decoder D are Convolutional Neural Networks (CNNs).

Another popular direction of deepfake artifacts generation is based on Genera-
tive Adversarial Networks [110]. For example, in [149] the authors present Style-
GAN, a generative model to produce high-quality images (e.g., realistic faces).

5.1.3 Deepfake Detection

The current state-of-the-art in deepfake detection follows two main approaches [292,
298]: learning-based methods or handcrafted features techniques.

Deep learning is a popular strategy for many forensic solutions [9, 226], and it
offers many solutions for the deepfake detection task [195, 248]. Many different
approaches and improvements are proposed, such as attention map generation [71],
recurrent layers to include the time dimension [119], optical flow analysis [43], and
face regions separation [292]. Unfortunately, in general learning-based approaches
show a lack of generalization to unseen manipulation types, with a significant drop
in performance [152]. The aftermath is that identifying generalizable techniques is
one of the primary directions that researchers are working on [315, 170].

The handcrafted-based features family focuses on specific features and proper-
ties of fake videos. The main advantage of such approaches is the high explain-
ability. The downside is that they require more knowledge of the flaws of genera-
tion algorithms, and that they are made obsolete when specific countermeasures are
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taken [226]. Some examples include the detection of biological signals like heart-
beat [60] or specific visual artifacts [197]. Deepfake detection methods based on
PRNU analysis also fall into this category. In [242] is shown the usage of PRNU to
identify facial beautification. [159] showed that extracting the PRNU fingerprint of
the face area from different sections of a deepfake video and correlating them against
each other leads to lower correlations than real videos. However, in [76, 188], an
opposite trend is found (i.e., the correlation is ineffective). In [188], the authors pro-
posed a PRNU-based detector leveraging on prior works [258, 242] intuitions, and
proposed PRNU spatial and spectral features to identify deepfakes.

To the best of our knowledge, past works like the ones presented in this section
consider the detection as a binary task, i.e., understand if a video is real or deepfake.
In contrast, our work face the deepfake identification problem from a multi-instances
perspective, i.e., when multiple deepfake videos originated by the same source are
found. To the best of our knowledge, we are the first to consider such scenario.

5.2 Datasets

In this work, we conduct our experiments on three second-generation (see
Section 5.1.2) deepfake datasets: Deepfake Detection Challenge Datasets (DFDC), Celeb-
DF, and FaceForensics-Deep Fake Detection (FF-DFD). These datasets provides pool
of videos with one real and the others deepfake counterparts.

• DFDC was released in late 2019 as part of a challenge [80] [260], and was
opened to wider research in 2020, after the competition. It consists of 124000
video clips, with the real footage filmed by a diverse set of actors in various
conditions and deepfaked with eight different techniques.

• Celeb-DF [174] consists of 590 video clips from various celebrity interviews,
and 5639 fake videos made by swapping identities among the real set with an
improved deepfake algorithm made by the authors.

• FF-DFD [248], The dataset contains 3068 fake videos, and the data comes with
three quality options: i) RAW, with high quality for both real and fake videos,
ii) c23, with mid quality videos and iii) c40, with low quality videos. We used
the c23 option for our evaluation since it is the default compression level in
many video encoding software packages.

These three dataset are suitable for our task since they contain several deepfakes
versions starting from an original given video.

5.3 PRaNA

In this section we present “PRaNA”, the proposed algorithm able to spot real videos
among deepfake counterparts. In Section 5.3.1, we summarize the hypotheses of
the experiment. In Section 5.3.2, we introduce an analysis of the autocorrelation
effect on deepfake, followed by some considerations on the role of the recompression
(Section 5.3.3). We then describe in details PRaNA verification steps (Section 5.3.4),
and conclude with possible frame selection strategies (Section 5.3.5).
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5.3.1 Experimental Hypotheses

Earlier in this work (Section 5.1), we described that, in general, state-of-the-art mod-
els the deepfake video detection problem as a binary task, i.e., tell whether a video
is real or generated with a deepfake algorithm. However, as proposed in several
deepfake detection challenges (see Section 5.2), from a single original video, multi-
ple deepfakes are generated using different donors.

Can we thus retrieve helpful information to address the deepfake detection task
from such a scenario? To the best of our knowledge, we are the first to ask this ques-
tion. In this preliminary experimental work, we start from the following hypotheses.

Hypothesis 1. A pool of videos is given, i.e., a set of videos originated by the same target.

Hypothesis 2. Every pool of videos contains the original and unaltered target video.

With Hypothesis 1, we assume that at the time of the analysis, we already have
a pool of videos generated from the same target. How to retrieve such pools is out
of the scope of this paper. In this work, we are mainly interested if we can extract
useful features from a pool of deepfakes to address the deepfake identification task.

With Hypothesis 2, we limited our investigation to those pools that contain the
original and unaltered target videos. This hypothesis cannot be held in real life, i.e.,
we do not know a priori if a pool of videos contains the original and unaltered target
video.

The two hypotheses limit PRaNA application in the theoretical investigation of
deepfake behaviours. With these hypotheses, we set an upper bound (ideal scenario)
of the quality of the meta-features that we can extract from pool of deepfakes. Any-
way, we believe that our investigation can give valuable insights to future works, by
motivating and showing the potentiality of analyses that considers pools of videos.

5.3.2 Autocorrelation Analysis

The intuition that drives our investigation is that the PRNU is altered during the
deep fake generation procedure. First of all we introduce the autocorrelation process
used to correlate a fingerprint with a reference frame of a video. Given a video F, it
can be considered as a temporal sequence of frames F = { f0, f1, ..., fm}, where fi is
the frame at time i, and m is the total number of frames. We can define the training
set Tr and test set Te such that

Tr ⊆ F, Te ⊆ F, Tr ∩ Te = ∅. (5.3)

Following the procedure introduced in Section 5.1.1, we can extract the fingerprint
K of the video F using the frames in Tr. Then, given K and the frames in Te, we
calculate a list of correlations:

−→y = NCC(K, fi), with fi ∈ Te. (5.4)

where the NCC is the normalized cross-correlation.Finally, the autocorrelation is
computed as the average of the correlations. Note that we can use any correlation
metric like the PCE.

We conduct this experiment on the Deepfake Detection Challenge Dataset
(DFDC), where we select 100 real videos, and for each of them a fake version of
it, for a total of 200 videos. For each video, we select 32 temporally equally distant
frames to generate the fingerprint. To compute the autocorrelations, we select 16
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FIGURE 5.2: Distribution of autocorrelation for 100 real videos and
100 fake videos from the DFDC dataset, computed using NCC.

consecutively frames from the remaining set. In Figure 5.2 we show the comparison
between the NCC distributions of real and deepfake videos. While the two distri-
butions cannot be separated with a threshold value, we observe that when compar-
ing the autocorrelation of a real video with its fake counterpart, the deepfakes have
higher correlation for the 85% of the tested couples. This result suggests that auto-
correlation is not suitable to perform deepfake detection in the absence of a counter-
part sharing the same origin. However, this gives us the possibility to identify real
videos among a group of deepfakes versions.

5.3.3 Considerations on recompression

Usually, videos are saved with lossy compression formats to reduce their sizes. Dur-
ing the deepfake generation process, an encoded video is manipulated and then
re-encoded, and thus the PRNU might be affected from the recompression. We now
want to understand whether the results presented in Section 5.3.2 are an effect of
the re-encoding or of the deepfake creation. We measure this re-encoding effect on
50 random DFDC real videos using the x264 codec, the one used in the dataset and
we vary our experiments on different compression factors, from c20 to c26. We mea-
sure how many re-encoded videos show a higher autocorrelation value after the
re-encoding process than their original counterpart. Figure 5.3a shows an increasing
trend, where the more we compress, the higher the fraction of videos with higher
autocorrelation is.

To measure the real effect of re-encoding on our results, we now need to un-
derstand the encoding compression level of DFDC videos. To do so, we compare
the video sizes of the 50 re-encoded videos on the range [c20, c26] with 50 deepfake
counterparts. Figure 5.3b shows the c23 seems to be the most likely compression
level for DFDC videos, which is also the default compression level for 1920x1080
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FIGURE 5.3: Recompression analysis.

x264 videos in many video encoding software packages. After guessing the com-
pression settings (x264 at c23), we convert the 100 real videos used for the analy-
sis described in Section 5.3.2, and we calculated their autocorrelations, comparing
the results with the starting values of the original version. Only the 38% of the re-
encoded videos show an increment in the autocorrelation value with respect to the
original ones. We conclude that the phenomenon observed in Section 5.3.2 is not
only the effect of the re-encoding, suggesting that the behavior we observed is a
peculiar trace introduced in the PRNU by the process of deepfake generation.
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5.3.4 Identification Algorithm

In Section 5.3.2 we show how deepfakes tend to have higher autocorrelations com-
pared to their original versions. We used this concept to identify real videos when
a pool of deepfakes counterparts is discovered. Formally, we define a deepfake pool P
as set of N videos, where one is real and it is the source, and the rest (N − 1) are the
deepfake counterparts of four deepfakes using the real video as a source. The iden-
tification methodology is described in the Algorithm 1. The correlation metrics that
we use are the NCC and the PCE, while the frame selection strategies are described
in Section 5.3.5. The number of training and testing frames is parametric and limited
by the videos’ lengths.

Algorithm 1: PRANA
Input : N videos, frame selection strategy FS, correlation metric CM
Parameters: Number of training frames a, number of testing frames s
Output : Index of the real video
for i = 1, . . . , N do

Load video Vi into memory as a list of frames for r ∈ FSa(Vi) do
Compute noise residual Wr for the frame Vi[r] and append it to

train_seti
end
Estimate the fingerprint Ki of Vi from train_seti Create a list Ti of s test
frame indexes from ¬FSa(Vi) for e ∈ Ti do

Compute noise residual We for the frame Vi[e] Compute the
correlation CM(Ki, We) and append it to test_resultsi

end
Compute the average correlation Ci from test_resultsi for video Vi

end
return the index m of the minimum Cm

5.3.5 Frame sampling strategies

The autocorrelation strategy described in Section 5.3.2 relies on the analysis of a
single video. While the amount of available frames is potentially not very high,
it is crucial to keep the two sets of frames disjointed, as the same frames in both
sets can affect correlation measures. We now describe three possible frame selection
strategies.

1. First-N. The approach uses the first n frames for Tr and the next s frames for
Te. While easy to implement, it might suffer from the high similarity among
frames, resulting in a PRNU that might contain also scene elements.

2. ii) Equidistant. The approach creates a subset of equally distant samples for Tr,
while keeping the remaining frames for Te. This ensures more diverse scene
contents across the training samples.

3. I-P Frames Only. The approach selects high-quality frames for Tr, i.e., start-
ing from I-frames, and falling back to P-frames if the training number is not
reached. This approach should guarantee higher quality frames for the PRNU
estimation (see Section 5.1.1).
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5.4 Results

In this section we show hyperparameter selection (Section 5.4.1), and results
(Section 5.4.2) of PRaNA.

5.4.1 Hyperparameter Search

We optimize the parameters of our method with a grid search approach over the
following ranges and options. i) Number of training frames. We use 16 to 80 frames
with an increment of 16 for fingerprint estimation. ii) Frame sampling method. We
use First-N, Equidistant and I/P Frames Only. iii) Number of testing frames. We use
16 and 32 testing frames. iv) Correlation Metric. We use NCC and PCE as metrics.
PRNU estimation is performed with the prnu-python library1, which also provides
functions for the computation of NCC and PCE. Table 5.1 shows the results of the
search using 50 groups, each composed of one real video and four fake versions of it
(250 videos total), randomly selected from the DFDC dataset. The best configuration
consists of an equidistant frame selection strategy, NCC as the metric, 64 training
and 16 test frames.

TABLE 5.1: Accuracies for real video identification at various parame-
ters on the DFDC dataset. In Bold the best accuracy. N/A for settings

with not enough frames to run the task.

Selection, Metric, Test Number of training frames

16 32 48 64 80

First-N, NCC, 16 56.0% 60.0% 72.0% 68.0% 64.0%
First-N, PCE, 16 58.0% 64.0% 68.0% 64.0% 64.0%
First-N, NCC, 32 58.0% 64.0% 64.0% 64.0% 62.0%
First-N, PCE, 32 60.0% 60.0% 70.0% 64.0% 62.0%
Equid., NCC, 16 64.0% 76.0% 80.0% 84.0% 74.0%
Equid., PCE, 16 68.0% 68.0% 76.0% 74.0% 72.0%
Equid., NCC, 32 68.0% 70.0% 80.0% 80.0% 70.0%
Equid., PCE, 32 68.0% 66.0% 66.0% 78.0% 72.0%
I/P frames, NCC, 16 72.0% 64.0% 60.0% N/A N/A
I/P frames, PCE, 16 64.0% 62.0% 68.0% N/A N/A
I/P frames, NCC, 32 68.0% 70.0% N/A N/A N/A
I/P frames, PCE, 32 70.0% 68.0% N/A N/A N/A

5.4.2 Evaluation

We evaluate our method with 150 groups of 5 videos for each dataset, using the best
parameters shown in the previous section. Note that the 150 groups used for the
evaluation of the DFDC dataset do not contain any group used for the hyperparam-
eter search. Figure 5.4 shows the accuracy of our proposed methodology varying the
number of deepfake counterparts. We can notice that our strategy outperforms the
random guess in every configuration, with robust results on both DFDC and Celeb-
DF datasets. Our results confirm PRaNA’s robustness and transferability, with accu-
racy up to 66% when considering one real video in a pool of four deepfakes using
the real video as a source, and up to 80% when only one deepfake is considered.

1github.com/polimi-ispl/prnu-python

github.com/polimi-ispl/prnu-python
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FIGURE 5.4: Accuracies at varying group sizes.

5.5 Summary

The spread of highly-realistic deepfakes threatens the trustworthiness of informa-
tion that we reach online, from forums to social media. The identification of robust
strategies capable of identifying deepfakes is thus fundamental. These strategies
must show both robustness and transferability to face a wide range of deepfake gen-
eration techniques. Current detection strategies mainly determine whether a video
is a deepfake. However, multiple-versions of the same video can be found, and
forensic analyses of these set of video can be helpful in the deepfake identification
task.

In this paper, we investigated the role of PRNU in such a scenario, and discov-
ered that deepfakes tend to have higher autocorrelations compared to their real ver-
sions. Our findings can be applied as a first response in scenarios like social network
video uploads, where multiple fake versions of the same video can be spread. Our
proposed identification technique does not require any training and shows good
robustness and transferability, capable of identifying different types of deepfakes
among three well-known datasets.

While this work show promising results and research directions, it also present
the following limitations that will be addressed in a near future.

1. PRaNA requires that a pool of videos is given (Hypothesis 1). This hypothe-
sis might not be hold, since target and unaltered videos might not be publicly
available. Moreover, even with the publicly existance of such videos, the re-
trieval of pool of deepfakes might be expensive and not a trivial operation to
accomplish.

2. PRaNA requires the real-video (the target) to be present in the pool of deep-
fakes (Hypothesis 2). This represent a major limitation in many real-life sce-
narios, since it is unlikely to know a priori that the real video is present in a
pool, while pools might contain only deepfakes.
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3. Compression techniques applied in online platforms (e.g., Facebook, Youtube)
can impact on the PRNU, and thus, PRANA might be affected. Future investi-
gation should clarify such aspect.

4. We empirically identified that the PRNU autocorrelation tend to be higher in
deepfake videos compared to their original sources. However, the reasons of
this phenomenon must be clarify in future.

In conclusion, we believe that this work can inspire future research directions
by looking at the problem from a multi-instance perspective. Comparing multiple
deepfake videos generated from the same source can allow new hand-crafted feature
comparisons and analyses, offering new tools to forensic analysts. Possible future di-
rections might involve a deeper investigation of the PRNU autocorrelation behavior
and how the deepfake generation process impacts such a metric. Similarly, future
investigations might analyze how other well-known hand-crafted features (e.g., vi-
sual artifacts) behave when considering multiple deepfake videos sharing the same
source.
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Chapter 6

Introduction to Adversarial
Machine Learning

This chapter depicts an overview of the Adversarial Machine Learning (AML) disci-
pline. In depth discussion are presented in the following chapters 7 and 8.

6.1 Preliminaries

This section presents preliminary concepts to describe attacks [22, 132, 221].

Taxonomy Adversarial attacks can be describe using the following properties:

• Influence of the attacker to the victim’s model. The influence can be causative, if
the attacker alter the training procedure, or, on the opposite, exploratory, if the
attacker’s actions do not alter the victim’s model.

• Security Violation level exploited by the attacker. An attack can target model’s
integrity, if the performance are negatively altered, model’s availability, if the
target model becomes unusable, and model’s privacy, if the goal is to obtain
sensible information (e.g., training data samples).

• Specificity of the attack. In the targeted mode, the adversary focus on a specific
set of points to affect, while in the untargeted this constraint is relaxed, and the
target is a more generic class of points.

Attacker’s knowledge While the taxonomy describes attacks properties, we fur-
ther need to integrate information about the attacker’s knowledge [25]. Indeed, as
in every cybersecurity threat scenario, the more the attacker knows about the vic-
tim’s system, the stonger the attack. Generally speaking, state of the art define two
distinct - and opposite - cases:

1. Black-box scenario, if the attackers has limited knowledge, making the attack
more realistic;

2. White-box scenario, if the attacker has information about the target system
(e.g., gradient, model’s architecture, training data); this case can be seen as
the worst-case scenario.

6.2 Threats Landscape

This section summarizes popular attacks in AML, following the survey prposed by
Chakraborty et al. [47].
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Evasion Evasion attacks is the most popular family of threats studied in the AML
literature [22, 25]. In this scenario, the adversary modifies a target sample to force a
wrong classification on the victim’s model. For example, in the cybersecurity con-
text, an adversary may attempt to craft a spam email to elude spam filters, or to
modify malware to produce false negatives in malware detectors. More formally,
be x a sample, f the victim’s function, yi = f (x) the output of the classifier, the
adversary aims to find a small perturbation ϵ s.t.:

f (x) ̸= f (x + ϵ). (6.1)

The nature of ϵ depend on the domain in which x is defined. For example, if it is an
image, the perturbation might be the result of a pixel modification. If it is a peace of
text, the perturbation can be the result of a character modification, word synonym,
or paraphrasing. Most literature of evasion attacks aim to define strategies to com-
pute ϵ, which is, usually, obtained through an optimization process. For instance,
the Fast Gradient Sign Attack (FGSM) leverages the gradient of f (x) to modify the
input sample aiming to minimize a certain loss, e.g., targeting f (x) = yj. If x is an
image, ϵ is a mask of pixels that, if added to x, result into a misclassification. An-
other example of attacks in computer vision is the One Pixel Attack [278]: here, the
optimization process aims to identify only one pixel which, if modified, creates a
successful evasion.

Poisoning If an attacker has the ability to interact with the training data,
he/she can contaminate the training process to compromise victims’ model perfor-
mance [30]. Thus, while evasion attack is generally executed at testing time, i.e.,
the attack occurs to an already deployed model, poisoning attack occurs during the
model training. In poisoning attacks adversaries can adopt two strategies, that can
be combined [47]:

1. Label flipping, where the attacker can modify the ground truth of a subset of
training samples;

2. Sample manipulation, where the attacker can arbitrarily craft the content of a
subset of training samples.

Poisoning attacks’ literature is wide. For example, Biggio et al. [29] showed that ad-
versaries can strongly degrade SVM performance by just randomly flipping training
labels. On the opposite, if attackers craft adversarial samples, they can shift models
decision boundaries, which, as a consequence, alter models performance [157, 30]

Backdoor Poisoning attacks are not only meant to degrade model performance.
Backdoor attacks (or trojan) aim to insert triggers in the victims model, while preserv-
ing the overall quality of the model. These triggers can be activated at testing time
by the attacker, producing as a result an effect similar to the evasion. The idea of a
trigger is straightforward: let’s consider the image domain, a trigger can be an arti-
ficial pixel pattern that is unique and in common in a small set of images belonging
to the same label. Then, victims model learns during the training phase an associa-
tion between such pattern and the label. At testing time, if the attacker insert such
malicious patterns in a sample, the predicted class will be the one associated to the
trigger. The idea of backdoor attack was originally proposed in BadNet [117]; here
the attack strategy combines both sample manipulation to insert a pixel-based trigger
and label flipping.
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Model Inversion Attackers can exploit ML not only to provoke misclassification or
deteriorate its performance, but to gain sensible information about the training data.
The first attempts of model inversion was conducted in a task involving a linear
regression aiming to predict the drug dosage given patients personal information
(e.g., medical history, genetic markers). The attack aims to infer sensible information
(e.g., genetic marker) of patients. Example of such attack are conducted in both
white-box and black-box settigns [94, 93].

Model Extraction Part of the exploratory attacks involve the model extraction,
where the adversary’s primary goal is to steal (or learn) an exact replica of the vic-
tim’s model. The attack is usually executed thorough an interaction between the
adversary and the victim’s model, where the attacker forward a set of sample and
uses models predictions to learn a surrogate model. An example of such attack is
given by Tramér et al. [293], consisting in an equation-solving strategy.

Inference Attack Attackers can further gain information about the training sam-
ples with inference attack. In particular, as shown by Ateniese et al. [18], an attacker
can leverage a meta-classifier to infer sensible information from a black-box model,
such as understanding whether a sample is part of the training set. Similarly, Shokri
et al. [264] proposed membership attack aiming to identify whether a sample belongs
toe the same distribution of the training sample.

6.3 Adversarial Transferability

Generating adversarial samples for a target model is often unpractical (black-box
setting). Interacting with the victims’ model is indeed unfeasible in most of real
cases, and thus adversaries need to address this issue. Attacker can thus generate
an adversarial sample with a substitute model f ′ and then attack the victims’ model
f . The adversarial transferability is the ability to generate successful transferable ad-
versarial samples [225]. In this work, the authors show that adversarial samples
can transfer across different types of machine learning models, e.g., an adversarial
sample crafted on an SVM can evade also a neural network. The authors further
propose a technique to reduce the number of queries required to create a surrogate
model trained on a dataset labelled by the target architecture.

The relationship between the victim’s and the substitute models can vary: if the
two models use the same algorithm (e.g., both random forest) we refer to intra-
technique transferability, otherwise if the algorithms differ (e.g., random forest and
neural network) we refer to cross-technique transferability. Its mathematical formula-
tion is proposed by Demontis et al. in [77], where the authors define a set of prop-
erties that a good surrogate model should have to generate adversarial samples that
are likely to transfer. In particular, for evasion attacks, the attacker should decrease
the complexity of the surrogate model by adjusting its hyperparameters.

As stated in [182], most of the state-of-the-art transferability studies focus on
small datasets (e.g., MNIST, CFAIR10), which is a limitation for most real-world
scenarios. Yanpei et al. in [182] thus conducted an extensive study of adversar-
ial samples transferability on state-of-the-art computer vision models, i.e. ResNet,
GoogLeNet and VGG-16, trained over ImageNet [250].





113

Chapter 7

Fall of Giants:
How popular text-based MLaaS fall
against a simple evasion attack

Without any doubt, machine learning applications had considerable success in
the 2010s, finding space in different areas, from the automotive industry with
autonomous vehicles [252] to the biomedical sector with brain tumor segmenta-
tion [121]. The popularity of machine learning (ML) had a boost-up thanks to
the increase of machines’ computational power, making ML easily accessible to
researchers and industrial developers, one of the significant obstacles of previous
decades. Even though ML nowadays is accessible to developers, we can find three
main limitations in the deployment of ML solutions, due to the lack of: i) amount of
data required to train a robust model, ii) amount of computational resources, and iii)
machine-learning engineers with suitable expertise. For instance, we can consider
the task of sentence language translation: in 2016, Google presented a translator
based on Long Short-Term Memory (8 layers both encoder and decoder), trained
over a parallel corpus1 of 26 million sentences (English-French) [312]. Not only the
difficulty of the model’s architecture implementation (i.e., the choice of hyperpa-
rameters), but it requires an enormous amount of resources: the training procedure
involved the use of 96 NVIDIA K80 GPU, with six days of computation.

The aftermath of such complexity is that real-world tasks are unlikely mod-
eled with ML by companies or users without enough resources (i.e., computational
power, data, ML engineers). To overcome this issue, the principal IT organizations
(e.g., Amazon, IBM, Google, Microsoft) started developing solutions for common
complex tasks (e.g., text analysis, optical character recognition) called Machine-
Learning-as-a-Service (MLaaS), where users pay for a certain amount of queries.
In this way, for example, companies that require to analyze documents can use ad-
vance and well-performing techniques at an affordable price without caring for the
complex training process. MLaaS had a discrete success, and in 2019 this market
was valued 1.0 billion USD, with an estimation of 8.48 billion USD by 2025 [138].

In this paper, we focus on the text-domain, where the addition of malicious per-
turbation is translated with the modification of text through various techniques (e.g.,
misspelling, typos, word addition). The primary constraint of attacks in the text-
domain is the “readability preservation”, i.e., a human being can understand the
meaning of modified sentences. The reasons behind the limitation mentioned above
are deducible: let us consider the sentiment classification of music reviews (i.e., pos-
itive/negative reviews), where the adversary goal is to have positive classifications

1A parallel corpus is a dataset used for sequence-to-sequence tasks, where each sample has a source
and a target. The goal of the model is to translate the source to the target.



114
Chapter 7. Fall of Giants:

How popular text-based MLaaS fall against a simple evasion attack

FIGURE 7.1: Zero-Width (ZeW) on a real-life scenario: Google Trans-
late. The translated sentence means “I love you”.

for negative sentences. The original sentence could be “I hate this album”, and its
malicious counterpart “I hA.XYztXaeX this album”. While the original sentence clas-
sification is expected to be negative, its counterpart might not; however, from a hu-
man point-of-view, the malicious sentence is not readable, and thus the adversarial
sample loses its semantic meaning. So far, several works have proposed adversar-
ial techniques in the text-domain, combining complex algorithms to find a trade-off
between the effectiveness of the attack and the readability of produced malicious
sentences. For instance, in [253], the authors identify the importance of the words
of a given sentence for the target model, and replace them with sophisticated lin-
guistic strategies. In [98], the authors proposed DeepWordBug, a process that first
uses a scoring function to identify critical tokens for the target model and then ap-
plies character transformations to minimize the number of modifications. For an
in-depth overview of state-of-the-art adversarial machine learning in text-domain,
we suggest [325].

Contributions Motivated by the common assumption of “readability preserva-
tion”, we investigate a novel evasion technique that guarantees full readability and
attack effectiveness. Our technique, called “Zero-Width” (ZeW), injects malicious
UNICODE characters often used in text steganography strategies. These characters
are called zero-width space, and their effect is that, when printed, they have zero-
width, resulting invisible from a human being’s perspective. In one of our attack
scenarios, we attack the popular web application Google Translate2 on the English-
Italian task. Figure 7.1 shows an example of wrong translation, where the original
sentence “I wanna kill you” is translated as “ti voglio bene”, which means “I love
you”. It is curious to notice that the input section has 31 characters (Figure 7.1, left
side), while the sentence should contain only 16. In contrast to the state-of-the-art,
ZeW does not require any assumption of the target model, and the readability con-
straint is relaxed. Moreover, so far, most of the proposed attack strategies aim to
leverage the learning strategies’ weaknesses (e.g., model architectures); however, a
ML application is composed of several stages (pipeline), where the ML model is only
one of them. In this work, we aim to attack and disrupt the “indexing-stage” (see
Section 7.1.1), which is the step that converts a sentence from the textual representa-
tion to a numerical one. To the best of our knowledge, not much attention has been
put to find possible weaknesses to the entire text pipeline.

In this paper we aim to understand the following: i) the effect of ZeW attack on
different types of indexing strategies, and ii) if commercial solutions are vulnerable
to ZeW attacks. We conduct our experiments through a case study of a possible ZeW
attack application: hate speech manipulation. We designed a simple injection strat-
egy that, given a hateful sentence, identifies negative words and injects malicious
characters in two possible fashions: i) Mask1, where only one malicious character is

2https://translate.google.com.

https://translate.google.com
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inserted in the middle of the word and ii) Mask2, where one malicious character is
inserted between each character of the word. We tested this strategy over popular
text MLaaS provided by Amazon, Google, IBM, and Microsoft, without having prior
knowledge of the target models. The analysis aims to understand which services can
be affected by ZeW, and the magnitude of the vulnerability. Our experiment shows
that 11 out of 12 MLaaS are vulnerable to the proposed attack. We further intro-
duce a simple countermeasure approach that can prevent ZeW. The purpose of this
work is to emphasize the importance of studying the security of machine learning
pipelines in all of their stages. Due to the gravity of ZeW, at the time of submission,
all of the companies (i.e., Amazon, Google, IBM, and Microsoft) are informed.

Our contributions can be summarized as follows.

• We propose a novel text evasion strategy called Zero-Width (ZeW) that affects
the indexing stage of text pipelines.

• We show the effect of ZeW over Machine-Learning-as-a-Service developed by
Amazon, Google, IBM, and Microsoft. Out of 12 tested services, 11 show vul-
nerabilities (8 strongly affected).

• We propose a countermeasure to ZeW that can be easily integrated in every
text ML-based pipeline.

Organization The chapter is organized as follows. In Section 7.1 we first briefly
introduce the basic concepts required to fully understand the rest of the paper.
Motivations, theoretical perspective, and countermeasure of ZeW are described in
Section 7.2. We then move in Section 7.3 with the implementation of ZeW in a
real case scenario, the hate speech manipulation, followed by a discussion of the
attack results in a controlled environment first (Section 7.4), followed by MLaaS
(Section 7.5). In Section 7.6 we summarize state-of-the-art attacks targeting mod-
els of MLaaS. We conclude with the limitations of the proposed attack in Section 7.7,
followed by considerations and discussions of the possible implications of our re-
sults (Section 7.8).

7.1 Preliminaries

7.1.1 Text Pipeline

ML-based applications on text-domain follow a common pipeline, as described
in [160, 325], and shown in Figure 7.2. The pipeline consists of the following compo-

Original
Documents Preprocessing Indexing Machine Learning

Model

FIGURE 7.2: Machine Learning pipeline in Natural Language Pro-
cessing.

nents: original documents, preprocessing, indexing, and machine learning model.
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Original Documents Collection of the corpus of documents to analyze. The origin
of these documents can differ, such as text files, PDFs, or HTML web pages.

Preprocessing Set of mechanisms that prettify documents, with the removal of use-
less information (e.g., TAG, format controls). This stage can involve different tech-
niques, such as tokenization, where sentences are decomposed in lists of words, stop-
word removal, where common words (and meaningless) are removed (e.g., articles),
and stemming, where words are converted in their root form (e.g., books −→ book).

Indexing The mechanism that converts the symbolic representation of a docu-
ment/sentence into a numerical vector. At training time, a vocabulary V of the pos-
sible representations (word/character level) is defined. The vectorial representation
is usually handled in three possible ways:

• Word-count encoding. Each document is represented as a vector of words oc-
currences. For example, given the sentences s1 = “hello there” and s2 = “hello
hello”’, a vocabulary V = [hello, there], the sentences are represented as

s1 = [1, 1],
s2 = [2, 0],

where the numbers represents the number of occurrences of the correspondent
index in the vocabulary (i.e., “hello” in position 0, “there” in position 1). A
variant of the word count often use the Term Frequency-Inverse Document
Frequency (TF-IDF); this encoding tries to capture the importance of a word in
the document given a collection of documents.

• One-hot encoding. This encoding represents a document as a list of vectors (one
per word/char in the document). Given the previous example, the sentences
are represented as

s1 = [[1, 0], [0, 1]],
s2 = [[1, 0], [1, 0]].

• Dense encoding. In this category, we find word embeddings, powerful vectorial
representations of words [201, 202]. Here, each word is represented as a vector
of real numbers (abstract representation). Dense representations can be pre-
trained or trained end-to-end (e.g., using Language Models). For example,
given the words “dog”, “cat” and “hello”, the dense representation indicates
that the word “dog” is spatially closer to “cat” rather than “hello”.

During the indexing phase, the pipeline needs to deal with unrecognized items
(word/character level), i.e., items out-of-vocabulary (OOV). There are two possi-
ble ways to deal with it: i) discarding them from the analysis or ii) mapping them
to a special token “UNK”. In the latter case, the special token has a proper rep-
resentation, based on the indexing strategy (i.e., word-counting encoding, one-hot
encoding, dense encoding). The problem of unrecognized items is well-established
in NLP, where the frequency of items in a dataset usually follows long-tail distribu-
tions. To reduce the complexity of the problem, the standard approach is to maintain
small vocabularies with the most frequent items [55]. In Natural Machine Transla-
tion tasks this could be a problem, where all of the OOVs are mapped to a single
token “UNK”. For example, we can consider the translation task from English to
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a target language of the sentence “Liam meets Noel”. Likely, both proper names
are not present in the vocabulary, and thus they are mapped to the same token (i.e.,
“UNK meets UNK”), losing the name information in the target language. A stan-
dard approach, proposed in [190], consists of using placeholders to map rare items
with unique pointers (e.g., “UNK1 meets UNK2”, where UNK1 = Liam and UNK2
= Noel) with a final name replacement in post-processing.

Machine Learning Model The ML model used for the task. The set of models
vary from simple architectures (e.g., Logistic Regression, Random Forest), to Neural
Networks (NN) and Deep Neural Networks (DNN). In the latter case, we can find
variants of Recurrent Neural Networks (RNN) such as Long Short-Term Memory
(LSTM) [123] or Gated Recurrent Units (GRU) [59].

ZeW aims to attack and disrupt the pipeline by affecting the indexing stage, af-
fecting the ML-model performance.

7.1.2 Challenges of adversaries in Text-Domain

While AML gained popularity in Computer Vision (CV) from its early stages, only in
recent years researchers moved onto the NLP domain. As identified by [325], three
major aspects differentiate AML in NLP from CV.

• Input Domain. While images are defined in a continuous space (e.g., RGB ma-
trix), sentences are discrete and represented as a list of symbols. It implies that
the meaning of perturbation that we want to add changes its nature. For ex-
ample, in CV the perturbation is defined as a matrix of values to sum up to the
original image. This is not possible in NLP since there is no meaning in adding
an integer to a word (e.g., “dog” + 1).

• Human Perception. From a human point of view, perturbations in CV are diffi-
cult to perceive, since the modifications are at a pixel level. Vice-versa, on text,
small changes are easily detectable by both human beings and machines (e.g.,
spell checkers).

• Semantic. From the semantic point-of-view, the addition of a perturba-
tion into an image rarely changes its meaning. In NLP, the modifica-
tion/addition/removal of a character/word may lead to a completely different
meaning of the sentence (e.g., “I hate you”, “I ate you”).

As a consequence, state-of-the-art attacks on NLP are either CV-algorithms
adapted to face NLP challenges, or novel solutions designed from scratch.

In this work, we are mainly interested in the evasion attack. As previously in-
troduced, our goal is to define a perturbation that influences the target model while
preserving the semantic and readability of the sentence. A small amount of perturba-
tion can guarantee a correct human perception; for example, in [230], authors show
the human resistance to leet speech, e.g., “R34D1NG W0RD5 W1TH NUMB3R5”.
The choice of the measurement is not trivial as in CV, where spatial distance met-
rics between the original sample x and the malicious x′ are used. As [325], we can
measure the perturbation in different ways, such as norm-based distances for dense
representations, or edit-based measurement, which identify the number of changes
required by making x′ equal to x.
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7.2 Zero-Width Attack

In this section, we present the Zero-Width attack (ZeW). We first introduce in
Section 7.2.1 the motivations and the intuition that drives our investigation. In
Section 7.2.2 we describe how ZeW can affect different NLP pipelines. We conclude
with Section 7.2.3 by describing a countermeasure to our proposed attack.

7.2.1 Motivations

Three main motivations guide our investigation.

1. UNICODE representation. Most NLP tools allow the use of UNICODE charac-
ters. This is essential, especially for the analysis of web text. For example, on
Social Networks, non-ASCII characters are often used (e.g., emoji).

2. Readability Preservation. The attack strategy should apply fewer modifications
as possible to maintain the sentence readability.

3. Indexing stage vulnerabilities. To the best of our knowledge, most of the attack
strategies aim to leverage ML-models’ weaknesses, while little attention has
been put to the security of other stages of the text ML pipeline, such as the
indexing stage (see Section 7.1.1).

We asked ourselves if it exists a technique that allows us to relax the constraint of
the number of modifications to malicious sentences, allowing us to focus only on the
disruption of target models’ performance. We found the answer in the steganography
discipline, which is the “art of hiding secret messages into plain sources” [23]. In
the UNICODE representation, there are characters whose width is zero, i.e., when
printed, they are invisible, and human beings cannot perceive them. Some exam-
ples of these characters are zero-width space (U+200B) and zero-width joiner (U+200C).
These allow us to insert an arbitrary number of “invisible” characters in a given
sentence. Thanks to this particular property, we can forget to consider the problem
of readability preservation since sentences semantic is intact. The presence of zero-
width characters allows an attacker to affect the decision of the indexing stage (see
Section 7.1.1). We identify in total 24 malicious characters3.

In cybersecurity, we can find the usage of zero-width characters in different
ways. For example, in [63] the authors use zero-width characters in the commu-
nication protocol of a botnet, ELISA; here, the botmaster secretly communicates
through public posts with the zombies over social networks such as Facebook. In
late 2018, the security team AVANAN discovered a phishing method against Office
365, bypassing Microsoft’s security mechanisms [212]; in this attack, hackers used
zero-width characters in the middle of malicious URLs, evading Microsoft’s detec-
tion mechanisms. While in security zero-width characters are a known threat, to
the best of our knowledge, we are the first to explore their effect in the adversarial
machine learning context.

7.2.2 Theoretical Perspective

Zero-width characters give us the power to break the intra-relationship between the
characters of a given sentence. Let’s represent from now on zero-width characters
with the symbol “$”. We can recall the example reported in at the beginning of this

3https://github.com/pajola/ZeW/blob/main/ZeW.py



7.2. Zero-Width Attack 119

chapter, i.e., “I hate this album”; the malicious version “I h$a$t$e this album” ap-
pears identical to the original sentence from a human point of view, while different
from a machine perspective. Figure 7.1 presents a real example of zero-width char-
acters. We can notice that the malicious sentence appears legitimate.

In Section 7.1.1 we described possible numerical representations of a given sen-
tence (indexing stage). We now explain how ZeW can affect those representations.

• Word-based representations. In word-based representations, a sentence can be
seen as a temporal vector s = t0 + t1 + ... + tn, where ti is the token (i.e., word,
punctuation symbol) at the time i, and n is the length of the tokenized sentence
(see Section 7.1.1, preprocessing stage). Here, it is unlikely that words containing
“$” are present in the vocabulary V. Two possible scenarios can occur.

– Unrecognized words are mapped to special tokens (e.g., placeholders,
“UNK”). It is likely that unpoisoned words and “UNK” have different
meanings and effects to target models, since they appear with a differ-
ent representation. For example, the sentence “I h$a$t$e this album” is
represented as “[I, UNK, this, album]”.

– Unrecognized words are discarded from the analysis, with a consequence
of loose of expressiveness of the malicious sentence. For example, the
sentence “I h$a$t$e this album” is represented as “[I, this, album]” (the
word “h$a$t$e” is discarded). In this case, the target model analyzes only
the remaining sentence. Potentially, by adding one zero-width character
per token, the resulting sentence will be empty.

• Character-based representations. In char-based representations, a sentence can
be seen as a temporal vector s = t0 + t1 + ... + tn, where ti is the character at
position i, and n is the total number of characters that compose the sentence.
As in the previous case, two possible scenarios can occur.

– Unrecognized characters are mapped to the special tokens (e.g., place-
holders, “UNK”), resulting in an addition of noise in the vectorial repre-
sentation. For example, the word “h$a$t$e” is represented as “[h, UNK,
a, UNK, t, UNK, e]”.

– Unrecognized characters are discarded from the analysis. In this case, the
poisoned sentence coincides with the original sentence. The attack has
no effect in this scenario. For example, the word “h$a$t$e” is correctly
represented as “[h, a, t, e]”.

In general, ZeW leads to an increase in noise or reduction of information in the
sentence representation. The attack can be seen as an injection attack, where mali-
cious characters are injected into target sentences. Potentially, an attacker can insert
an arbitrary number of “$” on malicious sentences, without any constraint. This
gave us the capability of not considering the perturbation measurement described
in Section 7.1.2. To the best of our knowledge, injection strategies using ZeW char-
acters can be further optimized with target ML-models, resulting in the following
adversarial attacks:

• Evasion. ZeW characters can be optimally inserted in target sentences to affect
ML models’ decisions.

• Poisoning. If the adversary has access to the training data, the addition of ma-
licious samples could lead to a noisy dataset, decreasing the overall perfor-
mance.
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• Trojan. If the adversary has access to the training data, he/she can inject a
rare sequence of zero-width characters in a small portion of the dataset and let
the model overfit over them. At test time, the trojan is triggered by samples
containing that specific sequence.

The definition of such adversarial attacks is out of the scope of the paper.

7.2.3 Countermeasure

Overall, ZeW is an injection attack that influences the indexing stage (see
Section 7.1.1), with consequences in the following steps (i.e., machine learning al-
gorithms). ZeW leverages peculiar properties of UNICODE representation, which
contains non-printable characters. In the security field, injection attacks are a stan-
dard and well-known problem [279]. A typical example is the SQL injection, where
the definition of malicious input can damage the target database structure and de-
stroy its contents. Injections can be severe, especially when users are allowed to
insert arbitrary input used for critical operations. Similarly, MLaaS offer users to
interact with ML-models through APIs. It is thus essential to have mechanisms that
control any input feeding the models, placed at the preprocessing stage; these are also
called sanitization or input validation mechanisms. Regarding ZeW, a simple fil-
ter that rejects malicious sentences containing non-printable characters is enough.
Similarly, the sanitizer can just discard the malicious characters.

7.3 Case Study: Hate Speech Manipulation

In this section we introduce the disignated case study (Section 7.3.1), followed by
the injector algorithm description (Section 7.3.2).

7.3.1 Overview

We test and evaluate ZeW on text Machine-Learning-as-a-Service provided by pop-
ular companies such as Amazon, Google, IBM, and Microsoft. These services vary
from sentiment analyzer to language translators. Our idea is to test some of the
most popular ML-based text services to understand how many applications can be
affected by the attack.

As a case study, we analyze the hate speech manipulation, a topic that raised the
interest of a broad area of researchers in the last years [306, 259]. Our goal is to
understand how zero-width characters affect the outcomes of different MLaaS. We
consider the attack successful if the injection of zero-width characters affects in some
way the performance of a target model. We are also interested to understand the
magnitude of the vulnerability. In our opinion, this is a likely scenario where a ma-
licious user aims to offend a target victim without being detected, since it is known
the problem of malicious interaction between users and Artificial Intelligence sys-
tems. A famous example is the Microsoft chatbot Tay, which becomes hateful after a
poisoning attack of a group of users [309].

7.3.2 Manipulation algorithm

In this work, we aim to define a simple yet effective strategy using ZeW attack.
Simple and non-optimal attacks have been shown to be effective in [322], where
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cybercriminals evade sexually explicit content detection with simple image trans-
formations (e.g., random noise addition).

In our attack, we assume that hateful sentences contain a negative part-of-speech,
as shown in Figure 7.3 on the Real corpus. We thus want to understand how the
performance of the tested MLaaS are affected when “deleting” such negative parts.
To do so, we designed a simple injection strategy that, given a sentence, identifies
negative words (i.e., words with negative polarity scores) and injects on them zero-
width characters. In the experiment, we inject zero-width characters in two possible
fashions.

1. Mask1. Only one random Zero-Width SPace character is injected in the middle
of the target word (e.g., hate −→ ha$te).

2. Mask2. Multiple random Zero-Width SPace characters are injected, one be-
tween each character (e.g., hate −→ $h$a$t$e$).

The idea behind these two strategies is to measure the impact of ZeW with differ-
ent levels of injection. Algorithm 2 shows the overall attack strategy. To identify
negative words we use VaderSentiment, a free sentiment analyzer tool available for
Python [133]. The code of the injector is available on GitHub4.

Algorithm 2: HS-Manipulation.
input : An original sentence s and the type of injection mask m
output: A poisoned sentence spois
tokens = Tokenizer(s)
Ntok = length(t)
i = 0 spois = [] while i < Ntok do

t = tokens[i]
tstem = Stem(t)
tsent = Sentiment(tstem)
if tsent is negative then

tpois = Injector(t, m)

end
spois.add(tpois)
i = i + 1

end
spois = Join(spois)

7.4 Results on Controlled Environments

In this section, we evaluate the impact of the ZeW injection strategy presented in
Section 7.3 over different machine learning models and indexing techniques. In
Section 7.4.1 we first present the experimental settings, followed by result discus-
sions in Section 7.4.2.

7.4.1 Experimental Settings

Algorithm 2 aims to reduce the negative part-of-speech of a given sentence. We
thus decide to understand the impact of ZeW injection strategy over a binary classi-
fication task: the sentiment classification. The task consists of predicting whether

4https://github.com/pajola/ZeW
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a sentence is positive or negative. For the experiments we use the Sentiment140
dataset [104]. The dataset contains positive and negative tweets (800K per class),
for a total of 1.6M of labeled tweets. We then randomly split the corpus into a train-
ing (70%), validation (10%), and testing partition (20%). We evaluate two types of
ML algorithms:

• SGDClassifier. This is a linear classifier. We use Scikit-Learn [40] implementa-
tion. The model is built on top of a TfidfVectorizer, i.e., an engine that converts
raw documents into TF-IDF representations.

• Recurrent Neural Network Classifier. We deploy standard RNN-based classifiers
using an embedder, followed by a two layers GRU and a final linear layer. The
model is deployed using Pytorch [227].

Each model is trained over different variants of text representation i.e., character and
word-based. The SGDClassifier implements two different combinations: character
ngrams defined in the range [1, 5], and word ngrams, defined in the range [1, 3].
For example, the range [1, 2] means that the vectorizer considers unigrams and bi-
grams. The RNN classifier is defined over character and word unigrams tokenizer;
in addition, we further consider RNN classifiers that use and discard “unknown”
tokens. The models use a common and standard preprocessing technique that re-
moves hashtag, mentions, and URLs from tweets. Table 7.1 summarize models’
configuration.

We now briefly describe the hyperparameters selection and training strategy of
the two models categories. The SGD classifier is implemented with a greed search
strategy over the following TfidfVectorizer’s hyperparameters: max document fre-
quency (0.5, 0.75, 1), max number of features (1000, 5000), and use IDF (True, False).
We use the validation set to find the best configuration. RNN models implement
default hyperparameters configurations: the embedding dimension is 100, and the
GRU’s hidden size is 256. The vocabulary size is set to 25K tokens for word-based
cases, while 100 for character based ones; these vocabulary thresholds allows the
model to learn the representation of “unknown” tokens. The training process uses
Adam optimizer and BCEWithLogitsLoss as loss function. The models are trained
for a maximum of 100 epochs. Note that we use a stopper mechanism that interrupts
the training if a model does not improve its validation performance for 5 epochs.

7.4.2 Results and Considerations

In this section, we evaluate the performance of the six models presented in
Section 7.4.2. The first evaluation is conducted with the accuracy score (ACC), i.e.,
the percentage of correct predictions. Table 7.1 summarize the results. As expected,
DNN-based models tend to outperform simple linear models; this gap can be linked
with the limited vocabulary size adopted in the TfidfVectorizer due to memory lim-
itations. We also highlight that the usage of unknown tokens does not boost-up
models’ performance.

The effect of ZeW is measured with the attack success percentage (ASP), i.e., the
percentage of sentences classified as positive. Note that such a percentage also con-
tains those samples that are misclassified in normal conditions. The evaluation uses
three corpora: a set of original tweets called “real”, and two malicious counterparts
(one per mask) named “mask1” and “mask2”, respectively. The set “real” corresponds
to the negative test sentences (160K); we then discard those sentences that cannot be
modified by Algorithm 2, resulting in a final set with 75K tweets.
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Table 7.1 presents ZeW success percentage. We can notice that the ASR is always
under 40%. This result can be explained with:

• a limitation of Algorithm 7.3.2, where the injection strategy modifies negative
tokens. However, a sentence’s polarity might be the effect of a sequence of
tokens rather than the sum of single instances polarity.

• a limitation of ZeW, where the injection is limited to a strict set of operations
(i.e., the insertion of a set of characters).

Nevertheless, we can find some insights from such results:

1. ZeW can affect the performance of different models that use different tokeniza-
tion strategies. The combination of ZeW with state-of-the-art attacks targeting
ML-models can result in dangerous effects.

2. In general, character-based models are more resilient to ZeW. In particular, we
highlight that when unknown tokens are discarded, ZeW attack fails.

3. In general, models that consider unknown tokens are more vulnerable. An
attacker can thus leverage this factor.

TABLE 7.1: Overview of models’ performance. The accuracy score
(ACC) measure the quality of the model on the three splits. The attack
success percentage (ASP) measures the misclassification percentage

of a given classifier; in bold the results of models resistant to ZeW.

ML Model Tokenization UNK Train (ACC) Valid (ACC) Test (ACC) Real (ASP) Mask1 (ASP) Mask2 (ASP)

SGDClassifier Char No 77.15 77.00 77.19 12.06 22.15 29.63
SGDClassifier Word No 73.04 73.00 73.15 14.94 20.88 27.12

RNN Char No 81.68 81.52 81.46 5.27 3.72 3.72
RNN Char Yes 82.60 82.41 82.39 7.57 12.53 21.34
RNN Word No 84.79 84.20 84.28 6.93 37.75 37.19
RNN Word Yes 84.93 84.38 84.41 6.25 37.29 36.62

7.5 Results on MLaaS

In this section, we show how ZeW affects the performance of different MLaaS of
the leading IT companies: Amazon, Google, IBM, and Microsoft. The considered
companies provide similar services, and, where possible, the results are grouped-by.
We identified the following macro-areas.

• Hate Speech Detection (Section 7.5.2). Tools that identify toxicity/hate speech in
comments.

• Insights Extractors (Section 7.5.3). Tools that extract insightful information from
the text (e.g., tones, personalities).

• Sentiment Analyzers (Section 7.5.4). Tools that measure sentence polarization.

• Translators (Section 7.5.5). Tools that translate sentences from a source language
to a target one.

In this work, we do not compare the performance of ZeW with state-of-the-art
since their focus is to exploit ML algorithms vulnerabilities, while we aim at the dis-
ruption of the indexing stage. Since our attack model is free of all of the restrictions
in the number of modifications, an attacker can combine ZeW with attacks targeting
ML algorithms.
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7.5.1 Dataset & Evaluation on VaderSentiment

For the experiments, we use the hateful sentences available in [73], a well-known
dataset of the task. This dataset contains three distinct classes: “hateful”, “offensive
but not hateful”, and “neither” (nor hateful neither offensive). The dataset includes
1430 hateful sentences. We call now on the set of hateful sentences Real. Sentences
that do not contain any negative word (detected) are discarded from Real. We then
applied the injection algorithm with the two possible masks, generating two sets
called, respectively, Mask1 and Mask2. The final corpora contain 1094 samples each.
All of the analyses and tests in different MLaaS use these corpora.
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FIGURE 7.3: Negative sentiment densities of different corpus mea-
sured by VaderSentiment, where +1.0 is extremely negative and 0.0 is
absence of negativity. The violin plot shows the distributions of the
corpora’s negative scores; the blue line represents the median value
of the distribution. The service is vulnerable if the distributions un-

der attack are not equal to the distribution of Real.

We first analyze the impact of ZeW on VaderSentiment. As shown in Figure 7.3,
both injection strategies (Mask1 and Mask2) entirely cancel the perceived negativity.
The median values of negativity scores are 0.35 (Real), and 0.0 for both Mask1 and
Mask2. ZeW is effective in both modalities against VaderSentiment. The injection of
only one character per negative word is enough to disrupt this service. This might
be a relevant problem since this tool is widely used in the scientific community.

In this section, we further show the effectiveness of our defense strategies pro-
posed in Section 7.2.3, where the sanitization technique discards the malicious char-
acter from any given sentence. Figure 7.3 shows that the sanitized sentences have
the same distribution of the original and unpoisoned corpus. Given the simplicity
and the effectiveness of the proposed countermeasure, we decide to do not report
similar results in the rest of this section.

7.5.2 Hate Speech Detection

We start our analysis with hate-speech detection, the set of tools closer to our case
study. These tools aim is to identify and detect the toxicity of sentences. The goal of
an adversary is to write hateful sentences without being detected. This scenario is
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likely on Social Networks (e.g., Facebook) that uses account suspension or ban when
users post inappropriate content. We analyzed the following services.

• Google Perspective5. Perspective is part of the Conversation AI project, which
aim is to improve the quality of online conversations with the supervision of
ML. The tool identifies several aspects of online conversations that might be
inappropriate, such as toxicity, profanity, and flirtation. In this experiment, we
focus on toxicity manipulation, defined as disrespectful comments.

• Microsoft Content Moderator6. This ensemble of ML-tools aim to identify po-
tentially offensive content in different type of media, such as text, images, and
videos. Regarding the text-domain, the model identifies three categories of
malicious content: sexually explicit content, sexually suggestive, and offen-
sive. In this analysis, we focus on the latter. The tool offers the “autocorrect”
option, which corrects grammatical mistakes before analyzing the contents. In
our experiment, this parameter is set to TRUE.

Figure 7.4 shows the effect of ZeW on the toxicity detectors. Both services are
highly resistant to the attack. On Google Perspective the median confidence level
of the detector is 0.95 on (Real), 0.84 on Mask1, and 0.83 on (Mask2). Similarly, on
Microsoft Moderator the median is 0.99 on (Real), 0.97 on Mask1, and 0.86 on (Mask2).

The impact of the attack is not strong, and the model seems resistant. On the
other hand, in Google Perspective the insertion of only one zero-width character
per negative word appears sufficient to damage the model’s confidence level. Simi-
larly, the Microsoft tool can be affected by Mask2. We also need to highlight that the
purpose of these tools is to detect high toxicity levels rather than detect negativity
on sentences; thus, the algorithm described in Figure 2 might not be effective. The
combination of ZeW with other state-of-the-adversarial techniques could seriously
damage this service. We can state that both models are vulnerable to this attack.
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(A) Google Perspective.
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(B) Microsoft Moderator.

FIGURE 7.4: Toxicity score densities of different corpora measured
by Google Perspective (left), and Microsoft Moderator (right), where
+1.0 is high confidence of being classified as toxic. The violin plot
shows the distributions of the corpora’s toxicity scores; the blue line
represents the median value of the distribution. A service is vulner-
able if the distributions under attack are not equal to the distribution

of Real.

5https://www.perspectiveapi.com
6https://azure.microsoft.com/en-us/services/cognitive-services/content-moderator

https://www.perspectiveapi.com
https://azure.microsoft.com/en-us/services/cognitive-services/content-moderator
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7.5.3 Insights Extractors

Online Social Networks (OSNs) such as Facebook and Twitter are places where bil-
lions of users share their experiences, ideas, feelings, and opinions. These platforms
are perfect for analyzing social behaviors and interactions. Several studies are con-
ducted, from sentiment analysis and opinion mining [222, 251], to the prediction of
when a security vulnerability will be exploited [50]. IBM offers two services that
are helpful to analyze OSNs data. A possible attacker’s goal is to hide his/her own
personality.

• IBM Watson Tone Analyzer7. The tool detects and extracts emotional and lan-
guage tones in a written text.

• IBM Watson Personal Insight8. The tool predicts the personality of a target
user. For example, this tool allows us to analyze the tweets-history of a target
Twitter account.

IBM Watson Tone Analyzer returns a list of emotions (strings) detected in a given
sentence. Here, a possible adversary’s goal is to hide/manipulate emotions from his
text. To understand the efficacy of ZeW, we measured the similarity between the
sets of emotions of the unpoisoned sentences and their poisoned counterparts. In
particular, given a sentence x, its adversarial counterpart x′, and a Tone Extractor
function f , we obtain the sets A = f (x) and B = f (x′). The similarity between A
and B is given by the Jaccard Similarity, defined as follows [216].

J(A, B) =
dim(A ∩ B)
dim(A ∪ B)

, (7.1)

where dim returns the number of items in the set. The performance is measured by
comparing the Jaccard similarities of Real vs. Mask1 and Real vs. Mask2. Ideally,
the API is resistant if the Jaccard Similarity is equal to +1.0 (two identical sets). In
Figure 7.5, we can notice a different trend. The median values are 0.5 and 0.33 for
Mask1 and Mask2, respectively. A good portion of sentences (40%) are not affected; a
possible explanation is that the negative words of those sentences are not essential to
extract the emotion. Note that from this analysis we discard those sentences without
any “tone” detected by the tool (322 sentences discarded).

On IBM Watson Personal Insight, the adversary’s goal is to hide/manipulate his
personality. In our test, we extract the personalities from the three corpora. In this
experiment, the analysis is at a corpus-level rather than a sentence-level, i.e., we
obtain one personality for each corpus. In Figure 7.6, we can notice that Real and
Mask1 differ in terms of “Openness” and “Conscientiousness”, while Mask2 seems
to push all of the dimensions close to zero. In conclusion, both services of IBM are
severely vulnerable to ZeW.

7.5.4 Sentiment Analyzers

Sentiment analysis is one of the most popular topics in NLP [224, 180, 3, 191] and
can be used for several purposes, such as understand the opinions of restaurants,
movies, or products. This importance is reflected by the fact that all companies

7https://www.ibm.com/cloud/watson-tone-analyzer
8https://www.ibm.com/watson/services/personality-insights

https://www.ibm.com/cloud/watson-tone-analyzer
https://www.ibm.com/watson/services/personality-insights
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FIGURE 7.5: The similarity distributions between Real vs. Mask1 and
Real vs. Mask2 of Watson Tone Analyzer, where +1,0 is an exact match
between two sets. The violin plot shows the distributions of the cor-
pora’s Jaccard similarities; the blue line represents the median value
of the distribution. The service is vulnerable if the distributions un-

der attack are not close to one.
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FIGURE 7.6: Watson Personal Insight detects three distinct personali-
ties (Real, Mask1, and Mask2). The service is vulnerable if at least one

of the five dimensions changes.
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(A) Amazon Comprehend.
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(B) Google Cloud Natural Language.
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(C) IBM Watson Natural Language Under-
standing.
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(D) Microsoft Text Analytics.

FIGURE 7.7: Effect of Zero-Width Space Attack on different sentiment
extractor services. The violin plot shows the distributions of the cor-
pora’s negative scores; the blue line represents the median value of
the distribution. A service is vulnerable if the distributions under at-

tack are not equal to the distribution of Real.

implement this service: Amazon Comprehend9, Google Cloud Natural Language10,
IBM Watson Natural Language Understanding11, and Microsoft Text Analytics12.

In the hate speech scenario, as shown in Figure 7.3, the sentences are likely to
be perceived as negative. A possible adversary’s goal is to minimize the detected
negativity; this attack can be seen as a transferable attack [225] since our malicious
sentences are first tested on a sentiment analyzer (i.e., VaderSentiment).

Figure 7.7 shows the effectiveness of ZeW on 3 services out of 4. In particular,
Amazon Comprehend is resistant to both modalities of injection, where the median
value is constant (0.86). Google Cloud Natural Language shows a similar vulner-
ability pattern for both masks, with an equal median value that moves from 0.5 to
0.2. In this service, the addition of one character per negative word is sufficient to
disrupt it. We conclude with the services provided by IBM and Microsoft, where we
see a common decreasing pattern of the median values, which move from 0.92 / 0.95
on Real, to 0.56 / 0.24 for Mask1, and to 0.13 / 0.05 for Mask2. We can state that three
out of four services are severely vulnerable to ZeW, while only one show resistance.

9https://aws.amazon.com/comprehend.
10https://cloud.google.com/natural-language.
11https://www.ibm.com/cloud/watson-natural-language-understanding.
12https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics.

https://aws.amazon.com/comprehend
https://cloud.google.com/natural-language
https://www.ibm.com/cloud/watson-natural-language-understanding
https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics
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7.5.5 Translators

We conclude the results section with another well-known NLP task: the language
translation. All four companies implement this service: Amazon Translate13, Google
Translation14, IBM Watson Language Translator15, and Microsoft Translator16.

In the hate speech scenario, we can imagine that the adversary writes a hateful
message in an unknown language for the victim. The victim uses translators to
understand the meaning of the message. For example, human moderators could
use automatic translators to understand if comments written in foreign languages
are hateful. Another example is browsers like Chrome that automatically translates
web content.

An example of this scenario is shown in Figure 7.1, where the malicious sentence
“I wanna kill you” is translated as “I love you” by Google Translate17. Note that since
the target model is unknown, we do not have any control over the target output. We
highlight here that the aim of the attacker is to degrade the general performance of
the target model rather than control the translation process. ZeW is evaluated on
the translation task English-Italian. To understand the impact, we measure the sim-
ilarity between the translations given by the unpoisoned sentence and its malicious
counterpart. The difference is measured with the Bilingual Evaluation Understudy
Score (BLEU score), with its 4-gram cumulative implementation. Formally, given a
sentence x, its malicious counterpart x′, and a translation function f , the similarity
is defined as

similarity = BLEU4( f (x), f (x′)). (7.2)

Ideally, a service is not affected if the translations of the original sentence and its ma-
licious version are the same, resulting in BLEU score equal to +1.0 (perfect match).
In Figure 7.8 we can see that all of the services are vulnerable to the attack. Ama-
zon seems resistant to Mask1, with a median value equal to 1.0, while vulnerable to
Mask2, with the median equal to 0.83. Similarly, IBM is resistant to Mask1 and vul-
nerable to Mask2: the median value is 1.0 for Mask1, and 0.58 for Mask2. Google and
Microsoft show vulnerabilities in both injection strategies, where the median values
move from 0.63 / 0.47 in Mask1, to 0.40 / 0.34 in Mask2.

All of the models show more difficulties in handling Mask2. These tools show
different vulnerability patterns compared to the sentiment analysis tasks. The pos-
sible explanation is the nature of translators: Seq2Seq models (i.e., autoencoders).
Seq2Seq models likely use different placeholders to deal with OOV tokens, as intro-
duced in Section 7.1.1. We can state that all of the services are vulnerable to ZeW:
three strongly vulnerable, and only one weakly (Amazon).

7.5.6 Considerations

In this section, we analyzed how different MLaaS behave under the ZeW attack. We
can notice different trends among types of services (e.g., sentiment analyzers) and
the same companies (e.g., Microsoft). We now try to understand why these models
behave differently.

ZeW seems to fail on hate speech detectors. This result suggests that both ser-
vices use character-based tokenizers, which is a reasonable assumption since such

13https://aws.amazon.com/translate.
14https://cloud.google.com/translate?hl=en.
15https://www.ibm.com/cloud/watson-language-translator.
16https://azure.microsoft.com/en-us/services/cognitive-services/translator.
17https://translate.google.com/.
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(A) Amazon Translate.
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(B) Google Translate.
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(C) IBM Watson Natural Language Translator.
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(D) Microsoft Translator.

FIGURE 7.8: Effect of Zero-Width Space Attack on different transla-
tor services. The violin plot shows the distributions of the corpora’s
BLEU scores; the blue line represents the median value of the distri-
bution. A service is vulnerable if the distributions under attack are

not close to one.

services should deal with noisy text (e.g., grammatical errors, misspelling) gathered
from blogs, forums, and social networks. Moreover, such services are resistant to
the injected noise (unknown tokens); a possible explanation is that these services
deal with unrecognized words (e.g., discard). Amazon services show similar perfor-
mance.

In general, IBM MLaaS are vulnerable to ZeW attack. Similar trends are shared
among different services (e.g., Watson Personal Insight, sentiment extractor), where
the attack is more effective when we inject more ZeW characters. These trends are
similar to the RNN char-based with UNK performance, as shown in Table 7.1.

Finally, on translators, we find two patterns: i) resistant only to mask1 (i.e., Ama-
zon, IBM), and vulnerable to both injection levels (i.e., Google, Microsoft). Since
mask2 has a stronger impact, the four models might be character-based. However, it
is unclear why there is such discrepancy, where two out of four models are resistant
to mask1 ZeW attack. More in-depth investigations should be conducted on neural
machine translators architecture.

7.6 Related Work

In the state-of-the-art we can find several adversarial attacks targeting the machine
learning algorithms of MLaaS. We now briefly summarize attacks on the MLaaS
considered in Section 7.5.
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Hate Speech Detectors Several scientific discussions use Google Perspective as a
case study of their hate speech evasion techniques. For example, in [127, 115] the
authors show the ability to manipulate Perspective by adding small mistakes to the
sentences (e.g., typos, leet speech, word addition, word removal). In [38], the au-
thors proposed evasion techniques based on acoustic and visual similarities, with
an evasion power equal to 33% and 72.5%.

Sentiment Analyzers In [109], to manipulate sentiment tools, the authors applied
techniques from computer visions, i.e., Fast Gradient Sign Attack [111]. In Deep-
Fool [207], the authors manipulate the sentiment analysis of a CNN model. This
algorithm uses Word Mover’s Distance (WMD) [166] to find suitable words whose
embeddings allow to influence the target classifier. Similarly, in [8], the authors pro-
pose a word replacement algorithm based on semantic similarities. In [169], authors
describe TextBugger, a black-box framework that achieves high evasion success rate
on different Machine-Learning-as-a-Services.

Machine Translators Cheng et al. propose AdvGen, a gradient-based method for
attacking Neural Machine Translation (NMT) models [57]. In [56], the authors pro-
pose two techniques to evade Seq2Seq models (e.g., translators) using ad-hoc loss
functions: non-overlapping attack and keyword attack. For the first, the goal is to gener-
ate completely novel adversarial sentences, while for the latter, the malicious trans-
lation contains target keywords. For the interested reader, we suggest finding more
details on adversarial machine learning in Seq2Seq models in [56].

7.7 Limitations

In this section we briefly discuss the limitations of ZeW attack and the proposed
coutermeasure.

Attack The results presented in Section 7.5 show how different commercial ser-
vices can be affected by the proposed attack ZeW. However, the efficacy of ZeW is
strictly related to services implementation choices. For example, as shown in Sec-
tion 7.4, char-based models are more resilient compared to word-based ones. More-
over, when the model discards unrecognized characters, the attack is completely
unsuccessful. Another major drawback is the limited control over malicious sam-
ples and, as a consequence, over the effect of the attack. If we consider language
translators, an attacker can affect the translation, but he/she has no control over the
output. For example, in the attack reported in Figure 7.1 we did not target that par-
ticular translation. Similarly, on the classification task, an attacker can only reduce
the likelihood of a sentence being in a specific class (e.g., in this work we reduce
sentences’ negativity) and not let the sample be classified as a target class.

Defense In Section 7.2.3, we present a simple yet effective countermeasure, con-
sisting on the removal (sanitization) of zero-width characters from any given sen-
tence. This choice is possible since normal English sentences should not contains
such characters. Moreover, to understand if a ZeW attack is occurring, models own-
ers can feed their applications with both original and sanitized sentences and look
for results discrepancies. The proposed sanitization technique is however applicable
only for ZeW attacks, resulting in a patch rather than a general solution. A popu-
lar countermeasure adopted in the state-of-the-art is the adversarial training, where,



132
Chapter 7. Fall of Giants:

How popular text-based MLaaS fall against a simple evasion attack

for example, the defender augments the training data with examples of adversarial
samples to make the model more robust [111]. Even though the adversarial train-
ing showed promising results, we believe that a strong and simple countermeasure
consists of limiting applications’ character vocabulary. We recall that our attack uses
characters that are not normally present in the written language, and thus a simple
input control can raise alerts whenever unlikely characters are identified. Finally, as
reported in Table 7.1, character-based models present an intrinsic resiliency to ZeW
attack; future commercial implementation should consider this aspect.

7.8 Summary

The migration of machine learning applications from research to commercial and in-
dustrial purposes increases the necessity of finding security mechanisms that guar-
antee the correct usage of them. In this work, we present a novel injection algorithm:
Zero-Width attack (ZeW). This attack injects non-printable UNICODE characters on
malicious sentences, with a potential disruption of the indexing stage of the ML ap-
plication pipeline, while maintaining the full-readability of the text. This gives us the
opportunity to do not consider the readability constraint, one of the major obstacles
in the text adversarial machine learning field.

Our goal was twofold: i) understand how different pipelines respond to ZeW
attack, and ii) whether commercial applications are vulnerale to ZeW attack. In
Section 7.4 we showed that different implementation are vulnerable with different
magnitude to the attack, while character based models show promesing “security
by design” patterns. We then demonstrate the ferocity of the attack on commercial
solutions (Section 7.5): on 12 services developed by top IT companies such as Ama-
zon, Google, IBM, and Microsoft, 11 show vulnerabilities. Among these 11, only 3
present a good resistance to the attack, while the remaining 8 are heavily affected.
The simplicity of the attack allows it to spread to a broad population of malicious
users and activities since no prior knowledge of machine learning theory is required.

Potentially, we can find several use-cases of our attack and not only hate-speech
manipulation. For example, we can consider web data mining techniques that can be
used for counter-terrorism [290] where, NLP technologies can help to identify ma-
licious content. In this scenario, terrorists could use ZeW to obfuscate the contents
of their web-pages, affecting the performance of the analyzer. Because of this, our
simple but effective countermeasure based on an input-validation technique should
be integrated into every real-life NLP tool.

The security of machine learning applications is strictly related to their input do-
main. Computer Vision has different challenges compared to Natural Language Pro-
cessing, which has different challenges compared to the signal domain. Moreover,
state-of-the-art mainly focus on the security of the machine learning models, by for-
getting that a machine learning application is composed by several stages where the
ML model is only one of these. In conclusion, we believe that novel malicious oppor-
tunities can be derived by exploiting vulnerabilities of different components of the
ML pipeline, and one of these directions is the leverage of multiple representations
of the text, such as the usage of ASCII and UNICODE.
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Captcha Attack: Turning Captchas
Against Humanity

The field of adversarial machine learning (AML) studies the security of machine
learning (ML) algorithms. Currently, AML literature examines theoretical aspects of
the discipline with experiments conducted in artificial settings. There is, however,
a lack of understanding of how adversaries approach ML systems in the wild [116].
Considering that real-life adversaries might adopt approaches that differ from what
is described in state-of-the-art, this situation becomes even worse. It was discovered,
for instance, that real-life adversaries adopted techniques less optimal than theoret-
ical attacks, yet still effective, to promote pornographic content [322].

This work aims to study real-life adversarial attacks on Automatic Content Mod-
erator (ACM). ACM are an essential element to guarantee a safe and secure environ-
ment for users of online platforms such as blogs, forums, and Online Social Network
(OSN). Indeed, OSN such as Facebook and Instagram leverage human operator to
identify and remove content that violate platform’s policies, such as pornographic
images or toxic posts (e.g., racist, hateful). Since users generate more content than
humans can moderate, automated tools are needed to assist human operators. As
reported by TheVerge [301], Facebook employs ML tools to monitor users’ posts to
spot potential inappropriate content that human operators will manually review.
Such content is either removed or labeled as “sensitive”, which means users have to
explicitly accept to view it. Instagram recently adopted a similar system [137], stat-
ing that technology and humans co-operate to identify sensitive content (Figure 8.1).

ACM are an ideal case-study of real-life adversarial samples for different reasons.
1) OSN have a broad audience, with people coming from different background and
cultures. Adversarial techniques thus might vary in their execution. 2) OSN popu-
larity result in a massive share of daily content. For instance, Instagram and Face-
book count about 350 thousand stories and 150 thousand photos posted by their
users, respectively, every minute [272]. These “big numbers” increase our proba-
bility to find adversarial samples. 3) OSN adversaries likely adapt their sharing
strategies to avoid automatic filters [322].

Contributions In this study, we focus on posts defined as images containing text
(e.g., meme), a popular method of communication of OSN like Instagram. We
present an analysis of 4600 popular Instagram posts from pages and hashtags con-
taining potentially toxic text (e.g., hateful, sexually explicit). We discovered that 44%
of them present obfuscations that might undermine ACM decisions. As these posts
are reminiscent of captchas (i.e., not understandable by automated mechanisms), we
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FIGURE 8.1: Instagram alert of sensitive content.

coin this threat as Captcha Attack (CAPA).1 Figure 8.2 shows an example of a meme
we produced using some of these obfuscations (e.g., typos, letters-shaped objects,
hard background). Thus, we investigated this phenomenon and harvested such ad-
versarial samples from the wild to define a taxonomy of obfuscation techniques.
This contribution seeks to revisit the classical concept of captchas (defenses used in
web platforms to distinguish humans from machines), and define a new type of
captcha generated by humans to evade machine controls. Specifically, in our exper-
iments, we focus on a broad CAPA sub-categories, consisting in samples adopting
textual Captcha Challenges, namely CC-CAPA. We empirically demonstrate the fe-
rocity of CC-CAPA by proving that current ACM cannot detect such samples, with
an evasion rate equal to 100% (i.e., perfection).

FIGURE 8.2: Example of meme with different obfuscations (e.g., ty-
pos, letters-shaped objects, hard background).

Our investigation highlights that such failures are the result of a weak text ex-
traction phase - conducted by Optical Character Recognition (OCR) - which is an
essential step to handle images containing text. It is therefore crucial that OCR are

1The name of our attack is a quote to Caparezza, an Italian singer famous for his lyrics rich with
puns.
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trained to deal with such obfuscations, but a large amount of data is necessary in or-
der to accomplish this. Collecting data is not trivial, especially into the wild. We thus
propose two CC-CAPA identification strategies: supervised and unsupervised. The
former are ideal to identify CC-CAPA samples adopting known templates at train-
ing time. The latter is a solid methodology to spot unknown CC-CAPA templates,
and more in general, new CAPA families. The effectiveness of our approaches is
demonstrated through extensive experiments on three OSN: Pinterest, Twitter, and
Yahoo-Flickr. We summarize our contribution as follows:

1. We define and propose a taxonomoy of Captcha Attack (CAPA) – a set of ob-
fuscation techniques adopted in OSN that undermines ACM.

2. We demonstrate CC-CAPA (a broad CAPA sub-category) extremely high eva-
sion capability on real-world ACM.2

3. We propose two solid detection strategies to spot CC-CAPA and CAPA sam-
ples into the wild, conducting experiments on three OSN: Pinterest, Twitter,
Yahoo-Flickr.

Organization The Chapter is organized as follows: Section 8.1 introduces back-
ground and related works. Section 8.2 presents CAPA taxonomy. Section 8.3 and
Section 8.4 show the design of the attack and its results, respectively. Section 8.5
illustrates the detection strategies, and we conclude in Section 8.6.

8.1 Background & Related Works

This section presents theoretical concepts with related works required to under-
stand the rest of the paper entirely. We discuss security of ML-based applications
(Section 8.1.1), moderators in OSN (Section 8.1.2), and captchas (Section 8.1.3).

8.1.1 Security of Machine Learning Applications

ML applications like automatic content moderators need to deal with real-world
challenges, offering at the same time high performance and attack resiliency. There-
fore, when considering the application security, we need to consider all of the com-
ponents of such pipelines, like preprocessing function, machine learning algorithms,
and developing libraries (e.g., PyTorch, Scikit-learn). In general, an adversary’s goal
is to control and affect ML application decisions through the definition of adversarial
samples.

Adversaries can affect ML applications by exploiting ML algorithms. We find
different attacks such as the evasion attack, where the attacker defines malicious sam-
ples that fools a target classifier [25, 113], and the poisoning attack, where attackers
affects model performances if they have access to the training data [22, 249]. On the
opposite, adversaries can further exploit vulnerabilities derived by the ML applica-
tion pipeline (e.g., libraries bugs, preprocessing functions) [314]. Such attacks are
domain and application-related. For example, in the image domain, attackers can
exploit image scaling techniques [313].

This work focuses on spreading adversarial sentences through images. Given
captchas deceiving nature, we can categorize our attack as cross-modal against Optical

2We test ACM APIs to avoid the spread of inappropriate content.
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Character Recognition (OCR) [325]. OCR are tools that extract text from images. Base-
line adversarial attacks on OCR use different strategies like noise and watermark
addition [51, 52]. These attacks are optimized to fool a target model. In contrast,
our attack leverages captchas that are a antagonist of OCR by definition. Thus, the
proposed attack CAPA is not optimized to fool ACM machine learning algorithms
but rather to affect earlier stages, such as the text extraction from images using OCR.

8.1.2 Moderators in OSN

Online platforms use human moderators to monitor content shared in their virtual
environment and block any malicious content before spreading. However, their ef-
ficiency is limited by the many users and interactions that a platform presents daily.
To overcome this issue, companies started developing automatic tools. From [103],
“the major platforms dream of software that can identify hate speech, porn, or threats more
quickly and more fairly than human reviewers, before the offending content is ever seen.”
For example, Facebook uses ML to flag potentially harmful content and remove au-
tomatically clear-cut cases, while the rest are processed by human operators [301].
A final contribution to the moderation process is made by OSN users: where human
and automatic moderators fail, OSN users may report content that is offensive or
harmful.

Human and automatic content moderators need to deal with multimodal content
such as text, image, video, and audio. We can thus find several moderator tools
based on the aim and source type. A popular and widely studied application is
hate speech detection. Furthermore, online platforms are often visited not only by
adults but by children as well. Image and video can contain contents that are not
appropriate for such a young audience. Examples are violent and sexually explicit
content detectors [281, 198]. While these tools mainly focus on textual contents with
NLP-based solutions [259], only recently the attention moved on the multimodal
representations (e.g., text inside images). For example, a new popular trend is the
hateful meme detection [153, 108, 297], where the ACM combines images and textual
information to address the task.

Given the variety of content, ACM need to deal with multiple sources and types
of information. In this work, we focus on text and images, which can generate four
types of content: (i) textual content like comments, (ii) image content like pho-
tos, (iii) images accompanied by text, like a photo with a caption, and (iv) images
containing text like memes. Thus, an ideal ACM should contain DL modules that
can work with text and images. The ACM workflow is straightforward in cases like
i, ii, and iii. In contrast, for iv the workflow is more complex since the ACM
should first extract through an OCR textual information; then, the DL components
should process both textual and visual contents. The decision of content being toxic
should thus consider both sources. Figure 8.3 shows such a pipeline. While differ-
ent companies can adopt and develop different ACM, our described pipeline can
still faithfully describe their workflows since we do not discuss how to implement
specific operations [153, 108, 297].

8.1.3 CAPTCHA

A CAPTCHA (Completely Automated Public Turning Test to tell Computers and
Humans Apart) is a test to distinguish between humans and computers (e.g., bots,
automated users). First examples appear in 2000, designed by Von Ahn et al. [302],
to check whether web requests were coming from humans, improving the security
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FIGURE 8.3: Overview of a content moderator in the text and image
domains.

of websites, such as by preventing spam, protecting users’ registration, and limiting
email address scraping. The first generation of captchas was based on text, altered by
rotations, distortions, or wavings, to be hardly readable by a machine (e.g., OCR) but
simple for humans. With the advancements in AI technology, text-based captchas
began to be solved, with a significant decline in 2014, when Google demonstrated
that even the most complicated variants could be easily broken [112]. The security
weaknesses related to text-based captchas led the research community to develop
new techniques, e.g., based on images, audios, videos, or puzzles [268]. In general,
their evolution follows the advancements of technology to break them [118]. Even if
the text-based captchas security has been proved to be inefficient, they are still pre-
ferred by many users because of familiarity and sense of security and control [164].

The research community put much effort into solving (or breaking) text-based
captchas (the type used in our attack). Their robustness has been shown to heavily
rely on the difficulty of finding where the character is, i.e., segmentation, rather than
what character it is, i.e., recognition [48]. The breaking methods evolved from algo-
rithmic techniques [208, 316] to machine learning based approaches [41, 97, 112].

8.2 Captcha Attack: A Taxonomy

We now present Captcha Attack (CAPA) and a taxonomy of its variants in
Section 8.2.1. We discuss the two macro-level of obfuscations: OCR-failures
(Section 8.2.2) and classifier-failures (Section 8.2.3). We report statistics of the CAPA
adoption on Instagram in Section 8.2.4.

8.2.1 Challenges from OSN’s users: a Taxonomy

Finding potential adversarial samples in a platform such as Instagram is not trivial
given its large amount of posts shared daily. Therefore, we limited our investiga-
tion to posts (images containing text) whose text can potentially be considered toxic.
We focused only on posts in English or Italian, which we could fully understand
since language can be a barrier to identifying elements such as typos, slang, or dou-
ble meanings. We selected four popular hashtags, three well-known English meme
pages, and three well-known Italian meme pages, all related to memes or adult con-
tent (potentially harmful). We limited our manual inspection to the latest 100 posts
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for each page to analyze the most recent trends. Given that hashtags convey content
from many pages and users, we focused on the latest 1000 English posts without
incurring the risk of analyzing old content. A total of 4600 posts were manually
analyzed as a result of this process.

We now need to define what is a potential adversarial sample. By considering ACM
nature in the multimodal case, as previously discussed in Section 8.1.2, potential
threats can be derived by:

1. OCR-failures – a wrong text extraction. We thus considered challenges in-
spired by captchas (Section 8.1.3), such as complex backgrounds or occluders.

2. Classifiers-failures – perturbations that can undermine NLP modules, such as
typos and leet speech [115].

Using this criteria, we observed that 44% of the 4600 posts present at least one ob-
fuscation.3 We thus decided to investigate the nature of such posts profoundly, and
we organized the found obfuscation techniques, resulting in the CAPA taxonomy
presented in Figure 8.4. The organization follow the security violation level, i.e., at
OCR or NLP level.

Captcha Attack

OCR-failure Classifiers-failure

Typos

Leet Speech

Slang

CAPTCHA
Challenges

Advanced Tasks

Letter-shaped
ObjectsEmoji

Hard
Background

Distorted
Text

Occluding
Items

Scene Text

FIGURE 8.4: Obfuscation techniques we identified in online social
networks. Blue boxes represents the ACM component that might
fails. Green boxes represent different obfuscation techniques. We cen-

sored explicit or harmful contents with the red symbol.

8.2.2 OCR-failure

OCR-level obfuscations aim to disrupt or affect the text extraction phase from im-
ages. We identified two sub-family of techniques: advanced task for OCR and
CAPTCHA challenges.

3We want to underline that, in this phase, we considered not only potential harmful posts, but any
post published in such pages that might undermine the correct workflow of ACM.
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Advanced Tasks for OCR

With advanced tasks we mean a set of applications that differ from the classic docu-
ment extraction and pose more challenges for OCR. For example, scene text recogni-
tion is an area that gained popularity in the last few years [185]. This task consists
of detecting and extracting text from real-life scenes (e.g., a road sign, T-shirt). An-
other exciting challenge is letter-shaped objects, i.e., images whose shape recall a
specific alphabet letter. OCR might not recognize the correct character, resulting in
an erroneous extraction. This task is not yet discussed in literature to the best of
our knowledge. We conclude with the family of emoji obfuscations. In Figure 8.4,
we show three typical examples of emoji obfuscations. On the top, the text contains
an eggplant with a visual double-meaning (i.e., referring to a penis). In the middle,
the P-emoji is used with a phonetic deception (i.e., P can be read as ‘pee’). On the
bottom, two emoji are combined to represent a sexual action.

CAPTCHA Challenges

CAPTCHA challenges represent obfuscations usually adopted by textual captchas.
Such transformations are hard background, distorted text, and occluding items. While we
classified these obfuscations as a stand-alone, they are usually blended with other
obfuscations we presented in the taxonomy.

8.2.3 Classifier-failures

ML-level obfuscations contains techniques that, while allowing a proper textual ex-
traction, undermine the correct functioning of ML classifiers. These techniques are
similar to those presented in [115]: slang, leet speech, and typos. The first category
relates to post that contains slang terms (e.g., wtf → what the f*ck). The second class
is the leet speech, where some characters are replaced with other visually similar ones,
e.g., a ∗ s → @sS. The last class relates to text with typos or grammatical mistakes,
i.e., images containing misspelled words that, however, can be comprehended by
human readers. In the example, we show a meme that contains a sentence with a
swear word where the letter ‘i’ is replaced by ‘*’.

8.2.4 Statistics from the wild

Table 8.1 reports the statistics of CAPA usage in the wild, supporting our taxonomy.
From the 4600 posts analyzed, we discovered that 44% present at least one obfus-
cation strategy. We can first notice that ‘hard background’ is present in most of the
sources, reaching the 77% in one case. In general, this seems a trend of new posts,
where the text is written on top of a complex background (e.g., real life scene). More-
over, we noticed that some techniques (i.e., emoji, leet speech, typos, and occluding
items) were mainly used to cover sexually explicit content or swear-words.

Takeaway 1: Users are adopting adversarial techniques in OSN.
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TABLE 8.1: Percentage of obfuscation techniques observed in differ-
ent Instagram sources.

CAPTCHA Challenges Advanced Tasks Classifier-Failures

Source Occl. Dist. Hard Scene Emoji LSO Slang Leet Typos
Items Text BG Text Speech

epicfunnypage 3.0 10.0 14.0 9.0 5.0 0.0 26.0 1.0 4.0
6.memes.9 6.0 7.0 33.0 4.0 5.0 0.0 5.0 0.0 5.0
9Gag 0.0 0.0 20.0 1.0 0.0 0.0 7.0 0.0 0.0
partitodisagiato 11.0 0.0 77.0 1.0 23.0 0.0 3.0 15.0 4.0
pastorizianeverdiesreal 0.0 0.0 29.0 2.0 1.0 0.0 1.0 0.0 0.0
alpha_man_real 1.0 1.0 47.0 1.0 0.0 0.0 1.0 0.0 3.0
#naughtymemes 5.3 4.1 23.8 5.2 12.1 0.2 9.7 3.0 5.4
#sexualmemes 3.2 6.1 23.2 4.7 7.3 0.0 15.2 0.4 5.5
#nsfwmemes 7.0 7.1 31.8 0.8 4.2 0.0 14.5 2.1 5.9
#adultmemes 1.3 3.2 18.4 5.9 4.7 0.4 10.0 4.3 5.3

8.3 Attack Execution

This section describes the ferocity of CAPA in real-life conditions. We start by moti-
vating the attack (Section 8.3.1), followed by the generation procedure of adversarial
samples and the resulting dataset in Section 8.3.2 and Section 8.3.3, respectively.

8.3.1 Motivation

Section 8.2 presented Captcha Attack (CAPA), i.e., examples of real-life obfuscations
we spotted on social networks like Facebook and Instagram. Among these posts,
we saw several extremely inappropriate (e.g., sexually explicit, hateful sentences)
obfuscated with one or more techniques. Studying ACM behavior in the presence of
such ‘adversarial’ samples would highlight ACM weaknesses. Behind these obfus-
cations, we always find the same rationale: people are trying to create content that
can be easily understood by humans but is challenging for machines.

An ideal way to study how ACM would behave with these malicious samples
would require collecting a vast number of them. However, we find three major
challenges to collect such dataset: (1) these obfuscations seem novel and a direct
consequence of the recent adoption of ACM in OSNs [301], resulting in a limited
number of samples; (2) there are many variants or ways to produce an obfuscation,
making the problem of limiting samples worse; (3) an automatic tool to detect such
posts currently does not exist. In Section 8.5, we discuss in details a strategy to collect
such dataset.

To address the previously listed issues and to effectively evaluate current real-
world ACM robustness, we focus on the automatic generation of CAPA by leverag-
ing classic textual captchas containing custom words. Custom textual captchas can
be considered a broad sub-category of the more general class of CAPA presented
in our taxonomy (Section 8.2, CAPTCHA challenges branch). The adoption of an
automatic generation process present the following advantages. First, given a set of
captcha styles, we can generate an arbitrary number of samples. Second, the gener-
ated samples represent a simplified version of real-life posts since they do not con-
tain any visual aspect that might affect CV classifiers (e.g., racist visual components).
Third, classic textual captchas have been widely investigated in the literature, and
thus the knowledge acquired so far might help counter CAPA in this and all of its
forms. Therefore, from now on, through our experiments, we deeply explore the
CAPTCHA Challenges branch of CAPA, which we call CC-CAPA.
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8.3.2 CC-CAPA Generation Procedure

This section describes the process of generating a custom textual captchas, i.e., CC-
CAPA. Given an harmful custom textual sample x, and an automatic content mod-
erator M, we aim to identify a transformation function T such that:

M(x) = ci,
M(T(x)) = cj,

(8.1)

where ci is the offensive class, and cj the non offensive one. The function T should
satisfy the following properties.

1. Easy to deploy. This would open to a broad target of possible adversaries, not
only people highly skilled in computer science. CC-CAPA is easy to execute,
as shown by the already deployed attacks we presented in Section 8.2.

2. Target model agnostic. The transformation should be independent of the target
system, i.e., the process T is not mathematically optimized to fool a specific
ACM M, but rather any ACM. This would make the attack stronger and effec-
tive to different unknown ACM. As we are going to discuss in the rest of this
section, CC-CAPA does not require any information about the target system.

3. Effective. The attack should be successful with high confidence. This is de-
sirable since online platforms follow strict policies for inappropriate content
sharing, e.g., suspension or account ban. From a theoretical perspective, the
usage of captchas should guarantee a high evasion rate. We demostrate CC-
CAPA effectiveness in Section 8.4.

The first CC-CAPA transformations T is the insertion of text in images. This
domain-change transformation T1 represents the first deceptive layer. While analy-
ses on the text and image contents follow standard predictions, the case of text con-
tained in images might represent a gray area since it involves additional operations
such as text extraction and the cooperation between NLP and CV machine learn-
ing algorithms. If an online platform does not explicitly develop an ACM handling
such cases, there is a high chance that malicious content T1(x) can evade detection
mechanisms. We explore this scenario in Section 8.4.2.

If we consider proper implementations of automatic content moderators (see Fig-
ure 8.3), setting T = T1 might not be sufficient to guarantee complete attack effec-
tiveness. Thus, the addition of typical manipulation and distortion of classic textual
captchas produces images with similar properties of the ones presented in Figure 8.4.
For example, we noticed most of posts (e.g., memes, Instagram reels) present an hard
background. A customizable textual captcha can be seen as a function composition:

T = Tn(...(T2(T1(x)))), (8.2)

where T1 represents the domain transfer function, while the set [T2, ..., Tn] is the
combination of image transformations to generate the captcha, and x is the given
sentence. As reported in [320], popular transformations can be applied at the back-
ground (e.g., solid, complex, noisy), character (e.g., font, size, color, rotation, distor-
tion), and word level (e.g., character overlapping, occluding lines, waving, noise).
The notation presented in Equation 8.2 can also describe generic CAPA images.
Figure 8.5 shows an overview of the attack execution. The generation process we
just described is well-known to the state-of-the-art. While this process does not con-
stitute a part of the novelty of this work, in contrast, the usage of captchas from
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defense solutions to attack vector in OSN is, to the best of our knowledge, not ex-
plored.

Attacker Text Input

Word

Image
with Text

W o r  d

CAPTCHA Online
Platform

SpreadTransform
Domain
ChangeSentence

FIGURE 8.5: Overview of CC-CAPA execution pipeline.

CC-CAPA can exploit the following target ACM weaknesses:

1. Unimplemented detection case. The implementation of cross-domains ACM is
not trivial and is not widely explored in literature. ACM not implementing
such a scenario will miss images with harmful plain text.

2. Text extraction phase. If ACM deploys the monitoring of multimodal contents,
a pipeline key phase is the text extraction. OCR usually handle this operation.
OCR extraction from textual captchas might result in noisy inputs that feed
NLP models and thus affecting their predictions.

8.3.3 CC-CAPA Dataset

As introduced in Section 8.1.2, a popular and essential ACM role is the identification
of hateful messages on online platforms. Thus, an example of a possible attacker’s
goal is to let hateful messages being undetected by ACM. We build our dataset with
potential hateful textual captchas. We retrieve a list of frequent English words associ-
ated with hateful sentences from Hatebase.org [120], for a total of 1383 samples. From
this list, we maintain only those samples that, as stand-alone, should be banned from
online platforms. For the purpose, we used Microsoft Content Moderator4 and Google
Perspective as our ground truth5. These APIs identify the presence of different toxi-
city aspects. We first applied Microsoft moderation, obtaining 502 toxic words. We
refined the list further using Google Perspective, producing a final list of 197 toxic
words.

In this work, we are interested in understanding if ACM are vulnerable to tex-
tual captchas, particularly if different styles of textual captchas affect such target sys-
tems in different ways. We thus generate four variants of custom textual captchas.
Each style differs in the type and number of transformations applied to the textual
captcha. The four classes show different readability difficulties; the more transfor-
mations we apply, the more complex the image readability. We now describe the
four adopted styles.

1. Clean. These are normal white images containing text. No further transforma-
tions are applied. Font: FreeMono.

2. Claptcha. Python captcha generator available on GitHub.6 Complex transfor-
mations are applied to the text. Font: FreeMono.

4https://azure.microsoft.com/en-us/services/cognitive-services/content-moderator
5For both APIs, we use 0.5 as threshold.
6https://github.com/kuszaj/claptcha

https://azure.microsoft.com/en-us/services/cognitive-services/content-moderator
https://github.com/kuszaj/claptcha
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3. Multicolor. Python captcha generator available on GitHub.7 We modified the
library to use arbitrary text of arbitrary length. Complex transformations are
applied to the text. Font: Free family fonts.

4. Homemade. Our captcha generator, it aims to be more readable than Claptcha
and Multicolor. Simple transformations are applied to the text. Font:
FreeMono.

Figure 8.6 shows examples of attacks, one per class.

(A) Clean (B) Claptcha (C) Multicolor (D) Homemade

FIGURE 8.6: Captchas’ styles used in the experiments.

The four sample classes are composed by different transformations. For exam-
ple, Clean only uses only domain transfer, while Claptcha and Multicolor a high num-
ber of transformations. More details about the transformations are available in Ap-
pendix 8.7.1.

We produce Clean samples to verify if current deployed ACM deal with textual
captchas, while we produced Claptcha, Multicolor, and Homemade to verify if attack-
ers can affect ACM OCR. About the domain transfer transformation, this operation
is easy to implement, from graphic software (e.g., Paint, Photoshop) to standard
programming libraries (e.g., matplotlib). We further remark that there exist several
online tools aiming to generate customisable textual captchas. The aftermath is that
even attackers with low computer skills can produce customisable undetectable tex-
tual captchas. This statement is true if we consider that users are already producing
CC-CAPA (and more in general, CAPA) samples, as discussed in Section 8.2.

Starting from the 502 toxic words identified by Microsoft, and 197 by the addition
of Google, we produced two toxic captchas datasets: |Dm

tox| = 2008 and |Dm+g
tox | =

788, where m stands for Microsoft, and g stands for Google. These final datasets
are validated through a user study which proves that the generated samples can be
read very easily by human beings, thus supporting the idea OSN users would notice
the malicious content even if written with captchas. The user study methodology
and results are available in Appendix 8.7.1. We do not make the dataset publicly
available since it might be used for attacks in the real world. However, we make
it available upon requests for researchers to facilitate future investigations in this
field.

8.4 Attack Results

This section presents the results of our attack in real-life scenarios. We first discuss
the attacking scenarios we consider (Section 8.4.1), followed by a presentation of the
results of our attack against already deployed ACM (Section 8.4.2) and against ACM
following the schema shown in Figure 8.3 (Section 8.4.3).

7https://github.com/J-Rios/multicolorcaptcha

https://github.com/J-Rios/multicolorcaptcha
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8.4.1 Overview

Based on the discussions of ACM deployment done in Section 8.1.2, we aim to verify
the following:

1. Do current ACM consider cross-domain samples (e.g., text inside images)? We
answer this question in Section 8.4.2 by attacking image moderators with Clean
samples. We recall that these samples do not contain any transformation and,
thus, OCR should successfully extract their text.

2. Are ACM considering cross-domain content vulnerable to CC-CAPA? Sec-
tion 8.4.3 answers this question by analyzing ACM responses on Clapcha, Mul-
ticolor, and Homemade samples.

Tests of the ACM of social networks (e.g., Facebook) are not possible because it
would imply the spread of inappropriate and harmful content. Furthermore, we
cannot test the attacks to current state-of-the-art solutions (e.g., hateful memes de-
tection) because, to the best of our knowledge, they all require that the text is success-
fully extracted through OCR [153, 108, 297]. Moreover, the hateful images presented
in our dataset D

m+g
tox (see Section 8.3.3) contain only hateful text, while the rest of

the background is not harmful. Thus, we opted to test already deployed ACM APIs
provided by top IT companies. Note that these services are already adopted from
real systems and websites, as can be seen in the APIs presentation pages.

8.4.2 Image Moderators

Are current image ACM considering text inside images? To answer such question,
we analyze the scores of only Clean samples. An example of Clean image is shown
in Figure 8.6a. We test the following ACM deployed by top IT companies: Amazon
Content Moderation8, Google Safe Search Detection9, and Microsoft Content Moderator.10

Each ACM identifies different aspects of inappropriate images. More details are
avilable in Appendix 8.7.2. For each analyzed ACM, we consider a post malicious if
it is linked maliciously to at least one of the malicious classes. We measure the attack
performance with the attack success rate (ASR), defined as the ratio of unsafe content
undetected divided by the total number of tests.

We find that all of the services cannot detect offensive text in images, even with-
out obfuscation. Clean images reached a success rate of 1 for Amazon and Microsoft,
and 0.97 for Google. The 3% images labeled as inappropriate by Google were iden-
tified as spoofed. This finding suggests that analyzed CV-based ACM do not con-
sider the case of images containing text. We highlight the gravity of such a finding:
if an online platform adopts current ACM solutions, attackers could bypass their
automatic monitoring systems by just putting plain text inside images. Thus, on-
line platforms should manually design defense mechanisms that follow the schema
shown in Figure 8.3. We believe that the ACM developers should address this issue
since leaving uncovered our proposed scenario (text inside images) weakens their
systems’ reliability, and expose their users to real threats.

Takeaway 2: Real wolrd ACM are not considering text within images, which opens
severe security threats.

8https://docs.aws.amazon.com/rekognition/latest/dg/moderation.html
9cloud.google.com/vision/docs/detecting-safe-search

10https://azure.microsoft.com/services/cognitive-services/content-moderator/

https://docs.aws.amazon.com/rekognition/latest/dg/moderation.html
cloud.google.com/vision/docs/detecting-safe-search
https://azure.microsoft.com/services/cognitive-services/content-moderator/
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8.4.3 Cross-domain Moderators

Section 8.4.2 shows that ACM currently do not consider text inside images for the
moderation. The natural follow-up question is: “Would adding an OCR module to
an ACM effectively ban CC-CAPA?” We thus implement an ACM following the con-
cepts introduced in Section 8.1.2 and preventively assess its robustness. In particular,
we defined a pipeline that, given an image, extracts the text using an OCR, and then
a textual ACM processes it. In this experiment, we vary the OCR technology while
using Microsoft Content Moderator to spot potential harmful extracted sentences. In
this stage, since we know a priori that Microsoft considers words ∈ D

m+g
tox as toxic,

a misclassification after the text extraction can be due only to an OCR failure. We
analyze OCR provided by Amazon11, Google12, Microsoft13, and the popular free
python library Tesseract.14

We evaluate textual captchas with two metrics: the attack success rate (ASR) as
defined in Section 8.4.2, and the average normalized Levenshtein distance (NLD):

NLD(x, x′) =
L(x, x′)

max(|x|, |x′|) , (8.3)

where x represents the true string in the image, x′ the OCR output, L the Levenshtein
distance, and |x| the number of characters in x. The Levenshtein distance measures
the number of single-characters edits (e.g., addition, modification, deletion) required
to make x = x′; it is defined between 0, when x = x′, and the maximum length
between the two strings when they completely differ. The NLD measure defined
in Equation 8.3 is thus defined in [0, 1]. With the ASR we aim to understand the
evasion power of our proposed attack, while with the NLD we aim to understand
the number of mistakes that OCR does.

Figure 8.7 shows the attack performance among the four services. We can first
notice that the ASR rate on Clean images is very low, meaning that OCR correctly ex-
tract the input text. We recall that Clean samples do not have any visual transforma-
tion (e.g., rotation, complex background), and thus we expect that OCR work prop-
erly in such a case. This result suggests that ACM following the schema proposed
in Section 8.1.2 are resistant to those attacks that only apply the domain-transfer
technique T1. Moreover, such a schema present a valid solution easily adoptable by
commercial ACM. Indeed, the results on Clean images are much higher compared to
the one presented in Section 8.4.2.

On the opposite, the ASR is close to 1.0 for both Claptcha and Multicolor variants,
meaning that offensive textual captchas successfully evaded the ACM in all samples.
Our captcha implementation Homemade has an average ASR of 0.8, probably due
to the less number of transformation applied compared to Claptcha and Multicolor.
Similar trends can be found with the NLD measure. We report the complete results
in Appendix 8.7.2

The results presented in this section suggest that ACM using the schema pro-
posed in Figure 8.3 are vulnerable to textual captchas with few transformations (e.g.,
Homemade class). Moreover, the more transformations, the higher the attack success
rate, reaching the perfect evasion rate for Claptcha and Multicolor.

11https://aws.amazon.com/it/textract
12https://cloud.google.com/vision/docs/ocr
13https://docs.microsoft.com/en-us/rest/api/cognitiveservices/contentmoderator/

imagemoderation/ocrfileinput
14https://pypi.org/project/pytesseract

https://aws.amazon.com/it/textract
https://cloud.google.com/vision/docs/ocr
https://docs.microsoft.com/en-us/rest/api/cognitiveservices/contentmoderator/imagemoderation/ocrfileinput
https://docs.microsoft.com/en-us/rest/api/cognitiveservices/contentmoderator/imagemoderation/ocrfileinput
https://pypi.org/project/pytesseract
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FIGURE 8.7: Cross-domain evaluation. We report the Attack Success
Rate (ASR) (the higher, the better).

Takeaway 3: Industrial OCR struggle against even the simplest obfuscation techniques.

8.5 CC-CAPA Detection Strategies

This section presents CC-CAPA detection strategies. Section 8.5.1 describe possible
defense directions. Section 8.5.2 and Section 8.5.3 present, respectively, supervised
and unsupervised approaches to tackle the problem. In Section 8.5.4, we discuss
general CAPA prevention. Last, we compare our defense strategies to state-of-the-
art in Section 8.5.5.

8.5.1 Overview

In the previous section, we demonstrated how textual captchas can successfully
evade ACM monitoring. Since the generation process of customizable textual
captchas is quite naïve, this attack could be massively adopted by many users aim-
ing to spread online messages without being censored. Indeed, social network users
are already adopting CC-CAPA (and CAPA in general, see Section 8.2). For simplic-
ity and to demonstrate the proposed attack capabilities, we tested the hate speech
evasion task only. Even so, the attack surface is greater than evading hate speech
alone, since it can encompass the entire spectrum of text that an online platform
could potentially ban (e.g., opinion mining) or analyze (i.e., censorship).

It is therefore necessary to discuss potential mitigation to CC-CAPA. We identify
three possible directions:

• Prevention. Making ACM robust to CC-CAPA is the ideal solution, which in-
volves the deployment of more robust OCR.

• Detection. Strategies that identify CC-CAPA samples might help OSN to ban
such samples or collect data to train robust OCR.

• User Reporting. After CC-CAPA spread in the OSN, users can manually report
the presence of toxic content. This data can thus be used to train robust OCR
as well.
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Although ideal, prevention seems currently unpractical. Indeed CV researchers are
currently studying solutions to make OCR robust in complex scenarios [179]. Simi-
larly, user reporting should only compensate failures of automatic defensive mecha-
nisms. Indeed, the reported toxic samples has already been spread and (potentially)
harmed users. Moreover, we cannot estimate if and when users will report a toxic
content.

In this work, we thus focus on the detection scenario. As we previously intro-
duced in Section 8.1.3, captchas are generally a defensive mechanism. So far, the
research community has primarily focused on the definition of new captchas or
captchas breakers from an attacker’s perspective. The aftermath is that adopting
textual captchas as an attack vector creates an uncovered area of cyber security: the
captchas identification. Indeed, captcha breakers start from the hypothesis to know
a priori if an image is a captcha [320]. OSN can adopt CC-CAPA detectors in three
fashions:

1. Detected samples can be directly blocked; this solution might be useful when
a platform requires absolute control over its content. Conversely, it might not
be ideal in more relaxed scenarios. Indeed, if the platform decides to ban all
CC-CAPA samples indiscriminately, users’ (inadvertently) posting bening CC-
CAPA samples would feel censored without a reason.

2. Detected samples can be posted, but human operators will revise their good-
ness.

3. Detected samples can be gathered to create a dataset aiming to build OCR
robust to CC-CAPA. We discuss this scenario in Section 8.5.4.

8.5.2 Supervised Approach: Classification

Overview. A simple solution is to distinguish CC-CAPA samples from normal
OSN posts. In Section 8.5.1 we motivated the need of a countermeasures to our pro-
posed attack, and we identified a possible solution: the textual captcha identification.
We can model such a task as a binary classification problem, where the two classes
are captcha and non-captcha.

Dataset. We now describe the datasets we used to deploy our defense, keeping
in mind the following reasons:

1. The target are OSN. We must remember that, generally, ACM are deployed
on OSN (e.g., Facebook, Twitter, Flickr). It is thus fundamental that the non-
captcha class captures representative data of the target OSN.

2. Imbalanced dataset. Intuitively, we might expect that the majority of the posts in
an OSN are not CAPA samples. Thus, we expect the dataset to be imbalanced
and that the non-captcha class contains the majority of the samples.

We built three datasets, strarting from three distinct OSN for the non-captcha class:
Pinterest, Twitter, Yahoo-Flickr. We selected these datasets because images are a sub-
stantial portion of their daily content. For the captcha class, we used the dataset the
authors created in [320], made out of 11 different schemes, each with 700 samples,
for a total of 7700 samples. We call this dataset C11. In Appendix 8.7.2, more in-
formation about the captcha schemes contained in C11. Table 8.2 summarizes the
statistics of the four sources. We thus created the three datasets: Pinterest + C11,
Twitter + C11, Yahoo-Flickr + C11. Each dataset’s version is split using 70%, 10%,
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TABLE 8.2: Datasets’ statistics.

Origin Class #Samples [k]

C11 [320] captchas 7.7
Pinterest [107] non-captchas 70
Twitter [296] non-captchas 470

Yahoo-Flickr [289] non-captchas 137

and 20% for the training, validation, and testing partitions. Due to computational
limitations, we used just a random subset of Yahoo-Flickr.

Models. In this work, we use two type of models: naïve classifiers and fine-tuned
classifiers. The naïve classifier is defined as follows: Conv2D with kernel size = 5
and 6 output channels, followed by a second Conv2S with kernel size = 5 and out
16 output channels; the output is then flattened and forwarded to three linear layers
(10K neurons, 1000, and 2 respectively). Each layer adopts the ReLU as the acti-
vation function; moreover, after both Conv2D we apply a MaxPool2D with kernel
size = 2. For the fine-tuned models, we use three well known pre-trained mod-
els: Alexnet [163], Resnet18 [283], and VGG [267]. The experiments are conducted in
Pytorch. The fine-tuning strategy follows the official Pytorch tutorial [136]. All mod-
els are trained using an SGD optimizer (learning rate = 0.001, momentum = 0.9), a
cross-entropy loss, and an early stopping mechanism that stops the training if the
validation loss is not optimized for five epochs. The models are trained for a maxi-
mum of 200 epochs. Results. We evaluate our models using three standard metrics:
F1-score macro, precision, and recall. Table 8.3 summarizes the results. n general, all
of the classifiers obtain strong classification results close to 100% F1-score in all the
scenarios (i.e., Pinterest + C11, Twitter + C11, Yahoo-Flickr + C11). This result im-
plies that companies can easily recognize captchas schemes known at training time
with extremely good performances.

TABLE 8.3: Avg retrieval results of 11 captcha schemes in different
OSNs.

Dataset Pinterest + C11 Twitter + C11 Yahoo-Flickr + C11

Metrics F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec.
Naïve 99.8 99.3 99.9 99.5 99.2 99.2 99.9 99.6 100
Alexnet 99.9 99.8 1 99.8 99.5 100 99.9 99.8 100
Resnet18 100 100 100 99.9 99.7 100 99.9 99.7 100
VGG 99.9 99.9 100 99.9 99.6 100 99.9 99.8 100

We further investigated if our supervised technique could spot captcha schemes
not seen in training phase (i.e., unknown). Indeed, the definition of new captcha
schemes is relatively easy by just varying the number and type of transformations.
Moreover, a specific type of transformation can be executed differently; for example,
occluding symbols can vary (e.g., lines, segments). As experiment, we tested our
models on Dm

tox (see Section 8.3.3), over the three classes Claptcha, Multicolor, and
Homemade, which were unknown at training time. Our algorithm could detect some
Claptcha samples, but failed with Multicolor and Homemade. A possible explanation is
that Claptcha’ style is quite similar to some captchas styles presented in our training
partition. Thus, if a platform is interested in finding unknown templates, a more
generalizable defense solution is needed, which we present in Section 8.5.3.
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Takeaway 4: Platforms can use supervised techniques to spot samples belonging to a
target template, with extremely high accuracy.

8.5.3 Unsupervised Approach: Outlier Detection
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FIGURE 8.8: T-SNE 2D visualization of 2000 samples benign (Pinter-
est) and 2000 captchas (C11 and CAPA).
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FIGURE 8.9: F1-score of different Outlier Detection at the varying of
the OSN.

Overview. Supervised techniques guarantee high detection performance on
known captcha schemes, while they poorly generalize on unseen styles. There-
fore, for unknown styles, we adopt an orthogonal perspective toward our problem.
We can assume that CC-CAPA is not widely exploited on the web platforms, and
thus CC-CAPA samples look different from the majority of regular platforms’ posts.
Therefore, we adopt an outlier approach, where regular platforms posts are inliers
and captcha outliers.

Dataset. We use the sources of the same datasets presented in Section 8.5.2 (Pin-
terest + C11, Twitter + C11, Yahoo-Flickr + C11) but a different training and valida-
tion strategy. In particular, the training set contains only samples belonging to the
target OSN, while validation and test sets contain both benign and captcha samples.
For each OSN, we first take a random subset of 50K samples, and then we split it
into training (70%), validation (10%), and testing set (20%). In our investigation, we
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are willing to understand how many captcha styles we should know to build a robust
defense. Thus, we vary the number of known captcha styles in the validation set
based on the 11 classes available in the C11 dataset. We experiment with different k
known styles, k ∈ {2, 4, 6, 8, 10}. For each scenario, we repeat the experiment with
5 different styles combinations. The known captcha styles are then randomly split
into validation and testing sets, with a 50% of proportion. The unknown captcha
styles will belong exclusively to the testing set. Last, we add Dm

tox to the test set (i.e.,
all the Claptcha, Multicolor, and Homemade captchas ).

Models. All images are first converted into a 512-dimension embedding repre-
sentation, using the pre-trained model ResNet-18 [283]. The first component of our
defense is a dimensionality reduction module. We opted for the Principal Compo-
nent Analysis (PCA), on which we vary the number of components: [2, 8, 64, 128].
We then tested the following algorithms: Isolation Forest (IF), Local Outlier Factor
(LOF), ECOD [175], and One-Class SVM (OCSVM), using the implementation avail-
able in PyOD [330]. For each model, we tune a common hyper-parameter, i.e., the
contamination level [0.1, 0.05, 0.01]. Moreover, IF are tuned on the number of esti-
mators [16, 32, 64, 128], LOF on the number of neighbors [2, 4, 8, 16], OCSVM on the
kernel type [rb f , sigmoid]. All the models are tune with a grid-search strategy.

Results. We first visually analyze our data, to better understand possible out-
comes. Consider the combination of Pinterest, C11, and Dm

tox datasets. We randomly
sampled 2000 items each. From these samples, we first extracted the embedding,
and obtained a two dimensional feature space with the combination of a PCA (from
512 to 50 features) and T-SNE (from 50 to 2 features). Figure 8.8 shows the distri-
bution of 2000 Pinterest benign samples among different captcha samples. We can
notice that captchas samples have distinct and unique pattern compared to Pinter-
est ones. However, each captcha styles defines an own and distinct cluster as well,
explaining the poor generalization performance in classification tasks.

Our next step is to examine the results of three outlier detectors. Figure 8.9
shows the F1-score at testing time at the varying of the number of known captcha
styles used in the validation set. LOF outperforms both Isolation Forest, ECOD, and
OCSVM in the three OSN scenarios, reaching, on average, a performance of 80%
F1-score. We can also notice that the amount of known styles has a limited impact,
finding a performance stabilization starting from 4 styles. Furthermore, we identify
consistent trends with both known and unknown captcha styles recognition. More
details in Appendix 8.7.3. Going in more details, LOF labeled as outliers all the
captcha classes (both C11 and our three classes in Dm

tox), with a minimum of 60%
accuracy for Claptcha, and up to 96% accuracy for Homemade. Thus, through this al-
gorithm, we were able to identify all the captcha schemes through a generalizable
solution.

In our experiments, our best algorithm (i.e., LOF) labeled as outliers about 5% of
benign posts per dataset, that one could consider as false positives. However, since
these posts are considered “unconventional” in the scope of OSN by our algorithm,
there is an high chance that such posts could contain some other CAPA templates, or
more in general, content that could have evaded ACM. Thus, we decided to perform
a visual inspection on the three datasets. We manually inspected the 506 Twitter im-
ages, 530 Pinterest images, and 479 Yahoo-Flickr images labeled as outliers (i.e., false
positives), which confirmed our intuition, i.e., CAPA is present in many variants:

• Pinterest. Only text without obfuscation: 22%; Text over hard background:
25%; Distorted text: 10%; Occluders: 3%; Natural Scene Text: 7%; Object shape:
1%.
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• Twitter. Only text without obfuscation: 36%; Text over hard background: 36%;
Distorted text: 14%; Occluders: 5%; Natural Scene Text: 11%; Emoji: 3%.

• Yahoo-Flickr. Only text without obfuscation: 1%; Text over hard background:
3%; Distorted text: 3%; Occluders: 1%; Natural Scene Text: 7%.

We also found 13 extremely dangerous images on Twitter (8 porn images, 3 gore im-
ages, one image inciting racism, and one image advertising drugs). Moreover, we
found several posts adopting other CAPA templates. In Figure 8.10 we show some
examples of false positives we identified through outlier detection techniques, which
should require human moderation. In conclusion, through the presented unsuper-
vised approach, we were able to spot all our captcha templates, and even additional
CAPA templates (see taxonomy of Figure 8.4), such as all the CAPTCHA Challenges,
Scene text, Emoji, and Slang obfuscations.

Takeaway 5: Unsupervised algorithms offer a solid solutions to spot CC-CAPA. Among
the outliers, additional CAPA templates emerged.

FIGURE 8.10: Example of false positive found among the outliers that
should be moderated.

8.5.4 Toward Preventing CAPA

The presented methods can effectively detect CC-CAPA in the wild, offering a reli-
able defense strategy. The next step is to shift from detection to prevention techniques
to defend from CC-CAPA, and more in general, from CAPA. The main reason we
could not focus on prevention techniques, i.e., implementing and training robust
OCR, is that a large dataset currently does not exist. Nevertheless, our supervised
and unsupervised approaches can assist in reaching such a goal. We can thus shift
the research question from how to defend against CAPA to how to design a large enough
dataset with CAPA samples. Once we answer the latter question, researcher will need
to focus on how to design effective OCR. The definition of a CAPA dataset can be
divided into two stages:

1. Identification, aiming to identify CAPA families that can affect OCR.

2. Retrieval, aiming to collect a large number of samples belonging to a specific
CAPA family.

Identification. The identification stage can be addressed by user-reporting, and
unsupervised techniques. User reporting a toxic post implies a failure of the ACM,
that can be derived by an OCR or toxic classifier failure. If OCR failure occurs,
then the OSN identify a potential effective CAPA family. On the opposite, OSN
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human operators can leverage unsupervised techniques (see Section 8.5.3) to identify
anomalous posts shared in the platform, seeking for potential toxic posts that evaded
ACM. Indeed, as shown in Figure 8.8, CAPA families differ from normal OSN posts.

Retrieval. Once human operators identify new family of CAPA samples, the
goal is to collect a large number of similar samples that uses such obfuscations. The
goal is to create a dataset with such a family containing toxic and benign samples.
Here, they can use the supervised method we discuss in Section 8.5.2.

8.5.5 Comparison with State of the Art

Given the novelty of the attack in OSN, to the best of our knowledge, there are
no other defensive detection methodologies to compare our work with. However,
in the literature we found a similar topic to ours, i.e., detecting image spam con-
veyed in emails, sometimes resembling captchas [26]. In the survey of ten years
ago that marked the problem of filtering image spam as “solved” [27], three main
defense families were presented. The first family involves the usage of OCR extrac-
tion combined to text categorization, which is ineffective in our case, as discussed
in Section 8.4.3. The second and third families are, respectively, image classification
and near-duplicate detection: both focus on spotting spam images similar to templates
known a priori. In particular, they first extract low-level features from a very specific
template, and then use machine learning or statistical tests to find images similar to
a query image. Through our experiments, we already demonstrated that if the tem-
plate is “being a captcha”, both methods are ineffective. Indeed, captchas can have
very different low-level features based on the adopted obfuscation techniques, and
it is impossible to extract pre-determined features for the infinite number of possi-
ble obfuscations. Such approaches are better related to our scenario in which we
know a captcha schema, and we find images belonging to it. In our experiments, we
assessed a near-perfect detection in such situation. Moreover, our approach adopts
Deep Learning (i.e., CNNs) to automatically extract low-level features (compared to
manual extraction in prior works), making our methods more scalable and thus su-
perior. For such reasons, we did not conducted further experiments based on prior
works.

8.6 Summary and Future Works

Content moderators are essential in our society for the moderation of inappropriate
content spread and shared on online platforms. Dangerous content (e.g., hateful
words, nudity images) can potentially reach a broad audience, hurting or harming
sensitive people. Online platforms started adopting automatic tools based on deep
learning solutions to deal with the massive content volume.

As part of this work, we first present Captcha Attack (CAPA) and its taxonomy,
which is based on observation of OSN obfuscated posts. We then experimentally
demonstrate the ferocity of CC-CAPA, a broad sub-category of CAPA, showing that
current ACM cannot moderate such samples. We demonstrated how easily an at-
tacker could elude ACM detection by i) changing the domain from text to image
and ii) applying captchas schemes. With the first, an attacker can evade those ACM
not considering images containing text scenarios. With the latter, an attacker can
affect NLP-based tools’ performance by exploiting OCR weaknesses. While CC-
CAPA, and more in general CAPA, is easy to implement and does not require any
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information about the target model, an ideal countermeasure is far from trivial. To-
ward this direction, we propose two solid detection approaches that can help to find
CC-CAPA (and CAPA) samples in the wild.

Our work poses several challenges that might inspire future works. First of all,
it is necessary to define a boundary between captchas and non-captchas. Second,
for the various categories of the proposed taxonomy, a proper dataset should be
collected, to eventually train detectors or sanitizers to help ACM. Last, it would be
ideal to build a model that works against all the obfuscation variants described in
taxonomy (e.g., emoji, leet speech).

8.7 Appendix

8.7.1 CAPA Dataset

Transformations

Table 8.4 summarizes the transformations applied in the four sample classes; we can
notice that different styles adopt different transformations. For example, Clean only
uses only domain transfer, while Claptcha and Multicolor a high number of transfor-
mations.

TABLE 8.4: List of transformations for textual captchas variants.

T# Transformation Clean Claptcha Multicolor Homemade

T1 Domain transfer ✓ ✓ ✓ ✓
T3 Rotation ✓ ✓
T4 Distortion ✓
T5 Waving ✓
T6 Solid background ✓
T7 Noisy background ✓ ✓
T8 Different fonts & sizes ✓ ✓
T9 Different colors ✓ ✓
T10 Occluding symbols ✓ ✓ ✓

Captchas Readability

Ideally, if CC-CAPA samples are posted on the web, they should be easy to read
for humans, otherwise the whole attack would lose its purpose. Although post-
ing unreadable content would surely evade any ACM, our samples need to have a
good balance between low OCR-readability and high human-readability. While we
evaluate efficacy of OCR in Section 8.4, we assess our captchas human-readability
through an user study. We did not use any harmful word at this stage to not hurt
anyone sensibility.

Methodology From a list of of English verbs15, we randomly selected 600 words,
generating the corresponding custom textual captchas, 200 for each captcha class
(Clapthca, Multicolor, Homemade). Then, we asked 50 participants (27 females, 23
males, age mean 28.6, std 6.1) to annotated them. Each candidate annotated 50 sam-
ples, providing the text they could read along with a difficulty score, from 1 (very

15github.com/aaronbassett/Pass-phrase
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easy) to 5 (very difficult), to express how much the participant was sure about the
answer, and how immediate the captcha was to solve. The confidence score is crucial
to understand if people are likely to read captchas while scrolling social networks
feed, or would ignore them because considered difficult. Each sample was processed
by five participants. During the task, no time restrictions were given.

Metrics Participants are evaluated with two metrics: accuracy and Character Error
Rate (CER). In particular, the accuracy evaluates the percentage of samples that were
correctly annotated. CER, which is a popular OCR evaluation metric [200], measure
the character distance between the annotation and the ground truth (the lower, the
closer are the two words). The CER score is computed with Fastwer python library.16

Results As shown in Figure 8.11, we confirm the high readability of our samples.
On average, humans obtained 94.53% and 1.31% of accuracy and CER, respectively.
Overall, the task was trivial, with low difficulty scores reported (Claptcha = 1.3, Mul-
ticolor = 1.5, Homemade = 1.3). Moreover, we counted the number of samples that
have been always succesfully (or unsuccesfully) annotated by participants, produc-
ing and agreement score. Most samples are always correctly annotated (82.83%),
while only 0.5% are always wrongly annotated. We thus expect a comparable high
readability on CC-CAPA dataset as well.
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FIGURE 8.11: User-study performance distribution. We report accu-
racy (the higher, the better), and CER (the lower, the better).

8.7.2 Captcha Schemes

During our experiment, we used the dataset from [320] to represent the captcha
class. Table 8.5 shows examples of them along with the applied transformations.

Attack

We test the following ACM deployed by top IT companies.

16github.com/kahne/fastwer
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TABLE 8.5: Captcha schemes used in our experiment coming
from [320].

Scheme Example Trasformations

Alipay Overlapping, rotation, distor-
tion

Baidu
Occluding lines, overlapping,
rotation, distortion, waving,
varied font size & color

eBay Overlapping, distortion, rota-
tion, waving

Google
Overlapping, rotation, distor-
tion, waving, varied font sizes &
color

JD Overlapping, rotation, distor-
tion

Microsoft
Overlapping, solid background,
rotation, waving, varied font
syles & sizes

Qihu360 Overlapping, rotation, distor-
tion, varied font sizes

Sina Overlapping, rotation, distor-
tion, waving

Sohu
Overlapping, complex back-
ground, occluding lines, rota-
tion, varied font size & color

Weibo Overlapping, occluding lines,
rotation, distortion

Wikipedia Overlapping, rotation, distor-
tion, waving

• Amazon Content Moderation.17 The tool aims to classify inappropriate images
among different classes, i.e., explicit nudity, suggestive, violent, visually dis-
turbing, rude gestures, drugs, tobacco, alcohol, gambling, and hate symbols.

• Google Safe Search Detection.18 The tool returns the likelihood of content con-
taining spoof, medical, violent, or racy content. The likelihood is defined with
the following classes: unknown, very unlikely, unlikely, possible, likely, and
very likely. We consider content malicious if it is classified as possible, likely,
or very likely.

• Microsoft Content Moderator.textitMicrosoft Content Moderator.19 The API
identifies if the given image is appropriate for an adult audience (e.g., sexu-
ally explicit) or racist.

In Figure 8.12, the performance of CC-CAPA among different targets.

8.7.3 Defense

Table 8.3 summarizes the results of the classifiers when the captcha styles are known.
Table 8.6 shows the generalization performance over the three Dm

tox captcha classes:
Claptcha, Multicolor, and Homemade.

17https://docs.aws.amazon.com/rekognition/latest/dg/moderation.html
18cloud.google.com/vision/docs/detecting-safe-search
19https://azure.microsoft.com/services/cognitive-services/content-moderator/

https://docs.aws.amazon.com/rekognition/latest/dg/moderation.html
cloud.google.com/vision/docs/detecting-safe-search
https://azure.microsoft.com/services/cognitive-services/content-moderator/
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FIGURE 8.12: Cross-domain evaluation. On the left, the Attack Suc-
cess Rate (ASR). On the right, the average Normalized Levenshtein
Distance (NLD). For both measures, the higher, the more successful

the attack.

TABLE 8.6: Percentage of Dm
tox captchas detected by models trained

on data coming from different OSNs.

Dataset Pinterest Twitter Yahoo-Flickr

Classes Clap Multicol Homemade Clap Multicol Homemade Clap Multicol Homemade
Naïve 11.95 0 0 1.2 0 0 51.79 0 0.2
Alexnet 11.16 0 0 1 0 0 52.19 0 0
Resnet18 0 0 0 0 0 0 0 0 0
VGG 0 0 0 0 0 0 0 0 0

2.5 5.0 7.5 10.0
k classes

0

20

40

60

80

100

Ac
cu

ra
cy

Dataset = Pinterest

2.5 5.0 7.5 10.0
k classes

Dataset = Twitter

2.5 5.0 7.5 10.0
k classes

Dataset = Yahoo-Flickr
Algorithm
LOF
Isolation Forest
ECOD
OCSVM

FIGURE 8.13: Accuracy of different Outlier Detection on known
captcha styles at the varying of the OSN.
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FIGURE 8.14: Accuracy of different Outlier Detection on unknown
captcha styles at the varying of the OSN.
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Chapter 9

Conclusion and Future Work

The widely adoption of data driven approaches in cybersecurity lead to the advance-
ment of the state-of-the-art in many themes, from the malware to the spam detection.
This dissertation aims to present benefits and drawbacks derived by the conjunction
of the disciplines of machine learning and cybersecurty. Among the benefits, we saw
examples of NIDS such as XeNIDS (in Chapter 2) and DETONAR (in Chapter 3),
or applications that analyze web content, from reviews (in Chapter 4) to deepfake
videos (in Chapter 5). Among the drawbacks, we saw examples of how attackers can
undermined ML algorithms, such as ZeW (in Chapter 7) and CAPA (in Chapter 8).

This dissertation presents many opportunities for future research directions.

• XeNID (Chapter 2): the definition of a new testbed that considers different
network topologies while maintaining the same type of attacks is crucial and
is fundamental to letting researchers properly validate models cross-networks.

• DETONAR (Chapter 3): DETONAR is a light NIDS that can be easily adopted
in the industry. Possible research directions consist in testing such a system in
real-life conditions or with a larger number of IoT nodes (currently 16).

• Helpful Reviews prediction with URI (in Chapter 4): this work renews the
importance of feature engineering and leads future researchers to investigate
more in-depth features derivable by forums organization rather than focusing
merely on the ML algorithm choice.

• PRaNA (Chapter 5): the proposed orthogonal approach of analyzing real
videos among their deepfake counterparts might open new opportunities to
understand the discrepancies between the two categories better.

• ZeW (Chapter 7): the attack shows that evasion attacks can occur by leveraging
ML preprocessing algorithms. This work motivates cybersecurity practitioners
to investigate better vulnerabilities derivable from ML pipelines rather than
focusing on ML algorithms only.

• CAPA (Chapter 8): this study shows that real-life adversarial samples differ
from state-of-the-art, being less optimal yet effective. This work highlights the
importance of considering real-life attackers when designing ML algorithms
and their security.
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