
Università degli Studi di Padova

Department of Information Engineering

Ph.D. Course in Information Engineering

XXXV Series

Communication and learning in
dynamic networks

Coordinator
Andrea Neviani
University of Padova

Supervisor Ph.D. Candidate
Andrea Zanella Federico Mason
University of Padova

Academic Year 2022/2023



ii



To my cousin Chiara and my brother Francesco



iv



Abstract

Nowadays, telecommunication systems are essential to numerous fields, enabling revolutionary
applications such as industry 4.0, the Internet of Things, virtual reality, and cloud computing.
On the other hand, most telecommunication networks still present a rigid architecture that does
not lend itself to managing highly dynamic scenarios with heterogeneous characteristics. In
order to address the requirements of future technologies, it is necessary to design new solutions
that enable the continuous configuration of services and functions without external intervention.
The scientific community is putting strong effort toward such a vision, investigating strategies
to provide mobile infrastructures, enable the softwarization of network resources, and deploy
cognitive algorithms for orchestrating system operations.

In this thesis, we address the challenge of defining a dynamic network architecture with all
these characteristics and, thus, capable of adapting to various working scenarios. The central
point of our idea is to distribute network functions among multiple intelligent units that inter-
act with each other to find the optimal system configuration, maximizing performance while
ensuring resilience to local failures. To this end, we organize the thesis into three parts, each
investigating a different aspect of dynamic network management. Firstly, we define a tracking
framework based on the unscented Kalman filter to map a group of autonomous nodes broad-
casting their local status while operating in different application scenarios. Hence, we study
how to adapt the communication policy of each node in accordance with the estimate of the
overall network status. Then, we exploit the reinforcement learning paradigm and implement
a distributed learning architecture to allow the single nodes to cooperate and reach a common
goal. In this context, we show that adapting the communication and control policy to each other
leads to higher performance than the basic scenario in which communication is pre-determined.

Lastly, we investigate new techniques to dynamically manage communication and computa-
tional resources in the target scenario, taking advantage of the network slicing and software-
defined networking paradigms. To this goal, we distribute the resource allocation tasks among
multiple agents, providing a highly flexible architecture that can operate in different contexts
without retraining. Our results show that learning algorithms are fundamental for implementing
a fully flexible network architecture, capable of detecting changes in the surrounding environ-
ment and adapting its functions consequently. At the same time, artificial intelligence requires
network designers to devote part of the available resources to support the training of the learning
agents managing the network. This competition between immediate performance and innova-
tion capability determines a significant trade-off, to which we devote the last chapter of our
research.

v



vi



Sommario

Al giorno d’oggi, i sistemi di telecomunicazione sono essenziali in innumerevoli settori e perme-
ttono l’utilizzo di tecnologie rivoluzionarie come l’industria 4.0, l’Internet delle cose, la realtà
virtuale e il cloud computing. D’altra parte, la maggior parte delle reti di telecomunicazioni
presenta ancora un’architettura piuttosto rigida che mal si presta a gestire scenari altamente
dinamici con caratteristiche eterogenee. Per far fronte ai requisiti delle tecnologie future, è nec-
essario ideare nuove soluzioni che consentano di riconfigurare servizi e funzioni di rete senza un
intervento esterno. La comunità scientifica sta facendo un grande sforzo per realizzare questa
visione, studiando strategie per fornire infrastrutture mobili, virtualizzare le risorse disponibili
e implementare algoritmi cognitivi che gestiscano autonomamente le funzioni di rete.

In questa tesi affronteremo la sfida di definire un’architettura di rete dinamica, avente tutte
le caratteristiche descritte e, pertanto, in grado di adattarsi a diversi scenari di lavoro. Il
punto centrale della nostra idea è distribuire le funzioni di rete tra più unità intelligenti che
interagiscono tra loro per individuare la configurazione ottima del sistema, massimizzando le
prestazioni e garantendo al contempo la resilienza a guasti locali. Per raggiungere questo obi-
ettivo, organizzeremo la tesi in tre parti, ciascuna delle quali indaga un diverso aspetto della
gestione dinamica delle reti di telecomunicazioni. Nelle prima parte, definiremo un sistema di
tracciamento, basato sull’unscented Kalman filter, per mappare un gruppo di nodi autonomi
che trasmettono il loro stato locale mentre operano in diversi scenari operativi. In particolare,
studieremo come adattare la strategia di comunicazione di ciascun nodo di rete alla stima dello
condizioni del sistema nel suo complesso. Dopodiché, sfrutteremo il paradigma di reinforce-
ment learning e implementeremo un’architettura di apprendimento distribuito che consenta alle
singole unità di rete di cooperare e raggiungere un obiettivo comune. In questo contesto, di-
mostreremo che l’adattamento reciproco delle strategie di comunicazione e controllo porta a
prestazioni superiori rispetto a uno scenario di base in cui la comunicazione è predeterminata.

Nell’ultima parte della tesi, studieremo nuove tecniche per gestire le risorse computazionali e
di comunicazione nello scenario descritto, sfruttando i paradigmi di network slicing e di software-
defined networking. A tal fine, distribuiremo la gestione delle risorse di rete tra più unità
intelligenti, che andranno a costituire un’unica architettura adattabile, capace di operare in
contesti diversi senza essere riconfigurata da zero. I nostri risultati mostrano che gli algoritmi di
apprendimento sono fondamentali per ottenere un’architettura di rete completamente flessibile,
che possa rilevare i cambiamenti nell’ambiente circostante e modificare le proprie funzioni di
conseguenza. Allo stesso tempo, l’utilizzo dell’intelligenza artificiale richiede di dedicare parte
delle risorse di rete disponibili per l’allenamento degli agenti di apprendimento che gestiscono la
rete stessa. Questa competizione tra prestazioni immediate e capacità di innovazione di sistema
determina un significativo trade-off, a cui dedicheremo l’ultimo capitolo di questa tesi.

vii



viii



Contents

Abstract v

List of figures xii

List of tables xv

Acronyms xvii

1 Introduction 1

I Quality-Based Communication Strategies for Node Tracking 5

Introduction 7

2 Broadcasting Strategies for Dynamic Mapping in Vehicular Networks 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 General Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Error Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Tracking System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.4 Channel Access Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Broadcasting Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Benchmark: Periodic Broadcasting . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 New Proposal: Error Threshold Broadcasting . . . . . . . . . . . . . . . . 17

2.5 Congestion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.1 Benchmark: Channel Sensing Congestion Control . . . . . . . . . . . . . . 19
2.5.2 New Proposal: Neighbor Aware Congestion Control . . . . . . . . . . . . 20
2.5.3 Implementing Congestion Control for the ETB Strategy . . . . . . . . . . 25

2.6 Simulation Settings and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6.1 System Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6.2 Theoretical Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Remote Drone Tracking via 3D Mobility Models and LoRaWAN 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Tracking Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 Benchmark Motion Models . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.2 The 3D-CTRA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.3 Tracking Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Communication Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

ix



3.5 Simulation Settings and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.1 System Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5.3 Spreading Factor Optimization . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5.4 Payload Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

II Multi-Agent Learning Strategies for Network Control 59

Introduction 61

4 Distributed Reinforcement Learning for Drone Swarm Control 63
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.2 Target Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.3 Obstacle Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Learning Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4.1 ND-POMDP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4.2 Distributed Deep Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4.3 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 Simulation Settings and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.5.1 System Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.5.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5.3 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5.4 Scenario Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Joint Communications and Control in Multi-Agent Networks 91
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3 Joint Communication and Control . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4 Underwater System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.1 AUV Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.4.2 Buoy Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.4.3 Debris Avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4.4 Data Muling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5 Learning Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.5.1 Neural Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.5.2 Training Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.6 Simulation Settings and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.6.1 Benchmark Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.6.2 System Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.6.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.7 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

x



III Intelligent Resource Management in Dynamic Networks 115

Introduction 117

6 Distributed Reinforcement Learning for Slicing Orchestration 119
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3.1 Slice Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.3.2 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.3.3 Queuing Time Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.4 Learning Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.4.1 Learning Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.4.2 Observations and Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.4.3 Reward Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.5 Benchmark Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.5.1 Other Learning-Based Approaches . . . . . . . . . . . . . . . . . . . . . . 133
6.5.2 Empirical Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.5.3 Static Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.6 Simulation Setting and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.6.1 System Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.6.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.6.3 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7 Balancing Learning and Exploitation at the Network Edge 145
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.2 Cost of Learning Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.2.1 Constant Update Duration . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.2.2 Adaptive Update Duration . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.3 Use Case Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.3.1 Communication Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.3.2 Learning Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.4 Simulation Settings and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.4.1 System Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.4.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8 Conclusions 159

Appendix A Unscented Kalman Filtering 163

Appendix B Reinforcement Learning 167

References 170

List of Publications 191

Acknowledgments 194

xi



xii



Listing of figures

2.2 Temporal evolution of the positioning error for the broadcasting strategies. . . . 18
2.4 Urban scenario considered for the performance evaluation. . . . . . . . . . . . . . 26
2.5 Congestion control analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6 Simulation vs. theoretical positioning error in a highway scenario. . . . . . . . . 29
2.7 Positioning error distribution with C = 8. . . . . . . . . . . . . . . . . . . . . . . 30
2.8 Mean and 95th percentile of the positioning error with C = 8. . . . . . . . . . . . 30
2.9 Boxplot of the positioning error with C = 8. . . . . . . . . . . . . . . . . . . . . . 31
2.10 Collision and detection statistics with C = 8. . . . . . . . . . . . . . . . . . . . . 32
2.11 Mean and 95th percentile of the positioning error as a function of C. . . . . . . . 33

3.1 The CS motion model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 The CTRA+ motion model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 The 3D-CTRA motion model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Schematic of the payload format for the three tracking schemes. . . . . . . . . . . 46
3.5 3D path of a single UAV with d = 1000 m, SF 7, and B = 250 kHz. . . . . . . . . 49
3.6 Tracking error of a single UAV with d = 1000 m, SF 7, and B = 250 kHz. . . . . 49
3.7 Positioning error with d = 1000 m, N = 1, SF 7, and B = 250 kHz. . . . . . . . . 50
3.8 Orientation error with d = 1000 m, N = 1, SF 7, and B = 250 kHz. . . . . . . . 50
3.9 Inter-reception time with d = 1000 m. . . . . . . . . . . . . . . . . . . . . . . . . 51
3.10 Tracking error with d = 1000 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.11 Tracking error for different SF, with d = 1000 m. . . . . . . . . . . . . . . . . . . 54
3.12 Tracking error for different ADR with d = 3000 m. . . . . . . . . . . . . . . . . . 55
3.13 Tracking error with d = 1000 m, N = 10, and SF 7. . . . . . . . . . . . . . . . . . 57

4.1 Sparse (left) and cluster (right) target distributions. . . . . . . . . . . . . . . . . 69
4.2 Drone positions (left), known (center) and real map (right). . . . . . . . . . . . . 72
4.3 Learning architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4 Success probability during the training with 2 UAVs. . . . . . . . . . . . . . . . . 77
4.5 Probability distribution of the number of drones reaching the targets. . . . . . . 78
4.6 Episode where an UAV is not able to reach the cluster. . . . . . . . . . . . . . . . 79
4.7 CDF of the episode duration with 2 UAVs. . . . . . . . . . . . . . . . . . . . . . 80
4.8 CDF of the episode duration with 2 UAVs. . . . . . . . . . . . . . . . . . . . . . 81
4.9 Drone positions (left), known (center), and real map (right), with obstacles. . . . 82
4.10 CDF of the episode duration in the obstacle scenario. . . . . . . . . . . . . . . . 83
4.11 Success probability as a function of the map size and the number of clusters. . . 84
4.12 Success probability in the obstacle scenario. . . . . . . . . . . . . . . . . . . . . . 85
4.13 Effect of imperfect communications in a large map. . . . . . . . . . . . . . . . . . 86
4.14 Considered area in the downtown Chicago Loop neighborhood. . . . . . . . . . . 87
4.15 Performances on the real map of Chicago. . . . . . . . . . . . . . . . . . . . . . . 88

5.1 CP-POMDP model with two agents. . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2 Debris avoidance scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.3 Data muling scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xiii



5.4 Training phase (debris avoidance). . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.5 Performance of the different strategies. . . . . . . . . . . . . . . . . . . . . . . . . 109
5.6 AUV location probability (debris avoidance). . . . . . . . . . . . . . . . . . . . . 110
5.7 Sensor transmission probability (debris avoidance). . . . . . . . . . . . . . . . . . 111
5.8 AUV location probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.9 Sensor transmission probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1 Resource performance function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.2 Learning Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3 Link resource allocation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.4 Network topologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.5 Training phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.6 Expected utility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.7 Utility distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.8 Expected resource utility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.9 Utility distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.10 GARR Network (Italy). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.11 Expected utility vs flow number. . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.1 Mean performance over time with fixed Tρ. . . . . . . . . . . . . . . . . . . . . . 155
7.2 Boxplots of the performance with fixed Tρ. . . . . . . . . . . . . . . . . . . . . . 155
7.3 Mean performance over time with adaptive Tρ. . . . . . . . . . . . . . . . . . . . 156
7.4 Boxplots of the performance with adaptive Tρ. . . . . . . . . . . . . . . . . . . . 156

xiv



Listing of tables

2.1 Model parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Simulation settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Model parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Packet transmission times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Simulation settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Model parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Simulation settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Model parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2 Agent architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3 Simulation settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.1 Model parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.2 Agent architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3 Simulation settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.4 Traffic flow requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.1 Model parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.2 Agent architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.3 System settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.4 Application requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

xv



xvi



Acronyms

Symbols

3D-CTRA 3-Dimensional CTRA. 36, 37, 39, 42, 43, 47, 49, 50, 51, 52, 53, 54, 55, 56, 163
3GPP 3rd Generation Partnership Project. 119
5G 5th Generation. 1, 2, 9, 35, 119, 145
6G 6th Generation. 1, 2, 35

A

A2C Advance Actor Critic. 129, 130, 131, 138
ACK Acknowledgment. 45, 48, 54
Adam Adaptive moment estimation. 108, 138, 154
ADR Adaptive Data Rate. 37, 38, 45, 48, 53, 54, 55, 56
AoI Age of Information. 10, 11, 46, 51, 92, 93, 98, 99
AUV Autonomous Underwater Vehicle. 92, 93, 97, 98, 99, 100, 101, 102, 103, 104,

105, 106, 107, 108, 109, 110, 111, 112, 113, 114

B

BF Bayesian Filtering. 36, 37
BS Base Station. 146, 149, 150, 152, 153, 154

C

CC Closest Communication. 107, 109, 110, 111, 112, 113, 114
CDF Cumulative Distribution Function. 80
C-ITS Connected and Intelligent Transportation Systems. 11, 13, 17
CJCC Centralized JCC. 108, 109, 110, 111, 112, 113, 114
CL Continual Learning. 2, 145, 161
CN Core Network. 146
CNN Convolutional Neural Network. 74, 106
CP-POMDP Cyber-Physical POMDP. 92, 93, 95, 96, 97, 107, 114
CPS Cyber-Physical System. 92
CS Constant Speed. 36, 39, 40, 47, 49, 50, 51, 53, 56
CSCC Channel Sensing Congestion Control. 19, 20, 25, 26, 27, 28, 31, 32
CSMA/CA Carrier Sense Multiple Access with Collision Avoidance. 12, 16, 20, 21, 30
CTRA Constant Turn Rate and Acceleration. 11, 12, 16, 36, 37, 39, 40, 41, 43, 47, 49,

50, 51, 53, 56, 163
CVI Critical Video. 153
CVO Critical Voice. 153

D

DDQL Distributed Deep Q-Learning. 72, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87,
88

xvii



Dec-POMDP Decentralized Partially Observable Markov Decision Process. 65, 70, 95
DJCC Distributed JCC. 108, 110, 111, 112, 113, 114
DL Downlink. 48
DQN Deep Q-Network. 73, 74, 91, 152, 153
DRL Deep Reinforcement Learning. 3, 64, 91, 105, 120, 121, 122, 128, 129, 133, 134,

135, 136, 139, 140, 141, 142, 143, 144, 145, 146, 149, 151, 152, 157, 169
DSRC Dedicated Short Range Communication. 12, 16

E

ED End Device. 45, 48, 53
eMBB enhanced Mobile BroadBand. 119, 120, 124, 125, 135, 136, 137, 139, 140, 143,

144
ETB Error Threshold Broadcasting. 17, 19, 20, 24, 25, 26, 30, 31, 32, 33

F

FEC Forward Error Correction. 94
FL Federated Learning. 34, 146
FoV Field of View. 67, 68, 70

G

GA Genetic Algorithm. 135
GPS Global Positioning System. 9, 11, 35, 39, 46, 47
GW Gateway. 45, 47, 48, 49, 50, 54

I

IoT Internet of Things. 38, 46, 66, 91, 93, 94

J

JCC Joint Communication and Control. 106, 107, 108, 111, 112, 113, 114

K

KF Kalman Filter. 11, 36, 37, 163

L

LA Look-Ahead. 64, 75, 76, 77, 78, 79, 81, 83, 84, 85, 86, 87, 88, 89
LoRaWAN Long Range Wide Area Network. 36, 37, 38, 44, 45, 46, 48, 53, 56, 57

M

MAC Medium Access Control. 12, 16, 20, 45
MARL Multi-Agent Reinforcement Learning. 64, 65, 66, 89, 92, 94, 95, 106, 107, 160
MC Markov Chain. 21
MDP Markov Decision Process. 64, 70, 92, 96, 148, 151, 167
MEC Mobile Edge Computing. 145, 148, 157
ML Machine Learning. 1, 11, 12, 34, 120, 121, 133, 139, 141, 160, 161, 167

xviii



mMTC massive Machine Type Communication. 119

N

NACC Neighbor Aware Congestion Control. 19, 20, 24, 25, 26, 28, 31, 32, 33
NC Networked Control. 106, 107
NCVI Non-Critical Video. 153
NCVO Non-Critical Voice. 153
ND-POMDP Networked Distributed Partially Observable Markov Decision Process. 64, 67,

70, 88, 92
NFV Network Function Virtualization. 119, 138, 143
NN Neural Network. 64, 65, 72, 105, 106, 107, 108, 109, 120, 121, 122, 131, 138,

152, 154, 169
NS Network Slicing. 2, 119, 120, 121, 122, 129, 144, 146, 149, 152, 160
NSE Network Server. 45, 48

O

OC Oracle Communication. 107, 110, 111, 112, 113, 114

P

PAoI Peak AoI. 51, 52, 56
PB Periodic Broadcasting. 17, 19, 20, 24, 25, 26, 30, 31, 32, 33
PF Particle Filter. 11, 37
POMDP Partially Observable Markov Decision Process. 72

Q

QoE Quality of Experience. 66
QoI Quality of Information. 10
QoS Quality of Service. 2, 3, 91, 92, 94, 121, 145, 149, 160

R

RAdam Rectified Adam. 73
RC Random Communication. 107, 110
ReLU Rectifier Linear Unit. 106, 131
RL Reinforcement Learning. 64, 65, 66, 70, 71, 98, 103, 105, 120, 129, 130, 132,

145, 146, 147, 167, 168, 169
RSSI Received Signal Strength Indicator. 38

S

SARSA State-Action-Reward-State-Action. 154, 168
SDN Software Defined Networking. 119, 121, 138, 143
SF Spreading Factor. 37, 45, 46, 48, 49, 50, 53, 54, 56
SLA Service Level Agreement. 120, 121, 122, 123, 124, 125
SNR Signal to Noise Ratio. 13, 38
SUMO Simulation of Urban MObility. 10, 26, 27, 29

T

xix



TL Transfer Learning. 64, 65, 66, 75, 79, 82, 120, 121, 122, 131, 136, 140, 141, 142,
144, 147, 161

U

UAV Unmanned Aerial Vehicle. 7, 35, 36, 37, 38, 39, 40, 44, 45, 46, 47, 48, 49, 51,
52, 53, 56, 61, 63, 64, 65, 66, 67, 68, 70, 71, 73, 75, 76, 77, 78, 79, 82, 83, 84,
87, 88, 89, 159, 160

UKF Unscented Kalman Filter. 11, 16, 18, 19, 25, 39, 44, 47, 48, 52, 163, 164
UL Uplink. 45, 48, 54
UoI Urgency of Information. 94
URLLC Ultra Reliable Low Latency Communication. 9, 119, 120, 124, 125, 135, 137,

139, 140, 141, 142, 143, 144
UT Unscented Transformation. 164

V

VoI Value of Information. 93, 94

xx



1
Introduction

Since the end of the last century, humanity has seen a phase of technological progress without
precedent. The significant improvement in computational technologies has enabled more

powerful Machine Learning (ML) algorithms, which surpassed human abilities in multiple areas.
The diffusion of virtual and augmented reality has given birth to new applications for supporting
user entertainment and highly specialized tasks such as remote surgery and emergency missions.
The Internet of Things has fostered a new world vision, where a unique network virtually
interconnects any devices, from house appliances to cars. The rapid emergence of these and other
technologies is at the basis of the fourth industrial revolution, allowing new business models
where everything is tailored to the specific requirements of the end users. Product customization
is a paramount aspect of Industry 4.0 since it makes it possible to maximize users’ experience
while reducing resource waste. To fully attain such a vision, companies are looking to innovate
production processes, making them more efficient and adaptable to customer requests. With
this business shift in mind, the scientific community is moving away from one-time problems,
developing engineering solutions to address mutable requirements and conditions.

Telecommunication technologies are a fundamental enabler of the industrial revolution that
has characterized the last few years. Without a proper telecommunication infrastructure, it will
be impossible to design cloud systems and gather the massive amounts of data necessary for
ML models’ training. Telecommunications are at the basis of the Internet of Things and play a
primary role in the development of virtual reality, blockchain, remote robot control, and many
other breakthrough applications. However, until a few years ago, most telecommunication net-
works presented a monolithic architecture that hardly suited these new services. This limitation
was overcome by the 5th Generation (5G) and 6th Generation (6G) technologies, which shifted
the design focus from merely communication performance to the system’s flexibility and adapt-
ability. To this goal, many instruments have been proposed, including mobile communication
infrastructure, the virtualization of network resources, and the use of cognitive algorithms.

1



Chapter 1

Upcoming telecommunication networks will not constitute a rigid infrastructure to which
application requirements must adapt but will be designed as a service that users can require on-
demand according to their current needs. The fulfillment of this vision requires new approaches
to virtualize network functionalities and manage the different network components. In this re-
gard, the 5G paradigm considers aerial base stations fundamental for providing communication
coverage in remote areas where physical facilities are absent. Besides, the use of drones in criti-
cal scenarios makes it possible to define breakthrough applications and improve those already in
place. Aerial networks can help emergency operators monitor their intervention during wildfires
or earthquakes, and similar systems offer higher data rates in areas with massive user density,
such as a stadium. Parallel to the diffusion of drone services, 5G technologies lead autonomous
driving toward its highest performance and security levels. Hence, upcoming telecommunica-
tion systems will enable inter-vehicle communication to facilitate traffic maneuvers and reduce
the probability of car collisions.

Another requirement of future networks is to allow more flexible management of the inner
resources and protocols. The increasing heterogeneity of future technologies requires telecom-
munication systems to provide an ever-increasing number of Quality of Service (QoS) levels
to accomplish the specific requirements of each application. The 5G and 6G paradigms made
this possible through full virtualization of the network functionalities, including the allocation
of communication bandwidth and computational power. This concept has led to the Network
Slicing (NS) paradigm, a novel approach that envisages splitting the virtual network resources
among different logical networks, named slices. Network tenants can customize each slice to
offer specific services and initialize new ones on-demand when different application classes enter
the system. Besides dramatically improving user experience, the NS paradigm ensures that the
different slices are isolated, which means that the performance degradation in one application
class does not affect the others.

Lastly, future telecommunication systems will minimize interventions for network manage-
ment and reconfiguration. In the past, a minimal change in the network dynamics required
tenants to take direct actions to modify the existing infrastructures and eventually add new
elements. Thanks to the progress of ML technologies, networks can autonomously reorganize
their functions, e.g., actively displacing base stations and changing resource allocation among
different slices. Besides reducing the capital expenditure necessary to maintain the network,
ML makes it possible to reach performance and efficiency levels beyond human possibility. In
particular, the Continual Learning (CL) paradigm allows networks to adapt to new working
conditions continuously, even in the case of scenarios that deviate from those seen during the
training. On top of that, the adoption of distributed learning approaches further increases
the flexibility of the network architecture, enabling a constant integration of new features and
services and providing a new level of robustness. Indeed, splitting the control duties among mul-
tiple learning units allows the final system to operate even in case of network failures, making
the users never experience degraded performance.

The scientific community is putting strong effort toward developing new strategies for manag-
ing future networks, considering the necessity of constantly reconfiguring protocols and resources

2



Introduction

to address requirements that change over time. In this dissertation, we try to design a series of
solutions to attain such a vision, with the final aim of building a dynamic network architecture
capable of adapting its physical topology and virtual resources to different working scenarios.
The salient point of our research is to distribute network control, associating each task with an
intelligent unit that interacts with many others to find the optimal system configuration. At
the same time, our distributed learning approaches involve new and fascinating challenges for
network design and orchestration.

We divide this dissertation into three parts, each tackling a specific aspect of dynamic net-
works’ management. In the first part, we investigate new communication strategies to track the
nodes of mobile networks, considering both terrestrial (Chapter I) and aerial devices (Chapter
II). The goal is to design a flexible framework to map the overall network without the support
of a centralized architecture but offloading the tracking tasks to all the network nodes. In the
proposed approach, each node acts as an independent unit and tunes its communication policy
according to the local estimate of the network conditions. Going beyond the current literature,
we base the broadcasting of local information not on traditional metrics, such as the Age of
Information (AoI), but on the urgency of the messages to be transmitted. With this concept, we
intend the potential benefits that the message transmissions bring to the final task achieved by
the system without considering traditional communication metrics. In addition, we adapt the
specific communication strategies of the local devices to channel conditions, showing that usage
of more advanced and computationally expensive tracking systems may lead to performance
degradation.

After designing a framework to track node trajectories, the second part of this thesis focuses
on how to determine the same trajectories to achieve a specific mission. More specifically, we
investigate new Deep Reinforcement Learning (DRL) strategies to coordinate mobile nodes,
allowing them to change positions for different purposes and applications, such as mapping
and monitoring remote areas. Again, we consider a distributed system, where each unit takes
decisions autonomously, allowing the overall network to work even in case of single component
failures. The drawback of this approach is that the system performance strongly depends
on the nodes’ estimates of the overall network status. Indeed, without a dedicated channel
to exchange local information, each node can only have a partial view of the network and
learn a sub-optimal control policy. In this regard, we prove that the relationship between
communication and control is critical for performance maximization, showing that a framework
with learning-based communication overcomes the benchmark scenario where communication
is determined a priori.

Finally, the third part of this thesis extends our distributed control architecture toward an
intelligent allocation of network resources. Taking advantage of the NS paradigm, we design a hi-
erarchical system where multiple agents cooperate and allocate resources among different slices,
ensuring that each application class complies with the desired QoS. Our approach can adapt to
variable network conditions, becoming fundamental for initializing new slices on demand and
prioritizing critical applications in case of limited network resources. A paramount aspect of
this scenario is the necessity of allocating part of the resources to support the same learning

3



Chapter 1

algorithms that must orchestrate the network. This last problem is not trivial since increas-
ing the training resource speeds up convergence but reduces the number of network resources
devoted to the system users. We model the above problem as a trade-off between learning
efficiency and resource availability, showing that the optimal solution varies according to the
specific scenario we consider. This model opens new fascinating challenges related to network
design since the presence of learning agents will be paramount in future telecommunication and,
in general, engineering systems.

4



Part I

Quality-Based Communication
Strategies for Node Tracking

5





Introduction

Over the last few years, the scientific and industry communities have paid great attention to
vehicular communication and Unmanned Aerial Vehicles (UAVs) technologies. These systems
expect to bring impressive benefits in several fields, from autonomous cars to area surveillance
and disaster management. At the same time, vehicular and drone networks may be ineffective
without the support of an accurate tracking framework. In this context, the state-of-the-art
involves the periodic transmission of the node state updates, thus minimizing the Age of Infor-
mation (AoI) within the overall system. However, the trajectories of mobile nodes, such as cars
and drones, can be erratic and unpredictable, degrading the performance obtained with such
an approach. To overcomes such limits, the first part of the thesis defines a new framework to
map the evolution of dynamic networks, considering vehicles driving on a city map and a UAV
swarm flying in a 3-dimensional environment. In our approach, each node acts independently,
ensuring robustness to network failures at the cost of more complex node coordination.

At first, we consider a vehicular network scenario and define a novel communication strategy
based on the urgency of local information. Hence, each vehicle does not start new transmission
relying on traditional AoI-based metrics but increases or decreases the data rate according to
the estimated tracking error. We test the designed system in a simulative scenario based on an
actual city map, computing the system performance as the vehicle’s capability of predicting the
other nodes’ trajectories. We further improve the benefits of our strategy by implementing an
innovative congestion control mechanism that tunes communication according to the vehicular
density in the target area. Our simulations show that the proposed scheme reduces the trans-
mission of redundant messages and improves the overall tracking accuracy by more 20% than
conventional approaches.

We implement the same framework in a drone swarm scenario, considering the Long Range
Wide Area Network (LoRaWAN) standard to collect the measurements of single drones. To
correctly represent Unmanned Aerial Vehicle (UAV) trajectories in a 3-dimensional environ-
ment, we design a new motion model that extends the Constant Turn Rate and Acceleration
(CTRA) equations used in the vehicular scenario. Hence, we investigate the trade-off of the
LoRa technology, showing how to tune the Spreading Factor (SF) and the tracking settings
to ensure optimal performance. Our results show that the tracking configuration must adapt
to the channel conditions to avoid increasing communication overhead and degrading the over-
all performance. By carrying our realistic simulations on a public dataset, we prove that our
system enables the accurate tracking of dozens of drones at distances up to several kilometers.

7



8



2
Broadcasting Strategies for Dynamic Mapping in

Vehicular Networks

2.1 Introduction

In recent years, there has been a growing interest in vehicular communications, which have
rapidly emerged as a means to support efficient transportation systems [2]. From a safety

perspective, vehicular networks can mitigate the severity of traffic accidents by notifying ve-
hicles about dangerous situations, including bad road conditions and approaching emergency
vehicles [3]. Besides, they can support various entertainment services, ranging from real-time
multimedia streaming to interactive gaming and web browsing [4]. Finally, vehicular commu-
nication is the basis of all the innovative applications that enable the function of self-driving
cars.

Autonomous car systems present critical latency (less than 10 ms for safety-related services)
and reliability (i.e., up to 99.999% for a high degree of automation [5]) requirements, which can
be addressed only by the Ultra Reliable Low Latency Communication (URLLC) services of the
5th Generation (5G) paradigm [6]. Besides proving extremely low communication delay, the
5G architecture should guarantee timely vehicle positioning with errors below 1.5 m for where-
in-lane positioning, as recommended by the National Highway Traffic Safety Administration
(NHTSA) [7]. In a standard scenario, vehicles can determine their positions by onboard Global
Positioning System (GPS) receivers, though this system may not always provide the required
accuracy [8]. Data fusion techniques [9] can overcome GPS limitations by combining several
sources of information into a single solution that is more precise than any individual approach.
Besides, inter-vehicular communication can further improve the estimation of the overall net-

The work presented in this chapter was published in IEEE Transaction on Wireless Communication [1].

9



Chapter 2

work, allowing nodes to exchange the onboard sensors’ measurements and gain cooperative
perception of the surrounding environment.

Most advanced vehicular applications require disseminating position updates as timely as
possible, i.e., as the onboard sensors generate new measures. The traditional approach is to
have each node broadcast periodic updates with its positioning and future trajectory informa-
tion, monitoring the Age of Information (AoI) and starting new communications consequently.
However, vehicular scenarios involve rapid dynamics and unpredictable changes [10], which
makes the network topology intrinsically variable and periodic broadcasting strategies ineffi-
cient. Long inter-transmission intervals may prevent information dissemination in safety-critical
situations, while frequent broadcasting may overload the wireless medium with useless data and
increase the number of packet collisions [11]. In this context, it is possible to implement con-
gestion avoidance mechanisms to regulate information distribution as a function of the network
load [12]. These techniques dynamically adapt to the number of neighboring vehicles [13] or
assign priorities to vehicles based on their operating conditions [14], but usually disregard the
final level of positioning accuracy.

Deciding how to regulate the broadcasting of positioning data in a vehicular network is a
critical problem that cannot be handled with classical AoI-based solutions. In recent years, the
scientific community has investigated more sophisticated mechanisms that explicitly consider
the Quality of Information (QoI) [15] to trigger data transmissions. These strategies, however,
have been typically proposed for sensor networks and may not be directly applied to the vehic-
ular environment. Some other proposals, e.g., [16, 17, 18], estimate the value of the position
information updates and broadcast those that maximize the utility for the target applications.
On the other hand, these works do not implement congestion control, and practical validation
in real vehicular deployments is still missing.

This chapter addresses the problem of ensuring accurate position estimation in a vehicular
network scenario while minimizing the number of communication involved. To this end, we
design a broadcasting algorithm that allows every vehicle to estimate the trajectories of all
the nodes within its range: the proposed technique activates new communication only if the
estimated positioning error is above a predefined threshold. Our approach is computationally ef-
ficient and can be executed in real-time, even with the limited onboard computational resources
of mid-range and budget car models. Besides, we find a mathematical expression of the packet
collision probability as a function of the vehicular traffic density and design a new congestion
control mechanism exploiting topology information to reduce the packet collision probability.
Compared with traditional channel-based congestion control, our solution can better adapt to
fluctuating conditions of the environment, as is typically the case in the vehicular ecosystem.

We investigate the performance of the proposed scheme compared to a state-of-the-art so-
lution that instructs vehicles to broadcast state information at regular intervals. The perfor-
mance analysis takes place in a set of scenarios generated by Simulation of Urban MObility
(SUMO) [19], an open simulator designed to model the traffic of large road networks. The
simulation results show that the proposed algorithm can reduce the average position estimation
error by more than 10% and its 95th percentile by more than 20% with repsect to a standard

10



Broadcasting Strategies for Dynamic Mapping in Vehicular Networks

approach minimizing the AoI in the system. Finally, we provide guidelines on the optimal broad-
casting strategy for a given set of automotive-specific parameters, including the transmission
periodicity and the bandwidth capacity.

We organize the remainder of this chapter as follows: Sec. 2.2 presents a selection of the
most relevant related work; Sec. 2.3 introduces our system model; Secs. 2.4 and 2.5 describe our
broadcasting and congestion control strategies, and derive the expression for the packet collision
probability as a function of the vehicular traffic density; Sec. 2.6 validates our theoretical analysis
through simulations; finally, Sec. 2.7 provides the chapter conclusions and suggestions for future
work.

2.2 Related Work
In a Connected and Intelligent Transportation Systems (C-ITS) scenario, vehicles are equipped
with onboard sensors and use them to gather observations about the surrounding environment.
These observations are then broadcast within the network through wireless technologies and
are used to implement a tracking system [20, 21] whose target state is the set of positions of all
surrounding neighbors. The tracking performance depends on the coordination among the vehi-
cles and how the data is processed. The most common choice is to adopt a Bayesian approach,
typically based on the Kalman Filter (KF) [22], the Unscented Kalman Filter (UKF) [23], or
the Particle Filter (PF) [24]. For instance, the work of [25] designs a tracking framework based
on the UKF and the Constant Turn Rate and Acceleration (CTRA) motion model. Instead,
in [26], a particle filter jointly processes route information and digital map data, while the
authors of [27] achieve position forecasting by a Hidden Markov Model [28] and a Viterbi ap-
proach [29]. We highlight that, in all the Bayesian filters, the performance greatly depends on
the algorithm settings, e.g., the process and estimation noise covariances, which must be known
a priori [30].

While conventional tracking approaches focus on the real-time estimation of the target state,
most advanced C-ITS applications require a prediction of vehicles’ future trajectories. In a basic
scenario, we can achieve long-term forecasting by applying the predictive step of a KF to the last
available state estimate. However, this solution is very sensitive to imperfections of the motion
model, and more sophisticated approaches were proposed in the literature. The authors of [31]
exploit the output of a KF to perform a parametric interpolation of the future path of the target
vehicle. Instead, in [32], it is designed a framework based on dead reckoning to improve packet
forwarding in a highway scenario. Another approach requires describing trajectory prediction
as a time series forecasting problem [9] and then applying Machine Learning (ML) techniques to
improve target state estimation. In this regard, the authors of [33] use Support Vector Machines
to forecast vehicle motion, enabling the target estimation when there is no GPS availability.
Instead, the work of [34] introduces a neural network system trained with historical traffic data
and then used to predict vehicles’ speeds.

In general, ML approaches guarantee high performance but require a massive amount of
data for the initial training, which is often not publicly available. Moreover, ML solutions suffer

11



Chapter 2

from significant computational complexity, and vehicles may not support their implementation.
Another possibility is to combine ML with Bayesian algorithms: in [35], the authors present
a system using a Hidden Markov Model to estimate vehicle maneuvers and a Support Vector
Machine to predict future vehicle trajectories. The work of [36] exploits a Radial Basis Function
classifier to compute the inner parameters of a particle filter, which then estimates the long-
term trajectory of the target. Besides, in [37], the results of a maneuver recognition system are
combined with the output of a Bayesian algorithm using the CTRA motion model.

Regardless of the complexity of the tracking framework, the overall performance may be low
if onboard sensor measurements are not sufficiently accurate. Therefore, vehicles share local
information to take advantage of cooperative perception and compensate for the low quality
of the sensor data. To this end, vehicles exploit the Dedicated Short Range Communication
(DSRC) technologies and the Wireless Access in Vehicular Environment (WAVE) standard [38,
39], which is based on a Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)
scheme. Such a system may suffer channel congestion in scenarios with high vehicular density,
leading to the risk of losing the transmitted information because of packet collisions. Defining
novel congestion control schemes, which suit the characteristics of modern vehicular networks,
is thus a problem of high interest.

Over the years, many researchers have proposed different Medium Access Control (MAC)
strategies that adapt inter-vehicle communications to channel conditions. In [40], the authors
present a rate-adaption strategy that ensures channel stability also in vehicular scenarios, prov-
ing the convergence of the proposed algorithm and providing guidance for the choice of the
algorithm parameters. In [41], the hidden terminal problem is avoided by a time-slotted system
where each vehicle is assigned a dedicated slot per frame, during which it can alert its neighbors
about its future transmissions. Finally, the work of [42] focuses on improving congestion control
in road intersections by a distributed ML strategy. In particular, dedicated road infrastructure
has the task of deleting redundant communications and assigning specific CSMA/CA parameter
settings to different clusters of transmitters.

A solution for reducing channel occupancy is to select the optimal transmission strategy as
a function of the instantaneous positioning error of nearby vehicles. For instance, the authors
in [43] propose a broadcasting strategy in which vehicles trigger new transmissions whenever
the estimates of their neighbors’ errors are above a predetermined threshold. However, such
analysis is provided only for specific case scenarios, and the framework that predicts future
vehicles’ states is quite obsolete with respect to current vehicular tracking techniques. Similarly,
in [44], the vehicles’ transmission rate is tuned according to both the positioning error and the
estimated number of packet collisions. Nevertheless, this strategy assumes each vehicle is aware
of the number of packet losses at each timeslot. Such a condition does not hold in vehicular
scenarios, where most collisions are due to the hidden terminal problem and cannot be sensed
directly. Instead, the authors of [45] analyze the communication dynamics causing the hidden
terminal problem and address the limits of CSMA/CA by varying the vehicle communication
range according to channel occupancy. However, the validity of the approach is proven only in a
highway scenario and cannot be generalized to more complex and unpredictable environments.

12



Broadcasting Strategies for Dynamic Mapping in Vehicular Networks

The adaptation of the vehicles’ data rate according to the channel conditions, as well as
the implementation of accurate tracking frameworks, are fundamental for the development of
future vehicular networks. In order to respond to these necessities, this chapter designs a
new vehicular communication strategy that minimizes broadcasting operations while ensuring
accurate position estimation. To the best of our knowledge, the proposed system is the first to
address the problem of balancing the frequency of vehicular communication as a function of the
overall tracking performance and the channel conditions.

2.3 System Model
In this section, we present the system model on which we base our study. First, we theoretically
model a C-ITS network as a time-varying Euclidean graph, whose nodes and edges represent
vehicles and their communication links, respectively. Then, we define a performance metric that
considers both the tracking errors and the vehicle positions. Finally, we describe the tracking
system implemented by each vehicle and the communication channel through which vehicles
disseminate local information respectively. For the reader convenience, we report the main
notation of our model in Tab.2.1

Tab. 2.1: Model parameters.

Parameter Description Parameter Description

t Slot index τ Slot duration
N Vehicle set E Edge set
N Vehicle number Γn,m SNR between n and m
Γthr SNR threshold dr Communication range
xn State of n x̂n,m Estimate of xm made by n
Pn,m Estimation accuracy of x̂n,m Ttrack Maximum tracking time
Nn Neighbors of n N̂n Estimated neighbors of n
Fn(·) Error function of n F(·) System error function
d(xn,xm) Distance between n and m λn,m Proximity parameter
Ctot Maximum subcarrier number C Subcarrier number
Tper,n Inter-transmission period of n Ethr,n Error threshold of n
Tlast,n Time from last transmission of n d0 Safety distance
Kn Channel busy ratio of n Kavg,n Average channel busy ratio of n
Tcbr Interval during which Kn is computed Tavg Interval between Kavg,n updates
Ktarget Target channel busy ratio ρn Transmission probability of n
Nht,n Number of interfering nodes for n Φ(·) Shared communication area function
Pcoll Collision probability Pthr Collision probability threshold
M(·) Map from Ethr to Tper Terr Slots during which the error exceeds Ethr

2.3.1 General Model

We represent a C-ITS network as a Euclidean graph G = (N , E), i.e., an undirected graph
whose vertices are points on a Euclidean plane [9]. Hence, N represents the set of nodes, i.e.,
vehicles, while E represents the set of edges. We denote by | · | the cardinality operator so
that N = |N | represents the total number of nodes in the system. We say that two vehicles
n,m ∈ N , n ̸= m, are connected by the edge < n,m >∈ E if the average Signal to Noise Ratio
(SNR)n,m between them is higher than a threshold Γthr that makes correct packet reception
possible, i.e., E = {< n,m >: n ̸= m,Γn,m > Γthr}. This implies that < n,m >∈ E if and

13



Chapter 2

only if the Euclidean distance between n and m is lower than the communication range dr.
Since the composition of the edge set depends on the node positions, the network topology is
time-varying, e.g., new edges can be activated or disabled according to how vehicles move.

In our model, we assume that vehicles move in a two-dimensional space; while not always
realistic, this hypothesis does not compromise the accuracy of our analysis. For simplicity, we
divide time into discrete timeslots of duration τ, making the system evolve in slots t ∈ Z+. To
highlight the time dependency of the network, we denote by G(t) = (N (t), E(t)) the network
graph at slot t. Hence, we define the neighbor set Nn(t) of n ∈ N (t) at slot t as the set of all
the vehicles connected to n by an edge in E(t), i.e., Nn(t) = {m ∈ N (t) :< n,m >∈ E(t)}.

v

Fig. 2.1: Graphical representation of the vehicle state x(t) =
(
x(t), y(t), h(t), v(t), a(t), ω(t)

)
at slot t.

The behavior of each vehicle n ∈ N (t) is represented by a 6-tuple xn(t) =
(
xn(t), yn(t),

hn(t), vn(t), an(t), ωn(t)
)
, which we call vehicle state. In particular, xn and yn are the Cartesian

coordinates of n on the road topology, hn is the vehicle’s heading direction, vn and an are the
vehicle’s tangent velocity and acceleration, respectively, and ωn is the vehicle’s angular velocity
as exemplified in Fig. 2.1. Consequently, the physical distance between the positions of vehicles
n and m at slot t is given by d(xn(t),xm(t)) =

√
(xn(t)− xm(t))2 + (yn(t)− ym(t))2.

2.3.2 Error Function

In our model each vehicle n ∈ N (t) aims at tracking the position of each neighbor m ∈ Nn(t)
at any time t. For the rest of the work, we call ego vehicle any vehicle n ∈ N (t) that is tracking
a group of neighbors, which are named target vehicles. The details of the tracking framework
of the ego vehicle are described in Sec. 2.3.3. Hence, we denote by N̂n(t) the subset of N (t)

containing the target vehicles, by x̂n,m(t) the state estimate of m ∈ N̂n(t) maintained by n,
and by x̂n,n(t) the state estimate of n performed by the ego vehicle itself. We highlight that the

14



Broadcasting Strategies for Dynamic Mapping in Vehicular Networks

real neighbor set Nn(t) might differ from N̂n(t): the ego vehicle could have no knowledge of a
vehicle in Nn(t) (undetection), some vehicles in N̂n(t) might actually be outside the coverage
area of n (false alarm), and communication and tracking errors might lead the ego vehicle to
consider an actual neighbor to be outside its communication range (misdetection).

Under these hypotheses, the performance of the ego vehicle in terms of position estimation
accuracy can be assessed by an error function Fn(t), which is a weighted average of the position
estimation errors made by the ego vehicle with respect to itself and all its target vehicles. Since
computing the ego vehicle’s estimation error requires its actual state, no node in the network can
know it exactly. Furthermore, each node in the network only has partial and often outdated
knowledge about its neighbors. We use the error function to evaluate the performance of
different tracking systems in our simulations, as we can compute it offline using our knowledge
of the ground truth trajectories. We define the error function as

Fn(t) =
1

|N̂n(t)|+ 1

(
λn,n(t)d(x̂n,n(t),xn(t)) +

∑
m∈N̂n(t)

λn,m(t)d(x̂n,m(t),xm(t))

)
. (2.1)

In (2.1), d(x̂n,n(t),xn(t)) and d(x̂n,m(t),xm(t)) represent the error made by n in estimating
its own state n(t) and the neighbor state m(t), respectively, and |N̂n(t)|+1 represents the total
number of estimations carried out by n. Finally, λn,m(t) is a scalar value depending on the
distance between n and m, computed as

λn,m(t) = 1− 1(
1 + e−ϵ(d(xn(t),xm(t))−d0)

)1/ν . (2.2)

The reader should note that the function in (2.2) fades away as the distance between the
ego vehicle and its neighbors grows above d0. Therefore, the error function in (2.1) is more
sensitive to the positioning errors of the nodes closest to the ego vehicle. Hence, we are giving
more importance to information updates that may increase the safety of the ego vehicle. The
function that describes λn,m(t) is known as Richards’ curve [46]: the values of its parameters
are listed in Tab. 2.2.

To evaluate the tracking accuracy performance of the whole network, we define F(t) as the
average of Fn(t) among all vehicles n ∈ N (t):

F(t) = 1

|N (t)|
∑

n∈N (t)

Fn(t). (2.3)

2.3.3 Tracking System

To minimize the positioning error defined in (2.1), each vehicle n ∈ N (t) must estimate its state
xn(t) and the state xm(t) of every other neighbor m ∈ N̂n(t) at any time t. To this goal, the
ego vehicle exploits both the information of its onboard sensors and the data received from its
neighbors through inter-vehicle communications. We describe the vehicle state evolution with

15



Chapter 2

the CTRA model given in [47], thus considering a constant acceleration a = dv
dt and a non-zero

turn rate ω. Besides, we assume the on-board sensors provide a noisy observation on(t) at each
slot t. The ego vehicle implements a UKF that, at each step t, returns the vehicle state estimate
x̂n,n(t) and the related uncertainty, given by a matrix Pn,n(t). We provide the details of the
UKF in Appendix A. In particular, the UKF makes it possible to compute also the target’s
future trajectory through the predictive step of the algorithm.

To allow the ego vehicle to track the surrounding nodes, an extra UKF is deployed for each
neighbor m ∈ N̂n(t). Each additional UKF has the task of computing the state estimate x̂n,m(t)

of m and is fed by the information broadcast by such vehicle. At each timeslot t, each vehicle m
∈ N (t) can decide to transmit the estimate x̂m,m(t) and the related covariance matrix Pm,m(t).
The time frame by which new transmissions are initiated depends on the selected broadcasting
strategy, as described in Sec. 2.4. Each message transmitted by m is received by all the vehicles
in Nm(t) after a communication delay (provided that the transmission is not interfered with,
as we will explain later).

Whenever the ego vehicle gets a message from a node not in its current neighbor set N̂n(t),
it initializes a new UKF with an initial state and uncertainty set equal to those just received.
Instead, if the transmitter was known to the ego vehicle, the tracking system is updated by
setting x̂n,m(t) = x̂m,m(t) and Pn,m(t) = Pm,m(t). In both cases, the predictive step of the
UKF allows the ego vehicle to estimate the trajectory of m until a new update is received.
Hence, the tracking operations are carried out without transmitting the complete history of
observations but only the last computed state estimation, thus saving precious channel resources.
We highlight that the UKF algorithm requires using an uncertainty matrix Pm,m(t) to compute
the best state estimation. In particular, the transmission of Pm,m(t) is necessary to allow n

to predict the future evolution of x̂n,m(t). If a vehicle n does not receive state updates from a
neighbor m ∈ N̂n(t) for a period longer than Ttrack, m is removed from N̂n(t).

2.3.4 Channel Access Scheme

Inter-vehicle communications are modeled following the IEEE 802.11p standard, which defines
the Physical (PHY) and MAC layer features of the DSRC transmission protocol [38]. The
DSRC protocol defines seven different channels at the PHY layer, each containing Ctot = 52

subcarriers [39]. In this work, we assume that only a limited number C ≤ Ctot of subcarriers
is used for broadcasting state information messages, and the remainings are reserved for other
applications. In particular, DSRC implements the CSMA/CA scheme at the MAC layer, where
nodes listen to the wireless channel before sending.

We consider an ideal 1-persistent CSMA/CA scheme for channel access modeling. In this
way, we can successfully arbitrate the channel access among in-range vehicles as long as a single
transmission per subcarrier and timeslot are enabled, even in the case of multiple potential
transmitters. However, collisions can still occur among out-of-range vehicles that transmit to-
wards the same receiver, an issue known in the literature as the hidden node problem. Therefore,
the transmission from a vehicle n to a vehicle m will suffer from a hidden terminal collision if

16



Broadcasting Strategies for Dynamic Mapping in Vehicular Networks

any of m’s neighbors that are out of n’s range start a transmission that overlaps in time and
frequency with n’s signal. We also design and implement a congestion control algorithm to
reduce the channel collision probability. More details are given in Sec. 2.5.

2.4 Broadcasting Strategies
In this section, we describe the communication strategies used to regulate inter-vehicle commu-
nications in our model. In particular, two different solutions are considered, namely Periodic
Broadcasting (PB), already implemented by most C-ITS applications, and Error Threshold
Broadcasting (ETB), our original proposal.

2.4.1 Benchmark: Periodic Broadcasting

Algorithm 1 PB strategy (Sec. 2.4.1)

Input: Tper,n > 0, Tlast,n > 0, new neighbor ∈ {True, False}
Output: transmit ∈ {True, False}

1: transmit← False
2: Tlast,n ← Tlast,n + 1
3: if Tlast,n > Tper,n or (new neighbor and Tlast,n > 2 ) then
4: transmit← True
5: end if
6: if transmit then
7: Tlast,n ← max{Tlast,n − Tper,n, 0}
8: end if
9: return transmit

In the PB scenario each vehicle n ∈ N (t) chooses an inter-transmission period Tper,n. If
Tper,n remains constant over time, the communication process of n follows an almost regular
time-frame. This strategy is a benchmark solution for our analysis as it emulates the broadcast
behavior of current vehicular applications, which transmit Cooperative Awareness Messages
(CAMs) and Basic Safety Messages (BSMs) at a regular frequency. Reducing Tper,n allows any
neighbor m ∈ Nn(t) to receive the state estimate x̂n,n of n more frequently, at the expense of
increasing the probability of channel access collision. Moreover, we initiate a new transmission
each time the ego vehicle senses a new neighbor m ̸∈ N̂n(t), and no packets were sent in the
previous two timeslots. This feature allows m to immediately update its neighbor set N̂m(t),
thus reducing the undetection probability. The PB strategy is described in Algorithm 1, where
Tlast,n represents is the time from the last transmission and “new neighbor” is a Boolean variable
indicating that a vehicle m ̸∈ N̂n(t) is detected at slot t.

2.4.2 New Proposal: Error Threshold Broadcasting

In the ETB scenario each vehicle n ∈ N (t) chooses an error threshold Ethr,n and regulates
its communication behavior so that the overall position estimation error never exceeds Ethr,n.

17



Chapter 2

To this goal, the ego vehicle defines an additional UKF replicating the UKF operations of all
the neighbor nodes that are tracking the ego vehicle itself. The new filter propagates the ego
vehicle’s state by using only its predictive step with no sensor input, as done by the vehicle’s
neighbors. Besides, the filter state is updated each time the ego vehicle triggers a new com-
munication, mimicking the operation performed by neighbor vehicles upon receiving the ego
vehicle’s state update. Hence, in each timeslot t, the ego vehicle knows both the a posteriori
state estimate x̂n,n(t), which is the output of its UKF filter, and the a priori state estimate
x̂pn,n(t), which is the output of its purely predictive filter.

Algorithm 2 ETB strategy (Sec. 2.4.2)

Input: Ethr,n > 0, Tlast,n > 0, new neighbor ∈ {True, False}, x̂n,n(t) ∈ R6, x̂pn,n(t) ∈ R6

Output: transmit ∈ {True, False}
1: transmit← False
2: Tlast,n ← Tlast,n + 1
3: if d(x̂n,n(t), x̂pn,n(t)) > Ethr,n or Tlast,n > Tmax or (new neighbor and Tlast,n > 2T ) then
4: transmit← True
5: end if
6: if transmit then
7: Tlast,n ← max{Tlast,n − Tmax, 0}
8: x̂pn,n(t)← x̂n,n(t)
9: end if

10: return transmit

In each timeslot, the two different estimates are compared: if the difference d(x̂n,n(t), x̂pn,n(t))
exceeds Ethr,n, a new transmission is initiated. We observe that, as before, the communication
process can vary according to specific events. A maximum inter-transmission period Tmax is
defined to mitigate undetection errors, and the ego vehicle initiates additional transmissions
whenever new neighbors are detected. This strategy is described in Algorithm 2, where Tlast,n

and “new neighbor” are defined as in Sec. 2.4.1.

(a) PB strategy. (b) ETB strategy.

Fig. 2.2: Temporal evolution of the positioning error for the broadcasting strategies.

18



Broadcasting Strategies for Dynamic Mapping in Vehicular Networks

An intuitive understanding of the PB and ETB dynamics is provided by Figs. 2.2a and 2.2b,
which represent the evolution of the position error d(x̂n,n(t), x̂pn,n(t)) according to the trans-
mission process in the two cases. In the PB scenario, we can observe that new transmissions
are initiated in a regular fashion, regardless of the value of d(x̂n,n(t), x̂pn,n(t)). Instead, in the
ETB scenario, new transmissions are initiated only when d(x̂n,n(t), x̂

p
n,n(t)) is above a certain

threshold. Despite this, the complexity of the ETB strategy is only slightly higher than that
of the PB strategy: the ego vehicle needs to maintain an additional UKF performing only the
predictive step in each timeslot.

In both the PB and ETB scenarios, the best approach would require any vehicle n ∈ N (t)

to determine the optimal value of Tper,n and Ethr,n at any time t. We assume these values
to be computed by the network infrastructure through a brute-force approach, iterating on all
the possible number of available subcarriers, vehicular densities, road characteristics, and other
specific parameters. However, this approach is only possible in simulations, as the computational
and communication loads would be too large for real scenarios. It is far more practical to use
less resource-heavy congestion control techniques, as we will show in the next section.

2.5 Congestion Control

The dynamic nature of the vehicular networks makes the broadcasting strategies described in
Sec. 2.4 inefficient without congestion control mechanisms that regulate information dissemi-
nation as a function of the network load. In our scenario, congestion control must allow each
vehicle n ∈ N (t) to independently adjust the values of Tper,n and Ethr,n, so as to adapt the com-
munication process in real-time. In the following, we first design a benchmark congestion control
mechanism, named Channel Sensing Congestion Control (CSCC), based on the LIMERIC pro-
tocol [40]. This latter is one of the most widely adopted schemes for congestion control [48] and
relies on channel sensing, like most state-of-the-art approaches. Hence, we design an alternative
congestion control approach, called Neighbor Aware Congestion Control (NACC), that exploits
network topology information to reduce the packet collision probability. Finally, we find an
expression for the packet collision probability as a function of the network load and specify how
to integrate the congestion control schemes with the proposed ETB strategy.

2.5.1 Benchmark: Channel Sensing Congestion Control

In the CSCC scenario, each vehicle n ∈ N (t) constantly listens to the wireless channel and
estimates the number of resources that it is allowed to use to avoid congestion. Now, let us
assume that n is assigned to subcarrier cn ∈ {0, 1, ..., C − 1}. In each timeslot, n senses the
channel, looking for new packet transmissions performed by neighbor vehicles. We denote by
Kn(t) the local channel busy ratio, i.e., the fraction of time during which the channel is busy,
considering the last Tcbr timeslots. Hence, every Tavg timeslots, the value of Kn(t) is smoothed
as

Kavg,n(t) = 0.5 ·Kavg,n(t) + 0.5 ·Kn(t). (2.4)

19



Chapter 2

Algorithm 3 CSCC protocol (Sec. 2.5)

Input: Kavg,n(t) > 0, ρn(t− 1) > 0
Output: ρn(t) > 0

if Ktarget −Kavg,n(t) > 0 then
δ = min (β · (Ktarget −Kavg,n(t)), δmax)

else
δ = max (β · (Ktarget −Kavg,n(t)), δmin)

end if
ρn(t) = [(1− α) · ρn(t− 1) + δ]

1
0

return ρn(t)

In (2.4), Kavg,n(t) is the vehicle average channel busy ratio and represents the channel occu-
pancy sensed by n over the subcarrier cn. In the CSCC approach, each vehicle n ∈ N (t) aims
at keeping the value of Kavg,n(t) as close as possible to a target value Ktarget. Practically, every
Tavg timeslots, n evaluates the difference between Kavg,n(t) and Ktarget and updates accordingly
the value of ρn(t), which is the fraction of time used by n to transmit over the wireless channel.
This procedure is described in Algorithm 3, where α and β are two tuning parameters, and
[x]ba = min(max(x, a), b), with a ≤ b. We set α and β according to [40], reporting their values
in Sec. 2.6.

When n adopts the PB strategy described in Sec. 2.4.1, the value of Tper,n at slot t is updated
as Tper,n(t) = 1/ρn(t). In case n is adopting the ETB strategy described in Sec. 2.4.2, ρn(t)
should be determined as a function of Ethr,n, as explained in Sec. 2.5.3.

2.5.2 New Proposal: Neighbor Aware Congestion Control

In the NACC approach, each vehicle n ∈ N (t) computes the value of ρn(t) as a function of
its knowledge about its neighbors’ positions. In particular, vehicles can increase or decrease
channel occupancy with the aim of minimizing the packet collision probability. To design
NACC, we first theoretically model the communication that takes place in a group of vehicles
when CSMA/CA is implemented at the MAC layer, as is case of IEEE 802.11p. Then, we
describe how a user can estimate the number of neighbors that may potentially result in packet
collisions. Finally, we find a relation between the vehicular density sensed by a user and the
packet collision probability itself.

In the following, we make some simplifying assumptions for the tractability of the analysis.
First, we assume an ideal CSMA/CA mechanism, capable of perfectly arbitrating the channel
access among in-range vehicles so that only one node at a time can transmit. However, nodes
that are mutually hidden can transmit simultaneously. We consider that the communication
channel is error-free and that packets are always received if the distance between the vehicles is
below the communication range dr, except in the case of collisions with hidden nodes. Moreover,
we assume that packet capture is impossible: if two packets collide, the receiver cannot decode
either. We also assume that vehicles attempt to transmit packets according to a Poisson process
and have the same traffic rate, i.e., transmission probability, ρ. Finally, to make the model
tractable from a mathematical point of view, we assume that the vehicular density is constant in

20



Broadcasting Strategies for Dynamic Mapping in Vehicular Networks

the considered map. Deriving the optimal congestion control strategy without these assumptions
would require a more cumbersome analysis and some extra signaling overhead for the vehicles.
Although the policy obtained under these simplifying assumptions may be suboptimal in a more
realistic setting, it still provides a reasonable strategy that, as proved by our simulation results,
can achieve better performance than current state-of-the-art solutions.

CSMA/CA Analysis

We saw in Sec. 2.3.4 that vehicles access the channel following an ideal 1-persistent CSMA/CA
protocol. We now consider a group ofN∗ vehicles that share the same subcarrier c ∈ {0, 1, ..., C−
1}. We assume that all these vehicles are always mutually in-range, i.e., at a distance lower than
dr, and that no other vehicle can interfere with their communication. In the case of multiple
vehicles with pending packets, the ideal CSMA/CA algorithm will let just one of them transmit
in a time slot. Denoting by u(t) the number of vehicles that want to access the channel during
the timeslot t, we can write u(t) = max(u(t− 1) + a(t)− 1, 0), where a(t) is the number of new
vehicles attempting a transmission while at most one vehicle managed to transmit in timeslot
t1 (provided that u(t− 1) > 0). The memoryless nature of the Poisson arrival process allows us
to calculate the probability of a(t) given u(t− 1):

P (a(t) = a|u(t− 1) = u, ρ,N∗) =

(
N∗ − u

a

)
ρa(1− ρ)N

∗−u−a. (2.6)

Naturally, P (a(t) = a|u(t− 1) = u, ρ,N∗) = 0 if a > N∗ − u. Since the probability of accessing
the channel is the same for all vehicles, the probability that a specific vehicle trying to access
the channel will transmit is (u(t) + 1)−1.

Assuming that ρ and N∗ are constant, the channel dynamics at the end of any timeslot t are
completely characterized by the number of users that need to transmit, i.e., the queue size u(t).
Hence, we can describe the overall system as a Markov Chain (MC), whose state u(t) is in the
set U = {0, . . . , N∗ − 1} and whose transition probability matrix T(ρ,N∗) is given in (2.7).

Tu,z(ρ,N
∗) =


0, z < u− 1;

P (a(t) = z − u+ 1|u(t− 1) = u, ρ,N∗), 0 < u < N∗, u− 1 ≤ z < N∗;

P (a(t) = z + 1|u(t− 1) = q, ρ,N∗), u = 0, 0 < z < N∗;

P (a(t) ≤ 1|u(t− 1) = q, ρ,N∗), u = 0, z = 0.

(2.7)
The steady-state distribution of u is the left eigenvector Π(ρ,N∗) = [ Π0(ρ,N

∗), Π1(ρ,N
∗),

..., ΠN∗−1(ρ,N
∗)] of T(ρ,N∗) with eigenvalue equal to 1, normalized so that it is a valid

probability distribution:  Π(ρ,N∗)T(ρ,N∗) = Π(ρ,N∗);∑N∗−1
u=0 Πu(ρ,N

∗) = 1.
(2.8)

21



Chapter 2

We can compute the eigenvector with well-known algebraic methods and normalize it to get
the distribution of u. Hence, we can obtain the probability of different transmission events; in
particular, the probability of having no transmissions during a timeslot t is

P (u(t− 1)=0, a(t)=0|ρ,N ) = Π0(ρ,N ) · P (a(t)=0|u(t− 1)=0, ρ,N ). (2.9)

Vehicle Position Distribution

We recall that our objective is to minimize the number of packet collisions, which in our model
are caused only by the hidden terminal problem. Let us consider that the ego vehicle n ∈ N (t)

is sending a packet to any vehicle m ∈ Nn(t), whose distance from n is dn,m. To compute the
collision probability of n, we should estimate how many neighbors of m can interfere with the
communication: we denote this value by Nht,n(t). Since the vehicular density is constant, we
can assume Nm(t) ≃ N̂n(t). Hence, Nht,n(t) can be estimated as

N̂ht,n(t) =
|N̂n(t)|+ 1

C

πd2r − E [Φ(dn,m)]

πr2
. (2.10)

Fig. 2.3: Intersection Φ(dn,m) of the communication ranges of n and m.

In (2.10), |N̂n(t)|+1
C is the estimate of the number of vehicles contained in the communication

area of m that are using the same subcarriers as n, while Φ(dn,m) is the intersection of the
communication areas of n and m. Hence, πd2r − Φ(dn,m) is the size of the area within the
coverage of m but not of n, i.e., the area from which transmission would be hidden from n,
possibly causing a hidden node collision. A graphical representation of this scenario is reported

22



Broadcasting Strategies for Dynamic Mapping in Vehicular Networks

in Fig. 2.3 while the mathematical expression of Φ(dn,m) is given by

Φ(dn,m) = 2dr

dr arccos(dn,m
2dr

)
− dn,m

2

√
1−

(
dn,m
2dr

)2
 . (2.11)

The probability distribution of dn,m is equal to fd(dn,m) =
2dn,m
d2r

. Given (2.11), the mean
value of Φ(dn,m) can be computed as

E [Φ(dn,m)] =

∫ 2dr

0

Φ(σ)fd(σ)dσ = d2r

(
π − 3

√
3

4

)
. (2.12)

Replacing E [Φ(dn,m)] in (2.10) we finally obtain the expression

N̂ht,n(t) =
|N̂n(t)|+ 1

C

3
√
3

4π
. (2.13)

Packet Collision Probability

On average, there are N̂ht,n(t) vehicles that can interfere with the communication of the ego
vehicle. Hence, according to our channel model, the probability that the transmission will not
fail corresponds to the case that none of those N̂ht,n(t) interfering nodes transmits during t.
Assuming that the ego vehicle n ∈ N (t) has transmission probability ρn, while all its interfering
vehicles have the same transmission probability ρ = ρn and do not interact with other network
nodes during t, the packet collision probability Pcoll of n ∈ N (t) at slot t can be derived
from (2.9), obtaining

Pcoll(ρ, N̂ht,n(t)) = 1−Π0(ρ, N̂ht,n(t))(1− ρ)N̂ht,n(t). (2.14)

Assuming that the ego vehicle uses the same transmission probability as the interfering
nodes, each vehicle n ∈ N (t) can regulate ρn(t) such that its collision probability equals a
predetermined threshold Pthr, i.e., settings Pcoll(ρn(t), N̂ht,n(t)) = Pthr. This expression can be
solved using Eq. (2.14), since the vehicle knows the value of N̂ht,n(t). Therefore, we need to
find the solution of:

1−Π0(ρn(t), N̂ht,n(t))(1− ρn(t))N̂ht,n(t) = Pthr (2.15)

Since the steady-state distribution is proper, and the eigenvalues are a continuous function
of ρn(t), we can prove that a real-valued solution exists. We know that if ρn(t) = 0, no vehicle
ever transmits and Π0(0, N̂ht,n(t)) = 1 for any N̂ht,n(t), and if ρn(t) = 1, all vehicles always try
to transmit, and ΠN̂ht,n(t)−1(1, N̂ht,n(t)) = 1 for any N̂ht,n(t). Hence, the intermediate value
theorem ensures that the problem has a solution for any Pthr ∈ [0, 1] and, in particular, we can
explicitly solve the equation if the number of potential interferers N̂ht,n is small.

In the following, we derive the solution of (2.15) with N̂ht,n = 2, which is equivalent to

23



Chapter 2

having just two possible interferers. In doing so, we omit the time dependency for readability’s
sake. If we apply Eq. (2.7), we obtain:

T (ρn) =

[
1− ρ2n ρ2n
(1− ρn) ρn

]
(2.16)

Since the state of the Markov model represents the number of nodes waiting to transmit right
after a transmission opportunity, both the vehicles cannot be in the queue concurrently, and
state 2 is unreachable. We can now solve the system in Eq. (2.8): (1− ρ2n)Π0 −Π0 + (1− ρn)Π1 = 0,

Π0 +Π1 = 1,
, (2.17)

which results in the following expression for Π0 and, consequently, for Pcoll:

Π0 =
1− ρn

ρ2n − ρn + 1
, (2.18)

Pcoll = 1− (1− ρn)3

ρ2n − ρn + 1
. (2.19)

Eq. (2.15) then becomes:

ρ3n − (2 + Pthr) ρ
2
n + (2 + Pthr) ρn − Pthr = 0. (2.20)

The solution is now easy to compute: for Pthr = 0.3, the optimal transmission rate is ρn ≃ 0.152.
If the number of potential interferers increases, the resolution requires higher-order polynomial
equations that cannot be solved explicitly.

Algorithm 4 NACC protocol (Sec. 2.5.2)

Input: N̂n(t) ≥ 0
Output: ρn(t) > 0

N̂ht,n(t) =
N̂n(t)+1

C
3
√
3

4π

ρn(t) = ρ such that Π0(ρ, N̂ht,n(t))(1− ρ)N̂ht,n(t) = Pthr
return ρn(t)

By computing ρn, the ego vehicle can tune its channel occupancy according to its estimation
of the network load. We report the overall operations of the proposed NACC approach in
Algorithm 4. This congestion control strategy makes each vehicle n ∈ N (t) change the value of
ρn(t) according to the vehicular density in its surroundings. In case the vehicle is using the PB
strategy described in Sec. 2.4.1, the value of Tper,n is updated as Tper,n(t) =

1
ρn(t)

. Conversely,
if the ETB strategy described in Sec. 2.4.1 is implemented, ρn(t) will be updated as a function
of Ethr,n, as explained in Sec. 2.5.3. We highlight that, by adjusting the value of Tper,n in
this way, we violate the assumption regarding the distribution of the packet inter-transmission

24



Broadcasting Strategies for Dynamic Mapping in Vehicular Networks

time considered in the definition of the system Markov model. Indeed, the time between two
subsequent transmissions is constant with the PB strategy, while it depends on the position
error evolution in the ETB scenario. This approximation may impair the performance of our
congestion control: in particular, we expect to observe a significant performance reduction in
the case of the PB strategy.

2.5.3 Implementing Congestion Control for the ETB Strategy

Both the CSCC and the NACC approaches improve the efficiency of the broadcasting strategies
described in Sec. 2.4 by adapting the inter-transmission period to the deployment scenario. As
stated previously, to combine a congestion control scheme with the ETB strategy, we have to
relate the inter-transmission period to the error threshold. Practically, we need to build a map
M such that the transmission period Tper =M(Ethr) yields an average map estimation error
close to Ethr. Unfortunately, the relation between Ethr and Tper is subject to multiple factors
and cannot be easily modeled. The function M depends on how the position estimation error
of vehicles evolves in time, i.e., on both the road map and the users’ behaviors.

To reach our goal, we hence resorted to a pragmatic approach. By simulating a purely
predictive UKF in the considered scenario, we derive an empirical estimate of the statistical
distribution P (eh ≤ Ethr) of the position estimation error eh after h timeslots since the last
update, for any h ≥ 0. Denoting by Hthr the number of timeslots in which the error eh exceeds
the threshold Ethr, we can set Tper = E[Hthr]. Now, pretending that the errors eh can be
modeled as independent random variables, the complementary cumulative distribution function
of Hthr can be expressed as

P (Hthr > H) =

H∏
h=1

P (eh ≤ Ethr), (2.21)

from which we easily get

Tper =

∞∑
H=1

H∏
h=1

P (eh ≤ Ethr). (2.22)

Equation (2.22) hence provides the desired map M from the error threshold Ethr to the
inter-transmission period Tper. This function can also be used to determine the value ρ of the
broadcast policy ETB, which can be computed as ρ = 1

M(Ethr)
. We highlight that this approach

requires that vehicles know the distribution of the position estimation error in the map. Such
information can be provided to vehicles by the road infrastructure or pre-programmed into the
channel access algorithm (possibly with multiple choices, depending on the road conditions).
The investigation of such aspects, however, is left to future work.

25



Chapter 2

2.6 Simulation Settings and Results

In this section, we evaluate the performance of the proposed ETB strategy for broadcasting
operations compared to PB. Moreover, we exemplify how the proposed NACC mechanism
can improve the performance of the broadcasting strategies by exploiting network topology
information with respect to the benchmark CSCC scheme that relies only on channel sensing.

2.6.1 System Settings

We assume vehicles to communicate in the legacy band, i.e., at 5.9 GHz, using the IEEE 802.11p
protocol described in Sec. 2.3.4, which is implemented in python in our simulations. We use
the common piecewise long-distance propagation loss model with Nakagami fading [31], using
the parameters derived in [49], which yield a maximum communication range dr of about 140
m. In order to simulate the packet error rate for a given SNR, we use the analytical model
given in [50], with a physical layer rate Bphy Mb/s and a packet length Lpkt = 200 bytes. In
the case of collisions, we assume that both the transmissions fail with no packet capture. The
communication delay and the timeslot duration are both set to τ = 100 ms. When congestion
control is implemented, Tper and Ethr are automatically adjusted as a function of the network
load. When not implementing a congestion control scheme, instead, the settings of both the PB
and ETB strategies must be defined a priori, which means that all the vehicles adopt the same
Tper and Ethr, respectively. In our simulations we adopt an exhaustive approach and consider
Nset = 30 different settings. In particular, we make the inter-transmission period Tper vary from
0 to 10 seconds while the error threshold Ethr ranges between 0 and 42 meters: the trade-off
involves both estimation accuracy and broadcasting overhead.

(a) Openstreetmap scenario. (b) SUMO scenario.

Fig. 2.4: Urban scenario considered for the performance evaluation.

26



Broadcasting Strategies for Dynamic Mapping in Vehicular Networks

For our simulations, we use road map data imported from OpenStreetMap (OSM), an open-
source software that combines wiki-like user-generated data with publicly available information.
In particular, we consider the OSM map of New York City, as represented in Fig. 2.4a, to
characterize a dynamic urban environment. To consider realistic vehicular trajectories, we
simulate the mobility of cars using SUMO, as represented in Fig. 2.4b. The vehicles move
through the street network according to a randomTrip mobility model, which generates trips
with random origins and destinations, and speeds that depend on the realistic interaction of the
vehicle with the road and network elements. The maximum speed is vmax = 13.89 m/s, which
is consistent with current speed limits. Given vmax, we set d0 = 42 m, which is the distance
traveled in 3 seconds by a vehicle running at the maximum speed. In this way, d0 represents
the maximum safety distance held in an urban scenario. Following the work in [51], we consider
a vehicular density of η = 120 vehicles/km2 for medium traffic conditions. Given the total road
map area of A = 0.5168 km2, the number of vehicles deployed in the considered scenario is
N = 62, which corresponds to the cardinality |N | of the vehicle set.

Tab. 2.2: Simulation settings.

Parameter Value Description Parameter Value Description

Tsim 103 slot Simulation duration Tper {0, ..., 100} slot Inter-transmission period
Nsim 20 Number of runs Ethr {0, ..., 42} m Error threshold
τ 100 ms Timeslot duration C {2, 4, ..., 10} Number of subcarriers
N 62 Number of vehicles Tcbr 10 slot Interval in which Kn is computed
Ttrack 100 slot Maximum tracking time Tavg 2 slot Interval between Kavg,n updates
vmax 13.89 m/s Maximum speed ϵ, ν 0.05, 0.2 Logistic function parameters
d0 42 m Safety distance α 0.1 CSCC speed parameter
A 0.5168 km2 Area size β (2 − α)C/N CSCC convergence parameter
η 120 vehicles/km2 Vehicular density δmin, δmax −1, 1 Lower and upper bounds of δ
q 1 Process noise parameter Ktarget 0.68 Target value for Kn
R1,1 1.18535 m2 Accuracy along x Pthr 0.3 Collision probability threshold
R2,2 1.18535 m2 Accuracy along y Lpkt 200 B Packet length
R3,3 0.5 (m/s)2 Speed accuracy Ptx 16 dBm Transmission power
R4,4 0.39 (m/s2)2 Acceleration accuracy Bphy 3 Mb/s Physical layer rate
R5,5 0.09211 rad2 Heading accuracy dr 140 m Communication range
R6,6 0.01587 (rad/s)2 Turn rate accuracy Ctot 52 Total subcarrier number

The mobility data produced by SUMO are processed by an ad hoc python simulator, designed
to model both the tracking and the communication processes performed by the system vehicles.
As we assessed in Sec. 2.3, the behavior of each node n ∈ N (t) can be fully represented by
its state xn(t). In particular, measurements of the components of xn(t) are affected by a non-
negligible noise, modeled as a Gaussian process with zero mean and covariance matrix R. The
diagonal elements of R are given in Tab. 2.2 and are derived from the models in [52, 53, 54].
Instead, as explained in Appendix A, we define the process noise as a Gaussian process with
zero mean and covariance matrix Q = qI, where I denotes the identity matrix and q is a scalar
value.

Tab. 2.2 also reports the parameters of the congestion control schemes from Sec. 2.5. For what
concerns the CSCC approach, we use the same parameters suggested in [40]: Ktarget = 0.68, so
that vehicles aim at occupying the channel about 68% of the time, and α = 0.1, which ensures a
sufficiently high convergence speed. Finally, we set β = (2−α)C/N , where C/N represents the
maximum number of users sharing the same communication channel, ensuring the algorithm’s

27



Chapter 2

convergence for any N . For what concerns our proposed NACC approach, we set the collision
probability threshold to Pthr = 0.3. We choose this value to allow a fair comparison between
the CSCC and the NACC approaches. Indeed, setting Ktarget = 0.68 and Pcoll = 0.3, we obtain
similar values of mean inter-transmission time T tx for each combination of broadcasting strategy
and congestion control mechanism.

To evaluate the performance of the proposed broadcasting strategies in the simulations, we
take into account four main factors, namely:

• Average positioning error, i.e., the average error of the ego vehicle when estimating its
position and that of its neighbors, which is given by (2.1);

• 95th percentile of the positioning error, i.e., the positioning error threshold exceeded only
by the worst 5% of the vehicles;

• Detection error, i.e., the sum of the misdetection (i.e., unknown vehicles in the ego vehicle
communication area) and false detection (i.e., vehicles that are believed to be in the
neighborhood but are actually beyond the communication range) event probabilities;

• Packet collision rate, i.e., the average number of packet collisions per vehicle and per
second that occur because of the hidden terminal problem.

2.6.2 Theoretical Validation

(a) Collision probability. (b) Function M−1.

Fig. 2.5: Congestion control analysis.

In Fig. 2.5a, we plot Pcoll as a function of ρn for different values of N̂ sc,n = ⌈ N̂n+1
C ⌉, which

represents the estimate of the number of users in the communication range of the ego vehicle
using its same subcarrier. By looking at Fig. 2.5a, we observe that Pcoll increases with both
the transmission probability and the number of interfering neighbors. When using the NACC
approach, the ego vehicle sets the transmission probability ρn according to both N̂ sc,n and Pcoll.

28



Broadcasting Strategies for Dynamic Mapping in Vehicular Networks

Hence, the value of Tper,n is updated as 1
ρn

while the value of Ethr,n is updated as M−1
(

1
ρn

)
.

In Fig. 2.5b, we represent the function M−1 used for this purpose. In particular, the colored
dots represent the different values of Ethr,n that are chosen according to both N̂ sc,n and Pcoll.

Fig. 2.6: Simulation vs. theoretical positioning error in a highway scenario.

To validate our analysis, we show how the average tracking error evolves considering the
output of the Kalman filter and the empirical results obtained through simulation. In the first
case, the motion of a vehicle is analytically represented as a rectilinear motion, disregarding the
users’ driving imperfections, and the vehicle’s speed and direction are assumed constant. In the
second case, mobility traces are generated using SUMO. In Fig. 2.6, we represent the average
positioning error obtained in the two different cases as a function of time. We observe that the
two data trends are very similar, thereby validating our theoretical framework. The curves’ gap
is due to the driving imperfections that cannot be predicted by the considered motion model.

2.6.3 Performance Analysis

In the rest of the section, the performance of the broadcasting strategies and the congestion
control schemes that we described in Sec. 2.4 and Sec. 2.5, respectively, are analyzed via simu-
lations according to the evaluation methodology described in Sec. 2.6.1. We derive the results
through a Monte Carlo approach, where Nsim independent simulations of Tsim = 1000 slots are
repeated to get different statistical quantities of interest. This approach has the advantage of
increasing the realism and generalizability of our analysis compared to the evaluation provided
in the previous section. Besides, it makes it possible to estimate the system performance by
accounting for realistic channel behaviors and traffic dynamics. All the results are obtained
with the communication channel model described in Sec. 2.6.1.

At first, we fix the number of the available subcarriers to C = 8. Later, we will verify how
different values of C may influence the simulation outcomes. In Fig. 2.7a and Fig. 2.7b, we
analyze the statistics of the positioning error as a function of the mean inter-transmission time
T tx, which is an indicator of the total channel occupancy.

29



Chapter 2

(a) PB strategy. (b) ETB strategy.

Fig. 2.7: Positioning error distribution with C = 8.

We highlight that T tx does not coincide with the inter-transmission period used in the PB
strategy. Indeed, while Tper is defined a priori and can take all the values within the set
{0.1 s, ..., 10 s}, T tx is an outcome of the simulation. In particular, in a realistic scenario, T tx

never goes below the value of 0.2 s, i.e., two timeslots, because of the channel access contention.
From Fig. 2.7a and Fig. 2.7b, we can also observe how the limits of CSMA/CA affect the
positioning error: when the number of channel access requests is too high, i.e., T tx < 0.3 s,
the channel gets congested and, consequently, the performance of the overall system degrades.
Indeed, the positioning error can be described by a convex curve, with a minimum for T tx ≈
0.3 s; this value represents the level of channel occupancy that guarantees the best position
estimation accuracy. By comparing Fig. 2.7a with Fig. 2.7b, we can observe that the ETB
strategy outperforms the benchmark PB strategy. In particular, ETB proves to have a slightly
lower average error and significantly lower error variance.

(a) Mean positioning error. (b) 95th percentile of the positioning error.

Fig. 2.8: Mean and 95th percentile of the positioning error with C = 8.

By optimizing the channel access requests, the ETB strategy has a lower positioning error

30



Broadcasting Strategies for Dynamic Mapping in Vehicular Networks

than the benchmark strategy. Fig. 2.8a and Fig. 2.8b show a direct comparison between the
considered broadcasting strategies; in particular, Fig. 2.8a reports the mean error while Fig. 2.8b
shows the 95th percentile of the error. In both cases, the ETB strategy ensures better position
estimation accuracy for the same level of channel occupancy. The marks in Fig. 2.8a and
Fig. 2.8b represent the performance of the congestion control schemes designed in Sec.2.5. Since
congestion control can adapt the values of Tper and Ethr and the communication strategy to the
scenario in real-time, we obtain a single outcome for each combination of broadcasting strategy
and congestion control approach. First, we observe that all the deployed solutions succeed in
maintaining the channel occupancy close to the optimal working point, i.e., T tx ≈ 0.3 s. Among
all the possible solutions, the combination of the ETB strategy with the NACC approach ensures
the best performance. This scheme outperforms the classical approach used in the literature,
represented by the combination of the PB strategy with the CSCC approach. Our solution
obtains a 10% gain when considering the mean error and a 20% gain when considering the
95th percentile of the error, thereby strongly improving the positioning accuracy for safety
applications [7, 55].

Fig. 2.9: Boxplot of the positioning error with C = 8.

The positioning error statistics of the four congestion control solutions are shown in Fig. 2.9,
considering the boxplot representation. The box’s edges represent the first and third quartiles
of the error distribution, the box’s center line is the error’s median, and the whiskers show the
95% confidence intervals. We can appreciate that our solution is the only technique leading the
third quartile below 0.7 m and the confidence interval below 1.0 m: this ensures that positioning
estimates are not affected by local variations.

In Fig. 2.10 we show the packet collision rate and the detection error probability. The broad-
casting strategies present almost identical trends when implemented without congestion control
schemes. As we can observe from Fig. 2.10a, the amount of information that gets lost in the
channel significantly increases when T tx < 0.5 s, independently of the deployed strategy. This
phenomenon explains the degradation of the positioning estimation accuracy that we observe
in Fig. 2.7a and Fig. 2.7b. Looking at Fig. 2.10a, the combination of the PB strategy with the
NACC approach provides the lowest packet collision rate. This phenomenon occurs because

31



Chapter 2

(a) Packet collision rate. (b) Detection error probability.

Fig. 2.10: Collision and detection statistics with C = 8.

PB-NACC is the most conservative approach among those we analyzed, i.e., it minimizes the
number of transmissions compared to the other communication schemes. On the other hand,
PB-NACC exhibits larger positioning estimation errors, as shown in Fig. 2.9. We highlight that
channel congestion does not affect only the positioning error but also the probability of misde-
tection and false alarm of a neighbor vehicle. Indeed, by looking at Fig. 2.10b, we can observe
that the detection error probability quickly increases as soon as T tx < 0.25 s. All the schemes
using congestion control lead to very similar detection error probabilities. Since the optimal
working point is T tx ≈ 0.3 we conclude that the minimization of the positioning error does
not imply an increase in the misdetection and undetection events. Note that, because of the
long simulation time, we could perform only 20 runs with each parameter so that the estimate
of the detection error probability (which is a rare event) exhibits some statistical oscillations.
Nonetheless, all the schemes with congestion control do not deviate from the curves defined by
the previous simulations. As already mentioned, the combination of the PB strategy with the
NACC approach presents a slightly higher T tx and, therefore, is characterized by a different
packet collision rate and detection error probability.

To validate these results in a more general scenario, we analyze the performance of the four
possible congestion control schemes with different numbers of subcarriers C. The results of
this analysis are reported in Fig. 2.11a and Fig. 2.11b. We observe that the solution combin-
ing the ETB strategy and the NACC approach outperforms the other schemes for any value
of C, considering both the mean positioning error (in Fig. 2.11a) and the 95th percentile of
the positioning error (in Fig. 2.11b). In particular, our solution outperforms state-of-the-art
solutions by up to 20% mean error reduction and up to 30% 95th percentile error reduction.
For what concerns the other techniques, we observe that the combination of ETB and CSCC
performs poorly for C ≤ 4, while it leads to better results when the number of subcarriers is
higher. Conversely, the combination of PB and NACC performs well for C ≤ 4 but does not
fully exploit the available resources when C ≥ 6.

Overall, we can provide some ideas for configuring optimal broadcasting strategies in vehicu-

32



Broadcasting Strategies for Dynamic Mapping in Vehicular Networks

(a) Mean positioning error. (b) 95th percentile of the positioning error.

Fig. 2.11: Mean and 95th percentile of the positioning error as a function of C.

lar deployment. First, Figs. 2.7a and 2.7b demonstrate that the proposed ETB solution delivers
better positioning accuracy with respect to a traditional PB approach since state updates are
disseminated based on the estimated positioning error of each vehicle. Such an approach proved
to reduce the temporal variance of the positioning error, thereby achieving more robust predic-
tions. Second, Fig. 2.8a and Fig. 2.8b illustrate that the proposed NACC strategy outperforms
the baseline CSCC strategy in terms of both average positioning error and variance. Such
results motivate efforts toward the design of a congestion control scheme that exploits net-
work topology information to regulate the periodicity of broadcasting opportunities. Finally, in
Figs. 2.11a and 2.11b, we proved that increasing the number of subcarriers C has the benefit of
reducing the channel access collisions due to the hidden node problem. As a consequence, the
mean positioning error is reduced by more than 50% when C grows from 2 to 10. In general,
among all the possible solutions, the combination of the proposed ETB strategy with the NACC
approach ensures the best performance for any subcarrier configuration.

2.7 Conclusions and Future Work
In this chapter, we studied the trade-off between ensuring accurate position information and
preventing congestion of the communication channel in vehicular networks. Particularly, we de-
signed an innovative threshold-based broadcasting algorithm that forces vehicles to distribute
state information if the estimated positioning error is above a certain error threshold. We
also adopted a new congestion control mechanism that adapts the inter-transmission period
according to network topology information. We showed through simulations that the proposed
approach outperforms a conventional broadcasting strategy, which relies on the periodic trans-
mission of state information and channel sensing since it reduces the positioning error with no
additional resources.

As part of our future work, we will test our broadcasting and congestion control frameworks
in more complex scenarios, e.g., by considering different road maps and traffic conditions. Be-

33



Chapter 2

sides, we are interested in improving the tracking accuracy of our communication strategy by
exploiting the ML paradigm, particularly Federated Learning (FL), as a tool to decide whether
and when to transmit state information updates.

34



3
Remote Drone Tracking via 3D Mobility Models

and LoRaWAN

3.1 Introduction

Over the last few years, Unmanned Aerial Vehicles (UAVs) have entered the mainstream,
and the number of commercial drones will soon reach millions, according to the U.S.

Federal Aviation Administration (FAA) [57]. Their integration in cellular networks, both as
end-users and as coverage extension devices [58], is already being discussed. In particular, 5th

Generation (5G) and 6th Generation (6G) systems will make use of UAVs of different sizes,
from small-scale low-altitude drones to communication satellites [59], heralding the advent of
an Internet of Flying Robots [60] in the near future.

Although energy and battery concerns are still critical [61], the use of UAVs can address a
wide range of applications, including area surveillance [62], traffic jam detection [63], agricul-
ture operations [64]. Besides, UAVs can be combined with ground-based robots to help them
perform complex tasks [65], becoming essential in the Smart City context [66]. However, dis-
aster management and relief is perhaps the most interesting UAVs’ use case: drones can easily
avoid ground-level obstacles and flooded areas by flying over them, surveying the extent of the
damage [67] or helping with search and rescue operations [68] and communications.

As the capabilities of UAVs evolve towards the full support of safety-critical civilian applica-
tions as military battlefield operations [69], accurate drone positioning is becoming ever-more
important. UAVs often have on-board Global Positioning System (GPS) receivers, and other
sensors capturing images or videos [70] and can implement tracking algorithms to monitor their
own trajectories [71]. As in vehicular networks, data fusion techniques can significantly improve

The work presented in this chapter was published in IEEE Transaction on Wireless Communication [56].

35



Chapter 3

positioning accuracy by combining several measurements into a single and more robust solution.
However, in order to track or control a swarm of several UAVs, mission control must be able to
follow and even anticipate the drones’ trajectories. This process requires the UAVs to frequently
report their position to mission control, often with no available infrastructure and over several
kilometers.

The accuracy required by positioning algorithms largely depends on the target application.
Wildlife monitoring [72] usually deals with counting animals and can accept higher errors as
long as the UAVs register images of the packs, flocks, or swarms. Instead, urban pollution
monitoring [73], precision agriculture [74], and hydrogeological monitoring [75] can require an
accuracy between 10 m and 50 m since they usually involve the reconstruction of 2D or 3D
models from multiple images, and the positioning accuracy can determine the quality of the
final reconstruction. Finally, formation control usually requires precision well below 10 m, and
often even below 1 m [76]: in this case, centralized frameworks are inefficient for operating over
several kilometers, and state-of-the-art solutions use distributed optimization with low-range
and high-capacity communication technologies.

This chapter considers a scenario with a swarm of UAVs moving independently in a three-
dimensional environment and periodically transmitting state information to a control station.
Our target is to develop a tracking framework ensuring accurate position estimation, even in
the case of occasional state updates. The proposed strategy exploits the Long Range Wide Area
Network (LoRaWAN) communication standard, used by the UAVs to transmit short updates
over long distances. This scheme allows for the deployment of drones over a wide area with
minimal infrastructure, enabling their use in remote regions and disaster missions. However,
the low bitrate and limited duty cycle imposed by the LoRaWAN specification in some areas
(including Europe) strongly constrains the frequency of positioning updates.

To provide high positioning accuracy despite the LoRaWAN limitations, our framework relies
on a Bayesian Filtering (BF) approach and deploys a Kalman Filter (KF) algorithm to track
UAVs between updates. In particular, the tracking algorithm uses a novel 3D motion model,
called 3-Dimensional CTRA (3D-CTRA), to represent the drone motion in the scenario. This
model extends the well-known Constant Turn Rate and Acceleration (CTRA), widely used
in vehicular scenarios, by adding a third dimension that allows it to represent even complex
banking maneuvers. As a benchmark, we study two simpler models: Constant Speed (CS),
which assumes a static heading for the target, and CTRA+, which considers linear motion on
the vertical axis. To the best of our knowledge, 3D-CTRA is the first model that represents
3D maneuvers with the same flexibility that CTRA has in the 2D space. Independently on the
motion considered, the tracking mechanism is the same: each UAV periodically transmits its
state, including the orientation, speed, and acceleration, to a control station that estimates the
drone’s position. Similarly to the framework described in the first chapter, the control station
can use the predictive step of a KF and monitor the overall systems even with sporadic updates
from the UAV.

The target scenario presents additional challenges since LoRaWAN uses random channel ac-
cess, which implies that updates from different UAVs can collide. We can mitigate the commu-

36



Remote Drone Tracking via 3D Mobility Models and LoRaWAN

nication interference by exploiting the features of the LoRaWAN protocol as the orthogonality
of different Spreading Factors (SFs) [77]. Setting a higher SF increases the communication
range at the cost of a lower data rate, which makes the inter-transmission time intervals last
several seconds, possibly reducing the tracking accuracy. Determining the optimal SF value
is not trivial and strongly depends on the characteristics of the target scenario, including the
channel status and the number of transmitters. To this end, we analyze the system perfor-
mance under various conditions, e.g., when using a single channel with a bandwidth of 250 kHz
instead of three 125 kHz channels, as well as with different Adaptive Data Rate (ADR) policies,
supporting swarms of different sizes and in different scenarios.

The LoRaWAN technology was originally designed for massive scenarios with thousands of
sensors transmitting infrequently. In this chapter, we study its implementation with fewer
nodes transmitting at the maximum duty cycle, showing trade-offs never considered in the
past literature. We analyze the performance of the proposed system by running extensive ns-3
simulations that exploit the UAV mobility traces from the Mid-Air public dataset. In doing so,
we explore the optimization of tracking and communication, proving that the joint configuration
of these two aspects can give significant performance gains, enabling accurate positioning over
large swarms and long distances.

We organize the rest of this chapter as follows: Sec. 3.2 presents the state-of-the-art on UAV
applications, focusing on the tracking frameworks used to estimate drone trajectories; Sec. 3.3
presents the CTRA+ and 3D-CTRA models, including the relative update equations; Sec. 3.4
describes the LoRaWAN standard and the frequency plan needed for our application; Sec. 3.5
describes the simulation settings and results for the different ADR solutions we implemented;
finally, Sec. 3.6 presents our concluding remarks and ideas for future work.

3.2 Related Work
The target tracking problem is a well-studied research topic, usually solved by representing the
target’s motion with some linear models and estimating its state with a BF approach. The
best-known BF algorithms used in this context are the KF [22] and the Particle Filter (PF) [24].
Despite these solutions being designed for applications with constant observation over the target,
we can achieve long-term forecasting by simply applying the algorithm’s predictive step to the
last available state estimate. However, this solution does not provide high performance if the
motion model is not sufficiently accurate.

As discussed in the first chapter, the tracking problem has been widely explored in 2D
vehicular scenarios [1], often using the CTRA motion model [47], which considers the target
to have constant acceleration and turn rate. The work of [78] presents a similar model for
drones moving horizontally, also defining the Gaussian noise on the motion parameters. A
more complex model with several possible maneuvers is in [79], whose authors adapt the CTRA
settings to different possible trajectories. Most of the remaining literature works describe drone
motion with classical CTRA or simpler models with constant speed [80] or orientation [81].

It is also possible to track UAVs passively, i.e., find their position without any communica-

37



Chapter 3

tions, although at a much shorter range. To this goal, the authors of [82] design a visual system
to track a UAV, providing high accuracy over a distance of up to 200 m. This method has
no communication overhead but is constrained by the sensing capabilities of the visual system,
and it only works if the UAVs are in the line of sight. It is also possible to use the degree of
the arrival of external communication signals to allow the swarm to track the overall network
topology [83]. In this case, if the UAVs share channel information, they can derive their relative
positions like in an antenna array. However, this method only works for a high Signal to Noise
Ratio (SNR) and inherently limits the area covered before the swarm loses formation control.
We can perform the same operation using Terahertz communications [84], although only for
very short distances (below 10 m in the paper).

Although LoRaWAN is a communication technology designed for Internet of Things (IoT)
applications [85], we tested its performance in this specific use case to verify if it could adequately
support control communication. To extend LoRaWAN capabilities in the scenario with multiple
UAVs, we leveraged the ADR mechanism provided by the standard, as described in Sec. 3.4 and
Sec. 3.5.1: several different implementations of this mechanism are in the literature. In [86],
the authors propose a mechanism based on a water-filling algorithm: by adequately setting
the modulation parameters, it is possible to equalize the packets’ time on air, increasing the
maximum network throughput. However, this solution would not benefit our application since
low-bit-rate devices transmit their packets sporadically, leading to poor tracking performance.

To compensate for LoRaWAN limitations, we can deploy ADR techniques, as shown in many
literature works, as [87, 88, 89]. In particular, the authors of [87] configure ADR depending on
the estimated Received Signal Strength Indicator (RSSI), assuming full knowledge of mobility
patterns, which are directly related to the value of the RSSI. Although this approach is useful
for predictable trajectories, it does not apply to the case of drones exploring unseen areas or
moving towards new objectives. In [89], the proposed ADR algorithms based on Gaussian,
and Exponential Moving Average filters, are explored with ns-3 simulations in a scenario of
static or slowly moving devices. Under such conditions, however, the devices transmit only
one packet per hour, which would not be sufficient in a tracking application. Finally, the work
in [88] presents empirical measurements of the performance of the ADR algorithm implemented
by a drone network. In this analysis, devices are placed on trucks moving in the center of a
city, which may be different from the UAVs use the case for the application requirements, the
characteristic of the communication channel, and the mobility patterns.

In the near future, UAV networks will be an essential support for different applications and
technologies introduced by Industry 4.0. However, the current literature lacks a tracking system
designed specifically for drone swarms, especially for scenarios with critical communication
constraints. This work goes beyond such limitations, defining a low-cost drone tracking solution
based on an innovative 3D motion model a the LoRaWAN standards, which has never been
implemented for this kind of application.

38



Remote Drone Tracking via 3D Mobility Models and LoRaWAN

3.3 Tracking Model
In this section, we recall the CS and CTRA models, and we extend them to obtain the system
equations for CTRA+ and 3D-CTRA. Besides, we describe the Unscented Kalman Filter (UKF)
framework used by the control station to track the UAVs’ trajectories. We resume the notation
of our model in Tab. 3.1.

Tab. 3.1: Model parameters.

Parameter Description Parameter Description

t Timeslot index τ Timeslot duration
N UAV set N Swarm size
(x, y, z) UAV position (θ, ϕ, γ) UAV orientation
Rearth Earth radius ∆earth Earth curvature error
x̂n Estimate state of n xn State of n
F(·) System error function Fn(·) Error function of n
R Measurement noise matrix Q Process noise matrix
η Tilt reduction parameter B Communication bandwidth
d Distance from the gateway SF Spreading Factor

3.3.1 Benchmark Motion Models

In the following, we refer to a UAV’s position as the coordinates (x, y, z) representing its location
in space using a Cartesian coordinate system. Instead, the UAV’s orientation is represented
by the three angles (θ, ϕ, γ), which measure the rotation with respect to a horizontal, North-
facing position. While conventional systems only track the yaw, i.e., the angle θ between
the drone’s orientation and the reference direction on the horizontal plane, 3D motion models
must also consider the pitch, i.e., the vertical angle ϕ between the drone’s orientation and the
horizon. Moreover, the target state must include the altitude z as the horizontal position (x, y),
resulting in the 5-tuple (x, y, z, θ, ϕ). These parameters are common to all the motion models
we implement.

We highlight that none of our models explicitly considers the orientation on the roll axis.
While rotorcraft UAVs typically uses motion on the roll axis to turn, we can model the three-
dimensional drone as a simple cylinder with no roll rotations, making the representation more
compact. Naturally, this does not correctly track the precise orientation of the UAV, but
does not affect the future drone position, for which rotations on the roll axis are irrelevant.
Furthermore, the models do not consider the curvature of the Earth, but a perfectly horizontal
plane, which results in an error ∆earth when measuring the altitude of an object:

∆earth = Rearth

(
1− cos

(
d

Rearth

))
, (3.1)

where Rearth = 6.371 × 106 m is the average radius of the Earth. This error is negligible for
distances below d = 1 km, as ∆earth = 7.8 cm. As we expect the UAVs to cover distances
much lower than 1 km between subsequent updates, which come at a rate of 1 Hz, this error
can be compensated for by GPS measurements, which do account for the Earth’s curvature,

39



Chapter 3

and filtered out. If we were to consider much faster UAVs or less frequent sensor updates, the
curvature of the Earth would become a significant factor.

Fig. 3.1: The CS motion model.

The CS model assumes that the target moves with a constant speed v, without any change
of direction (see Fig. 3.1). Hence, the turn rate ω = dθ

dt and the tilt rate ψ = dϕ
dt are zero, while

the model state is given by

xCS(t) = [x(t) y(t) z(t) θ ϕ v ]
T
. (3.2)

Fig. 3.2: The CTRA+ motion model.

The classical CTRA revises this hypothesis by assuming the target to have a constant tan-
gential acceleration a = dv

dt and a non-zero turn rate ω on a flat plane. The CTRA+ model
makes the same assumption, but the plane on which the UAV moves is rotated by a constant
pitch ϕ. As above, the tilt rate ψ is zero:

v(t) = v(0) + at; (3.3)
θ(t) = θ(0) + ωt; (3.4)
ϕ(t) = ϕ(0), (3.5)

40



Remote Drone Tracking via 3D Mobility Models and LoRaWAN

where v(0), θ(0) and ϕ(0) represent the initial velocity and orientation of the target. CTRA+
can be described by an Archimedean spiral [90] that evolves on a plane tilted by an angle ϕ
with respect to the horizon. A sketch of the resulting model motion is given in Fig. 3.2.

To compute the equations of the CTRA+ model, we first need to separate the components
of the target’s velocity vector v(t):

vx(t) =
dx

dt
= v(t) cos(θ(t)) cos(ϕ(t)); (3.6)

vy(t) =
dy

dt
= v(t) sin(θ(t)) cos(ϕ(t)); (3.7)

vz(t) =
dz

dt
= v(t) sin(ϕ(t)). (3.8)

Therefore, we can compute the velocity module v(t) as v(t) =
√

(vx(t))
2
+ (vy(t))

2
+ (vz(t))

2,
while the target position is given by the integral of the velocity components over time:

x(t) = x(0) +

∫ t

0

v(τ) cos(θ(τ)) cos(ϕ)dτ ; (3.9)

y(t) = y(0) +

∫ t

0

v(τ) sin(θ(τ)) cos(ϕ)dτ ; (3.10)

z(t) = z(0) +

∫ t

0

v(τ) sin(ϕ)dτ. (3.11)

After solving the above equations, we get the following results:

x(t) = cos(ϕ)

[
a

(
cos(θ(t))− cos(θ(0))

ω
+ t sin(θ(t))

)
(3.12)

+v(0) (sin(θ(t))− sin(θ(0)))] + x(0); (3.13)

y(t) = cos(ϕ)

[
a

(
sin(θ(t))− sin(θ(0))

ω
− t cos(θ(t))

)
(3.14)

−v(0) (cos(θ(t))− cos(θ(0)))] + y(0); (3.15)

z(t) =z(0) + sin(ϕ)

(
v(t)t− at2

2

)
. (3.16)

We note that the procedure is equivalent to 2D glsctra [47] for the x and y components, except
for the constant multiplying factor cos(ϕ). Hence, the CTRA+ state is given by:

xCTRA+(t) = [x(t) y(t) z(t) θ(t) ϕ v(t) a ω]
T
, (3.17)

which corresponds to the tuple representing the current attitude, with the addition of the
velocity v, the acceleration a, and the turn rate ω.

41



Chapter 3

Fig. 3.3: The 3D-CTRA motion model.

3.3.2 The 3D-CTRA Model

The 3D-CTRA model extends the above description by adding a constant tilt rate ψ = dϕ
dt .

Consequently, the target’s movement is represented as the combination of two independent
spiraling motions on the horizontal and vertical planes, forming a curved helix. We represent
the resulting trajectory in Fig. 3.3. While the evolution of θ(t) still follows (3.4), the pitch is
given by:

ϕ(t) = ϕ(0) + ψt. (3.18)

This complicates the derivation of the motion equations considerably since ϕ(t) is now time-
dependent. For the sake of simplicity, we report the procedure only for x(t), which is given by
the integral of vx(t) over time. Applying the Werner formula, we obtain

x(t) = x(0) +

t∫
0

v(τ)

2
(cos(θ(τ) + ϕ(τ)) + cos(θ(τ)− ϕ(τ)))dτ, (3.19)

which can be solved in closed form. The derivations for y(t) and z(t) follow the same steps; the
final results are given in (3.20)-(3.22), where we used the compact notation [F (x)]ba = F (b)−F (a)
to indicate that the primitive function F (x) should be evaluated at the extremes a and b.

x(t) =

[
v(τ)

2

(
sin(θ(τ) + ϕ(τ))

(ω + ψ)
+

sin(θ(τ)− ϕ(τ))
(ω − ψ)

)
+
a

2

(
cos(θ(τ) + ϕ(τ))

2(ω + ψ)2
+

cos(θ(τ)− ϕ(τ))
2(ω − ψ)2

)]t
0

+ x(0);

(3.20)

y(t) =

[
− v(τ)

(
cos(θ(τ) + ϕ(τ))

2(ω + ψ)
+

cos(θ(τ)− ϕ(τ))
2(ω − ψ)

)
+
a sin(θ(τ) + ϕ(τ))

2(ω + ψ)2
+
a sin(θ(τ)− ϕ(τ))

2(ω − ψ)2

]t
0

+ y(0);

(3.21)

42



Remote Drone Tracking via 3D Mobility Models and LoRaWAN

z(t) = z(0) +

[
− v(τ)cos(ϕ(τ))

ψ
+ a

sin(ϕ(τ))

ψ2

]t
0

. (3.22)

The equations (3.3), (3.4), (3.18) and (3.20)-(3.22) define the full non-linear version of 3D-
CTRA. We observe that 3D-CTRA model equations are well-defined with some conditions on
the tilt ψ: it must be different from 0 and the turn rate ω or its inverse. In those cases, the
equations need to be derived separately in order to arrive at a valid mathematical result. First,
when ψ = 0, the model is equivalent to CTRA+ and the value of z(t) is given by (3.16). Then,
when ω = ψ, i.e., the rotations on the two axes have the same period, the values of x(t) and
y(t) become:

x(t) =

[
v(τ) sin(θ(τ) + ϕ(τ))

2(ω + ψ)
+
a cos(θ(τ) + ϕ(τ))

2(ω + ψ)2

+
2v(τ)− aτ

4
τ cos(θ(τ)− ϕ(τ))

]t
0

+ x(0);

(3.23)

y(t) =

[
a sin(θ(τ) + ϕ(τ))

2(ω + ψ)2
− v(τ) cos(θ(τ) + ϕ(τ))

2(ω + ψ)

+
2v(τ)− aτ

4
τ sin(θ(τ)− ϕ(τ))

]t
0

+ y(0).

(3.24)

The case in which ω = −ψ produces a similar result, with switched terms:

x(t) =

[
v(τ) sin(θ(τ)− ϕ(τ))

2(ω − ψ)
+
a cos(θ(τ)− ϕ(τ))

2(ω − ψ)2

+
2v(τ)− aτ

4
τ cos(θ(τ) + ϕ(τ))

]t
0

+ x(0);

(3.25)

y(t) =

[
a sin(θ(τ)− ϕ(τ))

2(ω − ψ)2
− v(τ) cos(θ(τ)− ϕ(τ))

2(ω − ψ)

+
2v(τ)− aτ

4
τ sin(θ(τ) + ϕ(τ))

]t
0

+ y(0).

(3.26)

Along with the standard equations, the above results complete the model, which is valid for
all values of the relevant parameters. Hence, the 3D-CTRA state is given by:

x3D-CTRA(t) = [x(t) y(t) z(t) θ(t) ϕ(t) v(t) a ω ψ]
T
, (3.27)

which is equivalent to the CTRA+ state as defined by (3.17), with the addition of the tilt rate
ψ.

We remind the reader that 3D-CTRA considers constant values for both ω and ψ. This
does not reflect the real behavior of an aircraft, as dives and climbs are usually relatively short.

43



Chapter 3

To make the model more realistic, the tracking system multiplies the value of ψ by a factor
η ∈ [0, 1] after every prediction step. In other words, the model implicitly assumes that the
drone will gradually reduce its tilt rate and stabilize its pitch until it receives an explicit update
from the UAV.

3.3.3 Tracking Framework

In our model, each UAV implements a UKF algorithm to monitor its current and future position,
as explained in Appendix A. In particular, we assume that the time is discretized into slots
t ∈ Z+ of τ seconds and that the UAVs are equipped with onboard sensors providing a noisy
measurement at each slot. The UKF uses sensor data to estimate the UAV trajectory, assuming
it follows any of the motion models f ∈ {CS, CTRA+, 3D-CTRA}. The control station deploys
an additional UKF for each of the UAVs and aims to estimate the motion of the overall swarm.
To this end, the control station has no local sensors but exchanges information with the UAVs,
which periodically disseminate their state estimates.

Similarly to what was done by the ego vehicle in the previous chapter, the control station
exploits the predictive step of the local UKFs to propagate the state updates, thus predicting
the UAV trajectories. In particular, we denote by xn(t) the state of an UAV n ∈ N at slot t,
and by x̂n(t) the estimate of xn(t) performed by the control station during the same slot. The
system performance is given by the tracking error at the control station, computed as

F(t) = 1

N

( ∑
n∈N
Fn(x̂n(t),xn(t))

)
, (3.28)

where N is the set of UAVs, N = |N | is the swarm size and Fn(x̂n(t),xn(t)) is the mathematical
distance between the actual and the estimated positions of n:

Fn(x̂n(t),xn(t)) =
√
(x̂n(t)− xn(t))2 + (ŷn(t)− yn(t))

2
+ (ẑn(t)− zn(t))2 (3.29)

As in the previous chapter, we adopt a periodic state broadcasting: after a randomized
time at the beginning of the simulation, each UAV sends the estimate of its own state to the
control station with a constant inter-transmission period. We add a delay between consecutive
transmissions in order to mitigate the interference suffered by UAVs whose communications
happen to be synchronized. After it receives an update, the control station updates its UKF
with the new information and exploits the predictive step to forecast the UAV’s trajectory.
Naturally, the errors will compound, causing long-term predictions to become less and less
accurate until the next update. To enable the UAV to transmit the UKF parameters even at
great distances, we considered the LoRaWAN technology [91], whose details are explained in
the following section.

44



Remote Drone Tracking via 3D Mobility Models and LoRaWAN

3.4 Communication Model

LoRaWAN is a low power wide area network technology leveraging the LoRa modulation at the
PHY layer, which is based on a proprietary chirp spread spectrum technique to transmit over
long distances [91]. We can tune the modulation through the SF parameter, which takes values
from 7 to 12 and allows to trade coverage range for data rate. Indeed, signals transmitted with
higher SF require longer transmission times but are more robust to channel impairments and
can reach farther distances, up to several kilometers, in open-air scenarios. Conversely, signals
modulated with low SFs cover shorter distances but require a shorter time to be transmitted.
Another important feature is the quasi-orthogonality between SFs, which allows the receiver to
demodulate packets overlapping in both time and frequency, as their power difference respects
some conditions [92]. At the Medium Access Control (MAC) protocol layer, LoRaWAN consid-
ers a star topology, with three kinds of devices: a Network Server (NSE), End Devices (EDs),
and Gateways (GWs). The first is the central controller of the network, while the EDs are
peripheral nodes collecting data and transmitting them through the LoRa modulation. Finally,
the GWs act as relays between EDs and NSE, i.e., collecting messages from EDs and forwarding
them to the NSE through a reliable IP connection, and vice versa.

In our model, we assume that each drone is equipped with a LoRaWAN Class A ED. This
class of devices is designed to consume a minimum amount of energy, with nodes staying in
sleep mode most of the time, transmitting when necessary, and waking up for the reception
in two short windows after each transmission. This feature makes the energy consumption of
the LoRaWAN system negligible for the UAVs, considering that even the lightest quadcopter
requires 50 to 100 W to hover or fly at low speed when carrying no sensor payload. In our case,
we can expect the engines to have a power consumption of tens or even hundreds of Watts, 3
to 4 orders of magnitude higher than the transmission power.

While most of the traffic is expected to be in the Uplink (UL) direction (i.e., from the ED
to the NSE), the standard also defines confirmed messages, which require an Acknowledgment
(ACK) from the NSE. The protocol also supports the ADR mechanism, through which the
NSE can control the transmission parameters of the EDs. By setting the appropriate flag on
the transmitted packets, EDs requires the NSE to control their SF and transmission power,
according to a policy defined by the NSE. The various ADR algorithms in the literature differ
for the metric they try to optimize, i.e., scalability, throughput, and achieved range. In Europe,
LoRaWAN works in the unlicensed 868 MHz sub-band and follows duty cycle regulations. In
particular, three 125 kHz channels are allocated to UL transmissions and must respect a duty
cycle limitation of 1%. Another option considered in this work is to use the available frequency
band to allocate a single 250 kHz channel. This scheme does not bring the benefits of frequency
orthogonality but reduces the packet transmission time, which is preferable in the case of a
system with a single drone.

As we saw in the previous chapter, good tracking performance is possible only when the
packet generation (and transmission) frequency is very high. However, when combined with
multiple transmitting devices, as in a swarm of drones, this rapidly increases the traffic injected

45



Chapter 3

CS

CTRA+

3D-CTRA

4 B 8 B 12 B

x(t) y(t) z(t) θ ϕ v

x(t) y(t) z(t) θ(t) ϕ v(t) a ω

x(t) y(t) z(t) θ(t) ϕ(t) v(t) a ω ψ

Fig. 3.4: Schematic of the payload format for the three tracking schemes.

into the communication channel, and the system performance suffers from interference. A
drone scenario strongly differs from the most common LoRaWAN applications, which involve
thousands of sensors transmitting sporadically and allows network designers to approximate the
system as an infinite-user ALOHA system. Instead, our system considers a limited number of
UAVs transmitting periodically at the maximum allowed duty cycle of 1%. This case is more
similar to the finite-user case, which has been studied for slotted systems [93, 94]. What is
interesting in our case is not just the throughput and delay [95], as in most previous studies,
but also the Age of Information (AoI) [96], and it is not just the AoI that matters, but its effect
on the tracking performance. Whether or not LoRaWAN is suitable to sustain this type of IoT
application is unclear.

In this chapter, we show that, under certain conditions, LoRaWAN technologies can sustain
both control and data traffic when using a correct configuration of the system parameters. A
straightforward solution is to leverage orthogonality in the frequency domain (i.e., using three
channels instead of a single one) and employing different SFs. However, these choices can also
have side effects: the increased packet transmission time due to a narrower channel and the
use of higher SFs will reduce the number of transmitted packets because of the duty cycle
regulations. These trade-offs is part of the analysis presented in Sec. 3.5.

To partially contain the problem posed by the duty cycle limitation, we compress the system
state to reduce the inter-transmission time and improve the tracking performance. In order to
minimize the payload size, we can represent the position using 2 bytes, allowing movement in a
square box with a size of 13 km while limiting the quantization error to 10 cm, significantly less
than the average GPS error. Instead, we represent angles and turn rates using just 1 byte, with

Tab. 3.2: Packet transmission times.

SF B [kHz] Packet payload [B] Transmission time [s] Transmission interval [s]

7
125 9 0.0515 5.15

11, 12 0.0566 5.66

250 9, 11 0.0257 2.57
12 0.0283 2.83

8
125 9 0.0927 9.26

11, 12 0.1029 10.29

250 9 0.0463 4.63
11, 12 0.0514 5.14

46



Remote Drone Tracking via 3D Mobility Models and LoRaWAN

a maximum error of 0.7 degrees. Since velocity and acceleration depend on the UAVs’ flying
capabilities, they can also be represented with just 1 byte, with a negligible loss of precision.
Considering that the CS model requires the knowledge of the attitude 5-tuple and the velocity,
its minimum payload size is 9 bytes. The CTRA+ state as given in (3.17) requires 11 bytes,
and the 3D-CTRA state as given in (3.27) requires 12 bytes. The different payload formats
are reported in Fig. 3.4, while the LoRa transmission times for packets with these lengths are
reported in Tab. 3.2. We note that the duty cycle rules allow packets to be sent only sporadically,
with a transmission period in the order of a few seconds. Transmission times are computed as
in [97], considering an additional MAC header of 9 B.

3.5 Simulation Settings and Results

In this section, we describe the dataset providing the drone trajectories and the settings of our
simulation scenarios. Hence, we present the results obtained while considering a single drone
and an entire swarm, discussing how to configure the communication protocol in the two cases.

3.5.1 System Settings

Tab. 3.3: Simulation settings.

Parameter Value Description Parameter Value Description

Rx 0.8274 m2 Position accuracy along x Rϕ 0.0085 rad2 Pitch accuracy
Ry 0.8274 m2 Position accuracy along y Rω 0.0003 (rad/s)2 Turn rate accuracy
Rz 3.7481 m2 Position accuracy along z Rψ 0.0003 (rad/s)2 Tilt rate accuracy
Rv 0.2500 (m/s)2 Speed accuracy Ra 0.1521 (m/s)2 Acceleration accuracy
Rθ 0.0085 rad2 Yaw accuracy q 0.01 Process noise
τ 100 ms Timeslot duration η 0.9 Tilt reduction parameter
B {125, 250} KHz Communication bandwidth SF {7, 8} Spreading Factor
N {1, 10, 30, 50} Swarm size d {0, 1000, 3000} GW distance

To simulate the UAV mobility, we exploit the Mid-Air dataset [98], which contains the flying
records of a quadcopter moving in 3 different virtual environments. The dataset includes 54
trajectories of equal length for a total of 79 minutes of flight time. To strengthen our analysis, we
randomly combined the different trajectories, thus increasing the duration and variability of the
drone traces. The traces so obtained constitute the ground-truth motion of the UAVs, while we
synthetically generated noisy data to represent the measurements of the drones’ sensors. Each
measurement included the position, the attitude, and the velocity and acceleration vectors of
the UAV, combining information from GPS, accelerometers and gyroscopes.

According to the UKF parametrization, we model the process noise’s covariance of the track-
ing framework by the matrix Q = qI, where I represents the identity matrix and q = 0.01.
Instead, we model the covariance of the measurement error with a diagonal matrix R, whose
elements represent the accuracy of the various drone sensors. The noise matrices and the UKF
parameters are reported in Tab. 3.3: the values in R were chosen according to [99, 52, 54]. We
highlight that the UKF state dimension and update equations change according to the chosen

47



Chapter 3

motion model. As already stated, the UKF at the control station estimates the target trajectory
by exploiting only the predictive step. Hence, after the control station receives a state update,
it replaces the filter state with the new information, and the estimation process starts again.

The scenario of interest was studied with the network simulator ns-3 using the lorawan
module described in [100], with N drones moving in the space according to the mobility traces
of [98]. We assume that the drones are equipped with a LoRaWAN interface, which transmits
packets at the maximum frequency allowed by the duty cycle. These messages are collected by
a GW and forwarded to the NSE. Unless otherwise stated, transmitted packets do not require
acknowledgment, and the NSE does not control any communication parameters. We simulate
the packet reception according to a log-distance propagation loss model, which also considers
shadowing, and to the interference model, which determines the correct reception probability
in the case of collisions [101]. Using the data received by the control station and the designed
tracking framework, we can compute the system performance, as defined in (3.28).

In the rest of the section, we analyze the positioning error for different tracking and commu-
nication scenarios. In particular, we investigate our tracking scheme for different values of the
SF and of the position of the GW, analyzing how the communication range affects the tracking
performance. We remark that the UAVs move from the initial point, so the distance from the
GW to each drone changes over an episode. In particular, changing the position of the GW can
give a qualitative idea of the range over which the drones moves.

We always initialize EDs to use the lowest SF setting that allows reliable communications
within at least a range d from the GW in the absence of interference. However, each UAV may
change its SF according to the considered ADR algorithm. We implemented the following ADR
strategies:

• In the NO ADR setting, EDs do not set the ADR bit in their UL packets, and implement
no autonomous data rate adaptation scheme. When a UAV travels out of the coverage
zone, its packets are not received until it comes back in range.

• In the NS ADR setting, all decisions regarding changes in the SF of an UAV are taken
by the NSE (and conveyed to the device by the GW). In this case, the NSE leverages one
of the two receive windows opened by the device after each UL transmission to send a
Downlink (DL) packet containing the new SF value to use. The NSE increments the SF
when it senses that the UAV is leaving the coverage zone for the current received power
of the last communication. Instead, it decrements the UAV’s SF when the received power
is above receiver sensitivity by a certain margin (set at 3 dB in this work). Note that the
NSE sends control messages sent only if a change in the SF is required, otherwise no DL
transmission is performed.

• Finally, the ED+NS ADR setting has the UAV require confirmation of correct reception
for every UL packet it sends. If no ACK is received, the UAV increases the SF on its own.
Similarly to what happens in the NS ADR setting, when the UAV comes back in range,
the NSE instructs the drone to decrement the SF through a DL communication.

48



Remote Drone Tracking via 3D Mobility Models and LoRaWAN

3.5.2 Performance Analysis

x

− 300− 200− 100 0 100 200

y
− 150− 100− 500

50100150200

z

− 60
− 40
− 20

0
20
40
60
80
100

Groundtruth
CS
CTRA+
3D-CTRA

Fig. 3.5: 3D path of a single UAV with d = 1000 m, SF 7, and B = 250 kHz.

0 20 40 60 80
Simulation duration [s]

0

10

20

30

40

50

Tr
ac

ki
ng

er
ro

r
[m

]

CS
CTRA+
3D-CTRA

Fig. 3.6: Tracking error of a single UAV with d = 1000 m, SF 7, and B = 250 kHz.

First, we consider the 90 s drone path shown in Fig. 3.5. In this scenario, we consider the
GW to be positioned in (0, 1000, 0), with an initial distance d = 1000 m from the drone. The
same figure includes the paths estimated by the control station using the CS and 3D-CTRA
motion models, considering a communication setup with SF 7 and B = 250 kHz. Comparing
the different paths, we observe how the CS scheme cannot follow the target, while 3D-CTRA
ensures smaller deviations from the actual trajectory. The sharp changes in the estimated paths
are due to updates transmitted bu the UAV: if the model estimates the wrong attitude, the
predictive model at the control station gradually diverges from the real path. When the control
station receives the next packet from the UAV, it resets the state of its filter, resulting in a
“jump” in the estimated path. We can better analyze this aspect in Fig. 3.6, which shows the
control station tracking error over time for all the considered models: the updates are clearly
visible as the tracking error instantaneously drops. We highlight that the error of the CS model
rapidly increases every time the drone performs non-linear movements, e.g., at time t ≃ 20 s.
Instead, the error of CTRA+ and 3D-CTRA presents a smoother trend, with fewer and lower

49



Chapter 3

peaks, even though both models require the transmission of larger packets. The performance of
CTRA+ is almost identical to that of 3D-CTRA, but the latter better addresses vertical drone
movements (e.g., at time t ≃ 40 s).

X Y Z
Axis

0

2

4

6

8

10

T
ra

ck
in

g
er

ro
r

[m
]

CS
CTRA+
3D-CTRA

Fig. 3.7: Positioning error with d = 1000 m, N = 1, SF 7, and B = 250 kHz.

θ φ
Orientation

0

π
12

π
6

π
4

T
ra

ck
in

g
er

ro
r

[ra
d]

CS
CTRA+
3D-CTRA

Fig. 3.8: Orientation error with d = 1000 m, N = 1, SF 7, and B = 250 kHz.

In what follows, we evaluate the performance of our system in tracking a single drone starting
from a distance d = 1000 m from the GW. In particular, we examine the cumulative results over
multiple virtual trajectories for a total of 2.5 hours of flight time. Fig. 3.7 shows the distribution
of the position error along the three axes with SF 7, and B = 250 kHz. In particular, we adopt
the boxplot representation, where the white line at the center of the box is the median of the
distribution, and the box edges are the 25th and the 75th percentile, while the box whiskers
represent the 5th and the 95th percentile, respectively. When considering the X and Y axes, the
CS model is outperformed by both CTRA+ and 3D-CTRA, which ensure a richer representation
of the drone’s movements. In particular, 3D-CTRA shows a slightly lower position error with
respect to CTRA+, which uses less information than 3D-CTRA to estimate the drone state.
When considering the vertical Z axis, the error of CS is similar to that obtained with CTRA+

50



Remote Drone Tracking via 3D Mobility Models and LoRaWAN

since both models consider that the target maintains a constant tilt. On this axis, 3D-CTRA
performs best because it is the only one that can accurately track the drone maneuvers in
all directions. We have a confirmation of such results in Fig. 3.8, which shows the tracking
error on the UAV orientation. It is easy to see that the CS model cannot correctly track the
drone orientation on the horizontal plane, as it assumes it will never change. On the other
hand, CTRA+ and 3D-CTRA have similar performance, but 3D-CTRA manages to track the
orientation better on the vertical plane, as it can represent the movement of the UAV more
accurately.

SF7-125 SF7-250 SF8-125 SF8-250
0

5

10

15

In
te

r-
re

ce
pt

io
nt

im
e[

s]

CS
CTRA+
3D-CTRA

(a) N = 1.

SF7-125 SF7-250 SF8-125 SF8-250
0

5

10

15

In
te

r-
re

ce
pt

io
nt

im
e[

s]

CS
CTRA+
3D-CTRA

(b) N = 10.

SF7-125 SF7-250 SF8-125 SF8-250
0

5

10

15

In
te

r-
re

ce
pt

io
nt

im
e[

s]

CS
CTRA+
3D-CTRA

(c) N = 30.

SF7-125 SF7-250 SF8-125 SF8-250
0

5

10

15

In
te

r-
re

ce
pt

io
nt

im
e[

s]

CS
CTRA+
3D-CTRA

(d) N = 50.

Fig. 3.9: Inter-reception time with d = 1000 m.

Fig. 3.9 shows the distribution of the inter-reception time for a swarm of drones starting 1 km
away from the control station, with different tracking systems and communication settings. This
parameter almost corresponds to the Peak AoI (PAoI), i.e., the maximum value reached by the
AoI before a new update is received, as the transmission delay is much smaller than the inter-
reception time. We observe that CS has the lowest inter-reception time since it exploits packets
with only six variables. On the other hand, CTRA+ and 3D-CTRA need to transmit more data
over the channel and are characterized by similar communication statistics. Furthermore, the

51



Chapter 3

size of the swarm is critical to determining the inter-reception time, as collisions can multiply
the time between successful packet receptions. We can easily see that increasing the swarm size
from N = 1 to N = 10 has almost no effect, while a system with N = 30 is significantly different.
The choice of the bandwidth is also important, as using B = 250 kHz allows UAVs to transmit
data faster but also reduces the number of orthogonal channels from 3 to 1, increasing the
number of drones competing for the same resources. Instead, the increase in the inter-reception
time for systems with N = 30 and B = 125 kHz is imperceptible. The average inter-reception
times are often lower for B = 250 kHz, as the packet frequency is doubled than the standard
case. However, the worst-case performance is much degraded for N = 30 and N = 50, as shown
by the upper halves of the boxes.

SF7-125 SF7-250 SF8-125 SF8-250
0

20

40

60

80

100

T
ra

ck
in

g
er

ro
r

[m
]

CS
CTRA+
3D-CTRA

(a) N = 1.

SF7-125 SF7-250 SF8-125 SF8-250
0

20

40

60

80

100

T
ra

ck
in

g
er

ro
r

[m
]

CS
CTRA+
3D-CTRA

(b) N = 10.

SF7-125 SF7-250 SF8-125 SF8-250
0

20

40

60

80

100

T
ra

ck
in

g
er

ro
r

[m
]

CS
CTRA+
3D-CTRA

(c) N = 30.

SF7-125 SF7-250 SF8-125 SF8-250
0

20

40

60

80

100

T
ra

ck
in

g
er

ro
r

[m
]

CS
CTRA+
3D-CTRA

(d) N = 50.

Fig. 3.10: Tracking error with d = 1000 m.

In general, reducing the PAoI corresponds to more frequent UKF updates at the control
station, thus improving the tracking performance. However, the relationship between PAoI and
tracking error is not linear. Fig. 3.10 shows the tracking error distributions in the same scenario:
in this case, choosing B = 250 kHz provides a better performance even for N = 30, but not for
N = 50. Interestingly, we can see that 3D-CTRA outperforms the other models when the inter-

52



Remote Drone Tracking via 3D Mobility Models and LoRaWAN

reception time is low but CS becomes the best whenever the average inter-reception time goes
over 10 seconds. This result is due to the non-linear nature of CTRA+ and 3D-CTRA, which can
accurately track the UAVs’ movements over a short timespan but suffer from the accumulation
of errors over longer intervals. Even without considering turns and maneuvers, a small error
in the estimated acceleration can lead to a quadratic increase in the tracking error over time,
while a constant speed model has no acceleration and thus will have a somewhat bounded error.
Under these conditions, the error for all the tracking models increases significantly and might
be too high for some applications.

3.5.3 Spreading Factor Optimization

As we discussed above, interference and packet collisions can be significant issues in large swarms.
To overcome such a problem and improve tracking performance, we can tune the SF parameter
of the LoRaWAN protocol. We recall that packets sent with different SFs are orthogonal and
can be received contemporary, providing additional protection from interference. On the other
hand, higher SFs can increase the packet transmission time, leading to far longer inter-reception
times to respect the duty cycle constraint.

Since inter-reception times of over 10 s severely degrade the tracking performance, we can
limit the examined SFs to 7 and 8, i.e., the lowest two. In this case, the optimal choice to reduce
congestion would be to have half of the UAVs use SF 7, while the other half use SF 8. This
configuration would lead the UAVs using the lower setting to have a significant advantage in
terms of data rate, while any collision for SF 8 packets would lead to a very long inter-reception
time for the affected drones. In order to balance the two sets, we define a split system in which
two-thirds of the drones set the SF to 7, while the others use a SF equal to 8.

Fig. 3.11 shows that, for N = 10, splitting the UAVs between the two SFs is suboptimal,
while it can provide a small performance bonus if N = 30 and B = 250 kHz. Interestingly,
splitting the swarm is not a good choice for the system with B = 125 kHz even with a swarm
of N = 50 drones. Indeed, reducing the bandwidth increases both the number of channels and
the time required for transmission; instead, avoiding collisions is not worth the cost of further
increasing the inter-reception times for the UAVs with SF equal to 8. We also note that the SF
optimization cannot solve the fundamental issue of the more complex models, as the updates
are still not frequent enough to avoid divergence, and the CS model is still the optimal for
N = 50, maintaining the 75th percentile of the tracking error below 30 m.

However, SF adaptation algorithms do not only reduce collisions but also for their original
purpose: extending the range of the LoRaWAN network. In Fig. 3.12, we analyze the results
obtained using the ADR system we described in Sec. 3.4, for different values of N . If the ADR
is not active (NO ADR), drones do not vary their communication settings regardless of the
scenario conditions. Instead, the NS ADR and the ED+NS ADR systems allow UAVs to vary
the SF according to the policies described in Sec. 3.5.1.

The figure clearly shows that ED+NS leads to a much higher inter-reception times and,
consequently, higher error. This is caused by multiple factors: firstly, UAVs using ED+NS

53



Chapter 3

10 30 50
Nd

0

10

20

30

In
te

r-
re

ce
pt

io
nt

im
e[

s]

SF7-125
SF7-125-Split
SF7-250
SF7-250-Split

(a) Inter-reception time with CS.

10 30 50
Nd

0

10

20

30

40

50

T
ra

ck
in

g
er

ro
r

[m
]

SF7-125
SF7-125-Split
SF7-250
SF7-250-Split

(b) Tracking error with CS.

10 30 50
Nd

0

10

20

30

In
te

r-
re

ce
pt

io
nt

im
e[

s]

SF7-125
SF7-125-Split
SF7-250
SF7-250-Split

(c) Inter-reception time with CTRA+.

10 30 50
Nd

0

10

20

30

40

50
T
ra

ck
in

g
er

ro
r

[m
]

SF7-125
SF7-125-Split
SF7-250
SF7-250-Split

(d) Tracking Error with CTRA+.

10 30 50
Nd

0

10

20

30

In
te

r-
re

ce
pt

io
nt

im
e[

s]

SF7-125
SF7-125-Split
SF7-250
SF7-250-Split

(e) Inter-reception time with 3D-CTRA.

10 30 50
Nd

0

10

20

30

40

50

T
ra

ck
in

g
er

ro
r

[m
]

SF7-125
SF7-125-Split
SF7-250
SF7-250-Split

(f) Tracking error with 3D-CTRA.

Fig. 3.11: Tracking error for different SF, with d = 1000 m.

ADR increases the SF as soon as the GW misses an ACK to the UL message. The fact that
ACKs needs to employ the same SF as UL packets further exacerbates this problem, increasing
the duty cycle consumption by the GW and further limiting the number of ACKs that can

54



Remote Drone Tracking via 3D Mobility Models and LoRaWAN

NO ADR NS ADR ED+NS ADR
0

10

20

30
In

te
r-

re
ce

pt
io

nt
im

e[
s]

Nd = 10
Nd = 30
Nd = 50

(a) Inter-reception time with CS.

NO ADR NS ADR ED+NS ADR
0

20

40

60

80

100

T
ra

ck
in

g
er

ro
r

[m
]

Nd = 10
Nd = 30
Nd = 50

(b) Tracking error with CS.

NO ADR NS ADR ED+NS ADR
0

10

20

30

In
te

r-
re

ce
pt

io
nt

im
e[

s]

Nd = 10
Nd = 30
Nd = 50

(c) Inter-reception time with CTRA+.

NO ADR NS ADR ED+NS ADR
0

20

40

60

80

100

T
ra

ck
in

g
er

ro
r

[m
]

Nd = 10
Nd = 30
Nd = 50

(d) Tracking error with CTRA+.

NO ADR NS ADR ED+NS ADR
0

10

20

30

In
te

r-
re

ce
pt

io
nt

im
e[

s]

Nd = 10
Nd = 30
Nd = 50

(e) Inter-reception time with 3D-CTRA.

NO ADR NS ADR ED+NS ADR
0

20

40

60

80

100

T
ra

ck
in

g
er

ro
r

[m
]

Nd = 10
Nd = 30
Nd = 50

(f) Tracking error with 3D-CTRA.

Fig. 3.12: Tracking error for different ADR with d = 3000 m.

be sent. As shown in Fig. 3.12, the good inter-reception time performance achieved by the
NS ADR scheme results in a better tracking error, which makes the NS ADR scheme the best
choice for the specific scenario considered. However, we might implement different ADR policies

55



Chapter 3

to take into account available knowledge of the UAV’s mobility patterns, ensuring a smarter
configuration of the SF parameter.

3.5.4 Payload Optimization

We can now consider the consequences of piggybacking the tracking update on sensor commu-
nications. Naturally, LoRaWAN is a low-bitrate technology, so the sensor updates will have
a limited size. We analyze sensor payloads of 16, 32, and 64 bytes, combined with the three
tracking systems we have presented. We first observe the inter-reception time, which roughly
corresponds to the PAoI for the sensor data, as the transmission takes up less than 1% of the
total value. Fig. 3.13a-3.13b show a boxplot for a swarm with N = 10, using two different
bandwidths, as above. Naturally, inter-reception time grows with the payload, but it is still
below 10 s even with the 64 B payload when using B = 250 kHz.

As we discussed above, this has an obvious effect on the tracking error: Fig. 3.13c-3.13d
also show the tracking error as a function of the payload size. Focusing on the system with
B = 250 kHz, the tracking error grows as the payload size increases but stays within an
acceptable range. It is interesting to note that, while CS is always the best choice with a non-
zero payload and B = 125 kHz, CTRA+ is the best choice for small payloads with B = 250 kHz,
as the inter-reception times are within acceptable bounds to benefit from a more accurate model.

We can also consider the goodput generated for each payload size, which also increases as
the payload size grows: Fig. 3.13e-3.13f show the received bytes per second for the sensor
application, considering only the payload bits. There is a trade-off between goodput on one
side and PAoI and tracking performance on the other: smaller payloads can be delivered more
frequently, improving the tracking accuracy but reducing the overall goodput. We also analyzed
the packet erasure probability, but we do not report it in the chapter, as it was similar for all
payload sizes and tracking schemes, around 5% for B = 125 kHz and 15% for B = 250 kHz.
This difference is due to the larger number of collisions that the drones experience with a single
channel with respect to having three orthogonal ones with a lower capacity.

3.6 Conclusions and Future Work

In this chapter, we presented a tracking framework for UAVs, based on a novel 3D-CTRA
mobility model and periodic transmissions over LoRaWAN. Our system can estimate drone
trajectories with high accuracy even at long distances, and the proposed mobility models sig-
nificantly outperform standard schemes as CS and CTRA. Despite LoRaWAN’s duty cycle
limitations, our simulations show that the technology is suited to manage swarms of dozens of
drones, provided that an appropriate ADR scheme handles scenarios in which UAVs move out
of the coverage area. The accuracy of our system can enable several applications, from urban
pollution monitoring to precision agriculture, relatively tolerant to reduced positioning errors.

Several extensions of this work are possible. We can extened the proposed motion model
with maneuver and mission-level information, further reducing the tracking error. Moreover, it

56



Remote Drone Tracking via 3D Mobility Models and LoRaWAN

0 16 32 64
Payload[B]

0

10

20

30
In

te
r-

re
ce

pt
io

nt
im

e[
s]

CS
CTRA+
3D-CTRA

(a) Inter-rx time, B = 125 kHz.

0 16 32 64
Payload[B]

0

10

20

30

In
te

r-
re

ce
pt

io
nt

im
e[

s]

CS
CTRA+
3D-CTRA

(b) Inter-rx time, B = 250 kHz.

0 16 32 64
Payload[B]

0

20

40

60

80

100

T
ra

ck
in

g
er

ro
r

[m
]

CS
CTRA+
3D-CTRA

(c) Tracking error, B = 125 kHz.

0 16 32 64
Payload[B]

0

20

40

60

80

100

T
ra

ck
in

g
er

ro
r

[m
]

CS
CTRA+
3D-CTRA

(d) Tracking error, B = 250 kHz.

0 16 32 64
Payload[B]

0

2

4

6

8

10

G
oo

dp
ut

[B
/s

]

CS
CTRA+
3D-CTRA

(e) Payload goodput, B = 125 kHz.

0 16 32 64
Payload[B]

0

2

4

6

8

10

G
oo

dp
ut

[B
/s

]

CS
CTRA+
3D-CTRA

(f) Payload goodput, B = 250 kHz.

Fig. 3.13: Tracking error with d = 1000 m, N = 10, and SF 7.

will be interesting to explore features that are not part of the LoRaWAN standard up to now,
like the use of a different frequency plan or of listen-before-talk instead of applying the duty
cycle. Finally, the study of the behavior of swarms, and strategies to avoid packet collision, will
enable new applications by improving the tracking accuracy at a low cost.

57



58



Part II

Multi-Agent Learning Strategies
for Network Control

59





Introduction

Recent technological progress has promoted autonomous devices such as Unmanned Aerial
Vehicles (UAVs) in several scenarios, including area surveillance and factory automation. In
these contexts, drones and robots must place themselves in specific locations, exploiting wireless
transmission to gain context awareness and build a cooperative perception of the overall system.
However, the requirements of most innovative applications may make it hard to achieve efficient
node coordination, especially if there is a lack of network resources. To tackle this problem, we
extend the dynamic network scenario analyzed in the first part of this work, focusing not on
mapping node trajectories but on determining the actions of mobile nodes. In particular, we
adopt a goal-oriented approach, where transmission decisions aim to optimize a physical task,
and the control strategy is adjusted depending on the communication process.

In the following chapters, we exploit the Deep Reinforcement Learning (DRL) paradigm
and define a distributed architecture to govern a group of autonomous nodes that exchange
information to coordinate their actions in an implicit fashion. Initially, we consider a basic
scenario with a pre-determined communication policy, where a Unmanned Aerial Vehicle (UAV)
swarm explores a limited area and identifies locations of interest. Our experiments show that the
proposed architecture yields effective strategies that demonstrate robustness to communication
impairments and can adapt to different scenarios by taking advantage of the Transfer Learning
(TL) paradigm. In particular, our system can overcome a computationally expensive look-ahead
algorithm, which takes decisions after estimating the performance of each possible sequence of
physical actions.

Then, we address the challenge of combining goal-oriented communication and networked
control into a single model, which we call Cyber-Physical Partially Observable Markov Decision
Process (CP-POMDP). The proposed model provides high flexibility and can represent any
application involving the cooperation between sensors observing an environment and agents
taking action over it. To show the benefits of our model, we design a simple reference scenario
where an underwater vehicle has to achieve specific missions with the support of a set of buoys.
We evaluate the performance of our strategy against multiple benchmark algorithms that exploit
a pre-determined transmission policy. Our results prove that joint training of communication
and control systems can significantly improve dynamic networks’ functionalities, especially in
the case of constrained communication resources.

61



62



4
Distributed Reinforcement Learning for Drone

Swarm Control

4.1 Introduction

The high data rate of modern wireless communications and the increasing computational
power of embedded systems, along with the sharp price reduction of commercial Un-

manned Aerial Vehicles (UAVs), have encouraged the use of swarms of drones for Smart City
services [103]. Thanks to their size, flexibility, and flight ability, drone swarms represent a
new solution for many different applications, such as remote surveillance, distributed sensing,
wireless coverage extension, and object tracking [104]. Over the past few years, researchers have
studied several UAV-based systems [105], addressing the high complexity of swarm coordination
and control. In this context, the optimal control strategy depends on the target scenario, which
may involve different applications such as surveillance, monitoring, mapping, and tracking [106].
On the other hand, all the above tasks share similarities and require UAVs to move within an
area and position themselves over specific locations.

In this chapter, we focus on a scenario where a drone swarm has to localize and reach a
set of static targets that occupy random positions in an unexplored area. We consider the
UAVs equipped with sensors allowing them to detect targets within a limited range and a radio
interface that makes it possible to exchange position information and sensing data. Hence,
the UAVs needs to coordinate to find the targets without colliding with each other or possible
obstacles. Notably, the problem of identifying fixed targets arises in several practical situations,
ranging from the generation of real-time flood maps [107] to the detailed tracking of weeds in
agriculture [108]. Besides, an efficient map exploration is of interest even for larger classes of

The work presented in this chapter was published in IEEE Transactions on Cognitive Communications
and Networking [102].

63



Chapter 4

problems, e.g., considering moving targets or, in general, a dynamic environment. One such
example is wildfire monitoring in dry regions [109], which can be effective as long as the UAVs
move faster than the spread of the fires.

The nature of our problem, in which actions can have long-term consequences and affect the
future evolution of the environment, makes it a suitable application for Reinforcement Learn-
ing (RL) [110]. This latter is a powerful mathematical paradigm that makes it possible to
compute the optimal strategy to manage a general environment modeled as an Markov Deci-
sion Process (MDP). At the same time, the curse of dimensionality [111] makes it difficult to
adopt a centralized approach, where a single controller manages all the drones in the network.
To address the above issue and design a more scalable system, we can adopt a Multi-Agent
Reinforcement Learning (MARL) approach, where many agents interact with the same envi-
ronment. However, the simultaneous presence of multiple learning units makes the scenario
non-stationarity, possibly complicating the system training and the estimation of the optimal
policy [112]. In particular, the different degrees of coordination and communication between
agents make the configuration of MARL systems a very challenging problem, arousing interest
from many application areas.

Our analysis is based on a very general model, using a grid-world representation and making
a limited number of assumptions about drone behavior. In particular, we assume that the
initial map is not entirely visible and covered by obstacles preventing drone movements. On
the other hand, the UAVs exchange information through a radio channel allowing them to
achieve a cooperative perception, thus encouraging cooperation and avoiding collisions. The
performance depends on the ability of the UAVs to reach the targets, whose positions are
initially unknown and dependent on different distributions according to the drone application.
To address the described problem, we implement a Networked Distributed Partially Observable
Markov Decision Process (ND-POMDP) framework and associate each UAV with a distinct
agent, with a partial vision of the overall network status. We compute the optimal control
strategy by a Deep Reinforcement Learning (DRL) approach, approximating the policy of each
drone with a Neural Network (NN) that determines its local actions. The main challenge is
to adapt the drone policy to both the environment dynamics and the behavior of the different
learning agents moving within the map.

We compare our learning-based strategy against a Look-Ahead (LA) heuristic, proving that
the proposed system can better explore the environment and reach the targets faster. Besides,
we test the potential of Transfer Learning (TL), showing that agents trained under specific
conditions can adapt to a new scenario much faster than restarting the training from scratch. In
doing so, we assess that significant environmental changes, such as varying the map size or drone
number, do not compromise our approach. Finally, we show that the proposed system is robust
to channel impairments and can handle scenarios where information exchange is possible only
if drones are within a limited range, as it occurs in realistic communication settings. Notably,
the high flexibility and generality of the learning framework make our setup extendable to even
more complicated scenarios.

The rest of the chapter is organized as follows: first, Sec. 4.2 analyzes the related work

64



Distributed Reinforcement Learning for Drone Swarm Control

in the field; Sec. 4.3 presents the system model and MARL algorithm; Sec. 4.5 reports the
experimental setup and the simulation results, including TL experiments; finally, Sec. 4.6 gives
the conclusions and presents some possible avenues for future work.

4.2 Related Work
Multi-agent learning is arousing ever-more interest from the scientific community, and an ex-
tensive taxonomy of multi-agent solutions was presented in [113]. In order to address a MARL
problem, there are four main approaches: (1) designing a single agent that interacts with mul-
tiple copies of itself, generating emergent behaviors; (2) implementing communication between
agents of the same type to enable agent coordination; (3) defining a cooperation strategy be-
tween agents with different behaviors to achieve a common goal; (4) modeling other agents’
behaviors and adapting the learned policy to them [114].

The authors in [115] study the first of these four approaches and use the tabular Q-learning
algorithm to guide drones to survey an unknown area, showing that even the simplest MARL
algorithm can improve the overall reward. Similarly, in [116], a MARL framework is applied
to a more complex problem in which a UAV network provides flexible wireless communication.
However, in these works, the goal of the MARL algorithm is to optimize resource allocation
instead of guiding drones, so a coordinated exploration strategy is missing.

An interesting research direction for MARL is pioneered in [117], which uses NNs to represent
and learn more complex Q-functions [118]. At first, the authors study the performance of one
network trained for all agents, which then share the same parameters during the execution phase
(this is also our approach). Then, the authors propose a differentiable inter-agent learning
framework that allows the agents to learn the most meaningful messages to exchange and
improve cooperation. This system is suitable for faster training but is limited to low numbers
of agents.

Many other works implement RL strategies in the practical scenarios discussed above. In [107],
the authors adopt a MARL approach to control a flood-finding swarm of UAVs. However, the
model only considers a swarm with a fixed number of drones, and the experimental results are
not compared to state-of-the-art heuristics. In [108], the authors consider an improved random
walk model to map an agricultural area, solving the problems due to noisy acquisition through
a collective perception of the environment. In particular, the possible random walks are biased
according to the positions of the targets already discovered and the other network nodes. How-
ever, we observe that the model needs to be manually tuned for each setting despite the authors
considering swarms of variable sizes,

Another recent study [109] considers wildfire spread monitoring, checking how the fire evolves
and spreads on the map from a known starting point. The authors define the problem as a
Decentralized Partially Observable Markov Decision Process (Dec-POMDP) [119] and carry out
several experiments, as well as comparisons against a greedy heuristic (similar to the look-head
method we studied in this work). The work in [120] focuses on a target-tracking application for
disaster scenarios, presenting a model similar to ours but applied to a single drone. Finally, [121]

65



Chapter 4

considers a MARL system with realistic communication, where a swarm of drones needs to get
data from an Internet of Things (IoT) sensor network. This problem is quite simplistic, as the
position of the targets is known in advance, and the MARL framework only needs to optimize
the trajectories.

Finally, MARL approaches also fit models in which UAV connectivity is important. In [122],
a framework including RL and game theory enables to plan of the path of two drones that
need to save energy and minimize the interference to the ground network while maintaining
a cellular connection. Furthermore, the authors of [123] design a centralized RL system to
maximize coverage for a swarm of aerial base stations serving mobile users on the ground. A
similar approach is considered in [124], which redefines the problem in terms of Quality of
Experience (QoE) maximization for the users. For a fuller communication-oriented perspective
on the use of RL for UAV networks, we refer the reader to [125].

The above works have similar objectives to ours but either go back to the single-agent setting
or have restrictive assumptions. As an example, [109] considers well-known fire patterns, which
can be extensively learned, with a known starting point. In our case, the initial positions of the
targets and the UAVs are not the same across different episodes, complicating the learning task
but making the model more general. Furthermore, unlike previous efforts in the literature, this
work exploits the TL paradigm, showing how our model can adapt to scenarios with obstacles,
realistic maps, and different swarm sizes. To the best of our knowledge, our work presents the
most realistic environment to date, providing a single architecture to address multiple operative
scenarios.

4.3 System Model

In the following, we design the system model used to analyze the drone swarm management
scenario. The model is based on a grid representation of the environment and makes it possible
to represent several UAV applications. We give a list of the notations used in Table 4.1 as a
reference to the reader.

4.3.1 Environment

We base the system model on a square grid map of size M ×M . Each cell is identified by its
coordinates m ∈ M, where M = {0, ...,M − 1} × {0, ...,M − 1}. We assume that a swarm N
of UAVs moves within the map to identify a set of target cells K, representing the goal of the
UAV application. We denote by N = |N | and K = |K| the number of UAVs and targets over
the map, where | · | is the cardinality operator. In particular, we denote the position of drone
n ∈ N and target k ∈ K by xn = (xn, yn) and zk = (xk, yk), respectively.

Following an RL approach, we discretize the time into slots t ∈ Z+, and we consider multiple
episodes of T ∈ N slots each. At the beginning of each episode, we reinitialize the targets and
UAVs positions. The performance for a single episode coincides with the UAVs capability of
positioning itself over the targets as fast as possible. To this end, each drone can move by a

66



Distributed Reinforcement Learning for Drone Swarm Control

Tab. 4.1: Model parameters.

Parameter Description Parameter Description

t Slot index T Slots per episode
M Coordinate set M Cell per map edge
N UAV set N UAV number
K Target set K Target number
W Obstacle set W Obstacle number
S State space of ND-POMDP O Observation space of ND-POMDP

rn(·) Reward function for the nth UAV ∆ Action space of ND-POMDP
xn Coordinates of the n-th UAV X Matrix of UAV positions
zk Coordinates of the k-th target σ Standard deviation of the target distribution
ϕ(·) Target value function Φ Matrix of target values
dsparse Minimum target distance Ω Cells occupied by obstacles
hw Size of the w-th obstacle lw Coordinates of the w-th obstacle

hmin, hmax Min and max obstacle size Hw Cells occupied by the w-th obstacle
ω(·) Obstacle location function Ω Matrix of obstacle positions
Φ̂ Estimated matrix of target values Ω̂ Estimated matrix of obstacle positions
an Action of the nth UAV A Action space of a single UAV
ν(·) Invalid action function χn(·) Collision function for the nth UAV
θ Penalty for forbidden actions ψ Penalty for collisions
F Observation window size ζ UAV field of view
π Learned policy Q(·) Q-value function
e(t) Experience sample at slot t Gn Cumulative return for the nth UAV
γ Discount factor α Learning rate

Bsize Batch size ρ Observation tuning parameter

single cell at each slot t, taking the actions determined by a policy π. In particular, we denote
by xn(t) the position of n ∈ N at slot t and by an(t) the action taken by n at the same slot.
The future drone position xn(t+1) depends on both xn(t) and an(t), as we will better explain
in the next section.

We assume that a UAV has a limited Field of View (FoV), i.e., it can only perceive the
map cells within a radius ζ. As the swarm explores the environment, each drone discovers new
regions on the map and updates its knowledge, consequently. In the basic scenario, we assume
that the drone knowledge is shared so that each drone receives the information gathered by the
others immediately. We keep these settings constants during the algorithm training, whereas
we also consider a scenario with unreliable communications during the testing phase.

When considering realistic communication, we may lose the broadcast messages sent by each
UAV due to wireless channel impairments. To this end, we implement the path loss and shad-
owing model from [126], which is based on actual measurements from air-to-air communication,
and a Rayleigh fading model with an error correction code. The physical size of the cells in
the map is a critical parameter when the UAVs communicate directly with each other (and not
through the network infrastructure on the ground). In particular, increasing the size of the
cells impairs performance because of communication range issues. The proposed communica-
tion model has an error probability of 50% at approximately 110 m, corresponding to 11 cells,
assuming 10 m of cell side, or to 5 cells, assuming 5 m of cell side.

To ensure the scalability of the approach, we assume that the UAV take decisions according
to a sub-region of the map. In particular, we consider each UAV to have up-to-date knowledge
only inside a F × F square, with F ≤M . The area center is given by the UAV location unless
the distance between that cell and the map edges is lower than F . In the second case, the
visible region ends at the map edges without modeling the area outside the environment. We

67



Chapter 4

observe that F should not be confused with the FoV ζ, which is generally lower than F . The
first represents the area that each UAV exploits to decide its actions; the latter represents the
area that each UAV can sense directly.

4.3.2 Target Distribution

To model the targets, we generate K Gaussian distributions with the same covariance matrix
Σ =

(
σ2 0
0 σ2

)
. The distribution means coincide with the target coordinates, while the covariances

represent the target visibility to the UAVs. In this way, a single distribution does not represent
the actual target but rather the full view of the UAVs, which can see the target from afar. We
can interpret σ as the distance that enables the target identification: if the value of σ increases,
the target is visible from further away. Therefore, we associate each cell m ∈ M with a value
ϕ(m), which represents the proximity of target for such a location. The cell value is given by
the maximum of the Gaussian functions at that point, normalized in such a way that the target
locations have values equal to 1:

ϕ(m) = max
k∈K

e−
1
2 ((m−zk)

TΣ−1(m−zk)). (4.1)

Under these conditions, the most valuable cells coincide with Gaussian means, representing the
target locations.

In this work, we consider two different distributions for the targets, named sparse and clus-
ter. In both cases, we randomly place the first target on the grid following a 2D uniform
distribution, while the others are placed sequentially according to the considered scenario.
Hence, the coordinates of the first target can take any value in M with equal probability.
In the sparse scenario, the position zk of the k-th target is randomly chosen from the set
Msparse

k = {m ∈M : ||m− zj ||2 > dsparse, ∀j < k}, with probability mass distribution

Psparse(zk = m) =
||m− z0||2∑

m∈Msparse
k

||m− z0||2
. (4.2)

In this way, the targets tend to be distributed far from the first, with a minimum distance
dsparse between each other.

In the cluster scenario, instead, the position zk of the k-th target is randomly chosen from
the setMcluster

k = {m ∈M : ||m− zj ||2 > 1, ∀j < k}, with probability mass distribution

Pcluster(zk = m) =
1

(1 + ||m− z0||2)
∑

m∈Mcluster
k

1
(1+||m−z0||2)

. (4.3)

In this case, the targets tend to cluster around the first but cannot occupy adjacent cells since
the minimum distance must be greater than 1.

We provide an example of the two target displacements in Fig. 4.1. We observe that such
distributions represent two plausible configurations of targets for different UAV applications. In
wildlife monitoring, some species of animals might tend to herd together, while more territorial

68



Distributed Reinforcement Learning for Drone Swarm Control

ones will have a sparser distribution on the map. Instead, in a battlefield scenario, groups of
soldiers act together as a tight formation, while guerrilla-style fighting will involve a sparser
distribution of forces.

Fig. 4.1: Sparse (left) and cluster (right) target distributions.

4.3.3 Obstacle Distribution

To represent more complex scenarios, we randomly deploy a set of W obstacles over the grid
map. In an urban area, the obstacles might be tall buildings or designated no-fly zones; in a
wild environment, they might correspond to boulders or tall trees. To this end, we define a
function ω(m), which is equal to 1 if m corresponds to an obstacle and 0 otherwise. We describe
each w ∈ W by two parameters: the dimension lw and corner position hw. We formally define
the wth obstacle as the set

Hw =
{
(x, y) ∈M : x ∈ {hw,1, . . . ,hw,1 + lw,1 − 1}, y ∈ {hw,2, . . . ,hw,2 + lw,2 − 1}

}
. (4.4)

Therefore, we can define Ω as the union of all the obstacles:

Ω =
⋃
w∈W

Hw. (4.5)

. Hence, we encode the values of Ω in the M ×M matrix Ω, defined as:

Ω(m) =

1 if ω(m) = 1;

0 otherwise.
(4.6)

We generate obstacles sequentially, like the targets. For each obstacle w ∈ W the dimensions
lw are drawn uniformly from the set {lmin, lmax} × {lmin, lmax}. Instead, we pick the corner

69



Chapter 4

position hw from a uniform distribution in the set{
h ∈M : Hw ⊂M, ||m, zk||2 > 1,∀m ∈ Hw, k ∈ K, d(Hw,Hq) ≥ 2,∀q < w

}
, (4.7)

where d(Hw,Hq) = minmw∈Hw,mq∈Hq ||mw −mq||2 is the distance between w ∈ W and q ∈ W.
These constraints ensure that each obstacle is entirely inside the map, not directly adjacent to
any targets, and not touching any other obstacles. In particular, our design guarantees that
the UAVs can reach the targets from any point on the map. The overall framework allows us to
represent many applications, varying the map size, the drone and target numbers, the obstacle
shapes, the FoV range ζ, and the target visibility σ.

4.4 Learning Model
In this section, we design a learning framework to coordinate the UAV in our system model.
We follow a RL approach, describing the scenario as a ND-POMDP [127], and determining the
optimal strategy by using the double Q-learning algorithm. We report more details about the
RL theory and its methods in Appendix B.

4.4.1 ND-POMDP Formulation

The ND-POMDP framework makes it possible to describe a MDP where the system state is not
directly observable and influenced by the actions of multiple agents without central coordination.
This approach suits our scenario, where the drone swarm only has limited knowledge and each
single UAV takes actions independently. We observe that ND-POMDP is a particular class of
Dec-POMDP for which not all agents interact with each other [128]. Convergence to the optimal
solution for this kind of problem has been proven for classical reinforcement methods [129],
although not for deep models. Hence, as in most works in the literature, we use a benchmark
to evaluate the performance of our scheme.

Formally, an ND-POMDP is identified by a 5-tuple, composed of a state space S, an agent
space N , a joint action space ∆ = AN , an observation space O, and a reward map r : S ×∆→
RN , where N = |N |. In our scenario, the complete system state s is constituted by five matrices:
X, Φ, Ω, Φ̂, and Ω̂. In particular, X is a F × F matrix X, whose the elements of X are set to
1 in the locations occupied by the drones and to 0 otherwise. Instead, Φ and Ω are two F × F
matrices representing the targets and obstacle displacement. We compute the values of their
elements according with the functions ϕ(m) and ω(m) described in the previous section.

The remaining matrices represent the UAV knowledge of the environment. In particular, the
elements of Φ̂ are equal to ϕ(m) if m has been explored and 0 otherwise. Instead, the elements
of Ω̂ are equal to ω(m) if m has been explored and 0 otherwise. At the beginning of each
episode, the UAVs do not know the actual target and obstacles displacements. Before exploring
the map, the drones initialize the cells of Φ̂ to 1 and those of Ω̂ to 0. The observation on ∈ O
of n ∈ N is given by Xn, Φ̂n, and Ω̂n, defined as the F × F subsets of X, Φ̂ and Ω̂ centered
in xn.

70



Distributed Reinforcement Learning for Drone Swarm Control

At each slot t, each UAV can either stay over the same cell or move to one of the four adjacent
cells. At the same time, obstacles are impassable in our environment definition, and the UAVs
cannot move outside the map. The action space of each UAV is defined as A = {(0, 0), (0, 1),
(1, 0), (0,−1), (−1, 0)}N . The joint action for the swarm is a vector a ∈ ∆, which contains the
individual UAVs’ actions, denoted as an for drone n ∈ N . We define the function ν(xn,an),
which returns 1 if the action is valid (i.e., it does not lead the UAV to fly outside the map or
into an obstacle) and zero otherwise:

ν(xn,an) =

1, if xn + an ∈M∧ ω(xn + an) = 0;

0, otherwise.
(4.8)

Therefore, we can update the position of each drone in the following way:

xn(t+ 1) = xn(t) + an(t)ν(xn(t),an(t)). (4.9)

Fig. 4.2 shows an example of the system state at the beginning and in an advanced stage of
an episode. In this case, we have two drones and four targets in a 20×20 map with no obstacles.
The left map shows the drones’ positions (in yellow), the observed map is in the center, and
the actual map is on the right. In the figure, we associate darker cells with lower values and
brighter cells with higher values. It is easy to see how the swarm gains knowledge as the drones
explore the map and look for targets. Hence, the UAVs found two targets relatively quickly,
and a significant portion of the grid remained unexplored.

In the example, we set F = M = 20, i.e., making drones take decisions according to the
overall map. If the communication range equals or exceeds the map side, i.e., F ≥ M , the
observed state o for all UAVs corresponds to the left and center maps. On the contrary, if
F < M , the observation for each UAV would include a different map region.

According to our RL approach, we need to define a reward function to encourage drones
toward their goal. The reward depends on the system state s and the joint action vector a,
representing the overall swarm motion. In our scenario, each UAV receives a reward equal to 1

if it is directly above a target, −θ if it tries to go outside the map or to cross an obstacle, −ψ
if it is in the same cell as another drone, and 0 in any other case. The parameter θ makes the
drone avoid erroneous actions that would take them outside the map or crash into obstacles.
Instead, the value of ψ affects the distance that drones keep from each other: if ψ is low, the
drones get close to each other if the targets are very close. Naturally, if there is a collision risk
when the drones are in the same cell, the value of ψ should be high.

Given the position xn and the action an of n ∈ N , we define the function χn(X,A) as

χn(X,A) = max
m∈(N\n)

δ
(
xn + an(t)ν(xn,an)− xm − am(t)ν(xm,am)

)
. (4.10)

where δ(m) takes value 1 if m = (0, 0), and zero otherwise. Practically, χn(X,A) indicates if
two drones collide, returning 1 if one or more drones move to the same cell as drone u, and 0

71



Chapter 4

(a) Episode beginning.

(b) Episode ending.

Fig. 4.2: Drone positions (left), known (center) and real map (right).

otherwise. Hence, given the state s and the joint action a, we define the reward for n ∈ N as:

rn(s,A) = −θ(1− ν(xn,an)− ψχn(X,A) + (1− χn(X,A))
∑
k∈K

δ(xn + an − zk). (4.11)

We observe that our model involves deterministic state transitions and system observations,
which are affected only by the agents’ decisions.

4.4.2 Distributed Deep Q-Learning

To deal with the described Partially Observable Markov Decision Process (POMDP) problem,
we implement a Distributed Deep Q-Learning (DDQL) framework, defining a Q-value function
Q(·) for each agent in the system. As explained in the Appendix, uch a function computes an
estimate of the discounted return Gn(t) =

∑∞
τ=0 γ

τrn(t+ τ) achieved by following the learned
policy π. In particular, the policy π determines the probability for each drone n ∈ N to take
an action an ∈ A given an observation on ∈ O. Hence, we aim to determine the function Q(·)
associated with the optimal policy π∗, maximizing the expected Gn. For the sake of readability,
in the following, we omit the n subscript to indicate the agent whenever possible.

In our system, we approximate Q(·) by a NN that takes as input the last observation o(t)

72



Distributed Reinforcement Learning for Drone Swarm Control

and returns the quality of the possible drone actions, i.e., Q(o(t), a), ∀a ∈ {(0, 0), (0, 1), (1, 0),
(0,−1), (−1, 0)}. We maintain a single Deep Q-Network (DQN) during the training phase,
updating the learning architecture with the experience of all the system agents. Therefore, we
have a centralized learning framework that returns a single policy shared among multiple learn-
ing units. As it would be impossible for a single UAV to experience even just a non-negligible
fraction of possible states, using centralized training is critical in the system’s generalization
ability. In other scenarios, following centralized training may not be convenient, especially
when the agents have to learn different tasks.

To train our architecture, we follow the approach from [118] and leverage a replay memory
to store the agent experience e(t) = (o(t), a(t), r(t), o(t+ 1)). At each training slot, the agent
picks a batch of Bsize elements from the replay memory. This process allows us to separate the
algorithm training from the experience acquisition, avoiding overfitting specific action sequences.
In particular, the experience replay is extremely valuable since it allows the system to improve
the variety of the training samples by getting experience from the states seen by different agents.

As described in the Appendix, we exploit the Double Q-Learning technique to speed up the
algorithm’s convergence [130]. Hence, we maintain a target network to evaluate agents’ actions
and an primary network to select the policy, computing the bootstrap Q-value as

Qnew(o(t), a(t)) = r(t) + λQprimary(o(t+ 1), argmax
a

Qtarget(o(t+ 1), a)). (4.12)

We use the value Qnew(o(t), a(t)) to perform backpropagation on the primary network and
improve the agent policy. We iteratively replace the target network’s weights with those of the
update network and determine the algorithm learning rate using the Rectified Adam (RAdam)
optimizer [131].

We implement the well-known ε-greedy and softmax policies to allow the agents to explore
the action space. The exploration rate ε follows 2 different approaches, namely, ε-greedy and
softmax. In the former, random action is chosen with probability ε, while the greedy action, i.e.,
the action with the highest Q-value, with probability 1-ε. The value of ε decreases to 0 at the
end of the training since no more exploration is needed. In the latter, we compute the action
probability π(o, a) for the observation o as the output of a softmax density function taking the
Q-values as input. In this case, the temperature T decreases during the training, reducing the
randomness during the selection of the actions:

π(o, a) =
e
Q(o,a)
T∑

a∈A e
Q(o,a)
T

, (4.13)

where A = |A| is the cardinality of the UAV action space.
In our model, the observation for agent n ∈ N is represented by four F×F matrices. The first

is a F ×F matrix with all the values set to zero but the cell corresponding to the agent position,
which are equal to 1. Instead, the other matrices are Xn, Φ̂n, and Ω̂n, which have been defined
in the previous section. To simplify the state space, we consider matrices Φ̂n and Ω̂n jointly, by

73



Chapter 4

Fig. 4.3: Learning architecture.

defining the matrix Φ̂n− ρΩ̂n, where ρ is a scalar parameter used to facilitate learning. Hence,
our system approximates the function Q(·) by a Convolutional Neural Network (CNN), which
receives an image with three channels as input and returns a vector as output. The learning
architecture is described in Fig. 4.3, and includes three convolutional layers followed by two
fully-connected layers. The dimension of the last layer is identical to the number of actions so
that the CNN output can converge to the Q-values Q(o, a), ∀ a ∈ A.

4.4.3 Computational Complexity

We now discuss the computational complexity of performing one inference procedure with our
DQN architecture. We first analyze the complexity of fully-connected layers, denoting by Nk the
number of neurons in the general k-th layer. To go from layer i to layer i+1, we need to compute
the value of Ni+1 nodes, each of which takes Ni multiplications followed by Ni additions and
one non linear function. Therefore, the total number of operations is Ni+1(2Ni + 1).

Then, we compute the complexity of one convolutional layer, as done in [132] when neither
batch normalization nor pooling layers are present. We denote with (Iw, Ih, Id) the shape of
the input block. At layer i, we then have Ki filters with kernels dimension (Wi,Hi), stride
Si (we use the same value along the two axes), and padding Pi. The shape of the resulting
output block will be ( Iw+2Pi−Wi

Si
+ 1, Ih+2Pi−Hi

Si
+ 1,Ki). The computation of each block’s

neuron involves Wi ×Hi × Id multiplications followed by the same number of additions (sum
all elements plus the bias) and one non-linearity. The total number of calculations is then
( Iw+2Pi−Wi

Si
+ 1)× ( Ih+2Pi−Hi

Si
+ 1)×Ki × (2WiHiId + 1).

Considering our specific architecture, the number of computations (multiplications, additions
and non-linear operations) are 440 000, 3 704 980 and 628 180 for the three convolutional layers.
Instead, the following fully-connected layers require 125 504 and 645 computations. Therefore,
the total number of operations for one decision is 4 899 309. This computational complexity

74



Distributed Reinforcement Learning for Drone Swarm Control

allows UAVs to take decisions in real-time, as even embedded processors can deal with much
more complex operations in less than 100 ms [133]. In our scenario, the speed of the UAVs and
the vision algorithms required to identify targets are the main limiting factors for the swarm.

4.5 Simulation Settings and Results
In this section, we describe our simulation settings and evaluate the proposed learning approach
in various scenarios with specific characteristics.

4.5.1 System Settings

We derive all the results through a Monte Carlo approach, where multiple independent simu-
lations are carried out to obtain reliable statistical data. The training phase includes Ntrain

episodes for each scenario (sparse or cluster), where each episode lasts Ttrain slots. In particular,
training episodes are far longer than test episodes (which include Ttest slots each) since the
agents need more time for collecting experience. Before training, we initialize the replay mem-
ory by executing Nmemory = 1000 episodes of Tmemory slots each, allowing the agent to start the
learning procedure immediately. If the episodes are too long, memory replay will mainly receive
samples in which large portions of the map are explored, and the agents will not learn how to
move at the beginning of the episodes. On the other hand, short episodes have the opposite
problem, as the UAVs never learn to behave in the final parts of the episodes. A prioritized
memory replay may solve this problem but increase the complexity of our framework.

We then opted for adapting the episode length in the training phase, making even training
episodes have T even

train = 50 slots each, and the odd episodes have T odd
train = 150 slots. This

alternating procedure prevents the replay memory from being too skewed towards situations
where the map is fully explored or unexplored. Moreover, we apply TL to allow the agents
trained in the sparse environment to quickly adapt the network to the cluster scenarios (or
vice-versa). In such a case, we carry out Ntransf training episodes. In all the cases, we test
the performance of the proposed strategy in a total of Ttest = 500 episodes. The complete
simulation settings are reported in Tab. 4.2.

Tab. 4.2: Simulation settings.

Parameter Value Description Parameter Value Description

M {20, 24, 30, 40, 50} Cell per map edge F 20 Observation window size
N {2, 3} UAV number K 4 Target number
σ2 1 Target variance dsparse 8 Minimum target distance
η {0,0.1} Map fraction occupied by obstacles ζ 3 UAV field of View
θ 1 Penalty for forbidden action ψ 0.8 Penalty for collisions
ρ 0.2 Obstacle tuning parameter γ 0.9 Discount factor

Ntrain {250, 750, 1000, 3000} Training episodes Nmemory 1000 Testing episodes
Ttrain {50, 150} Steps per training episode Ttest 40 Steps per test episode
Ntransf {125, 250, 375, 750} TL episodes Ntest 100 (LA), 500 (DDQL) Testing episode
Ptx 20 dBm Communication power N0 -76 dBm Noise floor

To assess the performance of our DDQL scheme, we compare it with a heuristic strategy
based on Markov predictive control, by which drones can explore the map and reach the targets.
Such a benchmark strategy is named LA and, at each slot, evaluates all possible combinations

75



Chapter 4

of future actions and rewards, as its name suggests. In order to define it, we first define the LA
reward rℓn(X,a) as:

rℓn(X,a) =


ϕ̂(xn+an)
ξ(xn+an)

if ν(xn,an) = 1;

−∞ otherwise,
(4.14)

where ξ(m) is the number of UAVs located in m. The LA strategy never chooses actions going
outside the map or on obstacles and makes each drone n maximize its expected cumulative
reward over the following Tℓ slots, assuming that none of the others is moving. In practice, the
LA strategy makes each drone select the action a∗ that maximizes

max
a∈∆Tℓ

Tℓ−1∑
i=0

rℓn

X,

i−1∑
j=0

aj

 , (4.15)

where ∆Tℓ is the set of ordered sequences of action vectors a0, a1, ..., aTℓ−1, so that a0n = a∗

and aim = (0, 0), ∀ i ∈ {0, ..., Tℓ − 1},m ̸= n. In other words, ∆Tℓ is the set of possible move
sequences of n assuming that the other UAVs are static. We observe that if several action
sequences have the same expected reward, the LA strategy chooses one of them randomly.

We note that each drone n ∈ N assumes that all the unexplored values ϕ(m) are equal to 1.
Hence, the LA forces n to explore the map until it finds a target. Then, the considered UAV
remains over the new target while the other drones remove the target information from their
local value maps. The performance of LA mainly depends on the nℓ parameter: as it increases,
drones can make more foresighted decisions but at a higher computational cost. In addition, the
number of targets on the map also plays a role in determining the computational performance.
If more targets are present, we have to check whether other agents are on a target more often to
remove it from the map of available targets. As the LA strategy is computationally expensive,
we set Ntest = 100 when evaluating its performance.

4.5.2 Performance Analysis

We first consider a scenario with N = 2 UAVs and k = 4 targets in a 20× 20 map. We perform
multiple training phases of different duration, up to Ntrain = 3000 episodes, for a total of 3 · 105

training samples, ensuring that all our algorithms achieve convergence. In the following, we
abbreviate the LA approach as LA(4), as we set nℓ = 4. This algorithm requires a lot of
computational resources: each LA decision takes approximately 15 times longer than using the
DDQL strategy. We do not consider nℓ > 4 since the computational cost of such a technique
becomes excessive with limited performance gains. In some brief tests (which had to be on
maps of a limited size due to the computational complexity of LAwith a longer horizon), we
noticed that LA(8) and even LA(12) lead to similar results for LA(4). Without coordination
among the UAVs, there is a limit on the swarm performance even with an infinite horizon. The
most critical factor in determining the speed at which the UAVs find the target becomes the
coordination of the swarm once the horizon reaches 3 or 4 slots.

76



Distributed Reinforcement Learning for Drone Swarm Control

0 300 600 900 1200 1500 1800 2100 2400 2700 3000
0

20

40

60

80

100

ε-greedy Softmax LA(4)

Training episodes

Su
cc

es
sf

ul
 e

pi
so

de
s 

[%
]

(a) Cluster scenario.

0 300 600 900 1200 1500 1800 2100 2400 2700 3000
0

20

40

60

80

100

ε-greedy Softmax LA(4)

Training episodes

Su
cc

es
sf

ul
 e

pi
so

de
s 

[%
]

(b) Sparse scenario.

Fig. 4.4: Success probability during the training with 2 UAVs.

Fig. 4.4a shows the success probability in the cluster scenario as a function of the training set
size and the considered exploration profile and approach. In particular, DDQL combined with
the softmax approach catches up with LA(4) in less than 900 training episodes, converging to
a success probability between 0.65 and 0.7. The ε-greedy approach has lower final performance
and requires more time to converge with respect to the softmax profile. The error bars show
the best and worst results over 5 test phases, proving that the performance improves as the
UAVs gains more experience. The performance boost over the LA approach is due to the DDQL
scheme’s ability to exploit the correlation among the target positions, quickly finding the other
targets after spotting the first one. In the sparse scenario, the final performance of DDQL is

77



Chapter 4

similar to that of LA(4), as shown in Fig. 4.4b. We observe DDQL and LA(4) have more success
than before, as finding the scattered targets is simpler than identifying clusters in the limited
duration of an episode.

(a) Cluster scenario.

(b) Sparse scenario.

Fig. 4.5: Probability distribution of the number of drones reaching the targets.

In the following results, we better analyze the strategy learned by the proposed DDQL
framework. First, Fig. 4.5 reports the probability of one or both drones reaching the target as
a function of the number of slots per episode. Each group of bars refers to the performance
achieved by DDQL (with and without softmax) and by LA in the cluster and sparse scenarios,
with a total of K = 4 targets and N = 2 UAVs. Therefore, the figure shows the trade-off

78



Distributed Reinforcement Learning for Drone Swarm Control

between the time needed by UAVs to accomplish their task and the success rate. In the cluster
scenario (Fig. 4.5a), DDQL is much faster than LA. At the same time, the DDQL performance
peaks out, and, after 40 slots, the success probability does not change significantly. In many
cases, when a drone reaches the target, but the other one is far from any feature of the map,
the second drone stops its motion. This phenomenon occurs because the agent Q-values for
that scenario are not precise, and all actions have a similar value. This situation rarely happens
before the first UAV reaches a target as the system change state more frequently, making both
the drones move.

Conversely, the LA approach does not suffer from the described problem, and the benchmark
success rate keeps increasing with time. In the sparse scenario (Fig. 4.5b), LAeven ends up
reaching more targets than DDQL after 50 slots. To overcome the issue, we decided to maintain
a low softmax temperature even during the test phase. The bar chart shows that the softmax
system is slightly slower than the greedy DDQL at the beginning but leads to better final
performance. This randomization allows the agent to get out of loops, as sometimes a random
sub-optimal action will change the observed state. Instead, the greedy system keeps performing
the same action without getting new information about the environment. Essentially, LA does
the same, randomizing its action when it cannot establish the best one.

Fig. 4.6: Episode where an UAV is not able to reach the cluster.

Fig. 4.6 shows one of the situations described before: one UAV has reached its goal, while
the other is far from any identified targets. Hence, the Q-values of the second UAV will be very
similar to each other, making it stay motionless or follow small loops, as its state never changes.
The fact that most of the map is still unexplored increases the probability of the UAV getting
stuck, as it will have limited information. In the following, all the results are referred to the
softmax system with a temperature τ = 0.1 unless otherwise stated.

4.5.3 Transfer Learning

In the following, we investigate the adaptability of the proposed scheme and the potential of the
TL paradigm. When using TL, we carry out an additional training phase in a different scenario
than the one seen initially. To this end, we consider a first scenario, i.e., cluster (or sparse),
and compare the results achieved using strategies learned in the other domain, i.e., sparse (or
cluster). More specifically, we consider the following cases:

79



Chapter 4

• Cluster Ntrain: training on Ntrain episodes in the cluster scenario;

• Sparse Ntrain : training on Ntrain episodes in the sparse scenario;

• Cluster+TL Ntransf: pre-training on Ntrain = 3000 episodes in the cluster scenario, fol-
lowed by an additional training of Ntransf episodes in the target scenario.

• Sparse+TL Ntransf: pre-training on Ntrain = 3000 episodes in the sparse scenario, followed
by an additional training of Ntransf episodes in the target scenario.

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

DDQL (Cluster 750) DDQL (Sparse+TL375)
DDQL (Sparse+TL750) DDQL (Cluster 3000)
DDQL (Sparse 3000) LA(4)

Number of steps

P
ro

ba
bi

lit
y

(a) Cluster scenario.

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

DDQL (Cluster 3000) DDQL (Cluster+TL375)
DDQL (Cluster+TL750) DDQL (Sparse 750)
DDQL (Sparse 3000) LA(4)

Number of steps

C
D

F

(b) Sparse scenario.

Fig. 4.7: CDF of the episode duration with 2 UAVs.

In Fig. 4.7a, we analyze the Cumulative Distribution Function (CDF) of the episode duration,
defined as the time until all the drones reach targets or the episode limit (here fixed to 60

80



Distributed Reinforcement Learning for Drone Swarm Control

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

DDQL (Cluster 750)DDQL (Clustetet r 750) DDQL (Sparse+TL375)DDQL (Sparse+T+T+ LTLT 375)
DDQL (Sparse+TL750)DDQL (Sparse+T+T+ LTLT 750) DDQL (Cluster 3000)DDQL (Clustetet r 3000)
DDQL (Sparse 3000)DDQL (Sparse 3000) LA(4)LA(4)

Number of steps

Pr
ob

ab
ili

ty

(a) Cluster scenario.

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

DDQL (Sparse 750) DDQL (Sparse 3000)
DDQL (Cluster 3000) DDQL (Cluster + TL375)
DDQL (Cluster + TL750) LA(4)

Number of steps

P
ro

ba
bi

lit
y

(b) Sparse scenario.

Fig. 4.8: CDF of the episode duration with 2 UAVs.

slots) is reached. We report the results for both the DDQL systems and LA with nℓ = 4 as
a benchmark. Each point represents the probability that all drones have accomplished their
task by a pre-determined number of slots. As expected, the Cluster 3000 strategy achieves
the highest success probability with a limited number of slots. The LA approach equals its
performance only when the episode duration reaches the limit of 60 slots, i.e., in less than
30% of the cases. On the other hand, 750 training episodes in the cluster scenario are not
sufficient to outperform LA(4) but enough to outperform the model trained with sparse targets.
In particular, short retraining of such a model in the correct scenario allows the algorithm to
get a significant performance boost. The resulting system outperforms the benchmark and gets

81



Chapter 4

very close to the performance of the Cluster 3000 model, which is fully trained in the correct
scenario and with a higher number of episodes.

In Fig. 4.7b, we repeat the experiment by swapping the role of the sparse and cluster scenarios,
and changing the number of episodes during the training phase, as reflected in the legend of
Fig. 4.7b. As in the previous case, LA(4) meets the performance of DDQL only for episodes of
60 slots, i.e., in less than 15% of the cases. Besides, TL is very effective, as retraining of 750
episodes significantly boosts the baseline performance compared to starting a new model from
scratch. In general, the number of slots necessary to reach the targets is comparatively lower
than in the previous case. We observe this phenomenon since, as already discussed, it is easier
for UAVs to find targets in the sparse scenario.

In Fig. 4.8, we show the results for a scenario with 3 UAVs. In both cases, TL is effective
but leads to lower performance in the sparse scenario than in the cluster one. Besides, the risk
of getting stuck is higher, and the algorithm needs more training to perform effectively on all
maps.

4.5.4 Scenario Extensions

(a) Episode beginning.

(b) Episode ending.

Fig. 4.9: Drone positions (left), known (center), and real map (right), with obstacles.

In what follows, we consider a modified version of the cluster scenario, with some obstacles
added to the map. We empirically set the percentage of the map occupied by obstacles to 10%,

82



Distributed Reinforcement Learning for Drone Swarm Control

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

LA (4)LA (4) Obstacle  4DObstatat clelel 4D
Obstacle  3DObstatat clelel 3D Obstacle  2DObstatat clelel 2D
Obstacle  2D softObstatat clelel 2D softftf Obstacle  3D softObstatat clelel 3D softftf
Obstacle  4D softObstatat clelel 4D softftf

Number of steps

Pr
ob

ab
ili

ty

(a) 2 UAVs.

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

LA (4)LA (4) Obstacle  2DObstatat clelel 2D
Obstacle  3DObstatat clelel 3D Obstacle  4DObstatat clelel 4D
Obstacle  2D softObstatat clelel 2D softftf Obstacle  3D softObstatat clelel 3D softftf
Obstacle  4D softObstatat clelel 4D softftf

Number of steps

Pr
ob

ab
ili

ty

(b) 3 UAVs.

Fig. 4.10: CDF of the episode duration in the obstacle scenario.

searching for a balance between increased system complexity and the realism of the scenario. In
Fig. 4.9, we report an example of the system state at the beginning and the end of an episode,
with the obstacles depicted in green. In particular, we can appreciate that the low obstacle
density allows the UAVs always find a path to the target.

In Fig. 4.10a, we analyze the performance of LA and DDQL in the case of K = 4 targets.
We train the DDQL solution for scenarios with N ∈ {2, 3, 4} UAVs, and we label the resulting
strategies as 2D, 3D, and 4D, respectively. Then, we test the system performance in the scenario
with N ∈ {2, 3} UAVs, with and without using the softmax algorithm in the testing phase.
The models trained with more UAVs can outperform those with fewer UAVs. Furthermore,

83



Chapter 4

the softmax policy during the testing phase increases the performance, especially when the
episodes are longer, as it helps the UAVs to avoid stuck situations. In the scenario with 3

UAVs (Fig. 4.10b), the performance is generally lower, meaning that the swarm needs more
training. At the same time, we observe that DDQL outperforms LA in both cases, reaching
targets significantly faster in the scenario with 3 drones.

20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

DDQL 1 cluster LA 1 cluster
DDQL 2 clusters LA 2 clusters
DDQL 3 clusters LA 3 clusters
DDQL 4 clusters LA 4 clusters

Size of the map

Su
cc

es
s 

pr
ob

ab
ili

ty

(a) 2 UAVs.

20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

DDQL 1 clusterDDQL 1 clustetet r LA 1 clusterLA 1 clustetet r
DDQL 2 clustersDDQL 2 clustetet rs LA 2 clustersLA 2 clustetet rs
DDQL 3 clustersDDQL 3 clustetet rs LA 3 clustersLA 3 clustetet rs
DDQL 4 clustersDDQL 4 clustetet rs LA 4 clustersLA 4 clustetet rs

Size  of the map

Su
cc

es
 p

ro
ba

bi
lit

y

(b) 3 UAVs.

Fig. 4.11: Success probability as a function of the map size and the number of clusters.

Now, we analyze the performance of LA and the proposed DDQL strategy in wider maps, i.e.,
settings M > F . We train our algorithm on a map with M = 24, maintaining F = 20. Instead,
we consider a higher value for M and vary the cluster number during the testing episodes.
In order to allow the agents to find the targets under such conditions, we extend the episode

84



Distributed Reinforcement Learning for Drone Swarm Control

20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

DDQL 1 cluster LA 1 cluster
DDQL 2 clusters LA 2 clusters
DDQL 3 clusters LA 3 clusters
DDQL 4 clusters LA 4 clusters

Size  of the map

Su
cc

es
 p

ro
ba

bi
lit

y

20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

DDQL 1 cluster LA 1 cluster
DDQL 2 clusters LA 2 clusters
DDQL 3 clusters LA 3 clusters
DDQL 4 clusters LA 4 clusters

Size  of the map

Pr
ob

ab
ili

ty

20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

DDQL 1 clusterDDQL 1 clustetet r LA 1 clusterLA 1 clustetet r
DDQL 2 clustersDDQL 2 clustetet rs LA 2 clustersLA 2 clustetet rs
DDQL 3 clustersDDQL 3 clustetet rs LA 3 clustersLA 3 clustetet rs
DDQL 4 clustersDDQL 4 clustetet rs LA 4 clustersLA 4 clustetet rs

Size  of the map

Su
cc

es
s 

pr
ob

ab
ili

ty

(a) 2 UAVs.

20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

DDQL 1 clusterDDQL 1 clustetet r LA 1 clusterLA 1 clustetet r
DDQL 2 clusters LA 2 clustersLA 2 clustetet rs
DDQL 3 clustersDDQL 3 clustetet rs LA 3 clustersLA 3 clustetet rs
DDQL 4 clustersDDQL 4 clustetet rs LA 4 clustersLA 4 clustetet rs

Size  of the map

Su
cc

es
s 

pr
ob

ab
ili

ty

(b) 3 UAVs.

Fig. 4.12: Success probability in the obstacle scenario.

duration, considering 100 slots per episode. At the same time, we make the scenarios with more
clusters maintain a similar proportion of surface occupied by targets despite the bigger map
size. In Figs. 4.11a and 4.11b, we evaluate the system performance as a function of the map
size and the number of clusters. In both cases, DDQL shows good adaptability, getting better
performance than LA in all cases, with higher gains in bigger maps. In Figs. 4.12a and 4.12b,
we consider the same scenarios with the addition of obstacles. In this case, DDQL will need
some retraining to reach LA’s performance on smaller maps, while the performance is similar
when the map is wider. However, we recall that DDQL also has a significant advantage in terms
of computational cost, so it is preferable if performance is similar.

85



Chapter 4

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

10 drones (ideal comms)10 droror nes (ideal comms) 10 drones (10 m ce lls)10 droror nes (10 m cells)
10 drones (20 m ce lls)10 droror nes (20 m cells) 10 drones (no comms)10 droror nes (no comms)
LA 10 dronesLA 10 droror nes

Number of steps

Fr
ac

tio
n 

of
 d

ro
ne

s 
on

 a
 ta

rg
et

(a) Performance of a swarm of 10 UAVs.

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

12 drones (ideal comms)12 droror nes (ideal comms) 12 drones (10 m ce lls)12 droror nes (10 m cells)
12 drones (20 m ce lls)12 droror nes (20 m cells) 12 drones (no comms)12 droror nes (no comms)
LA 12 dronesLA 12 droror nes

Number of steps

Fr
ac

tio
n 

of
 d

ro
ne

s 
on

 a
 ta

rg
et

(b) Performance of a swarm of 12 UAVs.

Fig. 4.13: Effect of imperfect communications in a large map.

As the next step, we analyze the system performance in the case of realistic communications.
Our architecture relies on an immediate sharing of local information, and a limited communica-
tion range can impair its performance significantly. In Fig. 4.13a shows, we consider 10 drones
moving on a map covered with obstacles. We can appreciate that the DDQL strategy enables
swarm coordination effectively with no retraining, outperforming the LA approach. The per-
formance loss is limited even when the cell side is 10 m, corresponding to a maximum range of
about 11 cells and 50% packet loss at the area boundary. These results confirm the intuitive
idea that information from neighbors inside the visible area is the most critical to reaching
the targets. Conversely, the success probability drops significantly if we double the cell side

86



Distributed Reinforcement Learning for Drone Swarm Control

and introduce errors even for packets between immediate neighbors. The performance degrades
more critically when there is no information exchange between the UAVs.

Our system is a cooperative algorithm, and the information from other agents is necessary to
optimize the map exploration. In particular, we have trained DDQL under ideal conditions, and
the communication impairments have been considered only in the test phase. Hence, the UAVs
are confused by the lack of information, and partial retraining might yield better results as the
agents can learn to deal with the more limited feedback. On the other hand, the algorithm scales
well to large swarms, slightly outperforming LAeven with no retraining in the new scenario. The
same pattern holds for the case with 12 drones, whose results are reported in Fig. 4.13b.

Fig. 4.14: Considered area in the downtown Chicago Loop neighborhood.

We perform a final test in a more complex scenario, increasing the map size and the UAV
number and considering an obstacle distribution derived from an actual city map. We define
the obstacle pattern according to a 500 m by 500 m area just east of LaSalle Street Station in
downtown Chicago, in the central Loop neighborhood. As shown in Fig. 4.14, we obtain the
height profiles of the buildings in the area and generate obstacles from the structures of over
10 stories. This height is approximately 40 m and coincides with the minimum legal hovering

87



Chapter 4

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

LA 12 dronesLA 12 droror nes 12 drones12 droror nes LA 10 dronesLA 10 droror nes
10 drones10 droror nes

Number of steps

Fr
ac

tio
n 

of
 d

ro
ne

s 
on

 a
 ta

rg
et

Fig. 4.15: Performances on the real map of Chicago.

altitude for UAVs). The area was then divided into 2500 square cells with 10 m sides, converting
the height profiles to an obstacle map in the grid. In particular, the obstacles occupy about
11% of the map, a percentage similar to those used in the training phase. At the same time,
the obstacles in the new scenario follow a different pattern than the training, concentrating
along South Wabash Avenue and South Dearborn Street. This aspect is an additional hurdle
for DDQL, which is not designed to deal with such a situation. As Fig. 4.15 shows, the DDQL
system can find targets approximately as fast as LA. The only cases in which LA outperform
the proposed system is when considering the higher percentiles of the success probability. We
expect that fast retraining should adapt DDQL to the new scenario, exploiting the regularities
in city blocks to avoid obstacles and find targets even more quickly.

The overall results showed that the proposed DDQL system is scalable to different maps,
swarm sizes, and limited communications without additional training. In addition, it can deal
with obstacles and very different target distributions with a limited amount of retraining, adapt-
ing to new conditions rapidly and efficiently. In particular, in most scenarios, DDQL allows
UAVs to reach targets faster than the benchmark LA solution. There is still some improvement
margin, particularly in scenarios where all the UAVs but one have already reached a target. This
case represents most of the residual failures of the algorithm, and its resolution is a significant
objective for the future.

4.6 Conclusions and Future Work
In this chapter, we investigated the problem of monitoring and surveilling a target area with a
swarm of UAVs. We modeled the environment with a 2D grid and cast the problem into the
theoretical framework of ND-POMDP. We conducted simulations in various settings, introduc-
ing obstacles that obstruct drone movements and maps of different sizes, considering a realistic

88



Distributed Reinforcement Learning for Drone Swarm Control

scenario based on the Chicago urban area. We showed that the proposed learning framework
leads to efficient strategies and outperforms a computationally intensive LA approach in almost
all the considered settings.

Future research directions include the introduction of dynamic targets, which make it possible
to model more types of UAV applications. Another possibility consists in defining different roles
for the network agents and training specific units to assign such roles. This framework will allow
us to examine new aspects of MARL, increasing the complexity of the strategy thus learned.

89



90



5
Joint Communications and Control in

Multi-Agent Networks

5.1 Introduction

Over the last decade, the use of Internet of Things (IoT) technology for industrial and man-
ufacturing applications has exploded [134]. The digitization and automation of industrial

processes are fundamental for the Industry 4.0 paradigm [135], while wireless communications
have fostered the implementation of mobile robots in such scenarios. Notably, we can ap-
proach the optimization of robot systems from two opposite directions. The first is the field of
networked control systems [136], which incorporates the Quality of Service (QoS) of the commu-
nication system into the controller design process, using metrics such as the latency distribution
or the packet error rate. Instead, more recent works have focused on the communication system,
measuring the freshness of the information available to the controller and optimizing scheduling
and resource allocation to maximize it [137].

Another significant development in the field has been the explosion of Deep Reinforcement
Learning (DRL) techniques, which began in 2015 with DeepMind’s seminal paper on Deep Q-
Networks (DQNs) [118]. The union of deep learning with reinforcement techniques has triggered
a revolution in robotics, as DQNs can provide far higher control performance than human-
designed techniques in various complex situations. Naturally, the DQN is optimized for its
training scenario and will effectively act as a networked control system, countering the impair-
ments caused by the wireless connection and maximizing performance accordingly. However,
the inherent complexity of these learning agents complicates the design of the communication
system. Since learning agents operate as black boxes, we cannot know which piece of informa-

The work presented in this chapter was submitted to IEEE Transactions on Mobile Computing.

91



Chapter 5

tion will be crucial and which will be almost irrelevant [138], reducing the effectiveness of Age
of Information (AoI)-based approaches.

The scientific community is increasingly interested in semantic communications, which do
not solely consider the QoS of data delivery but also their content and meaning. In his famous
introduction to the expanded version of Shannon’s seminal paper [139], Warren Weaver posited
an effectiveness problem that goes beyond the simple transmission of messages, arguing that
the ultimate goal of communication is to affect the behavior of intelligent agents. Even though
effectiveness has been discussed for decades [140], its complexity has limited the possibility of
practical solutions until recently, when the massive improvement of machine learning techniques
has allowed researchers to tackle it. However, this research field is still in its infancy, and the joint
optimization of control and communication is an open problem for non-trivial scenarios [141].

In this chapter, we design a general model for Cyber-Physical Systems (CPSs) that integrates
communication and control, allowing for their joint optimization using Multi-Agent Reinforce-
ment Learning (MARL) [142]. More specifically, we consider a dynamic environment in which
multiple agents operate and interact with each other. Some agents (robots) can perform actions
that affect the physical environment, while others (sensors) can communicate their observa-
tions to the robots through resource-constrained communication channels. This scheme maps
directly to the effectiveness problem, as the ultimate goal is to optimize the control policy of
the robots. At the same time, sensor communications are necessary for the robots to compute
an accurate picture of the system state. Our model follows Markov Decision Process (MDP)
theory, and the combination of communication and control aspects, as well as the interaction
between distributed agents, led us to name it Cyber-Physical POMDP (CP-POMDP). Hence,
our proposal expands the Networked Distributed Partially Observable Markov Decision Process
(ND-POMDP) framework, which includes agent communications but does not optimize them
directly.

The proposed system captures the direct and indirect aspects of communication, as sharing
information can affect the physical environment and the observations available to each agent.
More importantly, our model defines control and communication decisions expressly and enables
the joint training of agents that perform one or both actions, i.e., interact with the physical
environment and communicate local information to other nodes. To the best of our knowledge,
this is the first model for MARL that considers the dual nature of the problem, optimizing
communications and control together. Our aim is to effectively bridge the gap between the
communication and the control side, joining the two in a single comprehensive MARL model,
both expressive and lightweight.

The benefits of solving the effectiveness problem are more significant if communications are
constrained, i.e., if the amount of data that needs to be transmitted is non-negligible with re-
spect to the channel capacity. Therefore, as test cases, we consider two underwater scenarios
with acoustic communications [143] to showcase our CP-POMDP system. In both scenarios,
an Autonomous Underwater Vehicle (AUV) needs to achieve a specific mission and reach a
surface vessel, supported by a group of static buoys that can expand the AUV field of view by
communicating their observations. As the acoustic medium can only support very low bitrates,

92



Joint Communications and Control in Multi-Agent Networks

the communications from the buoys are limited and possibly affected by packet collisions. The
mission in the first scenario involves avoiding obstacles, which could be underwater installa-
tions, natural rock formations, or sea mines. In the second case, we consider a data muling
scenario [144] in which the AUV needs to recover data from floating sensors that might move
with the current.

To evaluate our joint optimization approach, we implement a selection of heuristic schemes
for the communication system (such as scheduling the closest buoy at any time). Our framework
improves the system performance both when a centralized agent coordinates all the buoys and
when the buoys act independently. When using the centralized approach, the buoys acquire
a complete perception of the map and provide the most valuable information to the AUV
accordingly. Instead, the distributed scheme makes it necessary for each buoy to learn how to
coordinate and avoid packet losses. Naturally, the proposed model is not limited to these simple
scenarios, and we provide some examples of larger and more complex CP-POMDPs.

We organize the rest of this chapter as follows: Sec. 5.2 presents the state-of-the-art on AoI
optimization and networked control systems; Sec. 5.3 defines the proposed CP-POMDP, while
Sec. 5.4 reports the underwater scenarios where the model is tested; Sec. 5.5 describes the
learning approaches used to compute the control and communication policies; Sec. 5.6 gives the
simulations results; finally, Sec. 5.7 concludes the chapter and lists some possible avenues for
future work.

5.2 Related Work
Over the past few years, the scientific community has put significant efforts into optimizing
communication in resource-constrained scenarios such as IoT networks. Recently, it has become
clear that packet latency is not the most appropriate metric for this task, which has led to
the rise of AoI [145]. Unlike simple latency, AoI evaluates the update generation process as
the network [146] and can better represent remote monitoring applications. Since its first
introduction, there has been a plethora of works computing AoI in different scenarios and
optimizing communication systems to minimize the average or the tail of AoI distribution [96].

However, AoI does not necessarily convey enough information to optimize intelligent net-
worked control systems: the underlying process that the transmitter is monitoring might remain
stable over long periods, making frequent updates wasteful, or sharply change, making the new
information relevant even if an update has just been transmitted. In Markovian scenarios where
the process takes discrete values, we can solve this issue by using the concept of age of incorrect
information [147], which extends the notion of age to consider only updates that carry new
information. In particular, as long as the process remains in the same state, new updates are
not valuable. This concept can also be extended to continuous-valued and non-Markovian pro-
cesses, leading to the more general concept of Value of Information (VoI) [138]. This metric
is essentially an error function that depends on the difference between the estimated state at
the receiver and the actual state of the process, which can integrate complex processes and
predictive estimators [1].

93



Chapter 5

Age and packet loss are not the only issues in IoT networks: often, the most important
constraint on networked control systems is the bandwidth. Communication capacity is critical
if sensors transmit video or other feature-rich data, used in new vision-based control applications,
requiring significant bit rates. In this case, the communication system needs to choose which
information to transmit and at which compression level [148] in order to maximize the system
performance while avoiding channel congestion.

However, even VoI might not be the optimal choice for networked control systems, as errors in
the state estimation might or might not translate to lower control performance. If the controller
is highly sensitive to some error types while relatively insensitive to others, defining the error
function becomes complicated, and it is better to use control performance as a proxy. This
phenomenon leads to the Urgency of Information (UoI) metric [149], which directly considers
how much an update would affect a (known) controller. However, UoI assumes the controller
to be fixed, while the communication system is optimized to accommodate it.

The work on networked control systems and MARL goes in the opposite direction, taking a
fixed communication strategy and optimizing the controller (or controllers) to deal with it. The
most common method to deal with network impairments is to model a limited number of QoS
metrics and design a controller that can perform well within a given operating region. To ad-
dress the latency limits, network designers assume that packet delay follows a given distribution
and implement the controller to handle it [150]. It is also possible to take the difference between
the delays in the two directions into account, as in [151]. Another fundamental parameter for
designing networked control systems is packet loss, as the erasure of an update can significantly
affect the controller’s decisions [152]. We can deal with such errors by using reliable communi-
cation protocols, retransmitting lost packets, or using Forward Error Correction (FEC), trading
additional latency for communication reliability [153]. Naturally, the design of the controller is
affected both by the features of the connection itself and the protocol.

Finally, controllers need to deal with compression, often expressed as quantization [154] or
partial information, which can impair both inputs and outputs of the controller [155]. Learning
systems have recently been used to deal with random delays and errors [156], as their gener-
alization capabilities allow them to better deal with unforeseen situations and compensate for
network impairments, particularly in non-linear systems [157]. Learning systems are also a
viable option in case of compression of feedback or control signals [158]. However, to the best
of our knowledge, no unified framework for learning in networked control systems has been
proposed.

The problem of communication and control has also been approached in MARL, either for
optimizing communication or dealing with imperfect and delayed inputs. One of the first works
to do so, by Foerster et al. [117], used simple problems that required coordination between
agents, showing emergent communication capabilities. Other works use explicit or implicit
communication costs so that agents can choose whether to coordinate their actions or take
decisions independently [159]. For a more thorough review of the cooperative MARL literature,
we refer the reader to [160].

Two recent works are the most similar to our own: in the first [161], multiple agents learn

94



Joint Communications and Control in Multi-Agent Networks

the parameters of a simple scheduling algorithm while performing a reinforcement task in real-
time. In that case, however, the usage of a simple scheduling algorithm limits the solution,
constraining its maximum performance by the communication policy. Instead, our work uses
the Decentralized Partially Observable Markov Decision Process (Dec-POMDP) framework to
model communication and control entirely within the MARL problem, making it possible to
fully explore the system environment and identify new and more efficient solutions. The second
one [141] considers a scenario similar to our own, with one sensor and one robot. The task
involves learning the channel statistics and designing a shared codebook instead of learning
which information to transmit. In some ways, this work is complementary to ours as it focuses
on encoding the available data instead of estimating the most valuable piece of information in
a distributed setting.

5.3 Joint Communication and Control

We can define the problem addressed in this chapter as a special case of the more general
class of Dec-POMDPs. Hence, while Dec-POMDPs considers communication implicitly, our
model gives an explicit structure to the communication process among the system agents. We
name our model CP-POMDP, as agents can both act in a physical environment and exchange
information with other agents, coordinating to achieve a common goal.

We consider two sets of agents, named sensors (G) and robots (L). The sensors can perceive
the environment and transmit their observations, while the robots have a limited view but can
act on the environment and change its physical state. Some agents might be able to do both:
in such cases, G and L are partially overlapping. The environment has a set S of possible
states, and each agent i ∈ G ∪ L (either sensor or robot) receives observations from a set Oi,
depending on the current state. We denote the set of joint observations as O =

∏
i∈G∪LOi, and

the probability of having a certain observation in a certain state as Po : S → O.

We consider that, in a given state s, each agent can communicate, move, or take both
actions. Hence, the state space consists in the union of two subsets: Sc and Sm, which include
communication and movement states, respectively. If the environment is in a communication
state, i.e., s ∈ Sc, each sensor g ∈ G can transmit its information to other nodes, taking actions
in the space AG(s). For instance, AG(s) can be binary, with one action for transmission and
one for silence, or have multiple values for different possible messages. On the other hand, if
the environment is in a movement state, i.e., s ∈ Sm, each robot ℓ ∈ L can make an action in
the physical environment, with action space AL(s). Note that Sc ∪Sm = S, which implies that
at least one type of agent can make an action in each state; in the case Sc ∩ Sm ̸= ∅, there
might be some states that allow both types of agent to act.

If the system is in state s, the joint agent actions are described by a vector a ∈ A(s) =∏
g∈G AG(s)×

∏
ℓ∈LAL(s), which is the concatenation of the single actions ai, ∀ i ∈ G ∪ L. In

95



Chapter 5

Environment – state st

Robot Sensor
(oℓ(t), ag(t), r(t))

(oℓ(t), rℓ(t))
aℓ(t) (og(t), rg(t))

Fig. 5.1: CP-POMDP model with two agents.

particular, each agent can take action or not depending on the current state space:

AG(s) = {a∅}, if s /∈ Sc;
AL(s) = {a∅}, if s /∈ Sm;

(5.1)

where a∅ is a null action with no effects. As in a classical MDP, the system evolution only de-
pends on the current state and the robots’ actions, and we denote the state transition probability
function as Ps : S ×AL → S.

In our model, there are two different reward functions: rg (for the sensors) and rℓ (for the
robots), which both have S × A as a domain and return values in R. The robots’ reward is
independent from the sensors, which implies that, given two different action vectors a,b ∈ A,
a ̸= b, the reward does not change if the robots’ actions are identical in the two cases. Instead,
the sensor reward is indirect since it depends on both their actions and those of the robots. As
we are considering a cooperative scenario, in which the goal of the sensors is to help the robot
in its task, the two components of the reward will need to be designed with two objectives in
mind: the first is the success of the communication, i.e., avoiding collisions or packet losses as
much as possible, while the second is the relevance of the information that is transmitted, i.e.,
how much the new information can help the robots improve their performance.

We can see a simple schematic of the model in Fig. 5.1, with one sensor and one robot: while
the actions of the robot affect the environment, the sensor only affects the future observations
of the robot, contributing to the task indirectly by giving the robot the most useful information.

The full CP-POMDP model is then defined by the tuple (G,L,Sc,Sm,AG ,AL, Ps, Po, rg, rℓ).
In general, the nature of the model reflects the indirect effect of the sensors, whose actions
do not affect the physical state of the environment but only the information available to other
nodes. They can then change the transition probabilities from one state to another associated
with the same physical features but yielding richer observations to all or a subset of robots.

By appropriately defining the state space and transition probabilities, it is possible to repre-
sent several different communication scenarios:

• Scheduled transmission: there is no interference between transmissions, but the set AG

might be too small to encode all the information each sensor has about the state of the

96



Joint Communications and Control in Multi-Agent Networks

system. The sensors then have to encode part of the information, deciding which parts of
their observation are more important to transmit.

• Slotted ALOHA: the sensors need to coordinate to avoid interference. Each sensor can
decide whether to transmit in a given state or which resource block to use, and collisions
significantly reduce the reception probability. Therefore, each sensor needs to estimate
the information utility and decide to transmit, risking a packet collision, or remain silent.

• Spatial reuse: the sensors have a limited communication range, reducing the interference
with the transmissions in other regions of the scenario. However, the hidden terminal
problem may still cause packet collision, and multi-hop transmission is necessary to dis-
seminate sensors’ observations.

In the same way, we can define specific scenarios depending on the number of robots and the
effect of their actions:

• Distributed awareness: there is a single robot (i.e., L = |L| = 1, where |·| is the cardinality
operator), while all other nodes are sensors that aim to augment the robot’s awareness
and improve its performance in the task.

• Coordination: all nodes are both robots and sensors, and they must share their observa-
tions to achieve an agreement before acting.

• Consensus: this is a special case of coordination where the agents take action only if a
consensus threshold is reached (either with unanimity or some form of qualified major-
ity). A well-known example from the literature is the block-pushing task for a series of
puck robots, who are too weak to push the block individually but can act in concert to
accomplish the task [162].

5.4 Underwater System Model

In this section, we present the general system model we use as a test case for the CP-POMDP
learning framework proposed in this paper. We consider an underwater scenario modeled by
square grid of size M ×M ; each cell of the map is identified by a coordinate vector x ∈ M =

{1, ...,M} × {1, ...,M}. We assume that an AUV ℓ moves within the environment to fulfill a
mission and reach a surface vessel; hence, we have L = |L| = 1 as in the distributed awareness
scenario. The AUV has two possible tasks: the first involves the avoidance of marine debris,
while the second is a data muling mission. To achieve its goal, the AUV is supported by a set of
buoys G, which can perceive their surrounding environment and communicate their observations
to the AUV through an acoustic link. We resume the model notations in Tab. 5.1 as a reference
to the reader.

97



Chapter 5

Tab. 5.1: Model parameters.

Parameter Description Parameter Description

t Timeslot index T Timeslots per episode
L AUV set G Sensor set
L AUV number G Sensor number
M Coordinate set M Cell per map edge
M∗ Valid coordinates η Collision penalty
Z Map status O Joint observation space
Po(·) Observation function Ps(·) State transition function
Sm Mobility state space Sc Communication state space
Oℓ Observation space of ℓ AL AUV action space
Og Observation space of g AG Sensor action space
rℓ(·) Reward function of ℓ rg(·) Reward function of g
ρ Final reward σ Intermediate reward
xℓ AUV position Xℓ AUV position matrix
xv Vessel position Xv Vessel position matrix
Vℓ AUV vision matrix Vg Sensor vision matrix
Z Map status matrix Ẑ Estimated map status matrix
Tperiod Transmission period ∆ AoI matrix
H Set of transmission areas H Number of transmission areas
Zdebris Number of debris rows Znode Number of underwater nodes
Φ(·) Debris avoidance reward function Ψ(·) Data muling reward function

5.4.1 AUV Behavior

We assume that the time is discretized into slots t ∈ Z+, and we denote by xℓ(t) the AUV
position at slot t. Following a common Reinforcement Learning (RL) approach, we divide the
time into episodes, each of which lasts T ∈ N slots. The system is always in a movement state
(i.e., Sm = S), which implies that the AUV performs a new action aℓ(t) at each slot t. The
AUV needs to reach a target cell xv ∈ M, which represents the surface vessel’s location, after
avoiding the debris or visiting the underwater nodes and recovering their data, depending on its
mission profile. We assume that the vessel’s position xv is randomly generated at the beginning
of each episode, but remains static throughout the episode. The AUV and starting vessel’s
starting positions are given by

xℓ(0) = (U([1, N ]), 1) , (5.2)
xv = (U([1, N ]), N) , (5.3)

where U([1, N ]) is a discrete uniform distribution in the interval [1, N ]. Hence, the AUV starts
moving from the lower edge of the map, while the vessel is located on the opposite side.

At each slot t, the AUV receives the observation oℓ(t) ∈ Oℓ, which includes its position, as
well as the surface vessel’s. We encode such information in the M ×M binary matrices Xℓ(t)

and Xv, whose elements are defined as:

Xℓ(t,x) =

1, ifx = xℓ(t);

0, otherwise;
(5.4)

Xv(x) =

1, ifx = xv;

0, otherwise.
(5.5)

98



Joint Communications and Control in Multi-Agent Networks

In particular, Xℓ(t,x) and Xv(x) are the matrices’ elements corresponding to the coordinate
vector x.

Another matrix, denoted by Z(t) ∈ {0, 1}M×M , encodes the map status at time t, with a
value of 0 if the corresponding cell is empty, and 1 if it contains some features. In the first
mission profile, cells with a value of 1 correspond to debris, and the AUV must avoid them,
while in the second, they correspond to unvisited data nodes, which must be visited before
reaching the vessel. The AUV knows its position in the grid at any time, but it can only
observe a limited field of view, i.e., the 8 cells directly adjacent to its position. We describe the
AUV vision with the matrix Vℓ(t), whose elements are defined as:

Vℓ(t,x) =

Z(t,x), if ||x− xv||2 < 2;

0, otherwise.
(5.6)

In order to account for the AUV’s memory of past observations, the observation oℓ(t) includes
two M ×M matrices, Ẑ(t) ∈ {0, 1}M×M and ∆(t) ∈ NM×M , as well as the AUV and vessel’s
positions. The first matrix includes the latest known value for each cell, while the second matrix
represents the AoI of those values. In practice, these matrices depend not only on the AUV’s
actions, but also on the buoys’ transmissions. We will define the way they are updated in the
following.

After receiving the observation oℓ(t) = (Xℓ(t), Xv(t), Ẑ(t), ∆(t), Vℓ(t)] ∈ Oℓ, the AUV
has to decide which actions to take. The AUV action space is given by 4 possible movements:
AL = {(1, 0), (0, 1), (−1, 0), (−1, 0)}. Hence, if the AUV performs action aℓ(t) ∈ AL at slot t,
its position at the next slot is given by

xℓ(t+ 1) =

xℓ(t) + aℓ(t) if xℓ(t) + aℓ(t) ∈M∗;

xℓ(t) otherwise;
(5.7)

whereM∗ ⊆M is the subset of valid positions. This condition implies that the AUV can never
exit the map’s boundaries or directly over an obstacle. At the end of slot t, the AUV receives a
reward rℓ(t) linked to the achievement of its mission. We will define the reward for the AUV’s
tasks (i.e., debris avoidance and data muling) in the following.

5.4.2 Buoy Behavior

The goal of the buoys is to support the AUV by selecting and transmitting the pieces of in-
formation that are most relevant for its mission. Therefore, the buoys’ performance does not
directly depend on their actions, but rather on how they affect the AUV’s movements. Since
the acoustic channel has a constrained bandwidth, we assume that the buoys are not allowed
to operate at each slot but only periodically. Practically, two consecutive buoy actions are
separated by Tperiod ∈ N slots and the system is in a communication state s ∈ Sc only when
mod(t, Tperiod) = 0, where mod(·) is the integer modulo function.

99



Chapter 5

We assume that each buoy g can sense a specific portion Vg ⊆ M of the map, representing
its field of view. We encode Vg in the M ×M binary matrix defined as

Vg(t,x) =

Z(t,x), if x ∈ Vg;
0, otherwise.

(5.8)

When the system is in a communication state, i.e., s(t) ∈ Sc, each buoy g ∈ G receives an
observation og(t) = [Xℓ(t), Xv, Ẑ(t), ∆(t), Vℓ(t), Vg(t)] ∈ Og. We highlight that og(t) is a
super-set of the AUV’s observations: each buoy knows everything about the AUV, as well as
the status of the map within its own field of vision. In particular, each buoy detects all the
packets exchanged on the channel and, therefore, can compute Ẑ(t) using the AUV’s requests
for information.

We assume the acoustic system to have an extremely low bitrate, limiting the amount of
information that each buoy g can transmit to a transmission area Hi. In general, each buoy
can choose to transmit one of several sub-areas within its field of vision, and we denote the
set of all possible transmission areas as H. We assume that the acoustic channel is error-free,
but collisions are destructive, i.e., if multiple buoys choose to transmit, all the packets are lost
because of interference. Therefore, after the new observations have been received, the buoys
need to coordinate and decide which pieces of information Hi ∈ H to communicate to the AUV.
We now encode the information contained in Hi with the M ×M matrix Hi defined as

Hi(x) =

1, if x ∈ Hi;
0, otherwise.

(5.9)

Hence, we can design how the AUV’s estimate of the map and the transmissions’ age of infor-
mation are updated. If the packet on area Hi is successfully delivered, the matrices Ẑ(t) and
∆(t) are updated as:

Ẑ(t) = (J−Hi) ◦ Ẑ(t− 1) +Hi ◦ Z(t), (5.10)

∆(t) = (J−Hi) ◦
(
∆(t− 1) +

1

T

)
, (5.11)

where J is an M ×M all-ones matrix and ◦ represents the Hadamard product.
We can obtain multiple working configurations by varying the number of buoys, their fields of

view, the transmission areas’ sizes, and the medium access technique used to coordinate. In this
work, we focus on two different communication scenarios, namely, centralized and distributed
control.

• In the centralized control scenario, a single buoy g ∈ G sees the full map, i.e., Vg =M.
These settings represent the case in which the buoys can freely communicate over the
air and collectively decide which of them will send an update to the AUV through the
underwater acoustic channel. However, packets still have a limited size, so the transmitting

100



Joint Communications and Control in Multi-Agent Networks

buoy needs to decide which transmission area Hi ∈ H to send. Therefore, AG = H and
the number of possible buoy actions is H = |H|. This configuration is easy to manage,
as communication decisions are centralized and packet collisions are impossible, i.e., the
communication is always successful.

• In the distributed control scenario, there are multiple buoys, each of which is assigned to
a different transmission area Hg, so that the number G = |G| of buoys is equal to H = |H|.
In particular, each buoy can perceive only the sub-area which it is associated with, so that
we have Vg(t) = Hg ◦Z(t), ∀ g ∈ G. If the system is in a communication state, each buoy
can independently decide whether to transmit information on its map portion or remain
silent; therefore, the buoy action space is AG = {0, 1}. Since the buoys act simultaneously,
it is challenging to find a communication policy that allows the AUV to receive enough
information while minimizing the risk of packet collisions. In particular, each buoy is not
aware of the information sensed by the others, which implies that the same observation
og(t) may be associated with different system states and, consequently, different optimal
actions.

In the centralized control scenario, the reward rg(t) for each buoy g ∈ G depends solely on
the AUV’s behavior:

rg(t) =

t+Tperiod∑
τ=t

rℓ(τ), (5.12)

where Tperiod is the number of slots within two subsequent buoy actions. Instead, in the dis-
tributed control scenario, each buoys g ∈ G receives a penalty whenever its actions cause a
packet collision:

rg(t) =

−η, if ag(t) ̸= 0 ∧
∑
j∈G aj(t) ≥ 2;∑t+Tperiod

τ=t rℓ(τ), otherwise,
(5.13)

where η ∈ R+ is a constant penalty term.

5.4.3 Debris Avoidance

In the debris avoidance scenario, there are several obstacles in the marine environment, such
as rocks, sea mines, or oil installations, and the AUV must reach the vessel as fast as possible
without crashing into them. In general, the debris locations change in time (accounting for
currents and drift), and the set Z(t) in this scenario represents the map state at slot t, including
only the cells ofM that are occupied by obstacles and debris. The elements of the corresponding
matrix Z(t) are equal to 1 if the corresponding cell is occupied by debris and to 0 otherwise:

Z(t,x) =

1, if x ∈ Z(t);
0, otherwise.

(5.14)

101



Chapter 5

We assume that the AUV cannot enter the area occupied by the debris. To represent this, we
define the set of valid positions at slot t,M∗(t), as follows:

M∗(t) =M\Z(t). (5.15)

The outcomes of the AUV’s actions are then determined by (5.7), using M∗(t) as the valid
position subset.

Fig. 5.2: Debris avoidance scenario.

We consider a scenario in which the obstacles are arranged in Zdebris = 3 horizontal lines
on the map, as shown in Fig. 5.2. Each line of debris has a single opening, whose location can
change over time. We denote the coordinates of the free passages on the x-axis at slot t by x0(t),
x1(t), and x2(t), respectively. Hence, at the beginning of each slot t, the set Z(t) contains the
elements (x, y)

Z(t) =
Zdebris−1⋃
z=0

({0, . . . ,M − 1} \ {xz(t)})× Yz, (5.16)

where Yz is the set containing the coordinates of the z-th debris line on the y-axis, and we have:

Y0 = {2, 3},Y1 =

{
M

2
,
M

2
+ 1

}
,Y2 = {M − 2,M − 1}. (5.17)

At the beginning of each episode, the free passages’ coordinates are generated from a discrete
uniform distribution in {0, . . . ,M − 1}. The locations x0(t), x1(t), and x2(t) are then updated
following the same periodicity as the buoys’ communication. Hence, at the beginning of any
slot t such that mod(t, Tperiod) = 0, the new values of x0(t), x1(t), and x2(t) are picked from

102



Joint Communications and Control in Multi-Agent Networks

the distribution

P (xz(t) = x) =
(M − |x− xz(t− 1)|)2∑M
q=1(M − |q − xz(t− 1)|)2

, z ∈ {0, 1, 2}. (5.18)

In this scenario, the reward rℓ(t) needs to be tuned to encourage the AUV to avoid the debris
and finally reach the vessel. In particular, the AUV receives a reward ρ ∈ R+ when it reaches
the surface vessel, i.e., if xℓ(t+1) = xv. We also assign a smaller, positive intermediate reward
σ < ρ if the AUV makes progress its task, i.e., in one of these cases:

1. If aℓ(t) = (1, 0)∨aℓ(t) = (−1, 0), |xℓ(t)(1)+aℓ(t)
(1)−xz(t)| < |xℓ(t)(1)−xz(t)|, and xℓ(t)

(2)

+ 1 ∈ Yz, i.e., if the AUV has reached a debris line, and moves horizontally towards a free
passage;

2. If aℓ(t) = (1, 0)∨ aℓ(t) = (−1, 0), |xℓ(t)(1) + aℓ(t)
(1)−x

(1)
v | < |xℓ(t)(1)−x

(1)
v |, and xℓ(t)

(2)

= N , i.e., if the AUV is on the top row of the map, and moves horizontally towards the
vessel;

3. If aℓ(t) = (0, 1), and Z(t,xℓ(t) + aℓ(t)) = 0, i.e., if the AUV moves upward in the map,
without entering in the area occupied by the debris.

We can then summarize these conditions in the Boolean function Φ(xℓ(t), xv, aℓ(t), Z(t)), which
returns a true value if one of the above conditions is verified. Hence, the AUV reward rℓ(t) at
slot t only depends on its position xℓ(t), the surface vessel’s position xv, the robot action aℓ(t),
and the debris positions Z(t):

rℓ(t) =


ρ, if xℓ(t) + aℓ(t) = xv(t);

σ, if Φ(xℓ(t),xv(t),aℓ(t),Z(t));
0, otherwise.

(5.19)

Once the robot reaches the vessel, the episode is over; the long-term reward function is an
incentive for the AUV to accomplish its task as fast as possible. At the same time, we exploit
the intermediate reward σ to simplify the learning problem and reduce the reward’s delay, which
can often be problematic for the convergence of RL algorithms.

5.4.4 Data Muling

In the data muling scenario, the is a set of that the AUV has to visit Znode = 2 underwater
floating nodes to recover their data through high-throughput short-range optical communica-
tions [163] before reaching the vessel to upload the data. Each node occupies a single cell and can
change its location in time: we denote by Z(t) the set of cells occupied by the unvisited nodes
at slot t. The elements of the corresponding matrix Z(t) are equal to 1 if the corresponding cell

103



Chapter 5

is occupied by an unvisited node and to 0 otherwise:

Z(t,x) =

1, if x ∈ Z(t);
0, otherwise.

(5.20)

We observe that the AUV is free to move within the environment, and the only illegal actions
are those that would bring it outside of the map borders, so that the set M∗ = M in (5.7).
We now denote the coordinates of the z-th node at slot t by xz(t) ∈ Z(t). The total number
of nodes is maximum (i.e., |Z(t)| = Znode) at the beginning of each episode, and decreases as
the AUV visits each node. To visit a node, the AUV needs to move to its position. Hence, if
xℓ(t) = xz(t) at any slot t, the z-th node is removed from Z(t+ 1).

Fig. 5.3: Data muling scenario.

At the beginning of each episode, the nodes’ coordinates are generated from a discrete uniform
distribution in M. Then, xz(t) ∈ Z(t) change values following the same periodicity as the
buoys’ communications. Whenever mod(t, Tperiod) = 0, the node’s coordinates are updated
independently and according with the same distribution:

P (xz(t+ 1)(i) = x) =
(M − |x− xz(t)(i)|)2∑

q∈{0,...,M−1}(M − |q − x|)2
∀i ∈ {1, 2}, z ∈ {1, 2}. (5.21)

A picture of the considered scenario, representing the floating nodes, the AUV, and the surface
vessel, is given in Fig. 5.3.

In this scenario, the reward rℓ(t) is designed to make the AUV visit all nodes, then reach the
vessel in the shortest possible time. The AUV receives a reward ρ ∈ R+ if it has already visited
all the nodes and reaches the surface vessel, i.e., if |Z(t)| = 0∧xℓ(t+1) = xv. Additionally, we

104



Joint Communications and Control in Multi-Agent Networks

assign a positive reward σ < ρ if the AUV advances in performing its task, i.e., in one of the
following cases:

1. If |Z(t)| = 2, |xℓ(t)+aℓ(t)−xz(t)| < |xℓ(t)−xz(t)|, and |xℓ(t)−x3−z(t)|+|x3−z(t)−xv| <
|xℓ(t) − x3−z(t)| + |x3−z(t) − xv|, with z ∈ {1, 2}, i.e., if both nodes are still unvisited,
the AUV is moving towards xz(t), and it is more convenient to visit the node in xz(t) to
end the mission in the shortest time;

2. If |Z(t)| = 1 and |xℓ(t) + aℓ(t)− x1(t)| < |xℓ(t)− x1(t)|, i.e., if only a single node is still
unvisited and the AUV is moving towards its position;

3. If |Z(t)| = 0 and |xℓ(t) + aℓ(t)− xv| < |xℓ(t)− xv|, i.e., if all the nodes have been visited
and the AUV is moving towards the vessel.

We can then summarize these conditions in the Boolean function Ψ(xℓ(t),xv,aℓ(t),Z(t)), which
returns a true value if one of the above conditions is verified. Hence, the AUV reward rℓ(t) at
slot t depends only on its position xℓ(t), the surface vessel’s position xv, the action aℓ(t), and
the set Z(t) containing the locations of the unvisited nodes :

rℓ(t) =


ρ, if |Z(t)| = 0 ∧ xℓ(t) + aℓ(t) = xv;

σ, if Ψ(xℓ(t),xv,aℓ(t),Z(t));

0, otherwise.

(5.22)

As in the previous mission, we use the intermediate reward σ to facilitate the learning process
of the AUV. Finally, we highlight that a more accurate estimate of Z(t) allows the AUV to
complete its task in a shorter times in both the considered scenarios.

5.5 Learning Strategy

To determine the best policy for managing our system, we exploit a DRL architecture that
combines RL with Neural Networks (NNs). The RL paradigm is a mathematical framework
that enables the resolution of decision-making problems. Instead, NNs are a set of computational
tools that make it possible to approximate complex functions from experience samples. We give
more details about RL and its combination with NNs in Appendix B.

5.5.1 Neural Network Architecture

In this work, we need to learn multiple quality functions Q(·), one for each agent in L ∪ G. As
explained in the Appendix, the function Q(·) returns the best action a∗ ∈ A for each state
observation o ∈ O, leading the agent to the optimal policy. In the centralized control scenario,
we define two quality functions, named Qℓ(·) and Qg(·), which determine the movements of
the AUV and the buoys’ communication strategy, respectively. On the other hand, in the

105



Chapter 5

Tab. 5.2: Agent architecture.

Layer
Agent Input (convolutional) Hidden (convolutional) Hidden (convolutional) Output (linear)

Input channel 5 Input channel 64 Input channel 64
Output channel 64 Output channel 64 Output channel 64 Input neurons 64
Kernel (3,3) Kernel (3,3) Kernel (3,3)AUV
Stride 1 Stride (4,4) Stride (4,4) Output neurons 4

Input channel 6 Input channel 64 Input channel 64
Output channel 64 Output channel 64 Output channel 64 Input neurons 64
Kernel (3,3) Kernel (3,3) Kernel (3,3)Buoy
Stride 1 Stride (4,4) Stride (4,4) Output neurons |AG |

distributed control scenario, we have a total of 1+ |G| quality functions, i.e., one managing the
AUV and an additional function for each of the buoys.

In the case of the AUV, the function Q(·) is approximated by a Convolutional Neural Network
(CNN) with 4 output neurons, i.e., one for each possible AUV action. The CNN input is a
convolutional layer that handles the AUV observation as an M ×M image with 5 channels.
The input channels are given by the matrices Xℓ(t), Xv, Ẑ(t), ∆(t), and Vℓ(t) contained in
the AUV’s observation. Therefore, at each slot t, the neural network takes oℓ(t) as its input
information and returns the expected value of each action a ∈ AL as output.

The function Q(·) of each buoy g ∈ G is instead approximated by a CNN using a convolutional
layer with 6 channels as input, and a linear layer with |AG | neurons as output. In this case
each buoy observation is treated as an M ×M image with 5 channels, given by the matrices
Xℓ(t), Xv, Ẑ(t), ∆(t), Vℓ(t), and Vg(t) containing the buoy’s observation. At each slot t, the
described system takes og(t) as input information and returns the quality of each action a ∈ AG

as output.
The network architectures for the AUV and buoys have four convolutional layers followed

by two fully connected linear layers. We consider the Rectifier Linear Unit (ReLU) activation
function for the hidden layers because of its efficiency in representing non-linear dynamics, while
we implement a linear function in the output layer. The settings of the learning architectures
are summarized in Tab. 5.2.

5.5.2 Training Framework

The training of the learning agents can follow two different approaches, namely Networked
Control (NC) and Joint Communication and Control (JCC). In the NC scenario, the buoys
follow a pre-determined communication strategy. In other words, the AUV considers the buoys
as part of the learning environment and adapts its policy to the buoys’ behavior. Hence, the
learning environment is more stable, but the final performance is constrained by the buoys’
initial policy. Hence, in the NC scenario, only the AUV’s NN is trained for a total number of
Ntrain episodes, where each episode lasts t slots.

In the JCC scenario, both the AUV and the buoys are controlled by learning agents, and the
system training follows an iterative approach. This is a common practice in MARL, as multiple

106



Joint Communications and Control in Multi-Agent Networks

agents exploring the environment and improving their policies at the same time can prevent
convergence: by only training one kind of agent at a time, we ensure that the environment that
agent sees is Markovian. The training consists in Nround rounds, each of which includes two
phases: the first lasts N ℓ

train episodes and is dedicated to the AUV training, while the second
lasts Ng

train episodes, and is dedicated to the buoy training. Once this iterative training phase
is over, we train the AUV architecture again for N ℓ

train episodes. Hence, the total number of
AUV training episodes is N ℓ

train × (Nround + 1), while the buoys’ is Ng
train ×Nround.

During the first phase of the first round, the buoys are associated with a pre-determined
strategy, as occurs in the NC scenario. Hence, the AUV is trained for N ℓ

train episodes, learning
how to perform its task optimally while adapting to the buoy policy. After this, the weights
of the AUV’s NN are fixed, while those of the buoys’ NNs are initialized from scratch. Then,
we train the buoys for Ng

train episodes, learning how to adapt the communication process to
the AUV’s actions. In the subsequent round, the weights of the buoys’ NNs are fixed while the
AUV’s NN are reinitialized and trained once again. The same pattern is repeated for each round,
allowing the learning agents to adapt to each other progressively . The described framework
makes it possible to fully explore the learning environment, while ensuring sufficient robustness
in the training phase, and is commonly used in MARL problems.

5.6 Simulation Settings and Results
In this section, we implement our CP-POMDP model in two underwater scenarios described in
Sec. 5.4. First, we describe the benchmark strategies against which our learning framework is
tested and present the simulation settings. Finally, we analyze the system performance in the
two test scenarios, highlighting the benefits and drawbacks of the proposed JCC approach.

5.6.1 Benchmark Strategies

As benchmarks for our model, we consider three learning systems trained according to the NC
approach presented in Sec. 5.5.2, implementing different algorithms to manage the communi-
cation process of the buoys. All these strategies are based on the centralized control scenario
described in Sec. 5.4, in which we have only one buoy viewing the entire map so that there is
no risk of packet collisions. In practice, at each communication slot, the benchmarks manage
the buoy’s transmissions as follows:

• Random Communication (RC): the buoy transmits a random sub-area Hi ∈ H;

• Closest Communication (CC): the buoy transmits the sub-area Hi closest to the AUV;

• Oracle Communication (OC): the buoy transmits the entire map at each slot, ensuring
that Ẑ(t) = Z(t), ∀ t.

We highlight that the OC strategy represents an upper bound for the performance our system,
as it models a case in which there is no communication bottleneck and the AUV is always aware
of the real map state.

107



Chapter 5

Tab. 5.3: Simulation settings.

Parameter Value Description Parameter Value Description

L 1 Number of AUVs G {1, 9} Number of buoys
M ×M 12 × 12 Map size T 100 Steps per episode
Tperiod 5 Inter-transmission period H 9 Number of transmission areas
Zdebris 3 Number of debris rows Znode 2 Number of underwater nodes
ρ 1.0 Final reward σ 0.22 Intermediate reward
λ 0.95 Discount factor ζ 10−5 Maximum learning rate
Nround 2 Training rounds Ntest 104 Testing episodes
Nℓtrain 105 Training episodes for the AUV Ngtrain 5 · 105 Training episodes for the buoys

The above strategies are tested against two configurations of our JCC model. The first,
named Centralized JCC (CJCC), is based on the centralized control settings given in Sec. 5.4.2.
The other, named Distributed JCC (DJCC), makes use of multiple buoys, as in the distributed
control scenario given in Sec. 5.4.2. We observe that the DJCC approach is more challenging,
since buoys communicate independently and packet collisions are possible.

5.6.2 System Settings

We consider the reference model described in Sec. 5.4, with a map of size M = 12, divided into
H = 9 different non-overlapping portions. Hence, in the centralized control scenario (used by
the benchmarks and the CJCC system), there is a single buoy with 9 possible actions. Instead,
DJCC considers 9 different buoys, each of which can perceive and transmit a specific portion of
the map. We set the period between two consecutive communication states to Tperiod = 5 slots
and the maximum episode duration to T = 100 slots. If the AUV spends more than 100 slots in
the map without finishing the task, it fails to achieve its goal and the episode ends. If the AUV
reaches the surface vessel with the data, it receives a reward ρ = 10, while the collision penalty
parameter is set to η = 1. The intermediate reward σ instead varies over time and increases as
the AUV approaches the end of its mission.

When training the benchmark strategies, we consider a unique training phase of Ntrain =

100000 episodes. On the other hand, the training of the JCC systems includes Nround = 2

rounds, where the AUV training phases last Ng
train = 100000 episodes each, and those of the

buoys Ng
train = 500000 episodes each. We observe that Ng

train is higher than N ℓ
train, since the

buoys take actions less frequently than the AUV and, consequently, need more episodes to reach
convergence. During a single training round, the agents use an ε-greedy policy to explore the
observation-action space. The policy selects the best possible action with probability 1− ε and
a random suboptimal action with probability ε, with the value of ε slowly decreasing from 0.9

to 0.1. Finally, we set the discount factor to λ = 0.95 and we exploit the Adaptive moment
estimation (Adam) algorithm to optimize the NN architectures [164], considering ζ = 0.00001

as the maximum learning rate. All the simulation parameters are reported in Tab.5.3.

108



Joint Communications and Control in Multi-Agent Networks

5.6.3 Performance Analysis

As the main performance metric of our experiments, we consider the number Nstep of steps
that the AUV takes to perform its task. Particularly, if the AUV is not able to achieve its goal
before the episode ends, we have that Nstep = T , which is the maximum episode duration.

(a) CC strategy. (b) CJCC strategy.

Fig. 5.4: Training phase (debris avoidance).

(a) Debris avoidance. (b) Data muling.

Fig. 5.5: Performance of the different strategies.

Fig. 5.4 shows the distribution of Nstep during the training of the CC (above) and CJCC
(below) strategies in the ostacle avoidance scenario. We can observe that the mean value and
quartiles of Nstep decrease almost monotonically for CC. Indeed, at the beginning of the training,
the AUV chooses actions randomly (as a consequence of the ε-greedy policy) and improves its
policy as the number of episodes increases. On the other hand, in case of CJCC, the distribution
of Nstep exhibits a regular pattern, where the average of Nstep repeatedly drops from 100 to
about half of that value. This is because the NNs are periodically reset after each round of
the iterative training, making the AUV and the buoys forget the policy learned in the past.

109



Chapter 5

At the same time, as more training rounds are completed, the average values of Nstep become
significantly lower, since the agents have progressively learned to adapt to each other.

(a) CC strategy. (b) DJCC strategy.

(c) CJCC strategy. (d) OC strategy.

Fig. 5.6: AUV location probability (debris avoidance).

To better evaluate the system performance, we carry out additional Ntest = 10000 episodes
for each strategy. The distribution of Nstep during the test phase for the two considered AUV
tasks is presented as a boxplot in Fig. 5.5. The whiskers represent the 5-th and 95-th percentiles
of the distribution, the edges the 25-th and the 75-th percentiles, and the white line in the middle
of each box is the distribution median.

As expected, OC outperforms all other strategies, with the lowest values of Nstep. In the
obstacle avoidance scenario, the AUV accomplishes its goal in less than 30 steps in half of the
testing episodes, while the distribution median decreases to 22 steps in the data muling case.
This is because the OC scheme allows the AUV to perfectly know the environment, making the
problem trivial to solve. On the opposite extreme, the RC strategy leads to the worst results,

110



Joint Communications and Control in Multi-Agent Networks

(a) CC strategy. (b) DJCC strategy.

(c) CJCC strategy. (d) OC strategy.

Fig. 5.7: Sensor transmission probability (debris avoidance).

as the buoy transmissions do not take into consideration the relevance of the information to the
AUV when choosing what to transmit. This leads to a median scenario duration of 39 steps in
the data muling scenario, while the AUV fails more than 50% of the test episodes in the obstacle
avoidance scenario, not reaching the vessel even after 100 steps. Finally, the CC scheme has
an intermediate performance, taking 32 steps to finish the median episode in the data muling
scenario and 57 in the obstacle avoidance scenario.

However, the benchmark strategies are significantly outperformed by the JCC schemes, which
can almost get the same performance as the ideal communication setup. In particular, both
DJCC and CJCC can achieve close to optimum performance in the obstacle avoidance mission,
coordinating communications so as to always deliver the most relevant information to the AUV.
On the other hand, the data muling scenario is more difficult, and even more so for a distributed
setup: as buoys often only know the position of one of the two nodes, the risk of collisions

111



Chapter 5

(a) CC strategy. (b) DJCC strategy.

(c) CJCC strategy. (d) OC strategy.

Fig. 5.8: AUV location probability.

is high, and the buoys will tend to behave more conservatively. In the latter scenario, the
median value of Nstep is 26 and 30 for CJCC and DJCC, respectively, which is still significantly
lower than the benchmarks. This is even more noticeable when looking at the worst-case
performance, represented by the upper whiskers of the boxplot: the difference between the
schemes is extremely stark in this case, showing the benefits of joint control and communications
and of having centralized knowledge of the state of the environment.

To better illustrate the agents’ behavior, Fig. 5.6 shows the distribution of the AUV position
in the obstacle avoidance scenario with different control strategies. The distribution is presented
as a colormap: the lighter the cell color, the higher the probability of the AUV to be in the
corresponding position during the testing phase. We can notice that the AUV tends to keep
close to the center of the map when using the CC scheme, never straying too far to the left or
right: on the other hand, the JCC strategies have a distribution more similar to the OC case.

112



Joint Communications and Control in Multi-Agent Networks

(a) CC strategy. (b) DJCC strategy.

(c) CJCC strategy. (d) OC strategy.

Fig. 5.9: Sensor transmission probability.

This is due to the influence of transmissions from the buoys: if the AUV can know where the
opening is, it can move directly toward it, instead of staying close to the center of the map and
then gradually exploring. While this is a relatively simple example, and constructing a better
transmission heuristic might be possible, the joint design can optimize both strategies jointly
without any additional design requirements.

We can see the same pattern in Fig. 5.7, which shows the transmission patterns for the buoys:
while the buoys closer to the center of the map transmit much more often when using the CC
scheme, buoys that actually have relevant information are much more active in the two JCC
schemes, helping the AUV reach the target faster.

Finally, Figs. 5.8–5.9 show the distribution of the AUV positions and the buoys’ transmissions
in the data muling scenario. As for the previous case, we can appreciate that the AUV takes
more complex trajectories in the case of the JCC approaches (Figs. 5.8b–5.8c) than when using

113



Chapter 5

the CC strategy (Figs.5.8a). In this case, there is still a gap between the JCC strategies and the
OC scheme, as coordination is much harder, and we can see that the trajectories for CJCC are
much more evenly distributed than for DJCC. This is explained by the transmission distribution
in Figs. 5.9b–5.9c: while centralized communications can always deliver relevant information,
the buoys in the DJCC scenario cannot coordinate effectively when the AUV is in the lower
portion of the map, i.e., at the beginning of the task, when neither node has been visited. In
order to avoid collisions, which are heavily penalized by the reward function, the buoys tend
to only transmit when the AUV is already close to the target, helping it reach the second node
when necessary. This also explains the performance gap between CJCC and DJCC, as both the
transmission and location distribution maps for DJCC are in between CC and CJCC.

5.7 Conclusions and future work
In this chapter, we developed a new framework, named CP-POMDP, to model the communica-
tion and physical actions of multiple agents operating in the same learning environment. The
proposed model is extremely flexible and can represent a plethora of practical applications with
different complexity levels. We tested the described framework in a reference scenario, in which
an AUV needs to complete a mission in an underwater environment, and a set of buoys can
transmit information about the map. Our simulations show that the joint training of the buoys
and the AUV, based on our CP-POMDP model, significantly outperforms classical networked
control strategies.

Future work on the subject might involve more complex scenarios with multiple robots and
sensors, in which information is distributed across the agents, none of which has a full view of the
environment. This step leads to novel machine learning problems, where agents have to estimate
not just the state but also the knowledge of the others, and to game theoretical issues since the
agent behavior follows game theory principles. In particular, if agents have conflicting objectives,
it may be beneficial to transmit false or misleading information, introducing questions of trust
and reciprocity to the problem.

114



Part III

Intelligent Resource Management
in Dynamic Networks

115





Introduction

When considering novel telecommunication scenarios with mutable requirements and resource
availability, it is necessary to carefully allocate the resources among the many applications run-
ning over the system. In this context, a promising solution is to exploit the Network Slicing (NS)
paradigm, which enables the virtualization of physical resources and the definition of multiple
logical networks, named slices, each designed to support a specific service class. Traditional
approaches based on static protocols are inadequate to manage NS scenarios, while advanced
learning strategies have exhibited high-quality results in this field. On the other hand, learning
algorithms in the network edge involve a high cost in terms of bandwidth and computational
resources, which may lead to overestimating the actual system performance.

In the following chapters, we complete the vision defined in this thesis, attacking the problem
of allocating network resources among different service classes. To this end, we exploit Deep
Reinforcement Learning (DRL) and design a distributed architecture where multiple learning
agents cooperate to orchestrate the different network components. We can naturally integrate
this system with the communication and control strategies previously designed, offering a com-
prehensive architecture for managing dynamic networks. By means of extensive simulations,
we prove that our approach yields better performance than static resource allocation and an
efficient empirical strategy. At the same time, the proposed system shows high adaptability to
different working conditions without additional training, ensuring high performance even in the
case of mutable network topology.

As the last step of this research, we analyze the cost of deploying learning algorithms in
telecommunication networks and define an optimization problem in which training a DRL agent
makes it possible to improve network management but also reduces the current resources. The
designed model is highly flexible and can suit any resource allocation scenario involving a
learning agent, including applications outside the telecommunication field. We test our approach
in a reference channel access scenario, where an intelligent unit distributes communication
bandwidth among multiple applications with different urgency levels. Our stimulative results
prove that cost of learning is critical for managing network resources, while a cost-free learning
model leads to degraded performance.

117



118



6
Distributed Reinforcement Learning for Slicing

Orchestration

6.1 Introduction

The 5th Generation (5G) paradigm aims at supporting different applications with very spe-
cific requirements over the same infrastructure. In this perspective, the 3rd Generation

Partnership Project (3GPP) consortium has identified three main service classes, namely en-
hanced Mobile BroadBand (eMBB), Ultra Reliable Low Latency Communication (URLLC)
and massive Machine Type Communication (mMTC) [166]. The eMBB class provides very
high throughput in both downlink and uplink, while URLLC appeals to applications with strict
latency and reliability constraints. Instead, mMTC is intended to support thousands of monitor-
ing or sensing devices that communicate with minimal energetic and computational costs [167].

Traditional telecommunication networks are often based on a rigid architecture and are not
apt to support such services [168]. To overcome this problem, the research community has intro-
duced the concepts of Software Defined Networking (SDN) and Network Function Virtualization
(NFV), which can make networks more flexible and adaptable to different requirements [169].
The NFV principle makes it possible to execute network functions over general-purpose devices
or virtual machines in the Cloud. Instead, SDN separates the control plane from the forwarding
plane, enabling dynamic and differentiated routing of data flows.

In particular, the SDN and NFV concepts are key enablers of the Network Slicing (NS)
paradigm, which makes it possible to define multiple virtual networks over the same physical
infrastructure [170, 171]. Under this vision, a slice consists of a virtual overlay network designed
to support communication services with similar characteristics [172]. Hence, a slice supporting

The work presented in this chapter was published in IEEE Transactions on Networking [165].

119



Chapter 6

eMBB applications (e.g., video streaming) should provide a very high bit rate, while a slice
supporting URLLC applications (e.g., telesurgery) should guarantee extremely high reliability
and low latency.

If defined over the same infrastructure, different slices contend for the same resources,
which can be both physical (e.g., optical links) and virtual (e.g., virtual baseband processing
units) [173]. In general, the slice broker (i.e., the body in charge of initializing and orchestrating
slices) acquire such resources from the infrastructure providers (i.e., the owners of the physical
elements of the network) [174]. Then, the broker assigns slices to the slice tenants (e.g., virtual
network operators), which offer slice services to the end-users. The amount of slice resources
are specified in the so-called Service Level Agreement (SLA) between the slice tenant and bro-
ker [175]. Therefore, a fundamental challenge in NS systems is how to distribute resources
among the different slices in an efficient way, ensuring that all the SLAs are satisfied [176].

In this chapter, we consider a scenario where two slice classes (i.e., eMBB and URLLC),
with dynamic and complementary requirements in terms of throughput, computational power,
memory capacity, and delay, are instantiated over the same network infrastructure. In our
vision, each slice is composed of multiple information flows (with static routes) that contend
for the bandwidth of the network links and the computational and memory resources of the
network nodes. Hence, the target problem is to dynamically distribute network resources among
flows, considering the characteristic of the slices they belong. The naive approach is to allocate
communication and computational resources across the slices in a static fashion. However, this
method cannot exploit the statistical multiplexing of the information flows and, consequently,
may lead to over-provisioning costs and low utilization of the available resources. On the other
hand, conventional allocation schemes are generally unsuitable for scenarios in which the type,
quantity, and location of resources can be very disparate, and the utility functions are non-
convex. These characteristics make the resource allocation in NS a very challenging problem,
generally incompatible with a centralized approach.

To address the target scenario, we propose a Machine Learning (ML) approach and attack
the problem by exploiting the Deep Reinforcement Learning (DRL) paradigm, which combines
Reinforcement Learning (RL) algorithms and Neural Networks (NNs) to find strategies for the
management of complex environments [118]. In particular, we first introduce a general network
model that represents multiple communication slices running over the same infrastructure in
different configurations. Hence, we design a learning system where multiple agents collaborate
to allocate network resources among the different slices running over the same infrastructure.
The continuous interaction between such learning units makes it possible to increase the sys-
tem’s efficiency in different scenarios independently of the network topology. Besides, we show
how Transfer Learning (TL) can improve the system performance by specializing the agent
strategy in a scalable manner. The benefits of our approach are assessed in multiple scenarios
and compared with a meta-heuristic technique and an efficient empirical algorithm to analyze
the advantages and limits of our solution. To our knowledge, our proposal is one of the first
attempts to orchestrate network core resources through a fully distributed strategy, where each
agent takes decisions with a partial vision of the overall network status. Besides, the proposed

120



Distributed Reinforcement Learning for Slicing Orchestration

approach exploits TL to adapt policies learned under specific conditions to new network scenar-
ios without the need to re-train everything from scratch. Hence, if the network topology or the
slice characteristics change, the single agents can adapt to the new scenario through a limited
number of training episodes.

The remainder of the work is organized as follows: Sec. 6.2 discusses the most relevant works
in the considered field; Sec. 6.3 describes the system model used for our analysis; Sec. 6.4
describes our learning architecture; Sec. 6.5 presents the resource allocation strategies used as a
benchmark; Sec. 6.6 describes the simulation settings and the obtained results; Finally, Sec. 6.7
concludes the chapter with a recap of the lessons learned and some ideas for future work.

6.2 Related Work
In the last years, the emergence of the NS paradigm has made it necessary to investigate
new strategies to orchestrate telecommunication systems. The authors of [177] analyze a 5G
scenario with end-to-end slices contending for virtual resources offered by data centers and
propose a fully distributed algorithm to maximize the slice utility functions, which are assumed
to be strictly concave. In [178], Leconte et al. design a NS model where multiple traffic flows
share network bandwidth and cloud processing units; hence, they implement the Alternating
Direction Method of Multipliers [179] to determine the best resource allocation scheme. In [180],
a similar approach is applied to a system where multiple network operators share both licensed
and unlicensed spectrum. Besides, the authors of [181] focus on the problem of offloading user
tasks to edge computing facilities, designing a novel algorithm to optimize server utilization,
even when the task execution time is unknown. Finally, Fossati et al. propose a framework
to adapt multi-resource allocation according to different fairness goals [182]. In doing so, the
authors consider also the critical scenario where resources are insufficient to satisfy all the slice
demands.

Because of the high complexity of NS scenarios, many studies have also proposed ML-based
solutions. For instance, the authors of [183] exploit NNs to predict the traffic evolution in a
mobile core network, thus optimizing the routing and the wavelength assignment according to
the SDN principles. Another example can be found in [184], where generative adversarial NNs
are used to improve the estimation of SLA satisfaction. Instead, [185] proposes a system based
on convolutional NNs to associate users with network slices according to the required Quality of
Service (QoS). Finally, in [186], Saputra et al. implement a distributed architecture predicting
the amount of data that has to be cached in the network edge to address the user demands.

Among all the ML techniques used for slice orchestration, DRL is appreciated for its ability
to learn complex strategies by trial and error without the need for labeled data. In this regard,
the authors of [187] propose a centralized DRL scheme to split the wireless bandwidth among
different slices in a single-cell system, targeting the maximization of spectral efficiency and
SLA compliance. A similar framework is presented in [188], where a DRL agent optimizes the
throughput of users associated with different slices, each with its own QoS requirements. The
proposed algorithm enables achieving optimal resource allocation, provided that the number of

121



Chapter 6

resource blocks does not vary over time. We find another example in [189], where the authors
consider a more complex system with two optimization layers, each characterized by a different
set of actions. At the higher layer, a DRL agent tunes the users’ data rates, considering the
slice traffic requirements over a long time horizon; instead, at the lower layer, a second agent
allocates the cell bandwidth among the users over a short time interval.

A further step towards the development of a comprehensive DRL framework for NS is given
in [190], where the authors consider an environment with multiple slices contending for the
computational and bandwidth resources provided by a set of nodes. In this case, a centralized
DRL agent has a global view of the overall network status and, at each slot, varies the number of
resources reserved by a node to a slice. The agent receives a reward proportional to the efficiency
of the resource allocation and the SLA compliance. Finally, the work presented in [191] focuses
on the cooperation between multiple base stations that belong to the same network. The authors
consider a multi-agent scenario where each base station is associated with a DRL agent that
determines its bandwidth allocation. In particular, the agents can estimate the overall network
status by exchanging embedding vectors, which are computed via a Graph NN system.

Despite the growing interest in DRL for slice orchestration, many questions remain open
to investigation. The current literature exploits DRL to optimize only a specific portion of
the network (e.g., the wireless access), neglecting the interactions among different learning
units. Most of the above approaches assume that the DRL agent has a full vision of the target
system. Instead, in more complex (and realistic) scenarios, the network status can be observed
partially or with some delay. Finally, to the best of our knowledge, there are no scientific works
investigating the adaptability of DRL solutions to different network topologies, which is a key
aspect of slice orchestration.

The high heterogeneity of future telecommunication systems requires more flexible strategies,
enabling the coexistence of multiple services and adapting to new resource demands in a dynamic
fashion. A promising approach is to exploit hierarchical reinforcement learning, which has not
yet been fully investigated in this context. Moreover, the TL paradigm can be used to improve
the training of the learning agents [192], thus increasing the system’s adaptability to multiple
scenarios. Our work develops along these directions, with the final aim of designing a fully
scalable DRL system that can be separated into smaller units, capable of acting autonomously
and cooperating to orchestrate network resources under multiple working conditions.

6.3 System Model
In this section, we model an NS environment in which multiple information flows contend for the
same physical and virtual network resources. We adopt a fluid traffic model, where the traffic
through a link is viewed as a data stream with a given flow rate. In particular, we assume
that network slices have a hierarchical organization so that more flows at different levels can be
compounded into an aggregate slice possibly managed by a new tenant. The resulting framework
is thus very flexible and can model the interactions among many of the actors involved in a NS
scenario. For the reader’s convenience, we report the main parameters of our model in Tab. 6.1.

122



Distributed Reinforcement Learning for Slicing Orchestration

Tab. 6.1: Model parameters.

Parameter Description Parameter Description

t Discrete time τ Slot duration
L Link N Node set
Φ Information flow set Σ Slice class set
Φσ Flows of class σ Ω System utility
Φl Flows crossing link l Φn Flow crossing node n
Ωρ System utility for resource ρ Ωσ System utility for class σ
ϵiϕ, ϵ

e
ϕ Endpoints of flow ϕ rϕ Demand vector of flow ϕ

ρϕ Resource required by flow ϕ ρ̂ϕ Resource assigned to flow ϕ
Fσ(·) Flow performance function of class σ fσ(·) Resource performance function of class σ
c Computational power η Throughput
m Memory δ Delay
bl,ϕ Bit rate assigned by link l to flow ϕ σϕ Slice class of flow ϕ
cn,ϕ Computation assigned by node n to flow ϕ mn,ϕ Memory assigned by node n to flow ϕ
Bl Rate capacity of link l Ccn Computational capacity of node n
Cmn Memory capacity of node n bil,ϕ Input rate of flow ϕ in link l
bol,ϕ Output rate of flow ϕ in link l dn Routing delay due to node n
Dl,ϕ Data of flow ϕ queued in link l dql,ϕ Queuing delay of flow ϕ in link l
dτl,ϕ Transmission delay of flow ϕ in link l dpl Propagation delay due to link l
S Agent state space A Agent action space
π(·) Policy function V (·) State-value function
Lcritic(·) Critic loss function Lactor(·) Actor loss function
A(·) Advantage function H(·) Entropy function
κ Entropy tuning parameter λ Discount factor
sϕ State of flow ϕ Γρσ Controller managing resource ρ of class σ
sρn,ϕ State of resource ρ of flow ϕ in node n sl,ϕ State of flow ϕ in link l
bσl Aggregate rate demand of class σ in link l ρσn Aggregate demand of class σ in node n
b∗l,ϕ Rate demanded by flow ϕ in link l ρ∗n,ϕ Demand of flow ϕ in node n
rl,ϕ Reward of flow ϕ in link l rρn,ϕ Reward of flow ϕ in node n for resource ρ

6.3.1 Slice Model

In our system, we define a network slice as an aggregation of information flows with similar
behaviors and requirements. We denote by Σ the set including all the slice classes, and by
Φ the one including all the information flows. Given σ ∈ Σ, we indicate by Φσ the set of
all information flows of class σ. Each information flow ϕ ∈ Φ is characterized by a tuple of
parameters, namely:

• the flow endpoints Eϕ = (ϵiϕ, ϵ
e
ϕ), which correspond to the network nodes where the users’

data enter/exit the slice and usually correspond to base stations, edge routers of au-
tonomous systems, or servers;

• the resource demand vector rϕ = [ηϕ, cϕ,mϕ, δϕ], whose elements are the requirements in
terms of throughput (η), computational power (c), memory (m), and maximum delay (δ)
of the flow;

• the performance function Fϕ(·), which describes the performance of the information flow
for a given level of fulfillment of its SLA.

We assume that Eϕ, δϕ and Fϕ(·) do not change for the whole duration of the flow ϕ, while ηϕ,
cϕ and mϕ may change in time, depending on the dynamic of the data source. Note that the
throughput ηϕ is measured in bits per second [b/s], the memory mϕ in bits [b], and the delay
δϕ in seconds [s]. Finally, we assume the computational requirements are somehow related to

123



Chapter 6

the amount of data generated by the flow source. We hence define the computational power cϕ
as the speed at which data are processed in the computing facilities; particularly, we express cϕ
in bits per second [bps].

In our model, we discretize the time in slots t ∈ Z+ of τ seconds, assuming that the infor-
mation flow parameters change only slot by slot. We write rϕ = [ηϕ(t), cϕ(t), mϕ(t), δϕ(t)] and
r̂ϕ(t) = [η̂ϕ(t), ĉϕ(t), m̂ϕ(t), δ̂ϕ(t)] to indicate the resource vector demanded by and allocated
to ϕ during slot t, respectively. Note that rϕ(t) is determined by the slice class σ that ϕ belongs
to, while r̂ϕ(t) is determined by the resource allocation strategy.

As mentioned, we consider two different slice classes: eMBB (e) and URLLC (u). In par-
ticular, given Φe (i.e., the set of the eMBB flows) and Φu (i.e., the set of the URLLC flows),
we have Φ = Φe ∪ Φu and Φe ∩ Φu = ∅. All the information flows of class σ shares the same
performance function Fσ(·), i.e., ∀ϕ ∈ Φσ, Fϕ(·) = Fσ(·). In general, Fσ(·) depends on both
r and r̂, and returns a value in [0, 1], where 1 means that the SLA has been completely ful-
filled. We assume that Fσ(·) is a combination of four identical functions fσ(xρ) ∈ [0, 1], with
ρ ∈ {δ, η, c,m}, where xρ ∈ [0, 1] indicates the level at which the demand for resource ρ is
satisfied. The function fσ(xρ), hence, can take different forms, depending on the characteristics
of the considered slice, but in general it is non-decreasing and such that fσ(xρ) = 1 ∀ xρ ≥ 1.
To maximize the performance, the allocated resource should equal or exceed the flow request.

Fig. 6.1: Resource performance function.

Although our framework can accommodate virtually any utility function, we focus on two
cases that we deem suitable to represent eMBB and URLLC classes. For what concerns the
eMBB slice, we assume

Fe(r, r̂) = αδfe

(
δ

δ̂

)
+

∑
ρ∈{η,c,m}

αρfe

(
ρ̂

ρ

)
(6.1)

124



Distributed Reinforcement Learning for Slicing Orchestration

where αη, αc, αm, and αδ are non negative and add up to 1, while fe(xρ) is defined as

fe(x) =

β1x+ β2x
2 + β3x

3, x ∈ [0, 1);

1, x ≥ 1.
(6.2)

Particularly, β1, β2 and β3 are scalar parameters ensuring that fe(·) is concave and monotonic
increasing for x ∈ [0, 1]. The smooth and concave shape of fe(·) shown in Fig. 6.1 reflects
the flexibility of the eMBB services with respect to the SLA requirements. Hence, we assume
that the quality of experience of the eMBB users degrades rather graciously when the SLA is
violated, as in the case of video-streaming applications [193].

Conversely, URLLC flows have strict requirements that, if infringed, cause the sudden degra-
dation of the related services. This case includes applications like, for example, teleguided
robotic surgery, which does not tolerate any increase in communication delay. The performance
function for this class of services is the product of step functions fu(·) (shown in Fig. 6.1):

Fu(r, r̂) = fu

(
δ

δ̂

)
×

∏
ρ∈{η,c,m}

fu

(
ρ̂

ρ

)
, (6.3)

where

fu(x) =

0, x ∈ [0, 1);

1, x ≥ 1.
(6.4)

In this case, Fu(·) is either maximum when all the SLA requests are satisfied or zero when even
one resource requirement is not met.

We remark that our system can be easily extended by defining other slices with different
performance functions. In this way, the slice broker can change the composition of the slice set,
addressing the requirements of new tenants in different scenarios.

Given the function Fσ(·) for each class σ ∈ Σ, the system utility is obtained a weighted sum
of the slices performance:

Ω =
|Φe|
|Φ|

Ωe +
|Φu|
|Φ|

Ωu, (6.5)

where
Ωσ =

1

|Φσ|
∑
ϕ∈Φσ

Fσ(rϕ, r̂ϕ), σ ∈ Σ, (6.6)

and |X | represents the cardinality of X . We observe that Fσ(·) always takes values in [0, 1], so
that we also have Ω ∈ [0, 1].

For completeness, we also define the system utility for a specific type of resource ρ as

Ωρ =
|Φe|
|Φ|

Ωρe +
|Φu|
|Φ|

Ωρu, (6.7)

125



Chapter 6

where

Ωρσ =

 1
|Φσ|

∑
ϕ∈Φσ

fσ (ρ/ρ̂) , if ρ = δ;

1
|Φσ|

∑
ϕ∈Φσ

fσ (ρ̂/ρ) , otherwhise;
(6.8)

and σ ∈ Σ.

6.3.2 Network Model

Our model is based on two different network elements, namely node and link, as detailed below.

• We distinguish two types of nodes: access nodes are located at the network edge and
connect the users with the rest of the network; core nodes are located in the core of the
network and forward the aggregate data flows exchanged by the access nodes. We assume
that each node n is equipped with a certain amount of computational Ccn and memory
Cmn resources, which may differ between access and core nodes.

• We call link any connection l between two different nodes of the network (fronthaul or
backhaul). This element is provided with a bit rate Bl to support the communications
between the connected nodes.

From now on, we denote by N and L the set of network nodes and links, respectively.
In our model, each information flow ϕ ∈ Φ is initialized between two access nodes (ϵiϕ and ϵeϕ)

and passes through a certain number of core nodes and links. We observe that, in general, slices
can be activated and deactivated on-demand, thus varying the number of flows in the network.
Nonetheless, once established, the path of a flow ϕ is maintained for the whole duration of the
connection unless some links become unavailable or the communication endpoints change. In
this case, our model will react as the flow was interrupted, while a new one starts operating
along the new path. We assume that such events are rare and do not impact the dynamics of
the proposed scheme.

We call Φl and Φn the set of information flows that cross link l ∈ L and node n ∈ N ,
respectively. Given a link l ∈ L, each flow ϕ ∈ Φl gets assigned a portion bl,ϕ of the link bit
rate Bl. Similarly, each node n ∈ N assigns to ϕ an amount cn,ϕ and mn,ϕ of its computational
and storage resources. Consequently, any resource allocation pattern must comply with the
following feasibility conditions:∑

ϕ∈Φl

bl,ϕ ≤ Bl, ∀ l ∈ L; (6.9)

∑
ϕ∈Φn

ρn,ϕ ≤ Cρn, ∀ n ∈ N , ρ ∈ {c,m}. (6.10)

Given a certain allocation of network resources, we want to compute r̂ϕ, ∀ ϕ ∈ Φ. We denote
by Nϕ and Lϕ the ordered set of network nodes and links crossed by ϕ. In particular, the first
and the last element of Nϕ constitute the flow endpoints. We assume that the computational
and memory requests of a flow ϕ ∈ Φ can be addressed by aggregating the resources assigned

126



Distributed Reinforcement Learning for Slicing Orchestration

to ϕ by each node along its path:

ρ̂ϕ =
∑
n∈Nϕ

ρn,ϕ, ∀ ρ ∈ {c,m}. (6.11)

To determine the throughput η̂ϕ, instead, we need to consider the output flow rate bol,ϕ(t) at
time t from each link l ∈ L. Indeed, the throughput corresponds to the output rate from the
last link λ along the path:

η̂ϕ(t) = boλ,ϕ(t). (6.12)

In turn, bol,ϕ(t) depends on both the bit rate bl,ϕ(t) assigned to ϕ by l, the input flow rate
bil,ϕ(t) from the upstream link, and the amount of data of ϕ queued at node n at the end of the
previous slot, which is denoted by Dl,ϕ(t− 1). The input flow rate bil,ϕ(t) is given by

bil,ϕ(t) =

boℓ,ϕ(t), if ℓ is the upstream link of l in Lϕ;
ηϕ(t), if l is the first link in Lϕ.

(6.13)

The output flow rate bol,ϕ(t) is then given by the minimum between the allocated rate bl,ϕ(t)
and the sum of the incoming and queued traffic, i.e.,

bol,ϕ(t) = min

{
bl,ϕ(t),

Dl,ϕ(t− 1)

τ
+ bil,ϕ(t)

}
. (6.14)

The variable Dl,ϕ(t) is set to 0 for any time t before the initialization of the flow, and then it is
updated as

Dl,ϕ(t) = max
{
0, Dl,ϕ(t− 1) + τ(bil,ϕ(t)− bl,ϕ(t))

}
. (6.15)

The above equation reflects that the queue length varies proportionally to the difference between
incoming flow rate bil,ϕ and assigned link rate bl,ϕ. In particular, Dl,ϕ(t) grows when this
difference is positive and decreases when it is negative (until the queue is empty).

For what concerns the delay experienced by ϕ, we have

δ̂ϕ(t) =
∑
n∈Nϕ

dn +
∑
l∈Lϕ

dl,ϕ(t), (6.16)

where dn is a positive value representing the delay due to routing operations at node n, assumed
constant over time. Instead, dl,ϕ(t) is computed as

dl,ϕ(t) = τ ql,ϕ(t) + τ τl,ϕ(t) + τpl , (6.17)

where τ ql,ϕ, τ τl,ϕ, and τpl represent the queuing, transmission, and propagation delays of ϕ through
link l, respectively. In particular, τ ql,ϕ(t) is given by (see Sec.6.3.3)

τ ql,ϕ(t) =
2Dl,ϕ(t− 1)− τ(bol,ϕ(t)− bil,ϕ(t))

2bl,ϕ(t)
, (6.18)

127



Chapter 6

while, τ τl,ϕ(t) is

τ tl,ϕ(t) =
1

bol,ϕ(t)
. (6.19)

Finally, τpl is a positive and constant value that depends on the physical characteristic of the
communication link. We highlight that, despite considering a discrete time frame, δ̂ϕ can take
any real (non-negative) value.

We aim to determine the resource allocation that maximizes the system utility given in (6.5).
Mathematically, we want to determine r̂ϕ, bl,ϕ, cn,ϕ, mn,ϕ, bil,ϕ, bol,ϕ, τ

q
l,ϕ, and τ τl,ϕ, ∀ ϕ ∈ Φ,

n ∈ N , l ∈ L that maximize Ω, under the constraints given in (6.9)-(6.19).
The many constraints and the non-convexity of Ω make the problem very complex to solve.

Only a centralized controller would have a complete and up-to-date view of all system variables
at each slot, making it possible to determine the optimal solution. Assuming such complete
information is available, we can use conventional optimization tools or meta-heuristic techniques
to identify the best resource allocation scheme. However, the first may converge on local
maxima, while the latter may be unable to find a solution within a short time. These issues
can be alleviated by distributed control algorithms that promptly take new actions, albeit with
a partial view of the overall network. The DRL paradigm is suitable for this problem since
it can provide high-performance solutions to carry out our complex control tasks when the
environment is partially observable.

6.3.3 Queuing Time Approximation

In what follows, we derive equation (6.18), which determines the average queuing time dql,ϕ(t)
of ϕ in link l during slot t. Let τ∗ be the minimum between the slot boundary τ and the time
at which the queue empties, i.e.,

τ∗ = min

(
τ,

Dl,ϕ(t− 1)

bl,ϕ(t)− bil,ϕ(t)

)
. (6.20)

Furthermore, let Dl,ϕ(t, u) denote the residual backlog of flow ϕ in link l, u seconds after the
beginning of slot t. Therefore, for any u ∈ [0, τ∗] we have Dl,ϕ(t, u) = Dl,ϕ(t)−u(bl,ϕ(t)−bil,ϕ(t)),
while Dl,ϕ(t, u) = 0 for u ∈ (τ∗, τ]. Now, the queuing delay experienced by the incoming flow
at time u ∈ [0, τ] is zero if the queue is empty, and otherwise equal to δ(u, t) = Dl,ϕ(u,t)

bl,ϕ(t)
. The

average delay over slot t is hence

dql,ϕ(t) =
1

τ

∫ T

0

δ(u, t)du =
1

τ

∫ τ∗

0

Dl,ϕ(u, t)
bl,ϕ(t)

du (6.21)

=
2τ∗Dl,ϕ(t)− τ∗2(bl,ϕ(t)− bil,ϕ(t))

2τbl,ϕ(t)
. (6.22)

128



Distributed Reinforcement Learning for Slicing Orchestration

For τ∗ = τ, we obtain

dql,ϕ(t) =
2Dl,ϕ(t)− τ(bl,ϕ(t)− bil,ϕ(t))

2bl,ϕ(t)
. (6.23)

For τ∗ < τ, instead, we have τ∗(bl,ϕ(t)− bil,ϕ(t)) = Dl,ϕ(t), so that (6.22) yields

dql,ϕ(t) =
τ∗Dl,ϕ(t)

2τbl,ϕ(t)
<
Dl,ϕ(t)

2bl,ϕ(t)
. (6.24)

Recalling that bol,ϕ(t) used in (6.18) is defined as the minimum between bl,ϕ(t), and 2Dl,ϕ(t−1)
τ

+

bil,ϕ(t), we can see that (6.18) is indeed a compact expression for dql,ϕ(t), provided that it is
approximated by its upper bound when τ∗ < τ.

6.4 Learning Strategy

In order to efficiently orchestrate communication resources in a NS scenario, we develop a dis-
tributed architecture based on multiple learning units, named local controllers, that collaborate
to maximize the overall system utility given by (6.5). Our approach is based on RL, a powerful
mathematical framework to address decision-making problems in complex environments.

6.4.1 Learning Architecture

In this work, we adopt an actor-critic approach [194], which learns the policy π by two different
units. The first is named actor and approximates the policy function πθ(·), parameterized by
θ; the latter is named critic and approximates the state-value function Vγ(·), parameterized by
γ. We give the complete definitions of policy and state-value functions, as the other aspects of
the RL theory, in Appendix B. Hence, during any slot t, the actor returns the action a(t) ∈ A
that the policy πθ takes in the current state s(t) ∈ S, where A and S are the agent action and
state space, respectively. Instead, the critic computes the expected discounted reward obtained
following the policy πθ from state s(t) ∈ S.

To carry out the system training, we exploit the Advance Actor Critic (A2C) algorithm,
which has shown to provide stable DRL solutions in very complex scenarios [195]. The critic is
trained to minimize the function Lcritic(·), defines as

Lcritic(s(t), a(t)) = (A(s(t), a(t)))
2
= (r(t) + λVγ(s(t+ 1))− Vγ(s(t)))2 , (6.25)

where r(t) is the reward gained by the agent at slot t. Particularly, the function A : S ×A → R
is called advantage and represents the benefit obtained by choosing action a(t) rather than the
one recommended by the current policy π. Conversely, the actor aims to minimize the function

Lactor(s(t), a(t)) = −∇θlogπθ(s(t), a(t))A(s(t), a(t))2 − κH(πθ), (6.26)

where ∇θ is the gradient with respect to θ, H(πθ) is the entropy of πθ, and κ is a scalar value.

129



Chapter 6

As suggested in [195], the actor loss function depends linearly on the policy entropy H(πθ). We
can promote the exploration of the action space by increasing κ since, in such a case, the actor
obtains benefits from taking random actions. Instead, as κ → 0, the actor will choose actions
that are expected to bring the highest reward according to the current experience.

We highlight that A2C enables us to consider continuous action spaces: this is not possible
with traditional RL algorithms (e.g., Q-Learning) that, instead, can only take actions from
discrete sets. Besides, the A2C algorithm supports on-policy training and, consequently, allows
the agents to continuously refine the target policy while using its outputs in a real scenario.
Hence, the slice broker can progressively and dynamically adapt the policy to new scenarios
without needing to train a new system from scratch every time the working conditions (e.g.,
target network topology or slice requirements) change.

URLLC
agents

eMBB
agents

Node
controllers Link

controllers

Training manager

Network

eM
B

B
flo

w
eM

B
B

flo
w

U
R

LL
C

flo
weM

B
B

flo
w

U
R

LL
C

flo
w

Γeb
Γec

Γem

Γub
Γuc

Γum
ΓucΓc ΓebΓ
ΓumΓ

ΓebΓ ΓubΓΓecΓcΓe
mΓ

4) Distributed
execution

2) Agent
training

3) Controller
deployment

1) Data
collection

Fig. 6.2: Learning Architecture.

Our learning architecture (shown in Fig. 6.2) provides a different controller for each informa-
tion flow and network element. From an operational point of view, the total number of local
controllers depends on the network topology and the cardinality of Φ. Practically, the local
controllers are all replicas of 3 × |Σ| learning agents. During the training phase, we design a
tuples of agents (Γbσ, Γcσ, Γmσ ) for each different class σ ∈ Σ: the agent Γbσ is trained to orches-
trate the bit rate of each information flow ϕ ∈ Φσ in each link l ∈ L; instead, Γcσ and Γmσ are
trained to orchestrate the computation and memory resources of each information flow ϕ ∈ Φσ

in each node n ∈ N .
As shown in Fig. 6.2, the training phase is performed by a central entity, named training

manager, which collects the system information and updates the learning agents accordingly.
Then, the system deploys copies of Γbσ, Γcσ, and Γmσ in each network element crossed by any
flow ϕ ∈ Φσ. Alternatively, each network element may develop its own version of the learning

130



Distributed Reinforcement Learning for Slicing Orchestration

agents, using only local information and avoiding interactions with the central manager; the
drawback is that the training phase lacks generality. In Sec. 6.6.3, we will show how to use the
TL paradigm for combining the two approaches.

Tab. 6.2: Agent architectures.

Γbσ Γcσ Γmσ

Parameter Actor Critic Actor Critic Actor Critic

Input size 11 11 7 7 7 7
Activation ReLU ReLU ReLU ReLU ReLU ReLU
Hidden size 12 12 8 8 8 8
Activation ReLU ReLU ReLU ReLU ReLU ReLU
Hidden size 6 6 4 4 4 4
Activation Linear Linear Linear Linear Linear Linear
Output size 1 1 1 1 1 1

According to the A2C algorithm, each agent is composed of two units, i.e., the actor and
the critic, which are implemented by means of NNs. Particularly, we consider an architecture
with two hidden layers and the Rectifier Linear Unit (ReLU) as activation function [196]. The
output of the actor is the amount ρ∗ of resources that the local controller demands, while that
of the critic is the expected future reward. The size of the NN input varies according to the
target resources as we explain in the next subsection. We resume the settings of the learning
architectures in Tab. 6.2.

6.4.2 Observations and Actions

In our system, each local controller has full knowledge of the element where it operates, while
it has a limited view of the network, which implies that the system state is only partially
observable [197]. Let us consider a local controller managing the rate resources of a flow ϕ in
a link l. At the beginning of each slot, the controller is provided with two vectors representing
the status of the information flow and the network element it is associated with.

The first vector gives the state of ϕ at the beginning of slot t:

sϕ(t) = [rϕ(t), r̂ϕ(t− 1)], (6.27)

where rϕ(t) and r̂ϕ(t − 1), defined in Sec. 6.3, are the resources requested by and granted to
ϕ during slot t and t − 1, respectively. We observe that rϕ(t) and r̂ϕ(t − 1) can be computed
only knowing the aggregate amount of network resources assigned to ϕ by the network elements
across its routing path. Therefore, sϕ(t) is shared among all the controllers assigned to ϕ at
the beginning of each slot t. However, the size of sϕ(t) is negligible with respect to the rate
requirements of the slices and, therefore, can be transmitted within the user data plane of ϕ
without degrading the performance of our system.

The second vector provides the state of the rate resources of ϕ in l at the beginning of slot t:

sl,ϕ(t) = [Bl, dl,ϕ(t− 1), Dl,ϕ(t− 1), b∗l,ϕ(t− 1),

bl,ϕ(t− 1), bel (t− 1), bul (t− 1)],
(6.28)

131



Chapter 6

where bσl (t− 1) is the aggregate rate demanded at the link l by all flows of class σ during slot
t− 1, while the other parameters were defined in Sec. 6.3. We highlight that this information is
locally available to the link controller and, consequently, sl,ϕ(t) does not need to be transmitted
across the network. Hence, at the beginning of slot t, the controller takes sϕ(t) and sl,ϕ(t) as
input and returns b∗l,ϕ(t), which is the bitrate requested by ϕ at link l during slot t.

When considering a controller associated to a node n and a flow ϕ we use the same approach
and, depending on the resource ρ ∈ {c,m} we want to allocate, we substitute (6.28) with scn,ϕ(t)
or smn,ϕ(t), which are the states of the computation and memory resources assigned to ϕ by node
n. In particular, scn,ϕ(t) or smn,ϕ(t) are defined as

sρn,ϕ(t) = [Cρn, ρ
∗
n,ϕ(t− 1), ρn,ϕ(t− 1),

ρen(t− 1), ρun(t− 1)],
(6.29)

where ρσn(t − 1) is the aggregate amount of resource ρ demanded to node n by all the flows of
class σ during slot t − 1. As before, the node controller takes sϕ(t) and sρn,ϕ(t) as input and
returns ρ∗n,ϕ(t), with ρ ∈ {c,m}, which is the amount of computational (or memory) capacity
demanded by ϕ to node n during slot t.

6.4.3 Reward Function

In accordance with the RL paradigm, we need to define a reward function r(·) that represents the
benefit generated by each possible state-action pair of the policy. In particular, to maximize the
overall utility, each local controller should demand enough resources to address the requirements
of the target flow ϕ without subtracting too many resources from the other flows. In our system,
given a controller associated with a link l ∈ L and a flow ϕ ∈ Φl, the reward at time t is given
by

rl,ϕ(t) =γ0

(
fσϕ

(
ηϕ(t)

η̂ϕ(t)

)
+ fσϕ

(
δ̂ϕ(t)

δϕ(t)

))
+

γ1
|Φl|

∑
ψ∈Φl

(
fσψ

(
ηψ(t)

η̂ψ(t)

)
+ fσψ

(
δ̂ψ(t)

δψ(t)

))
,

(6.30)

where σϕ is the slice class that ϕ belongs to, while γ0 and γ1 are positive scalar values. In
particular, γ0 weights the throughput and delay performance of flow ϕ, while γ1 measures the
average throughput and delay performance of all the other flows crossing link l.

Similarly, a controller assigned to a node n and a flow ϕ is rewarded according to

rρn,ϕ(t) = γ0fσϕ

(
ρϕ(t)

ρ̂ϕ(t)

)
+

γ1
|Φn|

∑
ψ∈Φn

fσψ

(
ρψ(t)

ρ̂ψ(t)

)
, (6.31)

where ρ ∈ {c,m}, while the scalar values γ0 and γ1 have the same role as before.
Therefore, the reward function consists of the weighted sum of two terms: the first reflects

the performance of the flow targeted by the controller, while the second represents the aggregate

132



Distributed Reinforcement Learning for Slicing Orchestration

performance of all the flows crossing the considered network element. With such a mixed reward
function, the controller will attempt to improve the quality of the targeted flow without unduly
penalizing other flows.

6.5 Benchmark Strategies

In this section, we discuss some DRL approaches that can be considered to benchmark the
proposed solution, starting from some of the works described in Sec. 6.2. Then, we define two
baseline strategies: the first is an algorithm that tries to distribute communication and process-
ing resources in each network location fairly; the latter is based on meta-heuristic optimization
and performs a static allocation of network resources.

We highlight that the chosen benchmarks use information that is not supposed to be available
to the DRL approach, thus gaining a competitive advantage for problem resolution. This choice
permits a simple interpretation of the results, highlighting the pros and cons of our DRL system
without being trivial.

6.5.1 Other Learning-Based Approaches

Out of the several ML algorithms described in Sec. 6.2, the approaches proposed in [187, 188,
189, 190, 191] are those more aligned with the problem addressed in this paper. Although fun-
damental differences in the system model prevent a direct comparison between such approaches
and our solution, some high-level considerations are still possible.

We first observe that the authors of [187, 188, 189] focus on the basic scenario of coordinat-
ing the users associated with a single cell, focusing on one specific type of resource (namely,
channel bandwidth). These solutions are not well suited to handle the allocation of multiple
resources, which affect different performance indices in an intertwined manner. In our system,
such methods will fail, not being designed to deal with the reward variability determined by
the interaction among multiple agents deployed in different network locations.

The authors of [190] design a multi-node topology but assume that a single centralized agent
can operate in the network, considering one node at a time. This approach does not suit the
high dynamism of our scenario, which requires reallocating bandwidth and computational power
in multiple network nodes and links simultaneously. In particular, if the user demands change
too fast in time, the resources assigned to the different slices may be insufficient or unnecessary.
On the other hand, our system can well suit the scenario presented in [190], allowing a faster
allocation at the cost of a sub-optimal performance since it is not possible for the learning
agents to observe the entire network status.

The framework proposed in [191] is the only one involving a multi-agent system to orchestrate
the slice resources, in line with our proposal. However, in [191], the different agents can share
their views on the network status in real-time, violating one of the hypotheses of our model.
To make such a strategy consistent with our system model, we should consider the delay in the
computation of the embedding vectors, which makes it impossible for the agents to estimate

133



Chapter 6

the network status in real time. At the same time, implementing our approach in the model
of [191], we expect to obtain a degraded performance since each agent or our system exploits
only one part of the network information available.

We finally highlight that none of the above algorithms can adapt to dynamic network topolo-
gies, which is one of the most important aspects of our multi-agent framework. Implementing
any of these approaches in our system model requires the complete redesign of the solutions,
making fair analysis impossible. For this reason, in the rest of the paper, we will compare
our DRL architecture with two simple algorithms, based on easy-to-interpret criteria, in what
follows.

6.5.2 Empirical Strategy

Similarly to our approach, the empirical strategy implements a distributed resource allocation
scheme. At the beginning of slot t, each flow ϕ crossing link l demands a bit rate sufficient to
both satisfy the current throughput requirement and transmit any buffered data, i.e.,

b∗l,ϕ(t) = ηϕ(t) +
Dl,ϕ(t− 1)

τ
. (6.32)

For what concerns computation power and storage, each flow ϕ distributes the resource
demands among all the nodes in its path proportionally to their capacity. More specifically, the
amount of resources of type ρ ∈ {c,m} required to node n is equal to

ρ∗n,ϕ(t) = χn,ϕρϕ(t), (6.33)

with
χn,ϕ =

Cρn∑
k∈Nϕ C

ρ
k

. (6.34)

We highlight that, to compute χn,ϕ, it is necessary to know the computation and storage
capacities of each node n ∈ Nϕ, information that is not assumed to be available to the controllers
in our DRL strategy. Hence, the empirical strategy has an advantage with respect to our learning
framework since it uses information that is not available in a fully distributed approach.

We observe that, either using the empirical or the DRL strategy, network elements may
not be able to satisfy all the requests they receive. Hence, the aggregate amount of resources
demanded by a link l (or a node n) may exceed its overall capacity. Hence, we need to map the
demanded resources b∗l,ϕ, c∗n,ϕ, m∗

n,ϕ to the assigned resources bl,ϕ, cn,ϕ, mn,ϕ, ∀ l ∈ L, n ∈ N ,
ensuring that the feasibility constraints (6.9) and (6.10) are always satisfied.

Let us consider a link l ∈ L during a slot t. If the total demand is lower than Bl, the
feasibility constraints are already met: consequently, we can set bl,ϕ(t) = b∗l,ϕ(t). Conversely, if
the aggregate request exceeds the link capacity Bl, then each flow gets at most a fraction of the

134



Distributed Reinforcement Learning for Slicing Orchestration

link rate proportional to its request:

bl,ϕ(t) = b∗l,ϕ(t)min

{
1,

Bl∑
ψ∈Φl

b∗l,ψ(t)

}
. (6.35)

Using the same principle for the computational and memory resources, we can write

cn,ϕ(t) = c∗n,ϕ(t)min

{
1,

Ccn∑
ψ∈Φn

c∗n,ψ(t)

}
, (6.36)

and

mn,ϕ(t) = m∗
n,ϕ(t)min

{
1,

Cmn∑
ψ∈Φn

m∗
n,ψ(t)

}
. (6.37)

6.5.3 Static Strategy

Meta-heuristic techniques have been shown to determine the optimal solution to highly complex
optimization problems with non-convex constraints [198]. In our system, a Genetic Algorithm
(GA) may be used to approximate the best resource allocation pattern, thus outperforming
both the DRL and empirical strategies. However, meta-heuristic algorithms are based on a
randomized search of the target solution and require an extremely long calculation time, which
makes it unfeasible to execute them at each time slot. At the same time, it is reasonable to
exploit meta-heuristic techniques if the resource requirements do not vary in time.

In the static strategy we consider in this work, we divide the network resources among the
different slices without varying them independently on the network conditions. Practically, each
traffic flow ϕ is assumed to have fixed requirements, corresponding to the average amount of
resources it demands, i.e., raϕ. Hence, a GA is used to determine the optimal resource allocation
pattern under such conditions [199].

We observe that, using the static strategy, the values of bl,ϕ, cn,ϕ,mn,ϕ ∀ ϕ ∈ Φ, l ∈ L, n ∈ N
are maintained fixed. In other words, the variability of information flows is not taken into
account, and the performance of each flow may deteriorate as soon as its requirements exceed
the average values. This issue is critical, especially for the URLLC slice, whose performance
function suddenly drops if any resource requirements are not satisfied.

To better highlight the characteristics of the different strategies, in Fig. 6.3, we represent
the share of resources assigned to the eMBB and URLLC services in a network link during a
period of 50 slots. In particular, we consider a scenario where the link capacity is lower than the
aggregate resource demand, which means that all the strategies fully use the available bitrate.
As expected, GA statically distributes network resources: the bitrate assigned to the different
slices does not vary in time. Instead, the empirical algorithm dynamically adapts to the slice
requirements, and the bitrate distribution changes at each slot. Also, the DRL strategy follows
a dynamic trend but assigns a higher amount of resources to the URLLC services than the
benchmarks.

135



Chapter 6

Fig. 6.3: Link resource allocation.

6.6 Simulation Setting and Results

Tab. 6.3: Simulation settings.

Parameter Value Description Parameter Value Description

τ 0.1 s Slot duration T 50 Slots per episode
Bl 50 Gbps Link rate capacity Ccn {10, 20, 30, 60} Gbps Node computational capacity
Cmn {10, 20, 30, 60} Gb Node memory capacity Sσ 10 Resource requirements of class σ
dn 0.001 ms Node routing delay dpl 0.1 ms Link propagation delay
Ntrain {3, 5} · 104 Training episodes Ntest 500 Testing episodes
Ntransfer 2 · 104 TL episodes NΦ {2, ..., 6} Number of flows
ζa 10−5 Actor learning rate ζc 10−5 Critic learning rate
λ 0.9 Discount factor κ 10−4 Entropy tuning parameter
αη, αc, αm, αδ 0.25, 0.25, 0.25, 0.25 eMBB performance weights γ0, γ1 0.1, 1 Reward weights

In this section, we first describe the scenarios where our algorithms are tested, and the setting
of our simulations, whose parameters are summarized in Tab. 6.3. Then, we investigate the
performance of our DRL architecture against the benchmark strategies and under different con-
ditions. Finally, we show how the TL paradigm can further improve the system’s performance.

6.6.1 System Setting

We consider three different network scenarios, named Dumbbell (D), Triangle (T), and Pyra-
mid Network (P), whose topologies are reported in Fig. 6.4. In all the cases, the number of
information flows in the network is NΦ ∈ {2, ..., 6}. The capacities of each network element are
fixed; specifically, we set Bl = 50 Gbps, Ccn = 60 Gbps and Cmn = 60 Gb for the core nodes,
Ccn = 20 Gbps and Cmn = 20 Gb for the access nodes. Hence, our model assumes that most
computing and storage resources are in the core network. Concerning the delay, we assume
that dpl = 0.1 ms, ∀ l ∈ L, and dn = 0.001 ms, ∀ n ∈ N . Although arbitrary, these values are
well-aligned with the features of modern network elements.

To model the information flow requirements, we consider a Markov model [208] Mσ with
transition probability matrix Pσ for each class σ ∈ Σ. The model include Sσ = 10 states and is
designed in such a way that transitions can only occur between adjacent states; mathematically,
Pi,j = 0 ∀ (i, j) : |i−j| > 1. Each state ofMσ represents a combination of resource requirements,

136



Distributed Reinforcement Learning for Slicing Orchestration

(a) Dumbbell Network (D). (b) Triangle Network (T).

(c) Pyramid Network (P).

Fig. 6.4: Network topologies.

Tab. 6.4: Traffic flow requirements.

Service class Parameter Range of values Unit Sources

η 0.30 − 42.5 Gbps [200, 201]
eMBB c 50 − 100 Gbps [202, 203]

m 50 − 100 Gb [202, 203]
δ 20 ms [204, 205, 206, 207]

η 2.08 − 10 Gbps [200, 201]
URLLC c 50 − 100 Gbps [202, 203]

m 50 − 100 Gb [202, 203]
δ 1 ms [204, 205, 206, 207]

i.e., a different realization of the vector r. Hence, each information flow ϕ ∈ Φσ is associated to
an independent copy of Mσ that changes state at each slot t, thus altering the vector rϕ. The
minimum and maximum values of the resource requirements are given in Tab. 6.4.

137



Chapter 6

We note that, in our simulations, the number of flows and their requirements change randomly
so that the aggregate resource requests can exceed the network capacity. In such conditions,
some flows will unavoidably experience low performance, while the allocation strategy should
decide which flow to penalize to maximize the overall utility. Therefore, we can exploit such
a system to handle critical scenarios where there is a lack of network resources or to estimate
the reliability of a specific set of network slices. In the future, we will investigate call-admission
control strategies to avoid system overloading.

To train the learning agents, we generate Ntrain = 5 · 104 independent episodes using the
same network topology. Each episode lasts T = 50 slots of τ = 0.1 seconds. At the beginning
of each episode, we generate a random number of information flows and associate each flow
with a static route interconnecting its endpoints. Then, the A2C algorithm is used to train
the learning agents Γbσ, Γcσ, Γmσ , ∀ σ ∈ Σ, according to the framework describe in Sec. 6.4.
We exploit the Adaptive moment estimation (Adam) algorithm to optimize the NN weights,
considering ζa = 10−5 and ζc = 10−5 as learning rates of the actor and the critic, respectively.

We note that the A2C algorithm updates the policies applied by the different agents only at
the end of each episode (i.e., after a predetermined number of slots). Between two subsequent
episodes, the different network elements forward local observations to the training manager
depicted in Fig. 6.2. Hence, the new versions of the learning agents are shared within the
network, updating the overall architecture. Besides, the exchange of control traffic among
network elements is intrinsic to the SDN and NFV paradigms, which are becoming more and
more widespread in modern networks. Therefore, communication within the learning units does
not represent a limiting factor for the practical implementation of our approach.

6.6.2 Performance Analysis

(a) Dumbbell Network. (b) Triangle Network.

Fig. 6.5: Training phase.

We consider two versions of our learning system, one trained in the Dumbbell Network
(DRL-D) and the other in the Triangle Network (DRL-T). In Fig. 6.5 we plot the utility (for

138



Distributed Reinforcement Learning for Slicing Orchestration

the eMBB and URLLC slices) obtained during the training phase in the two scenarios, which
makes it possible to assess the convergence time of the proposed framework.

In general, the convergence of a ML algorithm is determined by the slope of the learning
curve given by the loss function of the trained model. In a DRL scenario, the convergence does
not depend solely on the training loss but also on the Q-values associated with the different
actions. Indeed, if the hierarchy between the Q-values does not change in time, the agent
policy remains static, regardless of the learning process. Therefore it is more accurate to verify
when the distribution of the agent actions becomes invariant. In such a case, the algorithm
convergence coincides with the stabilization of the agent reward and the system utility.

In this work, we assume to reach convergence when the utility stabilizes, which means that
any variation in the agents’ actions does not lead to a better policy. We can appreciate that
the average and the percentiles of the slice performance stop increasing after 30000 training
episodes, which indicates that the agents have assumed a stable behavior after that point. We
remark that the convergence of DRL systems cannot be proved mathematically unless under
specific constraints. In particular, more complex scenarios (e.g., with a larger network topology)
may exhibit longer convergence times. Therefore, network designers must accurately tune the
number of training episodes case by case.

Looking at Fig. 6.5, we can observe that the performance of the eMBB slice (Ωe) increases
slowly but smoothly, ranging from 0.6 to 0.8 in 50% of the cases. Conversely, the performance of
the URLLC slice (Ωu) initially remains very low and suddenly increases after a certain number
of episodes. Therefore, the agents need more time to learn how to address the requirements or
the URLLC services. In particular, at the end of the training phase in the Triangle Network,
Ωu spans the full range of possible values, which indicates that the URLLC flows either get
maximum or zero rewards in accordance with the step-like shape of their performance function.
A similar phenomenon occurs in the Dumbbell Network where, however, the URLLC utility is
lower due to the fewer available resources.

(a) Dumbbell Network. (b) Triangle Network.

Fig. 6.6: Expected utility.

To test the performance of our strategies, we carry out additional Ntest = 500 episodes. In

139



Chapter 6

Fig. 6.6, we report the expected utility achieved by each slice and by the whole system (see (6.6)
and (6.5)) in the Dumbbell and Triangle Network for all the considered strategies. We can notice
that, in both scenarios, the empirical algorithm tends to favor eMBB slices at the expense of
URLLC flows, whose expected performance is always lower than 0.2. The static strategy behaves
similarly but provides lower Ωe than the empirical algorithm. In contrast, DRL-D and DRL-
T slightly reduce the performance of the eMBB services but double the fraction of satisfied
URLLC flows, significantly increasing the total utility.

Fig. 6.7: Utility distribution.

In Fig. 6.7, we analyze the distribution of the system utility for all the different strategies
and network scenarios. We adopt the boxplot representation, where the white line at the box
center is the median of the distribution, and the box edges represent the 25th and the 75th
percentile, respectively. It is clear that the static strategy always performs the worst because it
cannot handle the variability of service demand, which is critical for URLLC traffic flows, whose
performance goes to zero as soon as one requirement is not satisfied. The empirical algorithm
works better but is still outperformed by the DRL strategies. In the Dumbbell Network, DRL-
D and DRL-T ensure Ω > 0.4 in almost 50% of the test episodes, with a 10% gain over the
empirical algorithm. In the Triangle and Pyramid scenario, the lack of network resources is less
striking and, consequently, the performance of all the strategies increases. In these scenarios,
using the empirical algorithm, in 50% of the test episodes we get Ω > 0.5 while, with the DRL
strategies, we achieve Ω > 0.65 and Ω > 0.7, respectively.

We observe that the DRL strategies achieve similar results in all the testing scenarios, in-
cluding the Pyramid Network, which differs from the environments seen during the learning
phase. Therefore, the proposed distributed solution seems robust to topology changes, yielding
reasonably good results in different scenarios without additional training. At the same time,
we expect that a more specific learning framework can further improve the overall utility. In
the rest of the section, we show how to leverage the TL paradigm for this purpose.

140



Distributed Reinforcement Learning for Slicing Orchestration

6.6.3 Transfer Learning

TL aims at speeding up the training of a ML algorithm by taking advantage of the structure
learned by other algorithms trained in similar scenarios. In what follows, we exploit this tech-
nique to adapt our DRL strategy to different network topologies and traffic loads. Hence, we
consider two new learning architectures, named DRL-DP and DRL-TP. We train these systems
for Ntrain = 3× 104 episodes in the Dumbbell and Triangle Network, respectively, according to
the framework described in Sec. 6.4. Then, they undergo additional training ofNtransfer = 2×104

episodes in the Pyramid Network.

(a) Pyramid Network. (b) Pyramid+ Network.

Fig. 6.8: Expected resource utility.

During the additional training, each controller is updated only with experience related to the
specific network element it is associated with. For instance, a controller Γbσ designed to manage
a flow of class σ across a link l is trained using the state-action pairs for link l and information
flows ϕ ∈ Φσ. In other words, each network element can autonomously update its own learning
agents without involving the central manager depicted in Fig. 6.2. Besides, the training process
does not require communication across the network and can be executed online, i.e., while the
local controllers are being used in a real scenario. From a practical perspective, TL makes local
controllers learn how to carry out more precise actions, thus increasing the overall utility. The
drawback is that each controller can operate only in a specific location, making it impossible to
implement the learning architecture in different network topologies.

The TL operations are repeated two times, considering different configurations for the URLLC
services. First, we implement the same statistics presented in Tab. 6.4: in this case, the through-
out required by each URLLC flow is in [2.08, 10] Gbps. Then, we double the rate requirements
of the URLLC slice (whose range of values becomes [4.16, 20] Gbps) with the aim of assessing
the ability of our strategy to adapt to new service specifications. In particular, we denote by
Pyramid+ the scenario in which the required throughput of the URLLC flows is increased.

In Fig. 6.8a, we represent the expected performance obtained in the Pyramid Network by
DRL-D and DRL-DP, and the benchmark strategies, while considering specific network re-

141



Chapter 6

Fig. 6.9: Utility distribution.

sources. Hence, instead of using Ω to asses the system utility, we consider Ωρ, with ρ ∈
{b, c,m, δ}, defined in (6.8). As expected, the algorithm obtained by exploiting TL performs
better than that trained in the Dumbbell Network: for instance, using the DRL-DP strategy,
the expectation of Ωc increases by more than 5%. In this case, the performance gain is consid-
erably lower than during the centralized training phase, and the system reaches convergence
in about 10000 episodes. The higher speed in the system training is because the agents have
already discovered a profitable policy and are just tuning their actions to the new scenario. In
particular, the slice performance remains high during the whole TL phase, making it feasible
to train the system online without degrading the user experience.

In Fig. 6.8b, we show the outcomes obtained in the Pyramid+ network scenario, considering
DRL-T and DRL-TP. In this scenario, all the strategies yield a lower performance since the
new URLLC requirements are more difficult to fulfill. Besides, we observe that the empirical
strategy slightly outperforms DRL-T for what concerns the throughput and delay requirements.
Nevertheless, DRL-T still provides good results, which means that the DRL approach is re-
silient to different traffic loads. Also in this case, TL proves to be worthwhile since DRL-TP
outperforms the other algorithms in all three key performance indicators.

In Fig. 6.9, we report the distribution of the system utility in the Pyramid and Pyramid+
scenarios. We can appreciate how the algorithms obtained by TL always ensure higher utility,
both considering the median and the percentiles of Ω. In particular, DRL-DP and DRL-TP
outperform DRL-D and DRL-T, respectively, despite the total number of training episodes
being the same for all the considered strategies.

To exemplify a possible application of the proposed solution in a real scenario, we consider a
section of the high-capacity network interconnecting the main Italian universities and research
centers owned by the national provider named GARR [209]. As depicted in Fig. 6.10, the
considered network topology includes 19 core nodes, 10 edge nodes and 40 links. We assume
that each link is provided with Bl = 50 Gbps of bandwidth capacity. Besides, we set the

142



Distributed Reinforcement Learning for Slicing Orchestration

Fig. 6.10: GARR Network (Italy).

computational and memory capacities of the core nodes to Ccn = 30 Gbps and Cmn = 30 Gb,
and those of the edge nodes to Ccn = 10 Gbps and Cmn = 10 Gb. ∗ Finally, we relax the delay
requirements of the eMBB and URLLC services, which are set to 100 ms and 5 ms, respectively.
This choice allows us to deal with the longer routing paths, which yield higher end-to-end delays.

To implement our DRL strategy in this scenario, we carry out two consecutive learning
stages: first, we train our system for 2 × 104 episodes using a centralized learning approach
(as done for the DRL-D and DRL-T strategies). We recall that this phase can be (and shall
be) performed offline, using all the experience gathered by all the network elements. Then, we
carry out additional training of 104 episodes, defining a specific tuple of learning agents for each
network element (as done for the DRL-DP and DRL-TP strategies). As already stated, this
stage is performed online and does not require communication across the network.

In Fig. 6.11, we plot the expected performance of the eMBB and URLLC slices (i.e., E[Ωe]
and E[Ωu]) as a function of the number of information flows in the described scenario. When
considering the eMBB flows, all the strategies have a similar behavior since E[Ωe] declines
gradually as the cardinality of Φ increases. Instead, the performance of the URLLC services is
different depending on the chosen approach. The empirical algorithm maximizes the URLLC
utility when |Φ| = 2, while the same value abruptly drops to 0 as more flows are initialized over
the network. Conversely, the static and DRL strategies ensure that E[Ωu] follows a smoother
trend.

In particular, the empirical algorithm outperforms the static approach when the number
of information flows is limited (|Φ| ≤ 3). Beyond this point, it becomes more convenient to

∗Note that, currently, the GARR network does not support NFV or SDN functionalities, so the resource
capabilities considered in this study are realistic but arbitrary.

143



Chapter 6

Fig. 6.11: Expected utility vs flow number.

maintain a static allocation of the system resources to prevent the degradation of the URLLC
services. However, both benchmarks are outperformed by our DRL strategy, which gives priority
to the URLLC services, ensuring a better total utility. In particular, using the empirical and
the static strategies, E[Ωu] falls below 0.3 for |Φ| = 6, while DRL ensures E[Ωu] > 0.6 in the
same conditions.

6.7 Conclusions and Future Work
In this chapter, we investigated the potential of DRL to orchestrate network resources in a
NS scenario. Specifically, we developed a distributed DRL architecture where different units
interact to meet the resource demands of multiple information flows. By means of simulations,
we showed that the designed strategy consistently improves the management of network re-
sources, especially when the system complexity, both in terms of network topology and service
heterogeneity, increases. Our approach makes it possible to double the number of URLLC flows
supported by the network without degrading the performance of the eMBB flows. Besides, we
proved that TL further improve the behavior of the learning agents, thus increasing the overall
utility at the cost of reduced adaptability of the agents to different network topologies.

As part of future work, we are interested in extending our NS model by considering more
slice classes with different specifications. Hence, we want to test our framework with real com-
munication traces to identify its potential limits. Finally, we will investigate the possibility of
introducing additional learning units trained to coordinate the local controllers of our architec-
ture, e.g., by varying the routing paths of the traffic flows.

144



7
Balancing Learning and Exploitation at the

Network Edge

7.1 Introduction

The orchestration of next-generation mobile networks is beyond the capabilities of human-
designed algorithms, as it is characterized by multiple objectives and fast dynamics, with

several classes of traffic having specific activity patterns and Quality of Service (QoS) guaran-
tees [167]. As we already saw in this dissertation, machine learning is essential to allow network
protocols to dynamically adapt to different scenarios without manually reconfiguring the entire
system [211]. In particular, the combination of Reinforcement Learning (RL) principles with
deep learning, also known as Deep Reinforcement Learning (DRL) [118], is one of the most
promising tools for the optimization of 5G and beyond networks [212]. However, the training
of DRL models in complex environments is still very computationally expensive [213], and it
is often impossible to perform it in advance because of the rapid changes in future mobile net-
works. Therefore, it is fundamental for 5th Generation (5G) and beyond systems to support
online training on the network edge, exploiting a Continual Learning (CL) approach [214]. In
this context, the training updates are either performed directly on the edge nodes by the Mobile
Edge Computing (MEC) paradigm or offloaded to more powerful Cloud servers, reducing the
consumption of local resources but requiring the transmission of large amounts of data.

In a MEC scenario, the training cost creates a fundamental trade-off: updating a DRL model
with new experience can improve the learned policy, increasing its efficiency in the target task,
but also subtracts some resources from that very same task. Disregarding this trade-off and
assuming that training is a free action may have serious consequences, degrading the perfor-

The work presented in this chapter was published in the proceedings of 2022 IEEE International Conference
on Communications [210].

145



Chapter 7

mance in the system that should be optimized [215]. The machine learning research community
is starting to become aware of this issue [216], focusing on model compression and lightweight
learning techniques to reduce the burden on the edge hardware [217] and considering the cost of
learning in the design of neural networks meant to operate on resource-constrained devices [218].
In particular, the Federated Learning (FL) approach can reduce the computational load of learn-
ing systems by conducting the algorithm training in a distributed fashion [219]. In the past
years, many frameworks to reduce the computation and communication cost of FL have been
proposed: for a deeper review of these topics, we refer the reader to [220, 221].

To the best of our knowledge, the resource efficiency of DRL techniques in future network
scenarios is a relatively unexplored topic [222], as most researches in the literature still neglect
the cost of the training, separating the learning process from the optimization even in online
applications. In this chapter, we attempt to model the cost of learning in an explicit manner by
defining an optimization problem that balances learning and network functions. The objective is
to identify learning strategies that maximize the system performance during training, accounting
for the learning cost in terms of bandwidth or other types of resources. To this end, we
design a theoretical model to represent a general telecommunication system whose resources
are contended among user applications and learning agents. The increase of user resources
enables to improve the immediate performance but prevents the agents from innovating their
policies and gaining higher benefits in the future. Therefore, determining the optimal resource
allocation is not trivial and depends on the specific working conditions of the target system.
In particular, we implement the described model in a Network Slicing (NS) scenario, where
the same channel is used to forward the data of end users and learning algorithms from a
Base Station (BS) to a Core Network (CN). Our results show that adapting the number of
training updates is essential for maximizing the user performance over a long time horizon
while considering an ideal case with free learning actions leads to a significant overestimating
of the system performance.

We organize the rest of this chapter as follows: Sec. 7.2 presents the cost of learning problem;
Sec. 7.3 applies the proposed model in a NS use case; Sec. 7.4 describes the settings and results
of our work; finally, Sec. 7.5 concludes the chapter and presents some possible avenues for future
work.

7.2 Cost of Learning Model

We consider a network management scenario in which a learning agent tries to maximize system
performance by allocating communication or computational resources to different users. To
address such a scenario, we adopt a RL approach and, as explained in Appendix B, we discretize
the time into slots t ∈ Z+. At any slot, the agent chooses a new action according to a policy
π : S × A → [0, 1] and receive a reward r(t) ∈ R. In particular, π(s, a) is the probability that
the agent chooses action a ∈ A when the system is in state s ∈ S, where A and S are the
agent action and state space, respectively. The goal is to compute the optimal policy π∗, which

146



Balancing Learning and Exploitation at the Network Edge

maximizes the expected discounted return G(t):

G(t) = E

[ ∞∑
τ=t

λτ−tr(s(τ), s(τ + 1), a(τ))

∣∣∣∣∣ π, s(t)
]
, (7.1)

where λ ∈ [0, 1) is the so-called discount factor.

As in classical RL settings, we consider that the system evolution is organized into episodes
k = 0, 1, ..., where each episode lasts T slots. We assume that the network dynamics change
over time, which makes it impossible to explore the environment offline, i.e., collect data with a
pre-determined policy and perform training on this static dataset before the agent deployment.
In particular, the state transition probability P (·) and the reward function r(·) change over time
in a step-wise manner, i.e., after a coherence period ofK episodes. We can assume that the agent
is aware of the environment’s evolution and reinitializes its policy at the end of every coherence
period. Accelerating the training might be possible by exploiting Transfer Learning (TL), using
previous experience to avoid periodically starting a new learning process from scratch [223].
However, the design of such techniques is out of the scope of this chapter.

We define the expected reward for an episode as

R(k) = E

[
T−1∑
t=0

ra(t)(s(t), s(t+ 1))

T

]
. (7.2)

Our goal is maximizing the expected reward RK =
∑K−1
k=0 R(k) during the K episodes consti-

tuting a single coherence period. To this end, we want to make the agent policy converge to the
optimum in the shortest time possible. However, in our scenario, the agent training consumes
resources (computational or communication, depending on the case) that should be assigned
to the users. Hence, each learning update directly impacts the system performance, and there
is a trade-off between convergence speed and cost of learning. Our problem is similar to the
well-known dilemma between exploration and exploitation but in a different context. Adapting
the amount of exploration cannot solve the problem of training costs as it increases the variety
of the collected experience, but does not reduce their communication and computational costs.

To analyze the cost of learning, we divide each episode into two subsequent phases. During
the first, named exploitation phase, the agent applies the learned strategy to both explore the
environment and improve the system performance. During the second, named update phase,
the available resources are fully devoted to the agent training. The order of these two phases is
unimportant, as the update phase can be performed at the beginning of the episode with the
same results, and they last Tπ and Tρ = T − Tπ slots, respectively, so that the agent’s actions
are determined by the learned policy π during the first Tπ slots of any episode k, while the
agent follows a pre-determined policy ρ during the last Tρ slots. In other words, the probability

147



Chapter 7

of choosing action a in state s is given byπ(a, s), t ∈ {0, 1, ..., Tπ − 1};

ρ(a, s), t ∈ {Tπ, Tπ + 1, ..., T − 1},
(7.3)

where t is the slot index within the same episode.
The policy ρ ensures that all or part of the system resources are used for the agent training,

making it possible to update the policy π with the new experience the agent has gained. On
the other hand, since ρ subtracts some of the resources from the users, this strategy leads to
sub-optimal performance, decreasing the reward collected during the episode.

From a practical perspective, the value of Tρ determines the amount of time and resources
devoted to the learning process. As Tρ increases, so does the number of experience samples
used to train the agent after each episode. In doing so, we make it possible to accelerate
the convergence speed of the agent, thus improving the immediate reward gained during the
exploitation phases of the next episodes. On the other hand, increasing Tρ also shortens the
average reward since the system spends more time in the update phases in which the sub-optimal
policy ρ is used. In particular, the average reward during the k-th episode, considering a fixed
Tρ, is given by:

R(k|Tρ) =
(
T − Tρ
T

Rπk(k) +
Tρ
T
Rρ(k)

)
, (7.4)

where πk is the policy learned by the agent in the k-th episode, while Rπk(k) = E[R(k);πk] and
Rρ(k) = E[R(k); ρ] are the expected average rewards gained using policies πk and ρ, respec-
tively. The optimal value of Tp depends on multiple factors, including the coherence time of
the underlying non-stationary Markov Decision Process (MDP).

In the rest of the chapter, we consider two possible approaches for balancing exploitation and
training. First, we adopt the naive assumption that the amount of resources assigned to the
learning task is constant over time, and we analyze how Tρ affects the system performance. In
the second approach, instead, we adapt the number of training resources over time depending
on the convergence speed of the learning agent, and we study the trade-off between convergence
speed and the effectiveness of the learned strategy. In the following, we formally define the
optimization problems underlying the two approaches, which will be successively analyzed and
compared in Sec. 7.4, considering a MEC system as a use-case scenario.

7.2.1 Constant Update Duration

Given the coherence period duration K, the first optimization problem aims at determining the
optimal Tρ to maximize RK while assuming that Tρ is constant over time:

T ∗
ρ = argmax

Tρ∈{0,...,T}

(
K−1∑
k=0

R(k|Tρ)
K

)
. (7.5)

148



Balancing Learning and Exploitation at the Network Edge

7.2.2 Adaptive Update Duration

The second approach assumes that the agent can determine when the policy π converges to the
optimal one. In particular, after discovering the optimal policy, the agent sets Tρ to zero, fully
exploiting the system resources. If we define the number of episodes until convergence as η(Tρ),
we have the following optimization problem:

T ∗
ρ = argmax

Tρ∈{0,...,T}

η(Tρ)−1∑
k=0

R(k|Tρ)
K

+

(
1− η(Tρ)

K

)
Rπ∗

 . (7.6)

In this case, we expect T ∗
ρ to be higher since a quicker convergence to the optimal policy allows

the system to terminate the training process and fully dedicate its resources to the users.

7.3 Use Case Scenario

To test the benefits of our cost-aware learning framework, we consider a NS scenario, where a
set of users with heterogeneous requirements transmits data through the uplink. We assume
to divide the traffic into slices that depend on the applications’ QoS requirements, and the BS
needs to allocate the capacity of a backhaul link to guarantee the best possible performance for
each slice. The link resources are managed by a DRL agent, whose actions depend on the state
of the slice buffers at the BS. For the reader’s convenience, we report the main parameters of
our model in Tab. 7.1.

Tab. 7.1: Model parameters.

Parameter Description Parameter Description

t Timeslot index τ Timeslot duration
T Slots per episode K Coherence period
r(·) Reward function R(k) Mean reward at episode k
S Agent state space A Agent action space
Tπ Exploitation phase duration Tρ Update phase duration
πk Learned policy at episode k ρ Update policy
Σ Slice set Nσ Resource blocks assigned to σ
Lpkt Packet length δ(p, t) Delay of packet p at time t
U User set Uσ Users associated with slice σ
Cbh Total link capacity N Number of resource block
xu Packet sent by u to the BS xu(t,m) m-th packet in xu(t)
qσ Packet collect in the buffer of slice σ Q Maximum buffer size
yσ Delivered packet of slice σ Yσ Size of yσ
zσ Discarded packet of slice σ Zσ Size of zσ
fu(·) Utility function of the packets of user u ∆u Packet delay budget of user u
Ωu Performance of user u Ω Overall system performance

7.3.1 Communication Model

We assume that time is discretized into slots t ∈ Z+ of length τ and that, in each slot t, each
user u ∈ U (corresponding to a single application) transmits a vector of packets xu(t) to the
BS. All packets have the same length Lpkt, and we denote by xu(t,m) the m-th packet of xu(t).

149



Chapter 7

We also assume that each application is associated with a specific slice σ ∈ Σ, according to the
application requirements. We denote by Uσ ⊂ U the set of users associated with slice σ. In
particular, all the packets belonging to the same slice σ are seen by the BS as a single stream
of data sharing the same communication resources.

We assume that the BS maintains a first in first out buffer with a maximum size of Q packets
for each slice σ ∈ Σ. The packets present in the buffer for slice σ at the beginning of slot t are
collected in vector qσ(t). We can assume that packets are added to the backhaul link buffer
at the end of each slot. The buffer size condition is then |qσ(t)| ≤ Q, where |x| represents the
length of vector x.

We assume that the backhaul link has a total capacity of Cbh divided into N resource blocks,
each of which makes it possible to transmit τCbh

N bits per slot. In particular, the system can
transmit packets over multiple subsequent slots. We now denote byNσ(t) the number of resource
blocks assigned to slice σ during slot t. Naturally, any resource allocation scheme should comply
with the condition

∑
σ∈ΣNσ(t) ≤ N .

Given that the agent allocates Nσ(t) backhaul resources to slice σ, the number of packets
from σ that can be delivered in slot t is then given by:

Yσ(t) = min

(
|qσ(t)|,

⌊
Nσ(t)

τCbh
LpktN

⌋)
. (7.7)

We denote by yσ(t) the vector containing the Yσ(t) packets of slice σ that are transmitted during
slot t. At the next step, the queue vector qσ(t+ 1) contains the remaining queued packets, as
well as the newly arrived ones. However, the queue cannot contain more than Q packets, and
in case of buffer overflows, the oldest Zσ(t) packets are then discarded:

Zσ(t) = max (0, |qσ(t− 1)| − Yσ(t− 1) + |xσ(t)| −Q) . (7.8)

We denote the vector of discarded packets by zσ(t), so that |zσ(t)| = Zσ(t). Once the buffer
states qσ(t), ∀σ ∈ Σ have been updated, the backhaul resources can be reallocated. To evaluate
the system performance, we consider the queuing delay, defined as:

δ(p, t) =

s : p ∈ xσ(t− s), p ∈ (yσ(t) ∪ qσ(t)) ;

∞, p ∈ zσ(t),
(7.9)

where the delay is computed for packet p from slice σ at time t. We define the delay as the
number of slots since p was generated if the packet is transmitted or still in the buffer. Instead,
we assume that the delay is infinite if p is discarded.

We then define a utility function fu(·) for each user, which takes the packet delay as input
and return a value in [0, 1]. In particular, fu(·) is monotonically decreasing, with fu(0) = 1 and
limx→∞ fu(x) = 0, and depends on the delay requirements of the user, expressed in terms of the
maximum delay ∆u. Finally, the performance Ωu(t) of u and the overall system performance

150



Balancing Learning and Exploitation at the Network Edge

Ω(t) at slot t are given by:

Ωu(t) =

Yσ(t)∑
m=1

fu(yσ(t,m))(δ(yσ(t,m), t))

(Yσ(t) + Zσ(t))
, (7.10)

Ω(t) =
1

|Σ|
∑
σ∈Σ

1

|Uσ|
∑
u∈Uσ

Ωu(t), (7.11)

where u(p) is the user that sent packet p.

7.3.2 Learning Framework

In order to optimize the system in a foresighted manner, we model the resource allocation
problem as an MDP, implementing a DRL agent to manage the link resources. In particular,
the state s(t) at time t depends on the individual requirements of the users currently being
served and the transmission buffer for each slice. Specifically, s(t) is a tuple with 4 · |Σ| elements,
namely:

• The number of packets contained in each slice buffer, i.e., |qσ(t)|, ∀ σ ∈ Σ;

• The average remaining time before the packets contained in each slice buffer exceed the
maximum allowed delay ∆u, which is given by

|qσ(t)|∑
m=1

∆u(qσ(t,m)) − δ(qσ(t,m))

|qσ(t)|
, ∀σ ∈ Σ; (7.12)

• The minimum remaining time among the packets in each slice buffer, i.e.,

min
m∈{1,...,|qσ(t)|}

(
∆u(qσ(t,m)) − δ(qσ(t,m))

)
, ∀σ ∈ Σ; (7.13)

• The number of packets that will be transmitted during the current slot for each slice,
assuming that the resource allocation scheme does not change, which is:

min

(
|qσ(t)|,

⌊
Nσ(t− 1)

τCbh
LpktN

⌋)
, ∀σ ∈ Σ. (7.14)

We have S =
{
0, . . . , Q

Lpkt

}2·|Σ|
× R2·|Σ|, while the action space A includes 1 + |Σ| · (|Σ| − 1)

different actions. Specifically, action 0 maintains the resource allocation constant, so that
Nσ(t) = Nσ(t − 1), ∀ σ ∈ Σ. Instead, each of the remaining actions is defined by the ordered
tuple (i, j), i ̸= j, and corresponds to taking one resource block from slice σi and assigning it
to slice σj , so that Nσi(t) = Nσi(t − 1) − 1 and Nσj (t) = Nσj (t − 1) + 1. Naturally, resource
allocation can never be negative, i.e., Nσ(t) ≥ 0 ∀σ ∈ Σ, and the total number of allocated
resources is always N .

151



Chapter 7

Hence, at each slot t, the agent observes state s(t) ∈ S and selects a new action a(t) ∈ A
according to its current policy π, which determines the number of blocks Nσ(t) assigned to each
slice σ ∈ Σ. Then, the agent receives an instantaneous reward equal to Ω(t), i.e., the system
utility defined in (7.11); we note that, by definition, Ω(t) ∈ [0, 1].

Tab. 7.2: Agent architecture.

Layer size (inputs × outputs) Inter-layer operations

4 · |Σ| × 64 ReLU activation
64 × 32 ReLU activation

32 × (1 + |Σ| · (|Σ| − 1)) Linear activation

We adopt the Deep Q-Network (DQN) approach [118], in which the expected long-term value
of each action, as given by (7.1) with Ω(t) as reward, is approximated by a Neural Network
(NN) that, at each slot t, takes the current state s(t) as input. In particular, we implement a
fully connected feed-forward NN, whose input layer is formed by one neuron for each element
of s(t). The output of the NN is a scalar vector of size |A|, representing the expected long-
term reward of each possible action a ∈ A for the current state. In particular, when operating
greedily, the agent will always pick the action corresponding to the highest output value. The
main parameters of the learning architecture are reported in Tab. 7.2.

7.4 Simulation Settings and Results

Tab. 7.3: System settings.

Parameter Value Description Parameter Value Description

τ 10 ms Timeslot duration T 1000 Slots per episode
K 10000 Coherence period Tagent 10 slot Interval between agent actions
N 10 Number of resource blocs Cbh 1 Mb/s Total link capacity
Lpkt 512 b Packet length Q 100 Maximum buffer size
|U| 5 User number |Σ| 5 Slice number
Lexp 704 b Experience sample length LNN 92256 b Learning model length
λ 0.95 Discount factor ζ 10−5 Maximum learning rate
Tρ {1, 2, 3, 4, 5} slot Update phase duration Kavg 4000 Window for reward computation

In the following, we apply our model in the NS environment described in Sec. 7.3. Specifically,
we assume that the DRL agent deployed at the BS cannot be trained locally and needs to
exchange information with the core network to improve its policy. Part of the backhaul resources
are then used to update the agent’s architecture, possibly degrading the user performance.
Hence, we investigate how the system utility changes when varying the resources dedicated to
the training, both when the learning update is performed regularly and when it is stopped after
a certain period (assuming the DRL agent has converged to the optimal policy). For the reader
convenience, we resume the settings of our simulation in Tab. 7.3.

152



Balancing Learning and Exploitation at the Network Edge

7.4.1 System Settings

The model described in Sec. 7.3.1 is very general and can suit multiple communication scenarios
with different characteristics. In this work, for the sake of simplicity, we consider a simple case
with only two slices, named non-critical (σNC) and critical (σC), respectively, with the following
performance functions fu(δ):

fu(δ) =

min
(
1, ∆uδ

)
, if u ∈ σNC;

1(∆u − δ), if u ∈ σC;
(7.15)

where 1(x) is the limit-step function, equal to 1 if x ≥ 0 and 0 otherwise. Critical packets
have a hard deadline, i.e., delivering them after the maximum delay ∆u gives zero performance
benefits. On the other hand, the utility of non-critical packets decreases gradually as the delay
grows past the deadline.

We divide time into slots of τ = 10 ms and that the backhaul link has a total capacity
Cbh = 1 Mb/s. The channel is divided into N = 10 resource blocks so that each block allows
the delivery of exactly 1 kb. However, we assume that any allocation scheme remains constant
over Tagent = 10 slots, i.e., the agent takes a new action every 100 ms. This value is closer to
the granularity of actual schedulers and avoids the reward tampering phenomenon [224]. We
consider packets to have a constant length Lpkt = 512 b and set the maximum buffer size to
Q = 100 packets, equivalent to 64 kB. Besides, we assume that there are 5 different users,
randomly associated with the critical and non-critical applications at the beginning of each
episode. The Non-Critical Voice (NCVO) and Non-Critical Video (NCVI) applications are
associated with σNC and have constant bitrate. The Critical Voice (CVO) and Critical Video
(CVI) applications are associated with σC and generate new packets following an on-off process.

Tab. 7.4: Application requirements.

Application Bit rate [kb/s] Packet delay budget [ms]

NCVO 25 100
NCVI 384 300
CVO 25 (when active) 75
CVI 384 (when active) 100

More specifically, CVO and CVI behave according to a Markov chain with two state, namely
silent (s) and active (a): in the silent states, no packets are generated, which implies that
|xu(t)| = 0; conversely, in the active states, packets are generate with constant bitrate. We
assume that a critical application can switch between states at the beginning of each slot t, and
we set the state transition probability to pss = paa = 0.9 and psa = pas = 0.1, respectively. The
bitrate and the packet delay budget of the different applications are summarized in Tab. 7.4.

To orchestrate the backhaul link resources, we deploy the learning system presented in
Sec. 7.3.2. Our implementation of DQN is distributed. The inference network is installed
on the BS and is used to allocate resources in the exploitation phase of each episode. Instead,
the training network is updated at every training step and is in a Cloud server. The transmis-

153



Chapter 7

sion of the learning data and model occupies the backhaul link, following the general framework
defined in Sec. 7.2.

At the beginning of each episode, we empty the slice buffers and associate each user with a
random application. During the first Tπ slots of each episode, the inference network sets the
resource allocation policy and saves experience samples (s(t), a(t), s(t+ 1),Ω(t), a(t+ 1)) in a
local memory. Instead, during the training phase, no application data are transmitted, i.e.,
Nσ(t) = 0, ∀ σ ∈ Σ, and we exploit the overall link capacity to exchange learning data over
the channel. We assume that each experience sample can be encoded into Lexp = 704 b, while
the NN architecture size is LNN = 92256 b. Therefore, during the updating phase, Tρ τCbh

Lexp

transitions can be forwarded through the channel and used by the Cloud server to update the
training network. Moreover, for every 10 learning steps, a copy of the training network is sent
back to the BS, replacing the inference network and improving the current policy ρ. In those
steps, the number of transitions forwarded through the channel is limited to TρτCbh−LNN

Lexp
.

To train the agent during the update phase, we implement the on-policy State-Action-Reward-
State-Action (SARSA) algorithm [110] with a softmax exploration policy. We set the discount
factor λ = 0.95, and we implement the Adaptive moment estimation (Adam) algorithm to opti-
mize the NN weights, using ζ = 10−5 as maximum learning rate. We also include a penalty for
the entropy of the output distribution, encouraging the exploration of the action space without
setting a fixed temperature profile for the softmax function. Finally, we set the coherence period
to K = 10000 episodes and assume that each episode lasts T = 1000 slots.

7.4.2 Performance Analysis

We now investigate different configurations of our learning system, varying the time Tρ ∈
{1, . . . , 5} devoted to the agent training. When Tρ is low, most resources are assigned to the
users, and agent training proceeds slowly. Conversely, as Tρ increases, more learning data are
transmitted through the link, taking up more resources but increasing the training speed. We
compare the results with an ideal system, where all the learning transitions are instantaneously
transmitted through a side-channel and used to update the inference network without impacting
the users. Clearly, this represents an upper bound to the practically achievable performance.

We first consider the scheme with a constant update duration from Sec. 7.2.1. In Fig. 7.1,
we represent the average performance during the training of the different strategies, obtained
by aggregating the data of 100 independent simulations. It is easy to see that larger values of
Tρ lead to a quicker convergence toward the optimal policy and, in particular, training is rather
slow if Tρ = 1. On the other hand, the configurations with a higher Tρ improve faster but have
lower performance after convergence since they continue to devote a fixed amount of resources
to the agent training.

We can have a better insight into the different strategies by looking at Fig. 7.2, which uses
boxplots to represent the performance statistics during the beginning, intermediate and last
episodes of the training phase. The whiskers represent the 5th and 95th percentiles of the
performance distribution, while the box goes from the 25th to the 75th. In the first third of the

154



Balancing Learning and Exploitation at the Network Edge

2,000 4,000 6,000 8,000

0.78

0.8

0.82

0.84

0.86

Episode

Ω

Ideal Tρ = 1

Tρ = 2 Tρ = 3

Tρ = 4 Tρ = 5

Fig. 7.1: Mean performance over time with fixed Tρ.

(

0; K
3

− 1
) (

K
3
; 2K

3
− 1

) (

2K
3

;K − 1
)

0.7

0.8

0.9

Ω

Ideal Tρ = 1

Tρ = 2 Tρ = 3

Tρ = 4 Tρ = 5

Fig. 7.2: Boxplots of the performance with fixed Tρ.

coherence period, it is convenient to select a high value for Tρ to learn the optimal policy faster.
After a sufficient number of episodes, the configurations with a lower Tρ also converge and waste
fewer system resources on further training, but the configuration with Tρ = 1 is outperformed
by the others, as it needs more than K episodes to reach convergence.

We can now look at the adaptive system from Sec. 7.2.2. We use a simple heuristic strategy to
infer convergence. If the average reward over a rolling window of Kavg episodes stops increasing,
the agent estimates that the optimal policy has been found and sets Tρ to zero, assigning the
whole capacity to the users. This technique allows the agent to use the first portion of the
coherence period to learn the optimal policy, taking advantage of the acquired knowledge in the
remaining episodes. Therefore, the choice of Tρ will determine the time needed to switch to the
exploitation phase.

155



Chapter 7

2,000 4,000 6,000 8,000

0.78

0.8

0.82

0.84

0.86

Episode

Ω

Ideal Tρ = 1

Tρ = 2 Tρ = 3

Tρ = 4 Tρ = 5

Fig. 7.3: Mean performance over time with adaptive Tρ.

(

0; K
3

− 1
) (

K
3
; 2K

3
− 1

) (

2K
3

;K − 1
)

0.7

0.8

0.9

Ω

Ideal Tρ = 1

Tρ = 2 Tρ = 3

Tρ = 4 Tρ = 5

Fig. 7.4: Boxplots of the performance with adaptive Tρ.

Fig. 7.3 shows the performance over time with this approach, considering Kavg = 4000. We
observe that the performance of the strategies with Tρ ≤ 3 is almost identical to that of the
previous scenario. The adaptive method does not reach convergence before the end of the
coherence period with such a small Tρ. On the other hand, setting Tρ = 5 seems too aggressive,
and the heuristic stops the learning process too soon, leading to suboptimal results. The
approach with Tρ = 4 outperforms all the other strategies during the entire coherence period,
striking a balance between convergence speed and cost of learning. We confirm these findings
by looking at Fig. 7.4, which shows that Tρ = 4 achieves better performance, both considering
the lower and the higher percentiles of the distribution.

156



Balancing Learning and Exploitation at the Network Edge

7.5 Conclusions and Future Work
In this chapter, we analyzed the cost of exploiting DRL solutions for MEC network optimization.
Specifically, we designed a novel cost of learning framework to optimize the number of resources
that a learning agent allocates to its own improvement to balance the speed of convergence of
the policy with the system performance during the training. We consider a test case based on
a 5G system in which a DRL agent has to allocate the bandwidth of a backhaul link among
multiple slices while consuming part of the network resources to transmit its training updates.
Our results show a significant trade-off between the convergence speed and the communication
overhead due to the training, stressing the importance of inferring agent convergence.

Future work on the subject may involve more general solutions based on hierarchical DRL
or meta-learning techniques that can apply to different problems in which the cost of learning
is a concern. In particular, we consider promising to combine our approach with adaptive ex-
ploration schemes, avoiding unnecessary exploration when the communication bottleneck limits
the training process.

157



158



8
Conclusions

In this thesis, we tried to provide a comprehensive framework that can handle various aspects
of dynamic networks, from topology mapping to resource distribution. The proposed archi-

tecture is based on a distribution of network functionalities among multiple intelligent units
and leads to consistent advantages in numerous fields, from autonomous cars to Unmanned
Aerial Vehicle (UAV) swarm applications. According to our vision, telecommunication systems
must abandon their monolithic architecture in favor of solutions based on higher flexibility,
capable of self-tuning and addressing the immediate needs of the end users. This shift enables
new and specific services, from remote surgery to wildfire monitoring, over the current net-
work facilities, accelerating technological progress toward the fourth industrial revolution. In
particular, telecommunication systems must not solely keep pace with the current technology
but stand ready to support innovative applications that we cannot even conceive at this mo-
ment. To this end, we should base network management on extremely adaptable protocols and
techniques, promoting the continuous evolution of telecommunication technology according to
human desires.

Inside the thesis, we addressed three different and complementary aspects of the orches-
tration of dynamic networks. At first, we focused on designing a new tracking framework to
build accurate network maps while minimizing the consumption of communication resources.
In our approach, a centralized entity collects information and tracks the overall network evolu-
tion while the communication control is distributed among all the network nodes. Hence, each
node tunes its data rate according to a partial knowledge of the network status, initializing
new transmissions whenever the urgency of its local information overcomes a certain level. We
showed that adjusting communication to the information urgency is essential for improving the
tracking accuracy, and our architecture outperforms a standard approach that broadcasts node
states periodically. We test the proposed system in an autonomous driving scenario, where
vehicles broadcast local measurements to avoid car collisions, and in a drone swarm system,

159



Chapter 8

where UAVs explore a 3-dimensional environment. In the latter case, we also developed a novel
mobility model for tracking aerial devices and analyzed different transmission configurations
based on the LoRaWAN technology. In doing so, we verified that too advanced tracking frame-
works are inconvenient when operating in a system with limited bandwidth, leading to degraded
performance despite the higher accuracy of the model. Therefore, we should not solely adapt
communication to the application but also perform the inverse operation, tuning the tracking
parameters depending on the channel conditions.

The second part of this thesis takes a further step toward managing dynamic networks, an-
alyzing how to exploit multi-agent Machine Learning (ML) for controlling the single network
components. In this case, the goal was not to barely estimate the network status but to co-
ordinate the different nodes, allowing them to accomplish missions such as area surveillance,
emergency intervention, data muling, and many others. In our vision, each node acts as an
autonomous unit that takes decisions in real-time, without central coordination but with only a
partial vision of the overall network status. We faced this problem by adopting a Multi-Agent
Reinforcement Learning (MARL) approach, associating each node with a learning agent that
gains more rewards as it gets closer to the mission achievement. In doing so, we highlighted that
the optimal control policy unavoidably depends on the communication process by which local
agents acquire new information about the system. At first, we considered the ideal scenario
where all the units share a unique perception of the environment, limiting the coordination
problem to the estimation of other agents’ actions. Hence, we designed a new ML framework
that jointly addresses communication and control in networks, proving that adapting the infor-
mation dissemination to the control task leads to impressive benefits in cyber-physical systems.
We can naturally integrate these results with the framework presented in the first part of the
thesis, taking advantage of the tracking algorithms we developed to improve the perception of
environment conditions.

The last part of this thesis discussed how to manage the different types of resources that
characterize the network scenario depicted in the first two parts. In this regard, we emphasized
the benefits of the Network Slicing (NS) paradigm, which enables the softwarization of network
resources and the definition of multiple logical networks over the same physical infrastructure.
Hence, we designed a MARL architecture that assigns each network component to an intelligent
unit encharged for allocating the local network resources. In our system, each agent must learn
how to coordinate with the others, prioritize the traffic of critical services, e.g., remote control
or emergency communication, and address specific Quality of Service (QoS) requirements. The
distribution of the control tasks made it possible to increase the overall flexibility since the
learned strategy can adapt to different network topologies without additional training. The
proposed architecture naturally integrates with the framework outlined in the rest of the thesis,
allowing us to optimize resources in real time depending on the requirements of tracking and
control functions. At the same time, using intelligent units to manage dynamic networks does
not come for free since part of the available resources must be devoted to training the learning
algorithms. In the last chapter of the thesis, we designed a model for such a problem, named
the cost of learning, and discussed some strategies for balancing resources among network users

160



Conclusions

and learning agents. Our results emphasize that speeding up the algorithm convergence is not
always convenient since it increases the system flexibility but degrades performance on a short
time horizon.

We expect multi-agent control systems, such as the one presented in this thesis, to provide fu-
ture telecommunication networks with a flexibility never reached, supporting scientific progress
toward a new kind of technology that continuously adapts to human needs. At the same time,
our results showed that constant retraining of the agents is paramount for refining network
functions and avoiding sticking to specific use cases. The scientific literature provides many
instruments toward this goal, including the Transfer Learning (TL) and Continual Learning
(CL) paradigms, which open up new optimization approaches based on adaptability and not
strictly on efficiency. However, there is still a lack of thoughtful investigation of how to correctly
balance the network resources among end users while gathering the experience necessary for
training ML algorithms. The cost of the learning problem presented in the last chapter goes
beyond telecommunications since it affects all types of resources, from computational power
to communication bandwidth, used for supporting artificial intelligence. In future work, we
want to pursue this path, studying new models for evaluating resource-constrained scenarios or-
chestrated by intelligent entities and proposing innovative solutions to manage the interactions
between learning algorithms and end users. In doing so, we want to provide a new approach to
designing engineering systems, focusing on the importance of technology innovation alongside
immediate performance.

161



162



A
Unscented Kalman Filtering

The Kalman Filter (KF) is a well-known recursive algorithm to estimate an unknown variable
from a series of consecutive noisy measurements. In particular, the KF exploits a data

fusion process, providing an output that is more accurate than any estimate obtained with a
single measurement alone. The algorithm assumes that the target variable, named state, evolves
according to a function f(·) while the measurements are provided by a function m(·). Given
the system state x(t) at time t, the future state x(t + T ) and the state observation o(t) are
given by the equations: x(t+ T ) = f(x(t)) + ζ(t),

o(t) = m(x(t)) + υ(t).
(A.1)

In particular, ζ(t) and υ(t) represent the process and measurement noises at time t and are
usually modeled as independent Gaussian processes with zero mean and covariance matrices
Q and R, respectively. In order to compute the state estimation x̂, it is necessary to define
all the parameters in (A.1), including the functions f(·) and m(·). Hence, the KF algorithm
is organized in two iterative phases: the predictive step uses the past information to compute
the a priori state estimation x̂(t+T |t); the update step integrates the new observation o(t+T )

with x̂(t+ T |t), providing the a posteriori state estimation x̂(t+ T ). This procedure does not
solely provide the best state estimate but the estimation accuracy also, which is represented by
the covariance matrix Px.

The original KF designed in [22] only enables us to consider linear equations for describing
the system state evolution and measurement. In this thesis, we exploit more advanced functions
for f(·), as the Constant Turn Rate and Acceleration (CTRA) and 3-Dimensional CTRA (3D-
CTRA) models presented in Chapters 2 and 3, respectively. To overcome such a problem, we
implement the Unscented Kalman Filter (UKF), an extended version of the classical KF that
allows us to handle non-linear equation systems [23]. In this case, the state information is

163



Chapter A

summarized by a set of particles, named sigma points, which go through functions f(·) and
h(·) at each step of the algorithm. Each particle is associated with a weight that decreases
proportionally to its mathematical distance from the state, thus representing the estimation
uncertainty. After the predictive and update steps, the best state estimate is computed as
a weighted average of the sigma points, according to the so-called Unscented Transformation
(UT). In the literature, there are different techniques for computing the sigma points and the
related weights: in this thesis, we consider the UT proposed in [225].

In the following, we describe the operations involved by the UKF algorithm, assuming that
the process and measurement noises are purely additive∗. Let us call x̂(t) and Px(t) = E[(x(t)−
x̂(t))(x(t) − x̂(t))T ] the system state estimation and the related covariance matrix at time t,
respectively. First, the state is encoded into 2L+ 1 sigma points χ0(t), χ1(t), ..., χ2L(t), which
are computed according to the following UT:

χ0(t) = x̂(t); (A.2)

χi(t) = x̂(t) +
(√

(L+ λ)Px(t)
)
i
, i = 1, ..., L; (A.3)

χi(t) = x̂(t) +
(√

(L+ λ)Px(t)
)
i−L

, i = L+ 1, ..., 2L. (A.4)

In the above equations, L is the dimension of x,
(√

(L+ λ)Px(t)
)
i
indicates the i-th row of the

square root of (L + λ)Px(t), λ is a scaling parameter, and α ∈ R represents the sigma points
spread around χ0(t). The value of λ is computed as α2(L+ k)−L, where k is another tunable
parameter, customarily set to 0. Each of the sigma points is then associated to a set of scalar
weights wmi and wci , whose values are:

wm0 = λ/(L+ λ); (A.5)
wc0 = λ/(L+ λ) + 1− α2 + β; (A.6)
wmi = wci = λ/ (2(L+ λ)) , i = 1, ..., 2L. (A.7)

In the above equations, β is a constant value tuned according to the system state distribution.
In the conventional case where x is Gaussian, the optimal value for β is 2.

When the UKF algorithm performs the predictive step, each sigma point is propagated
through the (possibly non-linear) function f(·), given in the first equation of (A.1), thus gener-
ating a new set of sigma points: f (χi(t)) , i = 0, 1, ..., 2L. The new sigma points are used to
compute the a priori state estimation x̂(t+ T |t) and the related covariance matrix Px(t+ T |t):

x̂(t+ T |t) =
2L∑
i=0

wmi f (χi(t)) ; (A.8)

∗The UKF formulation for the case in which ζ(t) and υ(t) are not additive is more complex and out of the
scope of this thesis; for a deeper insight into the UKF algorithm, see [23].

164



Unscented Kalman Filtering

Px(t+ T |t) = Q+

2L∑
i=0

wci (f (χi(t))− x̂(t+ T |t))× (f (χi(t))− x̂(t+ T |t))T , (A.9)

where Q is the process noise covariance.
At the beginning of the update step, the original sigma points are propagated through the

measurement function h(·) given in the second equation of (A.1). The new points h (χi(t)),
i = 0, 1, ..., 2L, are used to predict the future observation ô(t+ T |t) and the related covariance
matrix Po(t+ T |t):

ô(t+ T |t) =
2L∑
i=0

wmi h (χi(t)) ; (A.10)

Po(t+ T |t) = R+

2L∑
i=0

wci (h (χi(t))− ô(t+ T |t))× (h (χi(t))− ô(t+ T |t))T ; (A.11)

where R is the measurement noise covariance. The optimal Kalman gain is then computed
as K = Pxo (Pxo)

−1, where (·)−1 indicates the inversion operation and Pxo is the residual
covariance matrix:

Pxo =

2L∑
i=0

wci (χi(t+ T |t)− x̂(t+ T |t))× (ξi(t+ T |t)− ô(t+ T |t))T . (A.12)

Finally, given the new observation o(t+ T ), the a posteriori state estimation x̂(t+ T ) and the
related covariance matrix Px(t+ T ) are obtained as

x̂(t+ T ) =x̂(t+ T |t) +K (o(t+ T )− ô(t+ T |t)) ; (A.13)
Px(t+ T ) =Px(t+ T |t)−KPo(t+ T |t)KT . (A.14)

Hence, as new observations become available, the algorithm repeats the above steps iteratively.

165



166



B
Reinforcement Learning

The Reinforcement Learning (RL) paradigm is considered one of the main branches of Ma-
chine Learning (ML), together with the supervised and unsupervised frameworks. Differ-

ently from other approaches, RL does not solely aim to solve specific classification or regression
problems, but its goal is to estimate the optimal decision-making strategy to maximize the long-
term performance of a target system [110]. In particular, RL algorithms do not need labeled
data to carry out the training phase but associate each possible agent action with a quality
value.

In a RL scenario, the target system is modeled as a Markov Decision Process (MDP), which
is a powerful mathematical tool used to represent decision-making problems [226]. In particular,
a MDP is described by a tuple (S,A, P (·), r(·)), where S is the state space, A is the action
space, P : S2×A → [0, 1] is the state transition probability function and r : S2×A → R is the
reward function. In particular, P (s, s′, a) is the probability that action a in state s will lead to
state s′, while r(s, s′, a) is the immediate reward received after a transition from s to s′ due to
action a. The time is discretized into slots t ∈ Z+ so that, at any slot, the agent observes the
system state s(t) ∈ S, performs an action a(t) ∈ A and receives a reward r(t) ∈ R. Under these
assumptions, the future state s(t+ 1) depends uniquely on the previous state s(t) and the last
agent action a(t).

We consider that the agent chooses new action according to a policy π : S×A → [0, 1], where
π(s, a) is the probability to take the action a from state s. The aim of any RL algorithm is to
determine a policy that maximizes the discounted return, defined as

G(t) =

∞∑
τ=0

λτr(t+ τ), (B.1)

where λ ∈ (0, 1) is the so-called discount factor. Particularly, if λ→ 0, the algorithm will behave

167



Chapter B

in a myopic manner, taking actions that can acquire high reward in the short term; instead,
if λ → 1, the algorithm will prioritize the actions that bring more benefits in the long term.
If the environment is partially observable, the agent perceives the state through a function
Po : S → O, associating each state s ∈ S with an observation o ∈ O. In this case, the domain
of the policy function is then given by the observation space O.

To maximize the expected G(t), we need to estimate the quality of each possible state-
action pair, associating each state with the optimal action. Given a policy π, an RL algorithm
associates each state s ∈ S with a state-value Vπ(s) and each state-action pair (s, a) with a
Q-value Qπ(s, a). Hence, Vπ(s) represents the expected discounted return achieved following
the strategy π from state s:

Vπ(s) = E [G(t)|s(t) = s, π] . (B.2)

Instead, Qπ(s, a) represents the expected discounted return obtained by choosing action a in
state s and following the policy π in the future:

Qπ(s, a) = E[G(t)|s(t) = s, a(t) = a, π], (B.3)

In particular, the Bellman optimality equation ensures that the optimal policy π∗ provides the
maximum value of both Vπ(s) and Qπ(s, a), ∀ s ∈ S, a ∈ A:

Vπ∗(s) = max
π

Vπ(s), ∀ s ∈ S. (B.4)

Qπ∗(s, a) = max
π

Qπ(s, a), ∀ (s, a) ∈ S ×A. (B.5)

An explicit solution of the Bellman equation is only possible in straightforward problems,
while realistic scenarios require adopting more complex techniques. One of the most popular
classes of RL methods is temporal difference learning, which enables learning the optimal policy
according to a bootstrapping approach. In this case, the algorithm updates the values of states
and actions according to both the experience samples and the current estimate of Vπ(·) and
Qπ(·). Two examples of temporal difference methods are the well-known State-Action-Reward-
State-Action (SARSA) and Q-Learning algorithms [227]. The first is an on-policy technique
that updates Q(·) as

Qnew(s(t), a(t)) = (1− α)Q(s(t), a(t)) + α (r(t) + λQ(s(t+ 1), a(t+ 1))) . (B.6)

Instead, Q-learning follows an off-policy approach, and updates Q(s(t), a(t)) as

Qnew(s(t), a(t)) = (1− α)Q(s(t), a(t)) + α
(
r(t) + λmax

a
Q(s(t+ 1), a)

)
. (B.7)

In the above equations, the parameter α ∈ (0, 1) is called learning rate and determines the
convergence speed of the algorithm. Therefore, SARSA updates Q(s(t), a(t)) using Q(s(t +

1), a(t+ 1)), i.e., the estimated Q-value associated with the state-action pair seen at slot t+ 1.
Instead, Q-learning performs the same operation considering the maximum Q-value associated

168



Reinforcement Learning

with the state seen at slot t + 1. It was proven that both algorithms converge to the optimal
policy if every observation-action pair is visited infinitely often.

Another well known RL algorithms is Double Q-Learning, which is an extension of (B.7)
with faster convergence [130]. In this case, we define two functions Qprimary(·) and Qtarget(·),
named primary and target Q-value functions, respectively. While the agent exploits the outputs
of Qprimary(·) to take new actions in the environment, Qtarget(·) is used to estimate future Q-
values. Hence, Qprimary(·) is updated as:

Qprimary
new (s(t), a(t)) =(1− α)Qprimary(s(t), a(t))

+ α

(
r(t) + λQprimary(s(t+ 1), argmax

a∈A
Qtarget(s(t+ 1), a))

)
.

(B.8)

As the training goes on, theQtarget(·) architecture is periodically replaced with that ofQprimary(·).
This scheme reduces the probability that the outputs of the Q-value function diverge, making
the learning process more stable.

If the state and action spaces get too complex, conventional RL approaches may fail to
determine the optimal policy because of the curse of dimensionality [228]. To address such a
problem, the Deep Reinforcement Learning (DRL) paradigm makes use of deep Neural Networks
(NNs) to estimate the value functions V (·) and Q(·). In particular, DRL algorithms are capable
of handling continuous state and action spaces, which means that |S × A| → ∞.

169



170



References

[1] F. Mason, M. Giordani, F. Chiariotti, A. Zanella, and M. Zorzi, “An adaptive broadcasting
strategy for efficient dynamic mapping in vehicular networks,” IEEE Transactions on
Wireless Communications, vol. 19, no. 8, pp. 5605–5620, Aug. 2020.

[2] H. Hartenstein and L. Laberteaux, “A tutorial survey on vehicular ad hoc networks,”
IEEE Communications Magazine, vol. 46, no. 6, pp. 164–171, Jun. 2008.

[3] E. Hossain, G. Chow, V. C. Leung, R. D. McLeod, J. Mišić, V. W. Wong, and O. Yang,
“Vehicular telematics over heterogeneous wireless networks: A survey,” Computer Com-
munications, vol. 33, no. 7, pp. 775–793, May 2010.

[4] M. Amadeo, C. Campolo, and A. Molinaro, “Enhancing IEEE 802.11 p/WAVE to provide
infotainment applications in VANETs,” Ad Hoc Networks, vol. 10, no. 2, pp. 253–269, Sep.
2012.

[5] 3GPP, “Service requirements for enhanced V2X scenarios,” 3rd Generation Partnership
Project (3GPP), Technical Specification (TS) 22.186, 2017.

[6] N. Lu, N. Cheng, N. Zhang, X. Shen, and J. W. Mark, “Connected Vehicles: Solutions
and Challenges,” IEEE Internet of Things Journal, vol. 1, no. 4, pp. 289–299, Aug. 2014.

[7] National Highway Traffic Safety Administration (NHTSA), “Federal motor vehicle safety
standards; V2V communications,” Federal Register, vol. 82, no. 8, pp. 3854–4019, Jan.
2017.

[8] N. Alam and A. G. Dempster, “Cooperative Positioning for Vehicular Networks: Facts
and Future,” IEEE Transactions on Intelligent Transportation Systems, vol. 14, no. 4, pp.
1708–1717, Dec. 2013.

[9] L. N. Balico, A. A. F. Loureiro, E. F. Nakamura, R. S. Barreto, R. W. Pazzi, and H. A.
B. F. Oliveira, “Localization Prediction in Vehicular Ad Hoc Networks,” IEEE Commu-
nications Surveys and Tutorials, vol. 20, no. 4, pp. 2784–2803, May 2018.

[10] S. Yousefi and M. S. Mousavi and M. Fathy, “Vehicular Ad Hoc Networks (VANETs):
Challenges and Perspectives,” in 6th International Conference on ITS Telecommunica-
tions, Jun. 2006, pp. 761–766.

[11] C. Joo and A. Eryilmaz, “Wireless scheduling for information freshness and synchrony:
Drift-based design and heavy-traffic analysis,” IEEE/ACM Transactions on Networking,
vol. 26, no. 6, pp. 2556–2568, Dec. 2018.

171



[12] L. Wischhof and H. Rohling, “Congestion control in vehicular ad hoc networks,” in Inter-
national Conference on Vehicular Electronics and Safety, Oct. 2005, pp. 58–63.

[13] G. Caizzone, P. Giacomazzi, L. Musumeci, and G. Verticale, “A power control algorithm
with high channel availability for vehicular ad hoc networks,” in IEEE International
Conference on Communications (ICC), May 2005, pp. 3171–3176.

[14] C. L. Huang, Y. P. Fallah, and R. Sengupta, “Analysis of aggregated power level and rate-
power control designs for status update messages in VANETs,” in IEEE 6th International
Conference on Mobile Adhoc and Sensor Systems (MASS), Oct. 2009, pp. 615–620.

[15] C. Bisdikian, L. M. Kaplan, and M. B. Srivastava, “On the quality and value of informa-
tion in sensor networks,” ACM Transactions on Sensor Networks (TOSN), vol. 9, no. 4,
pp. 1–26, Jul. 2013.

[16] M. Giordani, A. Zanella, T. Higuchi, O. Altintas, and M. Zorzi, “Investigating Value of In-
formation in Future Vehicular Communications,” in 2nd IEEE Connected and Automated
Vehicles Symposium (CAVS), Sep. 2019, pp. 1–5.

[17] M. Giordani, T. Higuchi, A. Zanella, O. Altintas, and M. Zorzi, “A framework to assess
value of information in future vehicular networks,” in 1st ACM MobiHoc Workshop on
Technologies, mOdels, and Protocols for Cooperative Connected Cars, Jul. 2019, pp. 31–36.

[18] T. Higuchi, M. Giordani, A. Zanella, M. Zorzi, and O. Altintas, “Value-anticipating V2V
communications for cooperative perception,” in IEEE Intelligent Vehicles Symposium
(IV), Jun. 2019, pp. 1947–1952.

[19] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent development and appli-
cations of SUMO-Simulation of Urban MObility,” International Journal On Advances in
Systems and Measurements, vol. 5, no. 3, pp. 128–138, Dec. 2012.

[20] A. Boukerche, H. A. Oliveira, E. F. Nakamura, and A. A. Loureiro, “Vehicular ad hoc
networks: A new challenge for localization-based systems,” Computer Communications,
vol. 31, no. 12, pp. 2838–2849, Jul. 2008.

[21] H. S. Ramos, A. Boukerche, R. W. Pazzi, A. C. Frery, and A. A. F. Loureiro, “Cooperative
target tracking in vehicular sensor networks,” IEEE Wireless Communications, vol. 19,
no. 5, pp. 66–73, Oct. 2012.

[22] R. Kalman, “A new approach to linear filtering and prediction problems,” Transactions
of the ASME - Journal of basic Engineering, vol. 82, pp. 35–45, Jan. 1960.

[23] E. A. Wan and R. V. D. Merwe, “The unscented Kalman filter for nonlinear estimation,” in
IEEE Adaptive Systems for Signal Processing, Communications, and Control Symposium,
Oct. 2000, pp. 153–158.

172



[24] P. Del Moral, “Nonlinear filtering: Interacting particle resolution,” Comptes Rendus de
l’Académie des Sciences-Series I-Mathematics, vol. 325, no. 6, pp. 653–658, Sep. 1997.

[25] P. Lytrivis, G. Thomaidis, M. Tsogas, and A. Amditis, “An advanced cooperative path
prediction algorithm for safety applications in vehicular networks,” IEEE Transactions
on Intelligent Transportation Systems, vol. 12, no. 3, pp. 669–679, Sep. 2011.

[26] A. U. Peker, O. Tosun, and T. Acarman, “Particle filter vehicle localization and map-
matching using map topology,” in IEEE Intelligent Vehicles Symposium (IV), 2011, pp.
248–253.

[27] A. T. Akabane, R. W. Pazzi, E. R. M. Madeira, and L. A. Villas, “Modeling and Prediction
of Vehicle Routes Based on Hidden Markov Model,” in IEEE 86th Vehicular Technology
Conference (VTC-Fall), Sep. 2017, pp. 1–5.

[28] A. B. Poritz, “Hidden markov models: a guided tour,” in International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), Apr. 1988, pp. 7–13.

[29] A. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum decod-
ing algorithm,” IEEE Transactions on Information Theory, vol. 13, no. 2, pp. 260–269,
Apr. 1967.

[30] M. Roth, G. Hendeby, and F. Gustafsson, “EKF/UKF maneuvering target tracking using
coordinated turn models with polar/Cartesian velocity,” in 17th International Conference
on Information Fusion (FUSION), Jul. 2014, pp. 1–8.

[31] C. M. Kang, S. J. Jeon, S. Lee, and C. C. Chung, “Parametric trajectory prediction of
surrounding vehicles,” in IEEE International Conference on Vehicular Electronics and
Safety (ICVES), Jun. 2017, pp. 26–31.

[32] T. King, H. Füßler, M. Transier, and W. Effelsberg, “Dead-reckoning for position-based
forwarding on highways,” in International Workshop on Intelligent Transportation (WIT),
Mar. 2006, pp. 199–204.

[33] D. Wang, J. Liao, Z. Xiao, X. Li, and V. Havyarimana, “Online-SVR for vehicular position
prediction during GPS outages using low-cost INS,” in IEEE 26th Annual International
Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Aug. 2015,
pp. 1945–1950.

[34] J. Park, D. Li, Y. L. Murphey, J. Kristinsson, R. McGee, M. Kuang, and T. Phillips, “Real
time vehicle speed prediction using a neural network traffic model,” in The International
Joint Conference on Neural Networks, Jul. 2011, pp. 2991–2996.

[35] N. Deo, A. Rangesh, and M. M. Trivedi, “How Would Surround Vehicles Move? A Unified
Framework for Maneuver Classification and Motion Prediction,” IEEE Transactions on
Intelligent Vehicles, vol. 3, no. 2, pp. 129–140, Jun. 2018.

173



[36] C. Hermes, C. Wohler, K. Schenk, and F. Kummert, “Long-term vehicle motion predic-
tion,” in IEEE Intelligent Vehicles Symposium (IV), Jun. 2009, pp. 652–657.

[37] A. Houenou, P. Bonnifait, V. Cherfaoui, and W. Yao, “Vehicle trajectory prediction based
on motion model and maneuver recognition,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, Nov. 2013, pp. 4363–4369.

[38] Y. J. Li, “An overview of the DSRC/WAVE technology,” in International Conference on
Heterogeneous Networking for Quality, Reliability, Security and Robustness, Nov. 2010,
pp. 544–558.

[39] D. Jiang and L. Delgrossi, “IEEE 802.11p: Towards an international standard for wireless
access in vehicular environments,” in Vehicular Technology Conference (VTC-Spring),
May 2008, pp. 2036–2040.

[40] G. Bansal, J. B. Kenney, and C. E. Rohrs, “LIMERIC: A Linear Adaptive Message Rate
Algorithm for DSRC Congestion Control,” IEEE Transactions on Vehicular Technology,
vol. 62, no. 9, pp. 4182–4197, Nov. 2013.

[41] H. A. Omar, W. Zhuang, and L. Li, “VeMAC: A TDMA-Based MAC Protocol for Reliable
Broadcast in VANETs,” IEEE Transactions on Mobile Computing, vol. 12, no. 9, pp. 1724–
1736, Sep. 2013.

[42] N. Taherkhani and S. Pierre, “Centralized and localized data congestion control strat-
egy for vehicular ad hoc networks using a machine learning clustering algorithm,” IEEE
Transactions on Intelligent Transportation Systems, vol. 17, no. 11, pp. 3275–3285, Nov.
2016.

[43] S. Rezaei, R. Sengupta, H. Krishnan, X. Guan, and R. Bhatia, “Tracking the position
of neighboring vehicles using wireless communications,” Transportation Research Part C:
Emerging Technologies, vol. 18, no. 3, pp. 335–350, Jun. 2010.

[44] C. Huang, Y. P. Fallah, R. Sengupta, and H. Krishnan, “Adaptive intervehicle commu-
nication control for cooperative safety systems,” IEEE Network, vol. 24, no. 1, pp. 6–13,
Jan. 2010.

[45] Y. P. Fallah, C. Huang, R. Sengupta, and H. Krishnan, “Analysis of information dis-
semination in vehicular ad-hoc networks with application to cooperative vehicle safety
systems,” IEEE Transactions on Vehicular Technology, vol. 60, no. 1, pp. 233–247, Jan.
2011.

[46] F. Richards, “A flexible growth function for empirical use,” Journal of experimental
Botany, vol. 10, no. 2, pp. 290–301, Jun. 1959.

[47] M. Tsogas, A. Polychronopoulos, and A. Amditis, “Unscented Kalman filter design for
curvilinear motion models suitable for automotive safety applications,” in 7th Interna-
tional Conference on Information Fusion, Jul. 2005, pp. 1295–1302.

174



[48] B. Cheng, A. Rostami, M. Gruteser, J. B. Kenney, G. Bansal, and K. Sjoberg, “Perfor-
mance evaluation of a mixed vehicular network with CAM-DCC and LIMERIC vehicles,”
in IEEE 16th International Symposium on A World of Wireless, Mobile and Multimedia
Networks (WoWMoM), Jun. 2015, pp. 1–6.

[49] J. Benin, M. Nowatkowski, and H. Owen, “Vehicular network simulation propagation loss
model parameter standardization in ns-3 and beyond,” in IEEE Southeastcon, Mar. 2012,
pp. 1–5.

[50] F. Abrate, A. Vesco, and R. Scopigno, “An analytical packet error rate model for WAVE
receivers,” in IEEE Vehicular Technology Conference (VTC Fall), Sep. 2011, pp. 1–5.

[51] M. Boban, X. Gong, and W. Xu, “Modeling the evolution of line-of-sight blockage for
v2v channels,” in IEEE 84th Vehicular Technology Conference (VTC-Fall), Sep. 2016, pp.
1–7.

[52] B. Kim and K. Yi, “Probabilistic and holistic prediction of vehicle states using sensor
fusion for application to integrated vehicle safety systems,” IEEE Transactions on Intel-
ligent Transportation Systems, vol. 15, no. 5, pp. 2178–2190, Oct. 2014.

[53] T. Driver, “Long-Term Prediction of GPS Accuracy: Understanding the Fundamentals,”
20th International Technical Meeting of the Satellite Division of The Institute of Naviga-
tion, vol. 2007, pp. 152–163, Sep. 2007.

[54] G. Falco, M. Pini, and G. Marucco, “Loose and tight GNSS/INS integrations: Comparison
of performance assessed in real urban scenarios,” Sensors, vol. 17, no. 2, pp. 255–280, Jan.
2017.

[55] 3GPP, “Study on NR positioning support,” 3rd Generation Partnership Project (3GPP),
Technical Specification (TS) 38.855, 2018.

[56] F. Mason, M. Capuzzo, D. Magrin, F. Chiariotti, A. Zanella, and M. Zorzi, “Remote
tracking of UAV swarms via 3D mobility models and LoRaWAN communications,” IEEE
Transactions on Wireless Communications, vol. 21, no. 5, pp. 2953–2968, May 2022.

[57] U. F. A. Administration, “FAA Aerospace Forecast, Fiscal Years 2019-2039,” 2019.
[Online]. Available: https://www.faa.gov/news/updates/?newsId=93646

[58] A. Fotouhi, H. Qiang, M. Ding, M. Hassan, L. G. Giordano, A. Garcia-Rodriguez, and
J. Yuan, “Survey on UAV cellular communications: Practical aspects, standardization
advancements, regulation, and security challenges,” IEEE Communications Surveys and
Tutorials, vol. 21, no. 4, pp. 3417–3442, Mar. 2019.

[59] S. Sekander, H. Tabassum, and E. Hossain, “Multi-tier drone architecture for 5G/B5G
cellular networks: Challenges, trends, and prospects,” IEEE Communications Magazine,
vol. 56, no. 3, pp. 96–103, Mar. 2018.

175

https://www.faa.gov/news/updates/?newsId=93646


[60] H. Huang and A. V. Savkin, “Towards the Internet of Flying Robots: A survey,” MDPI
Sensors, vol. 18, no. 11, pp. 4038–4058, Nov. 2018.

[61] T. Long, M. Ozger, O. Cetinkaya, and O. B. Akan, “Energy neutral Internet of Drones,”
IEEE Communications Magazine, vol. 56, no. 1, pp. 22–28, Jan. 2018.

[62] B. Hament and P. Oh, “Unmanned aerial and ground vehicle (UAV-UGV) system proto-
type for civil infrastructure missions,” in IEEE International Conference on Consumer
Electronics (ICCE), Jan. 2018, pp. 1–4.

[63] V. Sharma, I. You, G. Pau, M. Collotta, J. Lim, and J. Kim, “LoRaWAN-based energy-
efficient surveillance by drones for intelligent transportation systems,” MDPI Energies,
vol. 11, no. 3, p. 573, Mar. 2018.

[64] D. Vasisht, Z. Kapetanovic, J. Won, X. Jin, R. Chandra, S. Sinha, A. Kapoor, M. Su-
darshan, and S. Stratman, “Farmbeats: An IoT platform for data-driven agriculture,” in
14th Symposium on Networked Systems Design and Implementation (NSDI), Sep. 2017,
pp. 515–529.

[65] B. Arbanas, A. Ivanovic, M. Car, M. Orsag, T. Petrovic, and S. Bogdan, “Decentralized
planning and control for UAV–UGV cooperative teams,” Autonomous Robots, vol. 42,
no. 8, pp. 1601–1618, Dec. 2018.

[66] A. Ismail, B. Bagula, and E. Tuyishimire, “Internet-of-things in motion: A UAV coalition
model for remote sensing in smart cities,” Sensors, vol. 18, no. 7, pp. 2184–2209, Jul.
2018.

[67] S. Zakaria, M. R. Mahadi, A. F. Abdullah, and K. Abdan, “Aerial platform reliability
for flood monitoring under various weather conditions: A review,” in GeoInformation for
Disaster Management Conference, Mar. 2018, pp. 295–314.

[68] J. Scherer, S. Yahyanejad, S. Hayat, E. Yanmaz, T. Andre, A. Khan, V. Vukadinovic,
C. Bettstetter, H. Hellwagner, and B. Rinner, “An autonomous multi-UAV system for
search and rescue,” in 1st Workshop on Micro Aerial Vehicle Networks, Systems, and
Applications for Civilian Use (DroNet), May 2015, pp. 33–38.

[69] J. Chen, T. Ma, and C. Su, “The study of UAV intelligent support mode based on bat-
tlefield networks,” in 2nd Advanced Information Technology, Electronic and Automation
Control Conference (IAEAC), Mar. 2017, pp. 1912–1915.

[70] C. V. Angelino, V. R. Baraniello, and L. Cicala, “UAV position and attitude estimation
using IMU, GNSS and camera,” in 15th International Conference on Information Fusion,
Jul. 2012, pp. 735–742.

[71] J. Dentler, S. Kannan, M. A. O. Mendez, and H. Voos, “A real-time model predictive po-
sition control with collision avoidance for commercial low-cost quadrotors,” in Conference
on Control Applications (CCA), Sep. 2016, pp. 519–525.

176



[72] J. C. Hodgson, S. M. Baylis, R. Mott, A. Herrod, and R. H. Clarke, “Precision wildlife
monitoring using unmanned aerial vehicles,” Scientific Reports, vol. 6, no. 1, pp. 1–7, Mar.
2016.

[73] O. Alvear, C. T. Calafate, N. R. Zema, E. Natalizio, E. Hernández-Orallo, J. C. Cano,
and P. Manzoni, “A discretized approach to air pollution monitoring using UAV-based
sensing,” Mobile Networks and Applications, vol. 23, no. 6, pp. 1693–1702, Dec. 2018.

[74] D. C. Tsouros, S. Bibi, and P. G. Sarigiannidis, “A review on UAV-based applications for
precision agriculture,” MDPI Information, vol. 10, no. 11, p. 349, Nov. 2019.

[75] J. Langhammer, J. Bernsteinová, and J. Miřijovskỳ, “Building a high-precision 2D hy-
drodynamic flood model using UAV photogrammetry and sensor network monitoring,”
MDPI Water, vol. 9, no. 11, p. 861, Nov. 2017.

[76] B. D. Anderson, B. Fidan, C. Yu, and D. Walle, “UAV formation control: Theory and
application,” in Recent advances in learning and control. Springer, Jan. 2008, pp. 15–33.

[77] J. Haxhibeqiri, F. Van den Abeele, I. Moerman, and J. Hoebeke, “LoRa scalability: A
simulation model based on interference measurements,” MDPI Sensors, vol. 17, no. 6, p.
1193, May 2017.

[78] J.-D. M. M. Biomo, T. Kunz, and M. St-Hilaire, “An enhanced Gauss-Markov mobility
model for simulations of unmanned aerial ad hoc networks,” in 7th IFIP Wireless and
Mobile Networking Conference (WMNC), May 2014, pp. 1–8.

[79] O. Bouachir, A. Abrassart, F. Garcia, and N. Larrieu, “A mobility model for UAV ad
hoc network,” in International Conference on Unmanned Aircraft Systems (ICUAS), May
2014, pp. 383–388.

[80] Y. Wan, K. Namuduri, Y. Zhou, and S. Fu, “A smooth-turn mobility model for airborne
networks,” IEEE Transactions on Vehicular Technology, vol. 62, no. 7, pp. 3359–3370,
Mar. 2013.

[81] J. Tiemann, F. Schweikowski, and C. Wietfeld, “Design of an UWB indoor-positioning
system for UAV navigation in GNSS-denied environments,” in International Conference
on Indoor Positioning and Indoor Navigation (IPIN), Oct. 2015, pp. 1–7.

[82] R. Opromolla, G. Inchingolo, and G. Fasano, “Airborne visual detection and tracking of
cooperative UAVs exploiting deep learning,” MDPI Sensors, vol. 19, no. 19, pp. 4332–4359,
Jan. 2019.

[83] D. Fan, F. Gao, B. Ai, G. Wang, Z. Zhong, Y. Deng, and A. Nallanathan, “Channel
estimation and self-positioning for UAV swarm,” IEEE Transactions on Communications,
vol. 67, no. 11, pp. 7994–8007, Aug. 2019.

177



[84] R. Mendrzik, D. Cabric, and G. Bauch, “Error bounds for terahertz MIMO positioning
of swarm UAVs for distributed sensing,” in International Conference on Communications
Workshops (ICC Workshops), May 2018, pp. 1–6.

[85] L. Vangelista, A. Zanella, and M. Zorzi, “Long-range IoT technologies: The dawn of
LoRa™,” in Future Access Enablers of Ubiquitous and Intelligent Infrastructures, Sep.
2015, pp. 51–58.

[86] F. Cuomo, M. Campo, A. Caponi, G. Bianchi, G. Rossini, and P. Pisani, “EXPLoRa:
Extending the Performance of LoRa by suitable spreading factor allocations,” in 13th
International Conference on Wireless and Mobile Computing, Networking and Communi-
cations (WiMob), Oct. 2017, pp. 1–8.

[87] N. Benkahla, H. Tounsi, S. Ye-Qiong, and M. Frikha, “Enhanced ADR for LoRaWAN
networks with mobility,” in 15th International Wireless Communications and Mobile
Computing Conference (IWCMC), Jun. 2019, pp. 1–6.

[88] K. Kousias, G. Caso, Ö. Alay, and F. Lemic, “Empirical analysis of LoRaWAN adaptive
data rate for mobile Internet of Things applications,” in MobiCom Workshop on Wireless
of the Students, by the Students, and for the Students (S3), Nov. 2019, pp. 9–11.

[89] A. Farhad, D. H. Kim, S. Subedi, and J. Y. Pyun, “Enhanced LoRaWAN adaptive data
rate for mobile Internet of Things devices,” MDPI Sensors, vol. 20, no. 22, p. 6466, Nov.
2020.

[90] Archimedes of Syracuse, “On Spirals,” ∼225BC.

[91] LoRa Alliance, “LoRaWAN™ 1.1 Specification,” Oct. 2017.

[92] D. Croce, M. Gucciardo, S. Mangione, G. Santaromita, and I. Tinnirello, “Impact of LoRa
imperfect orthogonality: Analysis of link-level performance,” IEEE Communications Let-
ters, vol. 22, no. 4, pp. 796–799, Apr. 2018.

[93] T. Saadawi and A. Ephremides, “Analysis, stability, and optimization of slotted ALOHA
with a finite number of buffered users,” IEEE Transactions on Automatic Control, vol. 26,
no. 3, pp. 680–689, Jun. 1981.

[94] V. Anantharam, “The stability region of the finite-user slotted ALOHA protocol,” IEEE
Transactions on information Theory, vol. 37, no. 3, pp. 535–540, May 1991.

[95] D. Sant, “Throughput of unslotted ALOHA channels with arbitray packet interarrival
time distributions,” IEEE Transactions on Communications, vol. 28, no. 8, pp. 1422–
1425, Aug. 1980.

[96] R. D. Yates, Y. Sun, D. Richard Brown, S. K. Kaul, E. Modiano, and S. Ulukus, “Age of
Information: An introduction and survey,” IEEE Journal on Selected Areas in Commu-
nications, vol. 39, no. 5, pp. 1183–1210, 2021.

178



[97] Semtech Corporation, “Sx1272 datasheet 2.01,” 2015.

[98] M. Fonder and M. V. Droogenbroeck, “Mid-air: A multi-modal dataset for extremely
low altitude drone flights,” in Conference on Computer Vision and Pattern Recognition
Workshop (CVPRW), Jun. 2019, pp. 553–562.

[99] N. S. Verification and M. Branch, “Global Positioning System (GPS) Standard Positioning
Service (SPS) performance analysis report,” William J. Hughes Technical Center, Tech.
Rep. 86, 2014.

[100] D. Magrin, M. Capuzzo, and A. Zanella, “A thorough study of LoRaWan performance
under different parameter settings,” IEEE Internet of Things Journal, vol. 7, no. 1, pp.
116–127, Jan. 2020.

[101] C. Goursaud and J. M. Gorce, “Dedicated Networks for IoT: PHY / MAC State of the
Art and Challenges,” EAI Endorsed Transactions on Internet of Things, vol. 1, no. 1, Oct.
2015.

[102] F. Venturini, F. Mason, F. Pase, F. Chiariotti, A. Testolin, A. Zanella, and M. Zorzi,
“Distributed reinforcement learning for flexible and efficient uav swarm control,” IEEE
Transactions on Cognitive Communications and Networking, vol. 7, no. 3, pp. 955–969,
Sep. 2021.

[103] N. Hossein Motlagh, T. Taleb, and O. Arouk, “Low-altitude unmanned aerial vehicles-
based Internet of Things services: Comprehensive survey and future perspectives,” IEEE
Internet of Things Journal, vol. 3, no. 6, pp. 899–922, Sep. 2016.

[104] H. Shakhatreh, A. H. Sawalmeh, A. Al-Fuqaha, Z. Dou, E. Almaita, I. Khalil, N. S.
Othman, A. Khreishah, and M. Guizani, “Unmanned Aerial Vehicles (UAVs): A survey
on civil applications and key research challenges,” IEEE Access, vol. 7, pp. 48 572–48 634,
Sep. 2019.

[105] R. Shakeri, M. A. Al-Garadi, A. Badawy, A. Mohamed, T. Khattab, A. K. Al-Ali, K. A.
Harras, and M. Guizani, “Design challenges of multi-UAV systems in cyber-physical appli-
cations: A comprehensive survey and future directions,” IEEE Communications Surveys
and Tutorials, vol. 21, no. 4, pp. 3340–3385, 4th quarter 2019.

[106] S. J. Chung, A. A. Paranjape, P. Dames, S. Shen, and V. Kumar, “A survey on aerial
swarm robotics,” IEEE Transactions on Robotics, vol. 34, no. 4, pp. 837–855, Aug. 2018.

[107] D. Baldazo, J. Parras, and S. Zazo, “Decentralized multi-agent deep reinforcement learn-
ing in swarms of drones for flood monitoring,” in European Signal Processing Conference
(EUSIPCO). EURASIP, Sep. 2019, pp. 1–5.

[108] D. Albani, D. Nardi, and V. Trianni, “Field coverage and weed mapping by UAV swarms,”
in International Conference on Intelligent Robots and Systems, Sep. 2017, pp. 4319–4325.

179



[109] K. D. Julian and M. J. Kochenderfer, “Distributed wildfire surveillance with autonomous
aircraft using deep reinforcement learning,” Journal of Guidance, Control, and Dynamics,
vol. 42, no. 8, pp. 1768–1778, Aug. 2019.

[110] R. S. Sutton, A. G. Barto et al., Introduction to reinforcement learning. MIT press
Cambridge, 1998.

[111] M. Verleysen and D. François, “The curse of dimensionality in data mining and time series
prediction,” in International work-conference on artificial neural networks, Jun. 2005, pp.
758–770.

[112] P. Hernandez-Leal, M. Kaisers, T. Baarslag, and E. M. de Cote, “A survey of learning in
multiagent environments: Dealing with non-stationarity,” in 3rd International Workshop
on Conflict Resolution in Decision Making (COREDEMA), Jul. 2017, pp. 1–64.

[113] L. Busoniu, R. Babuška, and B. De Schutter, “Multi-agent Reinforcement Learning: An
Overview,” Innovations in Multi-Agent Systems and Applications, vol. 310, pp. 113–147,
Nov. 2010.

[114] P. Hernandez-Leal, B. Kartal, and M. E. Taylor, “A survey and critique of multiagent
deep reinforcement learning,” Autonomous Agents and Multi-Agent Systems, vol. 33, no. 6,
pp. 750–797, Nov. 2019.

[115] R. Zanol, F. Chiariotti, and A. Zanella, “Drone mapping through multi-agent reinforce-
ment learning,” in IEEE Wireless Communications and Networking Conference (WCNC),
Apr. 2019, pp. 1–7.

[116] J. Cui, Y. Liu, and A. Nallanathan, “The application of multi-agent reinforcement learning
in UAV networks,” in IEEE International Conference on Communications Workshops
(ICC), May 2019, pp. 1–6.

[117] J. N. Foerster, Y. M. Assael, N. de Freitas, and S. Whiteson, “Learning to communicate
with deep multi-agent reinforcement learning,” in 30th International Conference on Neural
Information Processing Systems (NeurIPS), Dec. 2016, pp. 2145–2153.

[118] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-
level control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
Feb. 2015.

[119] F. A. Oliehoek, C. Amato et al., A concise introduction to decentralized POMDPs.
Springer, 2016.

[120] C. Wu, B. Ju, Y. Wu, X. Lin, N. Xiong, G. Xu, H. Li, and X. Liang, “UAV autonomous
target search based on deep reinforcement learning in complex disaster scene,” IEEE
Access, vol. 7, pp. 117 227–117 245, 2019.

180



[121] Y. H. Hsu and R. H. Gau, “Reinforcement learning-based collision avoidance and optimal
trajectory planning in UAV communication networks,” IEEE Transactions on Mobile
Computing, pp. 306–320, Jun. 2020.

[122] U. Challita, W. Saad, and C. Bettstetter, “Deep reinforcement learning for interference-
aware path planning of cellular-connected UAVs,” in IEEE International Conference on
Communications (ICC), May 2018.

[123] C. H. Liu, Z. Chen, J. Tang, J. Xu, and C. Piao, “Energy-efficient UAV control for effec-
tive and fair communication coverage: A deep reinforcement learning approach,” IEEE
Journal on Selected Areas in Communications, vol. 36, no. 9, pp. 2059–2070, Aug. 2018.

[124] X. Liu, Y. Liu, and Y. Chen, “Reinforcement learning in multiple-UAV networks: Deploy-
ment and movement design,” IEEE Transactions on Vehicular Technology, vol. 68, no. 8,
pp. 8036–8049, Jun. 2019.

[125] J. Hu, H. Zhang, L. Song, Z. Han, and H. V. Poor, “Reinforcement learning for a cellular
internet of UAVs: protocol design, trajectory control, and resource management,” IEEE
Wireless Communications, vol. 27, no. 1, pp. 116–123, Feb. 2020.

[126] T. Liu, Z. Zhang, H. Jiang, Y. Qian, K. Liu, J. Dang, and L. Wu, “Measurement-based
characterization and modeling for low-altitude UAV air-to-air channels,” IEEE Access,
vol. 7, pp. 98 832–98 840, 2019.

[127] R. Nair, P. Varakantham, M. Tambe, and M. Yokoo, “Networked distributed POMDPs: A
synthesis of distributed constraint optimization and POMDPs,” in 19th AAAI Conference
on Artificial Intelligence, Jul. 2005, pp. 133–139.

[128] A. Kumar, S. Zilberstein, and M. Toussaint, “Scalable multiagent planning using prob-
abilistic inference,” in International Joint Conference on Artificial Intelligence (IJCAI),
Jul. 2011, pp. 2140–2146.

[129] C. Zhang and V. R. Lesser, “Coordinated multi-agent reinforcement learning in networked
distributed POMDPs,” in 25th AAAI Conference on Artificial Intelligence, Aug. 2011, pp.
1–7.

[130] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double Q-
learning,” in 30th AAAI Conference on Artificial Intelligence, Mar. 2016, pp. 2094–2100.

[131] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han, “On the variance of the
adaptive learning rate and beyond,” in International Conference of Learning Representa-
tions (ICLR), Sep. 2020, pp. 1–13.

[132] K. He and J. Sun, “Convolutional neural networks at constrained time cost,” IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 5353–5360, Jun. 2015.

181



[133] S. Bianco, R. Cadene, L. Celona, and P. Napoletano, “Benchmark analysis of representa-
tive deep neural network architectures,” IEEE Access, vol. 6, pp. 64 270–64 277, 2018.

[134] J. Cheng, W. Chen, F. Tao, and C. L. Lin, “Industrial IoT in 5G environment towards
smart manufacturing,” Journal of Industrial Information Integration, vol. 10, pp. 10–19,
Jun. 2018.

[135] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial communica-
tion: Automation networks in the era of the Internet of Things and Industry 4.0,” IEEE
Industrial Electronics Magazine, vol. 11, no. 1, pp. 17–27, Mar. 2017.

[136] D. Zhang, P. Shi, Q.-G. Wang, and L. Yu, “Analysis and synthesis of networked control
systems: A survey of recent advances and challenges,” ISA Transactions, vol. 66, pp.
376–392, Jan. 2017.

[137] M. Klügel, M. H. Mamduhi, S. Hirche, and W. Kellerer, “AoI-penalty minimization for
networked control systems with packet loss,” in IEEE Conference on Computer Commu-
nications Workshops (INFOCOM WKSHPS), Apr. 2019, pp. 189–196.

[138] O. Ayan, M. Vilgelm, M. Klügel, S. Hirche, and W. Kellerer, “Age-of-information vs.
value-of-information scheduling for cellular networked control systems,” in IEEE 10th
International Conference on Cyber-Physical Systems (CPS/IoT), Apr. 2019, pp. 109–117.

[139] C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical
Journal, vol. 27, no. 3, pp. 379–423, Jul. 1948.

[140] D. Ritchie, “Shannon and Weaver: Unravelling the paradox of information,” Communi-
cation research, vol. 13, no. 2, pp. 278–298, Apr. 1986.

[141] T. Y. Tung, S. Kobus, J. P. Roig, and D. Gündüz, “Effective communications: A joint
learning and communication framework for multi-agent reinforcement learning over noisy
channels,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 8, pp. 2590–
2603, Jun. 2021.

[142] A. Lazaridou and M. Baroni, “Emergent multi-agent communication in the deep learning
era,” arXiv preprint, pp. 1–24, Jun. 2020.

[143] M. Y. I. Zia, J. Poncela, and P. Otero, “State-of-the-art underwater acoustic commu-
nication modems: Classifications, analyses and design challenges,” Wireless Personal
Communications, vol. 116, no. 2, pp. 1325–1360, Jan. 2021.

[144] Q. Fu, A. Song, F. Zhang, and M. Pan, “Reinforcement learning-based trajectory op-
timization for data muling with underwater mobile nodes,” IEEE Access, vol. 10, pp.
38 774–38 784, Apr. 2022.

[145] A. Kosta, N. Pappas, and V. Angelakis, “Age of information: A new concept, metric, and
tool,” Foundations and Trends in Networking, vol. 12, no. 3, pp. 162–259, Nov. 2017.

182



[146] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should one update?”
in International Conference on Computer Communications (INFOCOM), Mar. 2012.

[147] A. Maatouk, S. Kriouile, M. Assaad, and A. Ephremides, “The Age of Incorrect Infor-
mation: A new performance metric for status updates,” IEEE/ACM Transactions on
Networking, vol. 28, no. 5, pp. 2215–2228, Jul. 2020.

[148] F. Chiariotti, A. A. Deshpande, M. Giordani, K. Antonakoglou, T. Mahmoodi, and
A. Zanella, “QUIC-EST: A QUIC-enabled scheduling and transmission scheme to maxi-
mize VoI with correlated data flows,” IEEE Communications Magazine, vol. 59, no. 4, pp.
30–36, May 2021.

[149] X. Zheng, S. Zhou, and Z. Niu, “Urgency of Information for context-aware timely status
updates in remote control systems,” IEEE Transactions on Wireless Communications,
vol. 19, no. 11, pp. 7237–7250, Jul. 2020.

[150] L. Zhang, Y. Shi, T. Chen, and B. Huang, “A new method for stabilization of networked
control systems with random delays,” IEEE Transactions on automatic control, vol. 50,
no. 8, pp. 1177–1181, Aug. 2005.

[151] J. Lam, H. Gao, and C. Wang, “Stability analysis for continuous systems with two additive
time-varying delay components,” Systems and Control Letters, vol. 56, no. 1, pp. 16–24,
Jan. 2007.

[152] D. Yue, Q. L. Han, and J. Lam, “Network-based robust h∞ control of systems with
uncertainty,” Automatica, vol. 41, no. 6, pp. 999–1007, Jun. 2005.

[153] K. Liu, E. Fridman, and L. Hetel, “Networked control systems in the presence of scheduling
protocols and communication delays,” SIAM Journal on Control and Optimization, vol. 53,
no. 4, pp. 1768–1788, Aug. 2015.

[154] E. Fridman and M. Dambrine, “Control under quantization, saturation and delay: An
LMI approach,” Automatica, vol. 45, no. 10, pp. 2258–2264, Oct. 2009.

[155] L. X. Zhang, Z. P. Ning, and W. X. Zheng, “Observer-based control for piecewise-affine
systems with both input and output quantization,” IEEE Transactions on Automatic
Control, vol. 53, no. 4, pp. 5858–5865, Nov. 2017.

[156] Y. Zhang, J. Liu, and X. Ruan, “Iterative learning control for uncertain nonlinear net-
worked control systems with random packet dropout,” International Journal of Robust
and Nonlinear Control, vol. 29, no. 11, pp. 3529–3546, Jul. 2019.

[157] C. Wu, J. Liu, X. Jing, H. Li, and L. Wu, “Adaptive fuzzy control for nonlinear networked
control systems,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47,
no. 8, pp. 2420–2430, May 2017.

183



[158] H. Xu, Q. Zhao, and S. Jagannathan, “Finite-horizon near-optimal output feedback neural
network control of quantized nonlinear discrete-time systems with input constraint,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 26, no. 8, pp. 1776–1788, May
2015.

[159] C. Zhang and V. Lesser, “Coordinating multi-agent reinforcement learning with limited
communication,” in International Conference on Autonomous agents and multi-agent
systems (AAMAS), May 2013, pp. 1101–1108.

[160] A. OroojlooyJadid and D. Hajinezhad, “A review of cooperative multi-agent deep rein-
forcement learning,” arXiv preprint, pp. 1–81, Aug. 2019.

[161] D. Kim, S. Moon, D. Hostallero, W. J. Kang, T. Lee, K. Son, and Y. Yi, “Learning
to schedule communication in multi-agent reinforcement learning,” in 7th International
Conference on Learning Representations (ICLR), May 2019, pp. 1–17.

[162] M. H. M. Alkilabi, A. Narayan, and E. Tuci, “Cooperative object transport with a swarm
of e-puck robots: robustness and scalability of evolved collective strategies,” Swarm In-
telligence, vol. 11, no. 3, pp. 185–209, Dec. 2017.

[163] M. Doniec, I. Topor, M. Chitre, and D. Rus, “Autonomous, localization-free underwater
data muling using acoustic and optical communication,” in 13th International Symposiu-
mon Experimental Robotics (ISER), Jun. 2012, pp. 841–857.

[164] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint,
pp. 1–15, Jan. 2017.

[165] F. Mason, G. Nencioni, and A. Zanella, “Using distributed reinforcement learning for
resource orchestration in a network slicing scenario,” IEEE/ACM Transactions on Net-
working, pp. 1–15, 2022.

[166] 3GPP, “Service requirements for next generation new services and markets,” 3rd Genera-
tion Partnership Project (3GPP), Technical Specification 22.261, 2016.

[167] J. Navarro-Ortiz, P. Romero-Diaz, S. Sendra, P. Ameigeiras, J. J. Ramos-Munoz, and J. M.
Lopez-Soler, “A survey on 5G usage scenarios and traffic models,” IEEE Communications
Surveys and Tutorials, vol. 22, no. 2, pp. 905–929, Second quarter 2020.

[168] M. Yang, Y. Li, D. Jin, L. Zeng, X. Wu, and A. V. Vasilakos, “Software-defined and virtu-
alized future mobile and wireless networks: a survey,” Mobile Networks and Applications,
vol. 20, no. 1, pp. 4–18, Feb. 2015.

[169] P. Zhang, H. Yao, and Y. Liu, “Virtual network embedding based on computing, network,
and storage resource constraints,” IEEE Internet of Things Journal, vol. 5, no. 5, pp.
3298–3304, Oct. 2018.

184



[170] P. Rost, C. Mannweiler, D. S. Michalopoulos, C. Sartori, V. Sciancalepore, N. Sastry,
O. Holland, S. Tayade, B. Han, D. Bega et al., “Network slicing to enable scalability and
flexibility in 5G mobile networks,” IEEE Communications magazine, vol. 55, no. 5, pp.
72–79, May 2017.

[171] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network slicing and
softwarization: A survey on principles, enabling technologies, and solutions,” IEEE Com-
munications Surveys and Tutorials, vol. 20, no. 3, pp. 2429–2453, Third quarter 2018.

[172] P. Popovski, K. F. Trillingsgaard, O. Simeone, and G. Durisi, “5G wireless network slicing
for eMBB, URLLC, and mMTC: A communication-theoretic view,” IEEE Access, vol. 6,
pp. 55 765–55 779, Sep. 2018.

[173] M. Richart, J. Baliosian, J. Serrat, and J. L. Gorricho, “Resource slicing in virtual wireless
networks: A survey,” IEEE Transactions on Network and Service Management, vol. 13,
no. 3, pp. 462–476, Sep. 2016.

[174] P. Caballero, A. Banchs, G. de Veciana, and X. Costa-Pérez, “Multi-tenant radio access
network slicing: Statistical multiplexing of spatial loads,” IEEE Transactions on Network-
ing, vol. 25, no. 5, pp. 3044–3058, Oct. 2017.

[175] K. Samdanis, X. Costa-Perez, and V. Sciancalepore, “From network sharing to multi-
tenancy: The 5G network slice broker,” IEEE Communications Magazine, vol. 54, no. 7,
pp. 32–39, Jul. 2016.

[176] R. Trivisonno, R. Guerzoni, I. Vaishnavi, and A. Frimpong, “Network resource manage-
ment and QoS in SDN-enabled 5G systems,” in IEEE Global Communications Conference
(GLOBECOM), Dec. 2015, pp. 1–7.

[177] H. Halabian, “Distributed resource allocation optimization in 5G virtualized networks,”
IEEE Journal on Selected Areas in Communications, vol. 37, no. 3, pp. 627–642, Mar.
2019.

[178] M. Leconte, G. S. Paschos, P. Mertikopoulos, and U. C. Kozat, “A resource allocation
framework for network slicing,” in IEEE International Conference on Computer Commu-
nications (INFOCOM), Apr. 2018, pp. 2177–2185.

[179] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and
statistical learning via the alternating direction method of multipliers,” Foundations and
Trends in Machine Learning, vol. 3, no. 1, pp. 1–122, Jul. 2011.

[180] Y. Xiao, M. Hirzallah, and M. Krunz, “Distributed resource allocation for network slicing
over licensed and unlicensed bands,” IEEE Journal on Selected Areas in Communications,
vol. 36, no. 10, pp. 2260–2274, Oct. 2018.

185



[181] M. Hu, L. Zhuang, D. Wu, Y. Zhou, X. Chen, and L. Xiao, “Learning driven computation
offloading for asymmetrically informed edge computing,” IEEE Transactions on Parallel
and Distributed Systems, vol. 30, no. 8, pp. 1802–1815, Aug. 2019.

[182] F. Fossati, S. Moretti, P. Perny, and S. Secci, “Multi-resource allocation for network
slicing,” IEEE Transactions on Networking, vol. 28, no. 3, pp. 1311–1324, Jun. 2020.

[183] R. Alvizu, S. Troia, G. Maier, and A. Pattavina, “Matheuristic with machine-learning-
based prediction for software-defined mobile metro-core networks,” Journal of Optical
Communications and Networking, vol. 9, no. 9, pp. 19–30, Sep. 2017.

[184] Y. Hua, R. Li, Z. Zhao, X. Chen, and H. Zhang, “GAN-powered deep distributional
reinforcement learning for resource management in network slicing,” IEEE Journal on
Selected Areas in Communications, vol. 38, no. 2, pp. 334–349, Feb. 2020.

[185] A. Thantharate, R. Paropkari, V. Walunj, and C. Beard, “Deepslice: A deep learning
approach towards an efficient and reliable network slicing in 5G networks,” in IEEE 10th
Annual Ubiquitous Computing, Electronics Mobile Communication Conference, Oct. 2019,
pp. 762–767.

[186] Y. M. Saputra, D. T. Hoang, D. N. Nguyen, E. Dutkiewicz, D. Niyato, and D. I. Kim,
“Distributed deep learning at the edge: A novel proactive and cooperative caching frame-
work for mobile edge networks,” IEEE Wireless Communications Letters, vol. 8, no. 4,
pp. 1220–1223, Aug. 2019.

[187] Y. Hua, R. Li, Z. Zhao, X. Chen, and H. Zhang, “Gan-powered deep distributional rein-
forcement learning for resource management in network slicing,” IEEE Journal on Selected
Areas in Communications, vol. 38, no. 2, pp. 334–349, Feb. 2020.

[188] K. Suh, S. Kim, Y. Ahn, S. Kim, H. Ju, and B. Shim, “Deep reinforcement learning-based
network slicing for beyond 5G,” IEEE Access, vol. 10, pp. 7384–7395, 2022.

[189] J. Mei, X. Wang, K. Zheng, G. Boudreau, A. B. Sediq, and H. Abou-Zeid, “Intelligent ra-
dio access network slicing for service provisioning in 6G: A hierarchical deep reinforcement
learning approach,” IEEE Transactions on Communications, vol. 69, no. 9, pp. 6063–6078,
Sep. 2021.

[190] Y. Kim and H. Lim, “Multi-agent reinforcement learning-based resource management for
end-to-end network slicing,” IEEE Access, vol. 9, pp. 56 178–56 190, 2021.

[191] Y. Shao, R. Li, Z. Zhao, and H. Zhang, “Graph attention network-based drl for network
slicing management in dense cellular networks,” in IEEE Wireless Communications and
Networking Conference (WCNC), 2021, pp. 1–6.

[192] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on knowledge
and data engineering, vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

186



[193] T. Kimura, T. Kimura, A. Matsumoto, and K. Yamagishi, “Balancing quality of experi-
ence and traffic volume in adaptive bitrate streaming,” IEEE Access, vol. 9, pp. 15 530–
15 547, 2021.

[194] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in 12th International Confer-
ence on Neural Information Processing Systems, Nov. 1999, pp. 1008–1014.

[195] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in Interna-
tional conference on machine learning, Jun. 2016, pp. 1928–1937.

[196] H. Zhang, T. W. Weng, P. Y. Chen, C. J. Hsieh, and L. Daniel, “Efficient neural work
robustness certification with general activation functions,” in Advances in neural infor-
mation processing systems, Dec. 2018, pp. 4939–4948.

[197] T. Jaakkola, S. P. Singh, and M. I. Jordan, “Reinforcement learning algorithm for par-
tially observable Markov decision problems,” in Advances in neural information processing
systems, Nov. 1995, pp. 345–352.

[198] X. S. Yang, Nature-inspired metaheuristic algorithms. Luniver press, 2008.

[199] D. Whitley, “A genetic algorithm tutorial,” Statistics and computing, vol. 4, no. 2, pp.
65–85, Jun. 1994.

[200] L. Cominardi, L. M. Contreras, C. J. Bcrnardos, and I. Berberana, “Understanding QoS
applicability in 5G transport networks,” in IEEE International Symposium on Broadband
Multimedia Systems and Broadcasting, Jun. 2018, pp. 1–5.

[201] 3GPP, “System architecture for the 5G System (5GS),” 3rd Generation Partnership
Project (3GPP), Technical Specification 23.501, 2017.

[202] D. Sattar and A. Matrawy, “DSAF: Dynamic slice allocation framework for 5G core
network,” arXiv preprint, May 2019.

[203] A. Chiha, M. Van der Wee, D. Colle, and S. Verbrugge, “Network slicing cost allocation
model,” Journal of Network and Systems Management, vol. 28, pp. 627–659, March 2020.

[204] F. Voigtländer, A. Ramadan, J. Eichinger, C. Lenz, D. Pensky, and A. Knoll, “5G for
robotics: Ultra-low latency control of distributed robotic systems,” in International Sym-
posium on Computer Science and Intelligent Controls, oct 2017, pp. 69–72.

[205] J. Sachs, L. A. Andersson, J. Araújo, C. Curescu, J. Lundsjö, G. Rune, E. Steinbach,
and G. Wikström, “Adaptive 5G low-latency communication for tactile internet services,”
Proceedings of the IEEE, vol. 107, no. 2, pp. 325–349, Feb. 2019.

[206] X. Jiang, H. Shokri-Ghadikolaei, G. Fodor, E. Modiano, Z. Pang, M. Zorzi, and C. Fis-
chione, “Low-latency networking: Where latency lurks and how to tame it,” Proceedings
of the IEEE, vol. 107, no. 2, pp. 280–306, Feb. 2019.

187



[207] 3GPP, “Policy and charging control architecture,” 3rd Generation Partnership Project
(3GPP), Technical Specification 23.203, 2005.

[208] C. J. Geyer, “Practical Markov chain Monte Carlo,” Statistical science, vol. 7, no. 4, pp.
473–483, Nov. 1992.

[209] “GARR high capacity network,” https://www.garr.it/en/infrastructures/network-
infrastructure/network-map, accessed: 2021-03-31.

[210] F. Mason, F. Chiariotti, and A. Zanella, “No free lunch: Balancing learning and exploita-
tion at the network edge,” in IEEE International Conference on Communications (ICC),
2022, pp. 631–636.

[211] M. E. Morocho-Cayamcela, H. Lee, and W. Lim, “Machine learning for 5G/B5G mobile
and wireless communications: Potential, limitations, and future directions,” IEEE Access,
vol. 7, pp. 137 184–137 206, Sep. 2019.

[212] Z. Xiong, Y. Zhang, D. Niyato, R. Deng, P. Wang, and L. C. Wang, “Deep reinforcement
learning for mobile 5G and beyond: Fundamentals, applications, and challenges,” IEEE
Vehicular Technology Magazine, vol. 14, no. 2, pp. 44–52, Apr. 2019.

[213] O. Gómez-Carmona, D. Casado-Mansilla, F. A. Kraemer, D. López-de Ipiña, and
J. García-Zubia, “Exploring the computational cost of machine learning at the edge for
human-centric Internet of Things,” Future Generation Computer Systems, vol. 112, pp.
670–683, Nov. 2020.

[214] F. Zenke, B. Poole, and S. Ganguli, “Continual learning through synaptic intelligence,”
in International Conference on Machine Learning, Jul. 2017, pp. 3987–3995.

[215] R. S. Villaça and R. Stadler, “Online learning under resource constraints,” in International
Symposium on Integrated Network Management, May 2021, pp. 134–142.

[216] N. C. Thompson, K. Greenewald, K. Lee, and G. F. Manso, “The computational limits
of deep learning,” arXiv preprint, Jul. 2020.

[217] D. Liu, H. Kong, X. Luo, W. Liu, and R. Subramaniam, “Bringing AI to edge: From deep
learning’s perspective,” arXiv preprint, Nov. 2020.

[218] M. Chan, D. Scarafoni, R. Duarte, J. Thornton, and L. Skelly, “Learning network archi-
tectures of deep CNNs under resource constraints,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, Jun. 2018, pp. 1703–1710.

[219] L. U. Khan, S. R. Pandey, N. H. Tran, W. Saad, Z. Han, M. N. Nguyen, and C. S. Hong,
“Federated learning for edge networks: Resource optimization and incentive mechanism,”
IEEE Communications Magazine, vol. 58, no. 10, pp. 88–93, Nov. 2020.

[220] J. Chen and X. Ran, “Deep learning with edge computing: A review.” Proceedings of the
IEEE, vol. 107, no. 8, pp. 1655–1674, Aug. 2019.

188

https://www.garr.it/en/infrastructures/network-infrastructure/network-map
https://www.garr.it/en/infrastructures/network-infrastructure/network-map


[221] B. Luo, X. Li, S. Wang, J. Huang, and L. Tassiulas, “Cost-effective federated learning
design,” in Conference on Computer Communications (INFOCOM), May 2021, pp. 1–10.

[222] I. Jang, H. Kim, D. Lee, Y.-S. Son, and S. Kim, “Knowledge transfer for on-device deep
reinforcement learning in resource constrained edge computing systems,” IEEE Access,
vol. 8, pp. 146 588–146 597, Aug. 2020.

[223] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on deep transfer
learning,” in 27th International Conference on Artificial Neural Networks (ICANN), Oct.
2018, pp. 270–279.

[224] T. Everitt, M. Hutter, R. Kumar, and V. Krakovna, “Reward tampering problems and
solutions in reinforcement learning: A causal influence diagram perspective,” Synthese,
vol. 198, pp. 6435––6467, May 2021.

[225] S. J. Julier, “The scaled unscented transformation,” in American Control Conference, May
2002, pp. 4555–4559.

[226] M. L. Puterman, Markov decision processes: discrete stochastic dynamic programming.
John Wiley and Sons, 1994.

[227] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp. 279–292,
Jan. 1992.

[228] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards removing the curse
of dimensionality,” in 30th Annual ACM symposium on Theory of computing, 1998, pp.
604–613.

189



190



List of Publications

International Journals

J1. F. Mason, G. Nencioni, and A. Zanella, ”Using Distributed Reinforcement Learning
for Resource Orchestration in a Network Slicing Scenario,” in IEEE Transactions on
Networking, early access, doi: 10.1109/TNET.2022.3187310.

J2. F. Mason, F. Chiariotti, M. Capuzzo, D. Magrin, A. Zanella, and M. Zorzi, ”Remote
tracking of UAV swarms via 3D mobility models and LoRaWAN communications,” in
IEEE Transactions on Wireless Communications, vol. 21, no. 5, pp. 2953-2968, Oct.
2021.

J3. F. Venturini, F. Mason, F. Pase, F. Chiariotti, A. Testolin, and A. Zanella, ”Distributed
Reinforcement Learning for Flexible and Efficient UAV Swarm Control,” in IEEE Trans-
actions on Cognitive Communications and Networking, vol. 7, no. 3, pp. 955-969, Sep.
2021.

J4. F. Mason, M. Giordani, F. Chiariotti, A. Zanella, and M. Zorzi, ”An Adaptive Broadcast-
ing Strategy for Efficient Dynamic Mapping in Vehicular Networks,” in IEEE Transactions
on Wireless Communications, vol. 19, no. 8, pp. 5605-5620, May 2020.

J5. M. Dalla Cia, F. Mason, D. Peron, F. Chiariotti, M. Polese, T. Mahmoodi, M. Zorzi, and
A. Zanella, ”Using Smart City Data in 5G Self-Organizing Networks,” in IEEE Internet
of Things Journal, vol. 5, no. 2, pp. 645-654, Apr. 2018.

Conference Proceedings

C1. M. Drago, T. Zugno, F. Mason, M. Giordani, M. Boban, and M. Zorzi, ”Artificial
Intelligence in Vehicular Wireless Networks: A Case Study Using ns-3,” in Workshop on
ns-3 (WNS3), Jun. 2022, pp. 1-8.

C2. F. Mason, F. Chiariotti, and A. Zanella, ”No Free Lunch: Balancing Learning and
Exploitation at the Network Edge,” in IEEE International Conference on Communications
(ICC), Seoul, South Korea, May 2022, pp. 1-6.

C3. F. Mason, M. Drago, T. Zugno, M. Giordani, M. Boban, and M. Zorzi, ”A Reinforcement
Learning Framework for PQoS in a Teleoperated Driving Scenario,” in IEEE Wireless
Communications and Networking Conference (WCNC), Apr. 2022, pp. 114-119.

191



C4. F. Mason, G. Nencioni, and A. Zanella, ”A Multi-Agent Reinforcement Learning Archi-
tecture for Network Slicing Orchestration,” in 19th Mediterranean Communication and
Computer Networking Conference (MedComNet), Jun. 2021, pp. 1-8.

C5. F. Mason, F. Chiariotti, F. Campagnaro, A. Zanella, and M. Zorzi, ”Low-cost AUV
Swarm Localization Through Multimodal Underwater Acoustic Networks,” in OCEANS
2020: Singapore – U.S. Gulf Coast, Oct. 2020, pp. 1-7.

C6. F. Venturini, F. Mason, F. Pase, F. Chiariotti, A. Testolin, and A. Zanella, ”Distributed
reinforcement learning for flexible UAV swarm control with transfer learning capabilities,”
in 6th ACM Workshop on Micro Aerial Vehicle Networks, Systems, and Applications
(DroNet ’20), Toronto, Canada, Jun. 2020, pp. 1-6.

C7. F. Mason, F. Chiariotti, M. Capuzzo, D. Magrin, A. Zanella, and M. Zorzi, ”Combining
LoRaWAN and a New 3D Motion Model for Remote UAV Tracking,” in IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), Toronto, Canada, Jul.
2020, pp. 412-417.

C8. F. Mason, M. Giordani, F. Chiariotti, A. Zanella, and M. Zorzi, ”Quality-aware broad-
casting strategies for position estimation in VANETs,” in 25th European Wireless (EW),
Aarhus, Denmark, May 2019, pp. 1-8.

C9. M. Dalla Cia, F. Mason, D. Peron, F. Chiariotti, M. Polese, T. Mahmoodi, M. Zorzi,
and A. Zanella, ”Mobility-aware handover strategies in smart cities,” in 2017 International
Symposium on Wireless Communication Systems (ISWCS), Bologna, Italy, Aug. 2017, pp.
438-443.

Book Chapters

B1. F. Pase, F. Mason, P. Testolina, M. Lecci, A. Zanella, and M. Zorzi, ”Smart Data Gath-
ering for Network Optimization,” in Machine Learning and 5G/6G Networks: Interplay
and Synergies, Texmat, 2021, pp. 147–170.

B2. A. Zanella, F. Mason, P. Pluchino, G. Cisotto, V. Orso, and L. Gamberini, ”DOMHO:
A Smart Assisted-Living Solution for Fragile People,” in ICT for Health: Sensing, Data
Analysis, Applications, Texmat, 2021, pp. 19-37.

192



193



194



Acknowledgments

I could never complete this work without the invaluable support of the people that have been
by my side for the past three years and the rest of my life.

First, I want to express my gratitude to Andrea Zanella, who led me step by step in my
scientific career taking care to push me toward what was best suited to my spirit. I am very
lucky to have found a true friend as well as a guide in my supervisor.

I thank Federico Chiariotti, my inseparable companion in projects and articles since my
master’s thesis. Not continuing to work side by side will compromise my confidence in all
future scientific activities.

I thank Giorgio Quer, my supervisor at Scripps Research in San Diego, for leading my research
during the months in California, offering me an immense growth opportunity, and supporting
me both inside and outside the office.

I thank Michele Zorzi, Gianfranco Nencioni, Alberto Testolin, Michele Polese, Filippo Cam-
pagnaro, Giulia Cisotto, Davide Magrin, Martina Capuzzo, Francesco Pase, Federico Venturini,
Matteo Gadaleta, and all the other colleagues with whom I have collaborated over the years.

I thank my family, who continue to give me courage without the slightest sign of hesitation.
I thank my mother for the infinite love she always donates to others. I thank my father for
the serenity with which he keeps us united against all difficulties. I thank my brother for the
curiosity with which he helps me to question the world.

I thank my cousin Chiara, my grandmother Bianca, and my uncles Vania and Gaspare, for
always being present, and loving me, each one in his own way. I thank my grandfather Dino
and my aunt Monica, whose memory fills me with love more than any physical hugs.

I thank the friends who welcomed me to California: Clara, Bodhi, Mike, and Raiaan. Having
met you is worth more than any professional satisfaction I could ever receive.

I thank the colleagues of ICTea: Matteo, Francesca, Tommaso, Marco, and Alberto. The
dream of these three years, from the living room of my house to the halls of Miramare in Trieste,
has enormously enriched my life and made me proud every day.

I thank Davide and Carlotta who have been my inseparable classmates since the second
day of my bachelor’s degree. I thank all the special people with whom I have shared hours of
desperation and serenity before and after the exams: Adami, Pitt, DB, Fabio, Marta, Massimo,
Davide, Jessica, Emiliano, Cristina, Coccolo, Lovi, Enrico, and Matilde.

I thank Mattia and Paolo, with whom I learned to whip eggs without electric mixers: I like
to think that tiramisù is much better this way. I thank Marta, Alex, Ana, Hanne, and Lorenzo,

195



who accompanied me to discover Catalonia and have continued to be by my side to discover
the world. I thank Negra and Analia, my Uruguayan sisters, who made me feel part of a family
from the very first second.

I thank the squirrels of the Clan Universitario of Padua: Fatt, Laura, Edo, Pitto, Ilaria,
Otta, and the honorary scout Teresa. Every time I look back, I am amazed at how magical the
friendship we have built is.

I thank all those who have shared a roof with me over all these years: Giulia, Cianfa, Pianta,
Plaz, and Yann. I thank the founding members of Portello 24: Albert, Ale, and Grazio. I will
never be grateful enough to destiny for bringing us together.

I thank the old friends of San Vito al Tagliamento. I thank Carlo, the most reliable travel
companion ever. I thank Pier, who is always available for a beer, possibly around a bonfire on
the grava’s banks.

I thank all my schoolmates and especially Alice, Giulia, and Genny: I know I can always
count on you, especially when there is a film to see or an escape room to overcome.

I thank the fellows of QNG production: Piero, Emilio, Dj, and Dario. The afternoons spent
dreaming of the cinema with you, between cameras, PlayStation games, and Age of Mythology
derbies, represent the happiest moments of my life.

I thank Scouting for the values and friends   it has given me. I thank the educators who have
accompanied me since I was a child: Checco, Elisa, Guru, and Marina. I thank the companions
of routes and summer camps: Michele, Currywurst, Chiara, Silvia, Francesca, Beatrice, Marco,
Samuele, and Cuc. I thank the people with whom I share the vocation for service: Sofia,
Francesco, Daniela, and all the other members of the San Vito 1 community.

I thank Eugi who, despite my persistence in making mistakes, wants the best for me.

196


	Abstract
	List of figures
	List of tables
	Acronyms
	Introduction
	I Quality-Based Communication Strategies for Node Tracking
	Introduction
	Broadcasting Strategies for Dynamic Mapping in Vehicular Networks
	Introduction
	Related Work
	System Model
	General Model
	Error Function
	Tracking System
	Channel Access Scheme

	Broadcasting Strategies
	Benchmark: Periodic Broadcasting
	New Proposal: Error Threshold Broadcasting

	Congestion Control
	Benchmark: Channel Sensing Congestion Control
	New Proposal: Neighbor Aware Congestion Control
	Implementing Congestion Control for the ETB Strategy

	Simulation Settings and Results
	System Settings
	Theoretical Validation
	Performance Analysis

	Conclusions and Future Work

	Remote Drone Tracking via 3D Mobility Models and LoRaWAN
	Introduction
	Related Work
	Tracking Model
	Benchmark Motion Models
	The 3D-CTRA Model
	Tracking Framework

	Communication Model
	Simulation Settings and Results
	System Settings
	Performance Analysis
	Spreading Factor Optimization
	Payload Optimization

	Conclusions and Future Work


	II Multi-Agent Learning Strategies for Network Control
	Introduction
	Distributed Reinforcement Learning for Drone Swarm Control
	Introduction
	Related Work
	System Model
	Environment
	Target Distribution
	Obstacle Distribution

	Learning Model
	ND-POMDP Formulation
	Distributed Deep Q-Learning
	Computational Complexity

	Simulation Settings and Results
	System Settings
	Performance Analysis
	Transfer Learning
	Scenario Extensions

	Conclusions and Future Work

	Joint Communications and Control in Multi-Agent Networks
	Introduction
	Related Work
	Joint Communication and Control
	Underwater System Model
	AUV Behavior
	Buoy Behavior
	Debris Avoidance
	Data Muling

	Learning Strategy
	Neural Network Architecture
	Training Framework

	Simulation Settings and Results
	Benchmark Strategies
	System Settings
	Performance Analysis

	Conclusions and future work


	III Intelligent Resource Management in Dynamic Networks
	Introduction
	Distributed Reinforcement Learning for Slicing Orchestration
	Introduction
	Related Work
	System Model
	Slice Model
	Network Model
	Queuing Time Approximation

	Learning Strategy
	Learning Architecture
	Observations and Actions
	Reward Function

	Benchmark Strategies
	Other Learning-Based Approaches
	Empirical Strategy
	Static Strategy

	Simulation Setting and Results
	System Setting
	Performance Analysis
	Transfer Learning

	Conclusions and Future Work

	Balancing Learning and Exploitation at the Network Edge
	Introduction
	Cost of Learning Model
	Constant Update Duration
	Adaptive Update Duration

	Use Case Scenario
	Communication Model
	Learning Framework

	Simulation Settings and Results
	System Settings
	Performance Analysis

	Conclusions and Future Work

	Conclusions
	Appendix Unscented Kalman Filtering
	Appendix Reinforcement Learning
	References
	List of Publications
	Acknowledgments


