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Abstract: In this review, the role of innate and adaptive immunity in the pathogenesis of inflam-
matory bowel diseases (IBD) is reported. In IBD, an altered innate immunity is often found, with
increased Th17 and decreased Treg cells infiltrating the intestinal mucosa. An associated increase in
inflammatory cytokines, such as IL-1 and TNF-α, and a decrease in anti-inflammatory cytokines, such
as IL-10, concur in favoring the persistent inflammation of the gut mucosa. Autoinflammation is high-
lighted with insights in the role of inflammasomes, which activation by exogenous or endogenous
triggers might be favored by mutations of NOD and NLRP proteins. Autoimmunity mechanisms also
take place in IBD pathogenesis and in this context of a persistent immune stimulation by bacterial
antigens and antigens derived from intestinal cells degradation, the adaptive immune response
takes place and results in antibodies and autoantibodies production, a frequent finding in these
diseases. Inflammation, autoinflammation and autoimmunity concur in altering the mucus layer and
enhancing intestinal permeability, which sustains the vicious cycle of further mucosal inflammation.
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1. Introduction

Inflammatory bowel diseases (IBD), comprising Crohn’s disease (CD) and ulcerative
colitis (UC), which typically occur in young adults and children, are persistent with chronic
relapses and remittance. The prevalence of IBD, estimated at 0.6 to 1% in industrialized
countries, has increased worldwide, from 3.7 million cases in 1990 to 6.8 million in 2017,
increasing in particular in regions with historically low rates and limited resources, prob-
ably due to the spread of Westernized lifestyle and dietary habits [1]. IBD mainly affect
the gastrointestinal tract, UC involving the colon mucosa and CD causing transmural
inflammation in any part of the gastrointestinal tract, from the mouth to the anus. However,
extra-intestinal manifestations involving the skin, the musculoskeletal system, the eyes and
other organs are not infrequent. Clinically, their onset might be insidious with unspecific
symptoms often mimicking those of functional diseases, such as irritable bowel syndrome
(IBS), or hyperacute with bloody diarrhea, weight loss and abdominal pain. These diseases
persist lifelong, the clinical course varying from patient to patient, sometimes with per-
sistent remission or, more frequently, with alternating remission and flares. The various
conditions potentially triggering flareups, include infections, stress events, environmental
factors and drugs. The pathogenesis of these diseases is not yet fully understood, although
an altered innate and adaptive immune response associated with the disequilibrium of the
intestinal microbiome with genetic predisposition appears to be the most likely hypothesis.
Chronic inflammation that characterizes IBD appears to involve the inflammasome and the
autophagy pathways as well as inflammatory cells and cytokines and is often associated
with autoimmunity. The pathogenesis of autoimmune diseases is characterized by loss of
tolerance against self-antigens and by the production of auto-antibodies detectable in blood
with involvement of adaptive immunity. Autoinflammatory diseases share with autoim-
mune diseases several clinical signs, but they are mainly due to altered innate immunity
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and activation of the inflammasomes by exogenous and/or endogenous triggers, without
auto-antibodies production. In IBD, both autoimmunity and autoinflammation co-exist.

2. Inflammation in IBD

The comprehensive view of IBD pathogenesis takes into account several factors,
including the complex interplay between the patient’s genome with the “exposome” and the
“immunome” [2]. More than 200 IBD-associated genetic loci have been reported [3], which
account for about one-fourth of all cases and involve genes associated with inflammation
and autophagy [2,4–6].

Any environmental factor in which a subject might be exposed is included in the
collective noun “exposome”, where the endogenous components are represented by the mi-
crobiome [2]. Following exposure, the intestinal mucosal immune reaction (“immunome”)
leads to inflammation and tissue damage accompanied by innate and adaptive immune
response, with a predominant Th1 and Th17 response with IL-12, interferon (IFN)-γ and
IL-17A production in CD [7] and a Th2 response with IL-5 and IL-13 production in UC
(Figure 1) [2,8]. Intestinal inflammation is often associated with intestinal barrier alterations
due to decreased mucin gene expression and/or altered tight-junction (TJs), resulting in
increased permeability that may trigger activation of dendritic cells (DCs) in the lamina
propria through Toll-like (TLR) and nucleotide binding domain-like receptors (NLR) by
the enteric microflora antigens [9–11]. Other immune cells involved in IBD-associated
intestinal inflammation are natural killer (NK) cells and innate immune cells derived from
lymphoid progenitors (ILCs) group 3 producing the Th17 cell-associated cytokines IL-17
and IL-22 [12,13].
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intestinal permeability of the epithelial cell layer allows in both diseases Danger (DAMPs) and 
Pathogen (PAMPs) associated molecular patterns (red dots) to easily reach the mucosa and stimulate 
innate immune cells. In UC neutrophil extracellular traps (NETs, green) are more abundant than in 
CD, activate M1 macrophages inducing TNF-α and IL-1β release. It is possible that NETs activate 

Figure 1. Schematic illustration of the main differences between ulcerative colitis (UC, left) and
Crohn’s disease (CD, right) in inflammation, autoinflammation and autoimmunity. The increased
intestinal permeability of the epithelial cell layer allows in both diseases Danger (DAMPs) and
Pathogen (PAMPs) associated molecular patterns (red dots) to easily reach the mucosa and stimulate
innate immune cells. In UC neutrophil extracellular traps (NETs, green) are more abundant than in
CD, activate M1 macrophages inducing TNF-α and IL-1β release. It is possible that NETs activate
also the adaptive immune response causing ANCA autoantibodies production. The expression of
inflammasomes, mainly NLRP1 and NLRP3, is induced in UC concurring in further enhancing IL-1β.
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CD4+ Th2 and CD8+ cells with IL-5, IL-13 and IFN-γ production prevails. In CD CD4+ Th1 cells
prevails over Th2 with TNF-α and IFN-γ production. M1 macrophages produce mainly IL-12, while
loss of function of the inflammasomes NLRP1 and NLRP3, due to NOD2 mutations and increased
Immunity-related GTPase M (IRGM) that enhances NLRP3 degradation, occurs.

2.1. Intestinal Barrier Alterations
2.1.1. The Mucus Layer

The intestinal epithelial cells (IECs), which are linked to each other by the TJs, mainly
made up of claudins, occludins and F-actin, are protected by a dense mucus layer. In addi-
tion to mucus, mucin glycoproteins (MUC), defensins, immunoglobulins and antimicrobial
peptides constitute the first line defense of IECs from the harmful lumen contents. Other
specialized cells, such as Paneth cells, goblet cells and stem cells, concur in the epithelium
together with immune cells. Intestinal health also depends on commensal bacteria, the
largest microbiome in the human body, and their prevalence in the colon being particularly
elevated [14].

The mucus layer lubricates the passage of stool along the intestine, but is also a barrier,
the primary physical defense of the host from microbiota and noxious agents, able also
to limit the presentation of antigens [15]. The protective effect of mucus is important
not only in preventing IBD, but also in limiting the risk of any subsequent neoplastic
transformation [16]. The main components of mucus, Gel-forming MUC, are produced by
Goblet cells, and can be subdivided into two major subtypes, namely, transmembrane and
secreted mucins. Transmembrane MUC, such as MUC2, MUC3, MUC4, MUC12, MUC13
and MUC17, which are constitutively expressed in the gastrointestinal tract, form the
glycocalyx [17], being MUC2 the predominant structural component of the mucus layer.
Interestingly, a reduced synthesis of MUC2 has been observed in human and animal IBD
models [17]. Accordingly, we previously found decreased MUC2 in CD, not in UC, stool
with respect to controls [18]. Intestinal microbes by means of the local release of bioactive
factors and the activation of different signaling cascades, might directly affect Goblet cell
function and mucin production [19]. For example, lipopolysaccharides (LPS) and flagellin
A from Gram-negative bacteria are the most common modulator of mucin production,
affecting MUC2 and MUC5AC.

Within the mucin layer, immunoglobulins and secreted antimicrobial peptides such as
defensins can be found. They play an important role in controlling microbial diversity and
antigen penetration across the gut mucosa [20]. β-defensins are decreased in the mucus
layer in UC and in colonic CD [21], and the correct expression of α-defensins appears
crucial in preventing CD [22]. The release of α-defensins (HD5 and HD6) is provided
by Paneth cell secretion, stimulated by cholinergic stimuli and bacterial factors through
NOD2 activation of the NF-κβ pathway [23]. Defective Paneth cell differentiation in CD,
linked to the absence of α-defensins, has been associated with an impaired mucosal barrier,
allowing luminal microbes to invade the mucosa and trigger a secondary inflammatory
response [21,24]. Neutrophil defensin 1 acts against a broad spectrum of infectious agents,
promotes NLRP3 inflammasome and IL-1β release [25]. We have previously found that
levels of this protein are significantly increased in CD, but mainly in UC stool as compared
to controls, suggesting its potential role in disease pathogenesis and diagnosis [18].

2.1.2. Secretory Immunoglobulins

Secretory IgA (sIgA) are the first arm of the mucosal immune system to limit pathogens,
prevent imbalance and maintain homeostasis between commensals and pathogens microor-
ganisms on the mucosal surface. This dimeric immunoglobulin class, which acts in situ [26],
is able to neutralize not only pathogens but also toxins, such as Clostridium difficile toxin
A. The sIgA-antigen immunocomplex can be internalized by Peyer’s patch M cells in the
subepithelial dome region, and the bacterial components presented to tolerogenic DCs. This
process aids in limiting the inflammation that otherwise could occur in the presence of the
enormous quantity of bacteria present in the intestinal lumen [27]. However, in some patho-
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logical conditions, the abnormal apical-to-basal retro transport of sIgA immunocomplexes
can mediate the entry of noxious antigens into the IECs [21]. In patients with IgA deficiency,
secretory IgM and, to a lesser extent, secretory IgG, are generally presumed to compensate
for lack of sIgA. However, it has been postulated that sIgA deficiency can cause a dra-
matic increase in pathobionts (commensal bacteria potentially harmful to host homeostasis
under certain conditions) and may be associated with the increase in proinflammatory
cytokines [28]. In a large cohort of IBD patients and controls, it has been demonstrated that
43 bacterial taxa were highly coated with sIgA and, in addition, immuno-therapy changes
the microbiota-specific IgA responses with respect to controls [29]. The role of sIgA in IBD
has been comprehensively reviewed by Bamias et al. [30].

2.1.3. Tight Junctions Alterations

Alterations of the TJs are hallmarks of IBD, being both consequence and cause of the
intestinal inflammation. In IBD, the expression of proteins entering in the TJs complex
might be increased (e.g., pore-forming claudin 2) or reduced (e.g., pore-sealing claudin
4 and 5) [31,32].

The hypothesis that alterations of the TJs are a primary defect in IBD is supported by
the observation that they can be found in IBD unaffected relatives, but also because they
are reported as an early event that promotes disease initiation in animal models [32–34].

On the other hand, inflammatory cytokines have been demonstrated to induce pore-
forming claudin 2 (IL-6 and IL-13) or alter occludin and ZO-1 expression (IL-1 and
IFN-γ) [35–37].

Inflammatory associated matrix metalloproteinases and the extracellular neutrophil
traps (NETs) also appear involved in altering TJs proteins causing increased intestinal
permeability and supporting the hypothesis that alterations of the TJs are a consequence of
inflammation [38–40].

In any case, the persistent inflammation in IBD sustains a vicious cycle with alterations
of the TJs that lead to increased intestinal permeability, which might favor paracellular entry
of pathogen-associated molecular patterns (PAMPs), but also of other molecules and/or
chemicals from the environment and diet, each of which is a potential activator of TLRs
and NOD-like receptors (NLR), ultimately causing inflammation [41]. This hypothesis is
supported by the finding that in IBD patients, increased intestinal permeability is associ-
ated with ongoing bowel symptoms and increased severity of diarrhea [41,42]. Another
consequence of “leaky gut” might be intestinal dysbiosis, also frequently associated with
IBD [43,44].

2.1.4. Innate Immune Receptors

The altered mucus layer and increased intestinal permeability favors microbial anti-
gens recognition by innate immune receptors which further trigger inflammation. Several
innate immune receptors are involved in microbial recognition in the superficial IECs, and
these include Toll-Like (TLR), RIG-like (RLR), NOD-like and C-type lectin receptors. These
receptors recognize evolutionarily conserved molecular structures, which are frequently re-
ferred to as microbial- or pathogen-associated molecular patterns (MAMPs or PAMPs) [20].
Different TLRs might be expressed by the same cell type and the same cell type might
express different TLRs, any of them being engaged by specific MAMPs or PAMPs ligands.
TLRs signaling results mainly in inflammatory pathways, such as NF-kB, which ultimately
induce inflammatory cytokines. In IBD alterations of TLRs, expression occur as detailed
in Table 1 [45–47]. Those TLRs with protective effects are commonly found to be reduced
in the human mucosa and/or in animal models (e.g., TLR5, which also promotes Treg
differentiation), while those promoting inflammation usually increase and might return to
baseline values during remission, such as TLR2 and TLR3 [48–54].
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Table 1. Types of TLRs described as associated with CD and UC. CS: cell surface; IC: intracellular;
Mø: Monocytes/macrophages; B: B lymphocytes; MCs: mast cells; N: neutrophils; DCs: dendritic
cells; IECs: intestinal epithelial cells. Data reported in table were collected from [45–47].

TLR Adapter Compartments Ligands Cell Types Main Alterations
in IBD

TLR1 MyD88/TRIAP CS Di- and tri-acylated
lipopeptides Mø, B, MCs No variation in IBD

TLR2 MyD88/TRIAP CS Bacterial lipoproteins
or lipopeptides Mø, B, MCs Increased in

active UC

TLR3 TRIF IC Double-stranded RNA
(viral infection)

Mø, B, MCs, N,
Myeloid DCs, IECs

Increased in active
UC and CD

TLR4 MyD88/TRIAP,
TRIF/TRAM CS LPS, free fatty acids Mø, B, MCs, N,

Myeloid DCs, IECs
Increased in UC

and CD

TLR5 MyD88 CS Bacterial flagellins Mø, Myeloid DCs,
IECs Decreased in CD

TLR6
MyD88/TRAF6

and NF-κB
pathway

CS Di- and tri-acylated
lipopeptides Mø, B, MCs Increased in UC

TLR7 MyD88 IC/Endosomal Single stranded RNA
(viral inflammation) Mø Increased in UC

TLR8 MyD88 IC/endosomal

RNA degradation products
specific to microorganism

(GU-rich single
stranded RNA)

Mø, DCs Increased in UC

TLR9 MyD88/TRAF6 IC Nucleid acid Mø, B,
plasmacytoid DCs Increased in UC

2.1.5. Laboratory Testing in IBD: Evaluation of Intestinal Barrier Integrity

Evaluation of intestinal barrier integrity can be performed with invasive procedures
such as histology or confocal laser endomicroscopy (CLE) [42]. In clinical practice, small
intestine permeability can be evaluated using the non-invasive lactulose-mannitol (L/M)
test, which is sensitive and specific, allowing organic to be distinguished from functional
diseases [41,55]. The L/M test is based on the oral administration of the monosaccharide
mannitol and the di-saccharide, lactulose. Mannitol passes the intestinal epithelial barrier
through a transcellular pathway (about 30%), while only traces (about 0.3%) of lactulose
are normally absorbed and excreted [56], their measurement in 6-h collected urine allowing
a comparison to be made between their excreted fractions, yielding an L/M ratio in healthy
individuals of less than 0.02 [55].

2.2. Innate Immune Cells in IBD

Once the epithelial defenses are damaged or impaired, an increased flow of MAMPs
from the lumen leads to the activation of the membrane receptors expressed by immune
cells [16]. Innate immune cells, such as macrophages, innate lymphoid cells, mast cells
and neutrophils, are deputed to rapidly identify and eliminate MAMPs, although their
mechanisms are based on innate immune receptors, which recognize a limited number of
molecules [57]. Antigen-presenting cells (APCs), macrophages and dendritic cells (DCs)
gather the mechanism of innate and adaptive immune response at both the local site and at
the peripheral lymph nodes [58].

2.2.1. Neutrophils and NETs

The inflamed intestinal mucosa of IBD patients is particularly enriched in neutrophils,
especially when flares occur. The intestinal neutrophilic inflammation is associated with
neutrophils activation and release of inflammatory molecules including calprotectin, a well-
established biomarker for diagnosing and monitoring IBD [18,59,60]. Neutrophils are also
emerging as primarily involved in UC pathogenesis, through neutrophil extracellular traps
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(NETs), a network of extracellular fibers comprising decondensated chromatin, DNA and
antimicrobial peptides that could express and transfer molecules and mediators (Figure 1).
In UC infiltrating neutrophils, an increased expression of the Peptidyl arginine deiminase
4 (PAD4) enzyme, a driver of the release of NETs, has been described in both human
and in animal model specimens [61,62]. In active UC, not in CD, NETs carrying IL-1β
and tissue factor accumulate in the inflamed mucosa, being induced by REDD1 driven
authophagy [63]. Moreover, NETs are stimulants for IL-1b and tumor necrosis factor
(TNF-α) release by lamina propria mononuclear cells, being treated with anakinra, an IL-1b
inhibitor, or with streptonigrin, an inhibitor of NETs formation, effective in reducing colonic
inflammation [61,63].

2.2.2. Dendritic Cells and Macrophages

In normal conditions, intestinal DCs are immune tolerant, secreting protective anti-
inflammatory IL-10, whilst in IBD the number of pro-inflammatory DCs increases. Similarly,
during inflammation activated macrophages secrete large amounts of pro-inflammatory
cytokines, differently from macrophages performing normal phagocytic functions. Two
activated macrophage types have been characterized: type M1, pro-inflammatory, and type
M2, anti-inflammatory [58]. M1 macrophages, which present pro-inflammatory functions
and have an antibacterial effect, are activated by INF-γ or GM-CSF. M2 macrophages,
induced by IL-4, IL-10, IL-13 contribute to tissue healing and fibrosis [58]. In experimental
and human IBD, M1 prevails over M2 macrophages, and molecules able to invert this
trend, such as baicalin, IL-33, lactic acid bacteria or plant derived flavonoids, allow for
the reduction of the severity of intestinal inflammation promoting mucosal healing, partly
through the activation of Wnt signaling [64–72].

Mesenchymal stem cells (MSC) and their derived products including exosomes and
tumor necrosis factor-α-induced gene/protein 6 (TSG-6) appear also able to induce M2
macrophages polarization, thus protecting intestinal mucosa from inflammation and be-
ing effective in IBD treatment. The efficacy of MSC on macrophages M2 polarization is
enhanced when these cells express HIF-1a, which occurs when these cells are maintained
in hypoxic niches, their naturally occurring home [73–82].

2.3. Adaptive Immune Cells in IBD

In a recent study evaluating the landscape of relative fractions of immune cell popula-
tions in IBD, it was shown that the proportion of adaptive immune cells was decreased in
CD and UC in ileum, colon and rectum with respect to healthy controls, while the innate
immune cells proportion was increased [83]. Furthermore, the relative fractions of the
B- and T-cell populations were both decreased in IBD, showing that in subjects with this
condition with respect to healthy individuals, there is an imbalance in both adaptive and
innate immunity [83].

The adaptive immune cells preserve immune tolerance to intestinal microbiome by
the constant crosstalk between cells and microbial antigens [84]. In IBD, adaptive immunity
is mainly led by CD4+ and CD8+ T cells, and regulatory T cells (Treg), and the active
participation of the different populations of cells accounts for heterogeneous effects and
disease manifestation in IBD patients [85].

2.3.1. CD4+ T Helper Cells

CD4+ T cells that comprise helper T (Th) and regulatory T cells (Treg) [16] have
a pivotal role in IBD. Th cells’ subtypes exert different effects in IBD, with Th1 mainly
involved in CD favoring intestinal inflammation and Th2 in UC (Figure 1) [16,85]. Th1
cells through the production of TNF-α and IFN-γ also activate cytotoxic CD8+ T cells. In
IBD, a linking has been found between Th17 and Th1 cells, and Tregs impairment. Th17,
pro-inflammatory T helper cells that evolve from CD4+ T cells in the presence of IL-6,
transforming growth factor β (TGF-β), IL-21, express the receptor for IL-23, a cytokine
required for their survival and proliferation. Th17 cells are characterized by the production



Curr. Issues Mol. Biol. 2023, 45 5540

of both IFN-γ and IL-17A, which dysregulated; excessive production occurs in the presence
of immune system impairment [85], one of the important characteristics of IBD in the
development of inflamed intestinal tissue. This feature is also common to other conditions,
such as rheumatoid arthritis (RA) and psoriatic skin lesions [85].

Th2 cells exert different effects related to different activation states. Basically, they
maintain mucosal homeostasis by regulating inflammation and tissue repair, also providing
response to parasites [16,85]; but when Th2 cells are excessively activated, they may favor
chronic inflammation. Th2 release several cytokines, some of which (e.g., IL-4 and IL-10)
with a direct anti-inflammatory effect, while others (e.g., IL-5, IL-13, IL-21 and IL-25) reduce
inflammation by dampening Th1 activation [16,85]. High levels of Th2-related cytokines,
such as IL-5 and IL-13, have been described in the immune cells of UC patients. IL-5 plays
a role in eosinophil differentiation, but the role of the latter cells in IBD is not yet fully
understood [85]. Other Th cells, such as Th9, Th17 and Th22, play a particular role in the
pathogenesis of UC, and often a higher number of these cells are found in biopsies from
UC patients [16,85].

2.3.2. CD8+ T Cells

In IBD mucosal inflammatory infiltrate, CD8+ T cells are also found, but their role in
pathogenesis is not yet completely understood. In UC, these cells are probably involved
in favoring inflammation and epithelial damage, ultimately leading to ulcer formation,
through the release of pro-inflammatory cytokines such as IFN-γ and TNF-α [58]. In
CD, their role is even more unclear and debated [86]. CD8+ T cells can assume different
phenotypes depending on cytokine stimulation, co-stimulatory molecules, as well as the
strength of the TCR/antigen engagement, and can finally differentiate into cytotoxic killer
cells, which have been suggested as a major mediator of autoimmunity in IBD [86]. This
hypothesis is supported by findings from Lee et al., who have demonstrated that CD8+ T
cell transcriptomes are able to evidence patients with clinically diverging outcomes [87].

2.3.3. CD4+ Treg Cells

Tregs, which consist of CD4+CD25+FOXP3+ lymphocytes, with heterogeneous sub-
types of CD49-T cells exhibiting immunosuppressive properties [85], prevent the devel-
opment of autoimmune processes since they secrete anti-inflammatory cytokines such as
IL-10, IL-35 and TGF-β. The lack of IL-10 secretion by the Treg cells has been shown to
cause spontaneous colitis in a mouse model [58]. In IBD patients, increased mucosal and
decreased circulating Tregs could be generally found, accompanied by higher amounts of
peripheral Th17 cells. The unbalance between pro-inflammatory and anti-inflammatory
cells in IBD is further supported by the observation that in front of increased FOXP3 ex-
pression, increased levels of cytokines, such as IL-17A, IL-1 and IL-6, are also found in the
inflamed mucosa [85].

2.3.4. B-Lymphocytes

A central role in adaptive immunity is carried by B lymphocytes, which are also in-
volved in IBD. B cells, which migrate to the intestinal mucosa from mesenteric lymph nodes,
differentiate in plasmocytes in the lamina propria. In addition, the synthesis of antibodies
and T cells antigen presentation, B lymphocytes secrete several cytokines, including IL-2,
IL-4, and IFN-γ, TGF-β and GM-CSF, regulating inflammation [58]. Similarly to CD4+ T
cells, B cells comprise a regulatory subset with immunosuppressive effects, which has been
described to be decreased in UC patients [29,85].

2.4. The Role of Cytokines in IBD

Cytokines networks can moderate the cross-talk of epithelial cells with innate and
adaptive immunity, the amount and nature of interaction can change over time [88]. More-
over, the understanding gained of cytokines networks is of fundamental importance in the
development of biological therapies, which are transforming the treatment of IBD.
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Microbial sensing plays a key role in cytokine production by both the immune and
intestinal cells. Following their activation though TLR and NOD, DCs and macrophages
produce a large amount of pro-inflammatory cytokines, such as IL-1β and IL-23, which
in turn may activate Th17 cells [89]. Th17 and other cells, such as type 3 innate lymphoid
cells (ILC3) [89], produce IL-22 that primarily acts on IECs, activating STAT3 to promote
antimicrobial defense, barrier integrity and repair. Furthermore, a significant increase in IL-
1 tissue levels has been found in UC patients with respect to those with other gastrointestinal
symptoms [90]. The two cytokines, IL-2 and TGF-β, support the maintenance of intestinal
immune regulation. They are produced by and act on CD4+ T cells, but they also act on
Tregs. IL-6 might activate multiple targets such as APCs and T cells and stimulate the
proliferation and expansion of IECs [91], thus stabilizing intestinal homeostasis. TNF-α,
increased in the IBD inflamed mucosa, has a relevant pathogenetic role as supported by
the clinical response to anti-TNF-α drugs. TNF-α, produced by several cell types, such
as macrophages, adipocytes, fibroblasts and T cells, determine inflammation or cell death
depending on the alternative engagement of its putative receptors followed by NF-kB or
the apoptosis pathways activation, respectively [91]. A dysregulation in its levels, together
with the increase of IL-17, IL-21, IL-22 and IL-9, can lead to IBD [92]. IL-17 expression,
not detected in samples from healthy colonic mucosa, infectious colitis or ischemic colitis
have been clearly identified in the inflamed mucosa of UC and CD patients [93]. Likewise,
TNF-α expression has been found in colonic tissues and macrophages in both CD and
UC [94], and both TNF-α receptor I and II levels have been correlated with disease activity
in IBD patients. Furthermore, findings made in clinical studies have demonstrated an
important improvement in CD patients following the administration of anti-TNF-α therapy,
including infliximab, adalimumab and certolizumab [94]. IL-12 family heterodimeric
cytokines (such as IL-12, IL-23, IL-27 and IL-35) are released by APCs during intestinal
inflammation. Both DCs and macrophages present an increased production of IL-12 in CD,
but not in UC. In turn, Th1 cells can produce IL-23, which perpetuates the Th17 response
and downregulates the Treg response [91]. Th2, as well as other immune cell types such
as natural killer T cells, produce IL-13, which increased the expression in the gut of IBD
patients and appears involved in favoring fibrosis, one of the hallmarks of IBD-associated
inflammation underlying the development of bowel stenosis [95].

IL-10 and TGF-β play a role in down-regulating inflammatory responses caused by
continuous exposure to microbial products [92]. It has been demonstrated that, due to
SMAD7 up-regulation, intestinal myeloid cells from IBD patients reduce responsivity to
anti-inflammatory cytokines, including IL-10 and TGF-β. A decrease in TGF-β is believed
to be responsible for the development of autoimmune disorders, including IBD [92]. Table 2
summarizes the characteristics and potential function of the cytokines with a major role
in IBD.

Table 2. Cytokines with a major role in IBD. Data reported in this table were obtained from [47,58,85,96].

Cytokine Source of Secretion Potential Function in Pathogenesis of Chronic Intestinal
Inflammation in IBD

IFN alpha and
IFN beta DCs Promote epithelial generation and induce IL-10 producing cells

IFN gamma T cells and ILCs Activate macrophages, augment antigen processing and induce epithelial
cell death

TNF-alpha Macrophages, DC and T cells
Pro-inflammatory action, pro-inflammatory cytokine production and

angiogenesis, induce epithelial cell death, mediate T cell resistance against
apoptosis and induce cachexia

IL-1 Neutrophils and macrophages
Pro-inflammatory actions: augment neutrophil recruitment, stimulate IL-6

production by macrophages, activate ILCs and promote tumor development.
Significantly increased in UC patients
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Table 2. Cont.

Cytokine Source of Secretion Potential Function in Pathogenesis of Chronic Intestinal
Inflammation in IBD

IL-6 Macrophages, fibroblasts and
T cells

Perform pro-inflammatory action by means of IL-6 soluble receptor. Activate
T cells and prevent apoptosis (via STAT3), induce macrophage activation,
recruit immune cells, activate acute-phase proteins, induce epithelial cell

proliferation

IL-10 T cells
Exert anti-inflammatory effects that inhibit both antigen presentation and

subsequent release of pro-inflammatory cytokines, and induce STAT3
signaling in regulatory T cells

IL-12 Macrophages and DC
Induce Th1 cell differentiation via STAT4 activation in T cells, stimulate

Th1-type cytokine production and activate ILCs; a link between innate and
adaptive resistance

IL-13 T cells, mast cells, basophil
and eosinophil and NKT cells

Induce intestinal epithelial cell alterations and barrier function; induce
fibrosis

IL-17 Th17 cells and ILCs Induce pro-inflammatory factors (including TNF-α, IL-6 and IL-1β) and
anti-inflammatory effects in the mucosa; IL-17A exerts pro-fibrotic functions

IL-18 IECs Act in synergy with IL-12 to promote the production of INF-g, causing
severe intestinal inflammation

IL-21 Th1 cells
Induce production of TNF-α, IL-1, IL-6 and IL-8 in the mucosa, recruit

neutrophils, induce secretion of matrix metalloproteinases by fibroblasts and
favor tumor development

IL-22 T cells, ILC, neutrophils and
DC

Exert a pro-inflammatory effect; increased in both CD and UC. Activate
production of antimicrobial peptides by epithelial cells, induce proliferation

of epithelial cells and favor tumor development via STAT3 activation

IL-23 Macrophages and DCs Activate mucosal immune cells (e.g., T cells and macrophages) cells,
augment TNF-α production and stabilize effector Th17 cell phenotype

IL-27 Macrophages
Exert pro-inflammatory effects by inducing T cell activation and Th1-type
cytokine production and exert anti-inflammatory effects by blocking T cell

expansion and inhibiting cytokine production by neutrophils

IL-33 Epithelial cells and
myofibroblasts Suppress Th1-type cytokine production and induce neutrophil influx

3. Autoinflammation in IBD

Autoinflammation is increasingly recognized as a pathophysiological mechanism
leading to IBD, as previously observed in reviews by Chen and Núñez and by Opipari
and Franchi [97,98], this concept being based on clinical observations and findings in
experimental studies.

3.1. Clinical Studies

From a clinical viewpoint, some extra-intestinal manifestations of IBD have been
recognized as autoinflammatory diseases and, on the other hand, abdominal symptoms
with intestinal inflammation occur in classical autoinflammatory diseases [5,99].

The first description of autoinflammatory diseases was provided by the International
Familial Mediterranean Fever (FMF) consortium in 1997 following the discovery of mis-
sense FMF gene mutations (MEFV) in FMF individuals [100,101]. TNRSF1A, NLRP3 and
MVK gene mutations are associated with three other hereditary recurrent fevers, namely
TNF-α receptor-associated periodic syndrome (TRAPS), cryopyrin-associated periodic
syndromes (CAPS) and mevalonate kinase deficiency [102]. In addition to the above-
mentioned “four historical” autoinflammatory diseases, in the last two decades further
studies have reported an increasing number of diseases ascribed to an autoinflammatory
pathogenesis [103].

The panorama of autoinflammation in IBD has recently been extended by Tyler et al. [104],
who described the novel DEX (deficiency in ELF4 X-linked) autoinflammatory disease in
three unrelated male children. In addition to fever and oral ulcers, an IBD-like intestinal
inflammation was described with neutrophil infiltrates, elevated expression of IL-17 in the
ascending colon and a pro-inflammatory response of macrophages. The authors demon-
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strated that a variant of ELF4 transcription factor fails to promote anti-inflammatory genes,
including IL-10 and IL-1RN, and favors pro-inflammatory gene transcription, mainly, IL-1,
IL-23, IL-6 and CXCL1, upon stimulation with PRR ligands, including the NOD2 agonist,
muramyl dipeptide.

3.2. Danger Signals and Receptors

In autoinflammatory diseases, the deregulated innate immune response to exogenous
or endogenous danger signals triggers activation of the inflammasome, which typically de-
termines the overactivation and release of IL-1 and IL-18 [105]. Autoinflammatory triggers
include signals from damaged cells (danger associated molecular patterns—DAMPs), pathogen
derived molecules, such as PAMPs, LPS and unmethylated CpG DNA, but also metabolites,
such as glucose, free fatty acids, oxidized low-density lipoprotein (oxLDL), cholesterol crys-
tals, uric acid crystals, ceramide, amyloid-β, α-synuclein and prion protein or superoxide
dismutase [105,106]. PAMPs are recognized by the transmembrane and intracellular Pattern
Recognition Receptors (PRRs), prototypes of the former and of the latter being the TLRs and the
NOD-like receptor (NLR) family respectively [107]. The molecular structure of NLR is charac-
terized by three domains: (1) leucin rich repeats (LRR) at the C-terminal, (2) nucleotide-binding
and oligomerization (NOD) central, and (3) Pyrin (PYD) or caspase recruitment (CARD) at the
N-terminal. PYD and CARD recruit and interact with binding partners such as the adaptor
protein apoptosis-associated speck-like protein containing CARD (ASC) and caspase 1, which
activates the pro-inflammatory IL-1 and IL-18 [107]. Once activated, NLR undergo both homo-
and heterodimerization by binding with molecular partners to form large molecular platforms
that can activate downstream effector molecules. Depending on the structural proteins that
oligomerize, molecular platforms include the inflammasome, which promotes caspase activa-
tion, and the NODosome, which promotes NF-kB signaling [105,107]. An extensive cross-talk
takes place between the inflammasome and the NODosome with the apoptosome, a complex
involving apoptotic protease activating factor-1 (APAF-1), cytochrome c and caspase-9 [107].
Five families of NLR proteins have been described: NLR, NLRB, NLRC, NLRP and NLRX,
those potentially involved in IBD being reported in Table 3. NLRP proteins comprise 14
members, their respective genes being named NLRP1 to NLRP14 [108]. The inflammasomes
are defined on the basis of the NLRP proteins in the complex, resulting in more than 20 species,
including the NLRP1, NLRP3 and NLRC4 inflammasomes as reported in Table 3.

3.3. NOD2 and IBD

The most striking association between IBD and NLR is that between CD and NOD2,
but emerging evidence also highlights the association of IBD with NOD1 and NLRP3 [109].
The NOD2 gene encodes a protein with two CARD domains and six LRRs, the protein being
primarily expressed in peripheral blood leukocytes. NOD2, stimulated in the intestine mainly
by bacterial muramyl dipeptide (MDP), a fragment of bacterial peptidoglycan, interacts with
the downstream signal molecule receptor-interacting serine/threonine kinase 2 (RIPK2) which
recruits ubiquitin ligases and activates MAP kinases and NF-kB pathways [110,111], ultimately
determining the production of proinflammatory cytokines and chemokines. The NOD2/RIPK2
complex also activates antibacterial autophagy, which limits intracellular bacteria proliferation,
by means of the autophagy related protein 16-1 (ATG16L1) and the ubiquitin ligase X-linked
inhibitor of apoptosis (XIAP) [112]. The association between CD and NOD2 and ATG16L1
mutations has been well-established, while no such association has been found for RIPK2
genetic variants. A frameshift mutation (L1007fsinsC) that determines a truncated LRR and a
number of point mutations within the LRR of NOD2, mainly, Arg702Trp and Gly908Arg, is
associated with NOD2 loss of function in CD, while other mutations associated with gain of
function and constitutive NF-kB activation are recorded in Blau Syndrome and early onset
sarcoidosis [107]. While loss of NOD2 function is known to impair bacterial sensing, it is not
yet clear how it might determine inflammation. However, it is known that, in the presence of
CD-associated NOD2 mutations, the intestinal epithelial barrier is compromised, probably as a
consequence of an altered function of Paneth cells in secreting defensins.
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Table 3. NOD-like receptors (NLR) and IBD. The proteins, the belonging families, functions and associated diseases are reported. MHC: major histocompatibility
complex; NOD: Nucleotide-binding oligomerization domain; VAMAS1: Vitiligo-associated multiple autoimmune disease 1; MSPC: Multiple self-healing palmoplan-
tar carcinoma; JRRP: Congenital juvenile recurrent respiratory papillomatosis; FMF: Familial Mediterranean Fever; FCAS: Familial cold autoinflammatory syndrome;
AIADK: Autoinflammation with arthritis and dyskeratosis; MWS: Muckle-Wells syndrome; RA: Rheumatoid arthritis.

Family Protein Gene Mutation-Related
Diseases IBD-Associated Function Complex

NLR MHC class II
transactivator CIITA

Bare lymphocyte
syndrome

RA
Unknown Positive regulator of class II MHC

NLRB
NRL family

apoptosis inhibitory
protein

NAIP Spinal muscular
atrophy Unknown Anti-apoptotic (inhibits CASP3, CASP7

and CASP9)

Sensor component of NLRC4 that
recognizes and binds CprI from
pathogenic bacteria C. violaceum

NLRC NOD1 NOD1
IBD, Asthma,

Behcet’s disease and
sarcoidosis

Yes

Innate and adaptive immune responses and
cellular homeostasis.

Binds bacterial peptidoglycans,
single-stranded RNA (ssRNA) from viruses

and the metabolite
sphingosine-1-phosphate

Interacts with RIPK2 activating
NF-kB and MAPK

signaling pathways

NLRC NOD2 NOD2 Crohn’s disease and
Blau syndrome Yes

Innate and adaptive immune responses and
cellular homeostasis.

Binds LPS by recognizing the muramyl
dipeptide (MDP), single-stranded RNA

(ssRNA) from viruses and the metabolite
sphingosine-1-phosphate

Interacts with RIPK2 activating
NF-kB and MAPK

signaling pathways.
Interacts with NLRP1 leading to

IL-1 release. Interacts with
ATG16L1 leading to autophagy

NLRC

NOD-like receptor
caspase recruitment
domain containing

proteins 3–5

NLRC3 Yes
Negative regulator of the innate immune

response (negative regulation of NF-kB and
type I interferon signaling pathways)

Prevents NLRP3 inflammasome
formation and may affect NOD1- or
NOD2-mediated NF-kB activation

NRLC4

FCAS 4
Autoinflammation

with infantile
enterocolitis

Yes
Innate immune response.

Promotes caspase-1 activation, cytokine
production and macrophage pyroptosis

Homo-oligomerizes in the NLRC4
inflammasome and

enters the NRLP3 inflammasome
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Table 3. Cont.

Family Protein Gene Mutation-Related
Diseases IBD-Associated Function Complex

NRLC5

Pityriasis rubra
pilaris

Bare lymphocytic
syndrome type I

FMF

Unknown
Negative regulator of the innate immune

response (negative regulation of NF-kB and
type I interferon signaling pathways)

NLRP
NACHT, LRR, and

PRD containing
proteins 1–14

NLRP1-14
NRLP1: VAMAS1

MSPC
JRRP

Yes

NLRP1: Innate immunity and
inflammation.

Cytokines IL-1, IL-18 and
gasdermin-D (GSDMD), leading to

pyroptosis, an inflammatory form of
programmed cell death

NRLP1 inflammasome response to
various pathogen-associated signals,
recruits pro-caspase-1 (proCASP1)
and promotes caspase-1 (CASP1)
activation; may be activated by

MDP in a NOD2-dependent manner

NRLP3:
FCAS1
AIADK
MWS

CINCA syndrome

Yes

NLRP3: regulation of inflammation,
immune response, and apoptosis.

Stimulated by extracellular ATP, reactive
oxygen species, K(+) efflux, crystals of

monosodium urate or cholesterol,
amyloid-beta fibers, environmental or
industrial particles and nanoparticles,

cytosolic dsRNA

NRLP3 inflammasome upstream
activator of NF-kappaB signaling

NLRP12:
FCAS2 Yes

NLRP12 potent mitigator of inflammation
Primarily expressed in dendritic cells and
macrophages, inhibits both canonical and

non-canonical NF-kB and ERK
activation pathways

Functions as a negative regulator of NOD2
by targeting it to degradation via the

proteasome pathway.
Promotes bacterial tolerance
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Table 3. Cont.

Family Protein Gene Mutation-Related
Diseases IBD-Associated Function Complex

NLRX
NOD-like receptor
with “unknown”

domain
NLRX1

Histiocytic sarcoma
Combined oxidative

phosphorylation
deficiency 4

Mooren Ulcer
Mitochondrial

Complex V Nuclear
deficiency Type 3

Unknown

Regulator of mitochondrial
antivirus responses.

Promotes autophagy
Enhances NF-kB and JUN N-terminal

kinase dependent signaling through the
production of reactive oxygen species.

Regulates energy metabolism in a
sex-dependent manner

Regulates NLRP3 inflammasome
activation to attenuate apoptosis

Data from GeneCard®, The human gene database–https://www.genecards.org/ (accessed on 25 January 2023).

https://www.genecards.org/
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3.4. NLRP Inflammasomes and IBD

NOD2 is involved in NLRP1 inflammasome activation and, in young IBD patients,
NLRP1 polymorphism rs12150220 (Leu155His) is associated with resistance to steroids [113].
Intriguingly, increased NLRP1 expression found in the inflamed colon of UC patients, is pos-
itively correlated with IFN-γ gene expression and negatively correlated with the abundance
of the Clostridiales bacterial species, which are suggested to have an anti-inflammatory
effect in IBD [114], thus further supporting the presence of complex relationships between
the microbiome and the inflammasomes. The NLRP3 rs6672995 and rs4353135 CD risk
alleles are associated with decreased LPS-induced IL-1 production, and with a decrease in
baseline NLRP3 expression, respectively, unlike gain-of-function mutations associated with
the NLRP3 hereditary periodic fever syndromes [115]. However, increased NLRP3 mRNA
expression levels have been found in ulcerated CD mucosa with respect to controls [115].
Another CD-associated risk factor, immunity-related GTPase M (IRGM) is functionally
correlated with the NLRP3 [116,117]. Recently, IRGM was demonstrated to block NLRP3
assembly and oligomerization and to mediate NLRP3 autophagic degradation [118]. Again,
in CD the reduction in inflammasome activity appears to take place and might, by reducing
IL-18 release, alter the microbial composition and disrupt the epithelial barrier, thus favor-
ing bacterial invasion and inflammation since IL-18 prevents epithelial damage, promotes
Treg and limits Th17 expansion [119].

In UC, NLRP3 also appears to be involved through its interaction with NLRC4 in the
same inflammasome complex. Recessive p.Ala160Thr mutation of NLRC4 determines an
enhanced IL-1 and IL-18 cytokine release after stimulation with ATP or flagellin, which
activate the NLRP3 and the NLRC4 inflammasome, respectively [120]. Moreover, the
NLRC4 variant encoding p.Val341Ala, which results in gain of function, causes the SCAN4
syndrome, characterized by neonatal enterocolitis and autoinflammation with periodic
fever and near-fatal or fatal episodes of autoinflammation [121]. In UC, therefore, unlike
CD, inflammasomes’ gain of function mutations appear more likely to take place. The
association between the inflammasomes and IBD is further supported by the involvement
of NLRP6 and NLRP12, both exerting a protective role in experimental colitis [122,123]. In
a recent case study, Tal et al. reported that a frameshift variant was detected in the NLRP12
gene in a patient with recurrent HSV-1 esophagitis and CD [124] and, as with NLRP1,
NLRP12 was also found to regulate the commensal flora in animal models [114,123].

3.5. Inflammasomes Highlights in IBD

IBD are associated with an altered innate immunity through the de-regulated activity
of inflammasomes, which might be activated or inhibited [109]. Mutations and polymor-
phisms of the NLR proteins NOD1/2, NLRC4, NLRP1 and NLRP3, determining loss of
function with reduced inflammasome activity, are associated mainly with CD. Gain of
function mutations or reduced expression of NLR proteins, such as NLRP12, which acts
as a negative regulator of inflammasome activity, appears to be mainly correlated with
UC (Figure 1). It would be reasonable to suggest various pathogenetic scenarios with
differences between CD and UC: in CD a reduced, and in UC an excessively high inflam-
masome activity and innate immune response. The defective innate immune response in
CD probably impairs clearance of luminal antigens and/or pathogens causing a selective
pressure on bacterial species that, in turn, trigger chronic intestinal inflammation. Dysbiosis
and bacterial derived metabolites might, in turn, activate NLRP3 and IL-18 release, the
excessive production of which is implicated in enhancing gut inflammation by inducing
the release of other cytokines, such as IL-22 and IL-17A, and in altering mucosal integrity
by reducing the number of goblet cells and their maturation [119].

3.6. The Role of Laboratory Testing in the Evaluation of Inflammation in IBD

Generic marker of inflammation, such as complete blood count (CBC), C reactive
protein (CRP) and Eritrocyte Sedimentation Rate (ESR) were widely used in the past for
management of IBD patients [125], despite their low sensitivity and specificity [126]. Cur-
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rently, it has been described an association between CRP levels and other CBC parameters
with pseudopolyp formation in UC and fistulas in CD [127]. ESR has been described
as useful for risk stratification model for defining severe ulcerative colitis, especially in
pediatric patients, being correlated with both endoscopic and histologic activity of the colon
in children with CD [128]. There is a wide consensus now on the fact that intestinal specific
markers, such as fecal lactoferrin (fLact) and fecal calprotectin (fCal), have better utility
than serum markers, their sensitivity and specificity in distinguishing IBD from function
intestinal disorders being about 80% and above 80%, respectively [58,59,129,130].

4. Autoimmunity in IBD

The immune system is also involved in IBD extra-intestinal manifestations (EIMs) [131]
and in the so-called “paradoxical” complications triggered by biological drugs, such as
anti-TNF-α agents [132,133]. In various studies, it has been estimated that the occurrence of
EIMs ranges from 21 to 36% in IBD patients [134], encompassing involvement of vascular
and hematologic, genitourinary, cardiac, pulmonary, neurological, endocrine and metabolic
systems, but more frequently, musculoskeletal, dermatologic, ocular and hepatobiliary
systems, such as ankylosing spondylitis, erythema nodosum, uveitis and primary sclerosing
cholangitis (PSC) [131,132,135].

Major groups of EIMs share features of autoimmune-related processes [135]. One of
the proposed immunopathogenic model for UC is based on autoantigens shared by colon
and different extracolonic organs—namely, human tropomyosin isoform 5, a cytoskeletal
protein, and colon epithelial specific protein [134], triggering T cells activation, which helps
priming a subset of B cells further expanding and producing IgG class 1 autoantibodies
that can activate the complement system [135]. Genetic susceptibility is also recognized in
the autoimmune mechanisms, as well as the probable role of molecular mimicry conducted
by microbes [131]. Paradoxical complications are mainly immune-mediated inflammatory
disorders, particularly skin lesions and joint inflammation, developed after administration
of anti-TNF-α monoclonal antibodies, which resolve when discontinued [133]. Putative
pathogenic mechanisms include an imbalance between inflammatory and regulatory cy-
tokines that can favor an excessive immune response and induce autoimmunity [133].
Furthermore, anti-nuclear antibodies (ANA) and anti-double strand-DNA (anti-dsDNA)
are frequently found in IBD patients, although rarely in association with a lupus-like
syndrome, and several cases of vasculitis have been reported [133].

Moreover, population-based studies have registered a significantly more frequent
incidence of immune-mediated diseases in IBD patients, including autoimmune hepatitis,
celiac disease, atrophic gastritis, rheumatoid arthritis, type 1 diabetes and Grave’s disease,
thus reinforcing the hypothesis of partially overlapping pathogenic mechanisms [136].

Laboratory Testing in IBD: Autoimmunity Markers

Different autoantibodies have then been reported and studied in IBD, showing diag-
nostic value in differentiating UC and CD, and also a role in predicting disease course [137].
However, the most informative autoantibodies have proven to be anti-neutrophil cytoplasm
antibodies (ANCA) and anti-Saccharomyces cerevisiae antibodies (ASCA) [138], although
their pathogenic role has not been fully elucidated [137]. The first study demonstrating
circulating autoantibodies in IBD appeared in 1959, when serum from children with UC
caused immunoprecipitation of a γ-globulin that reacted against healthy human colonic
tissue [139]. In a 2012 systematic review of autoantibodies in IBD, P-ANCA prevalence of
was estimated at 6 to 38% of CD and 41 to 73% of UC, while ASCA were reported in 29 to
69% of CD and 0 to 29% of UC, with a sensitivity of 31 to 45% and a specificity of 90 to
100% had the best positive predictive value (PPV) for the diagnosis of IBD with respect to
healthy subjects (97–100%) [137].

ANCA might be commonly directed against proteinase 3 (PR3) and myeloperoxidase
(MPO), although it is believed that autoantibodies towards different antigens (e.g., elastase,



Curr. Issues Mol. Biol. 2023, 45 5549

cathepsin G, lactoferrin, lysozyme) also elicit a positivity in indirect immunofluorescence
(IIF), which can return cytoplasmic or perinuclear patterns [140–143].

ANCA development has not yet been fully elucidated, although it has been suggested
that there is involvement of the production of a complementary antigen to PR3 (cPR3)
leading to anti-PR3 due to epitope spreading, or autoantibodies due to molecular mimicry
following exposure to Staphylococcus aureus and Entamoeba histolytica, or even neutrophil
apoptosis impairment that might increase exposure to autoantigens [144].

Although the clinical association for ANCA is mainly due to vasculitides [144] in IBD
patients, P-ANCA, in particular, was initially found in patients with UC in 1961 [145], this
finding being subsequently confirmed in several reports [138]. More recently, anti-PR3
antibodies also tested with chemiluminescent immunoassay (CIA) were associated to UC
with an odds ratio (OR) vs. healthy controls equal to 12.8 and shown to differentiate UC
from CD [146]. Therefore, the 2020 international consensus on ANCA testing prescribed
that testing for ANCA be made only in selected cases of IBD, when the differential diagnosis
between uncertain between CD and UC is uncertain, and by IIF, as the target antigens in
IBD have not yet been well characterized [141].

ASCA, first reported in 1988 in CD [137,147], are directed against the cell wall mannan
of Saccharomyces that share homology with intestinal bacteria and are commonly detected
with ELISA assay [137,148]. Both IgG and IgA immunoglobulin classes can be found [138].
Different studies evaluating clinical performances of each class reported contradictory find-
ings, possibly due to differences in the patient cohorts included, or analytical differences;
however, a specificity and a positive predictive value (PPV) of up to 100% when comparing
CD diagnosis versus UC or healthy subjects for simultaneous positivity of both ASCA IgG
and IgA were reported, while best sensitivity of 71% was reported when either IgG or IgA
class were found [149,150].

As only recently reported, together with ANCA and a panel of proteins including anti
Escherichia coli outer membrane porin C (OmpC) and anti-flagellins antibodies, ASCA
may be predictive of the development of CD within 5 years and of UC within 1 year [151].

Anti-laminaribioside carbohydrate IgG antibodies (ALCA), anti-chitobiosidecarbohydrate
IgA antibodies (ACCA), anti-mannobioside carbohydrate IgG antibodies (AMCA), anti-
laminarin IgA (anti-L) and anti-chitin IgA (anti-C) are novel antibodies against bacterial
polysaccharides further associated with IBD [152,153], which is overall more prevalent in
CD where reported PPVs versus UC range from 65 to 92% [137].

Further studies on IBD prediction are therefore needed to include ANCA and ASCA
in validated clinical algorithms.

5. Concluding Remarks and Perspectives

A variety of molecular markers are being evaluated for IBD prevention, diagnosis and
monitoring, as well as new therapeutic options that take into account this disease’s complex
physiopathology, which has been further complicated by the recent COVID-19 pandemic.
The SARS-CoV-2 entry receptor, angiotensin converting enzyme 2 receptor, is up-regulated
in IBD and it is known that that SARS-CoV-2 infection involves the gastrointestinal tract,
although IBD patients even under immunosuppressive treatment were not reported to
have a worse COVID-19 disease nor a worsening IBD course [154].

Among the innovative approaches, proteomics studies have been successfully applied.
As an example, in a recent study from our group, we found that fecal peptidome of IBD
patients was highly enriched of low molecular weight peptides, in contrast to samples
from individuals without gastrointestinal symptoms; in addition, peptidome was useful in
distinguish UC from CD patients [18]. Intriguingly, analysis of the peptides-corresponding
proteins showed that IBD stools are enriched in proteins involved in inflammation and
immune response (data not shown). Another proteomic study from Leibovitzh et al. con-
firmed this finding, since serum C-X-C motif chemokine 9 (CXCL9) was identified as and
early marker of CD, highly associated with the disease, reflecting the biological processes
of immune and barrier dysfunction in IBD [155]. The metabolome has also been studied,
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highlighting the connection between IBD and microbiome pathway of differentially abun-
dant molecules [156,157]. Although these are promising results, there is still an ongoing
debate about whether metabolic findings are sufficient to explain the diseases complexity.

Overall, these studies depicted IBD as a complex disease, instigated and amplified by
genetic susceptibility, environmental variables (exposome) and dysregulation of immune
response, which finally perturb the immune–microbiome axis [158]. The current inefficiency
in treatments suggest the correctness of the paradigm “one size does not fit all” in IBD; thus,
personalized, tailored treatment for these diseases, based on individual tracts heterogeneity,
could be advantageous [158]. Recently, the application of artificial intelligence (AI) methods
has been used for facilitating the analysis, and for the integration and interpretation of large
datasets. A recent meta-analysis in 2021 demonstrated that AI has been applied in 17 studies
focused on IBD diagnosis and 5 studies focused on predicting risk of IBD [159]. Interestingly,
colonoscopy and endoscopic images were used for generating AI model, with or without
the addition of biochemical and molecular data and gene expression profiles [159], and
very relevant results on sensitivity and specificity were found. In addition, some studies
inspected the utility of AI in predicting disease severity [159]. Applications of AI include
prediction analysis of potential molecular targets for drug discovery [160]. An example of
this in the IBD setting is represented by the identification of a series of 17 potential drug
targets among gene clusters grouped in the GO biological function term “response to stress”.
Of particular interest is the Protein Kinase AMP-Activated Non-Catalytic Subunit Beta 1
(PRKAB1), because it is involved in epithelial dysfunction and in the process of epithelial
to mesenchymal transition and is reported to be associated with IBD disease activity [160].
Finally, natural language processing tools (NLP), such as chatbots, have revealed valuable
tools for improving user satisfaction and engagement of IBD patients [161]. Especially for
patients’ monitoring, chatbots can improve patients’ self-management, empowerment and
education [162]. However, strong guidelines are needed for reducing the risk of giving
inappropriate (and maybe harmful) information.
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