
Journal Pre-proof

Anthropogenic vs. natural habitats: higher microbial
biodiversity pays the trade-off of lower connectivity

Lingzi Mo, Augusto Zanella, Andrea Squartini,
Giulia Ranzani, Cristian Bolzonella, Giuseppe
Concheri, Massimo Pindo, Francesca Visentin,
Guoliang Xu

PII: S0944-5013(24)00052-1

DOI: https://doi.org/10.1016/j.micres.2024.127651

Reference: MICRES127651

To appear in: Microbiological Research

Received date: 14 November 2023
Revised date: 23 January 2024
Accepted date: 16 February 2024

Please cite this article as: Lingzi Mo, Augusto Zanella, Andrea Squartini, Giulia
Ranzani, Cristian Bolzonella, Giuseppe Concheri, Massimo Pindo, Francesca
Visentin and Guoliang Xu, Anthropogenic vs. natural habitats: higher microbial
biodiversity pays the trade-off of lower connectivity, Microbiological Research,
(2024) doi:https://doi.org/10.1016/j.micres.2024.127651

This is a PDF file of an article that has undergone enhancements after acceptance,
such as the addition of a cover page and metadata, and formatting for readability,
but it is not yet the definitive version of record. This version will undergo
additional copyediting, typesetting and review before it is published in its final
form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2024 Published by Elsevier.

https://doi.org/10.1016/j.micres.2024.127651
https://doi.org/10.1016/j.micres.2024.127651


 1 

Anthropogenic vs. natural habitats: higher microbial biodiversity pays the 

trade-off of lower connectivity 

Lingzi Moa, Augusto Zanellab*, Andrea Squartinic, Giulia Ranzanib, Cristian Bolzonellab, 

Giuseppe Concheric, Massimo Pindod, Francesca Visentine, Guoliang Xua 

a School of Geography and Remote Sensing, Guangzhou University, Guangzhou 

510006,Guangdong, China (LM: lingzi.mo@gzhu.edu.cn ; GX: xugl@ gzhu.edu.cn) 

b Department Land Environment Agriculture and Forestry, University of Padua, Viale 

dell’Università 16, 35020 Legnaro, Italy (AZ: augusto.zanella@unipd.it; GR: 

giulia.ranzani@studenti.unipd.it; CB: cristian.bolzonella@unipd.it ) 

c Department Agronomy, Food, Natural Resources, Animals, Environment, University of Padua, 

Viale dell’Università 16, 35020 Legnaro, Italy(AS: squart@unipd.it; GC: 

giuseppe.concheri@unipd.it ) 

d Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy (MP: 

massimo.pindo@fmach.it ) 

e Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 

43124 Parma, Italy (FV: francesca.visentin@unifi.it ) 

* Corresponding author. E-mail address: augusto.zanella@unipd.it . 

 

 

Abstract  

Climate change and anthropogenic disturbances are known to influence soil 

biodiversity. The objectives of this study were to compare the community composition, 

species coexistence patterns, and ecological assembly processes of soil microbial 

communities in a paired setting featuring a natural and an anthropogenic ecosystem 

facing each other at identical climatic, pedological, and vegetational conditions. A 

transect gradient from forest to seashore allowed for sampling across different habitats 

within both sites. The field survey was carried out at two adjacent strips of land within 

the Po River delta lagoon system (Veneto, Italy) one of which is protected within a 

natural preserve and the other has been converted for decades into a tourist resort. 

The anthropogenic pressure interestingly led to an increase in the α-diversity of soil 

microbes but was accompanied by a reduction in β-diversity. The community assembly 

mechanisms of microbial communities differentiate in natural and anthropic 

ecosystems: for bacteria, in natural ecosystems deterministic variables and 

homogeneous selection play a main role (51.92%), while stochastic dispersal limitation 

(52.15%) is critical in anthropized ecosystems; for fungi, stochastic dispersal limitation 

increases from 38.1% to 66.09% passing from natural to anthropized ecosystems. We 

are on calcareous sandy soils and in more natural ecosystems a variation of topsoil 

pH favors the deterministic selection of bacterial communities, while a divergence of K 

availability favors stochastic selection. In more anthropized ecosystems, the 

deterministic variable selection is influenced by the values of SOC. Microbial networks 

in the natural system exhibited higher numbers of nodes and network edges, as well 

as higher averages of path length, weighted degree, clustering coefficient, and density 
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than its equivalent sites in the more anthropically impacted environment. The latter on 

the other hand presented a stronger modularity.  Although the influence of stochastic 

processes increases in anthropized habitats, niche-based selection also proves to 

impose constraints on communities. Overall, the functionality of the relationships 

between groups of microorganisms co-existing in communities appeared more 

relevant to the concept of functional biodiversity in comparison to the plain number of 

their different taxa. Fewer but functionally more organized lineages displayed traits 

underscoring a better use of the resources than higher absolute numbers of taxa when 

those are not equally interconnected in their habitat exploitation. However, considering 

that network complexity can have important implications for microbial stability and 

ecosystem multifunctionality, the extinction of complex ecological interactions in 

anthropogenic habitats may impair important ecosystem services that soils provide us.  

Keywords: Soil biodiversity; Soil microbial community; Co-occurrence pattern; 

Phylogenetic turnover; Anthropogenic habitat 

 

1. Introduction 

The accelerating rate of habitat conversion is a prominent feature of the Anthropocene, 

which is significantly modifying the availability of terrestrial ecosystem resources and 

disrupting habitat connectivity(Ellis and Ramankutty, 2008; Birkhofer et al., 2017; Vega 

et al., 2020). These profound environmental changes cause biodiversity to be strongly 

affected (Geisen et al., 2019; Scholier et al., 2023). Indeed, not all species can tolerate 

or adapt to life in such a situation, with only 24% of species surviving in severely 

affected habitats(Dornelas et al., 2014; Newbold et al., 2015). As one of the largest 

pools of biodiversity on Earth, soil biodiversity is of significant importance in protecting 

and conserving the multiple ecosystem functions(Bardgett and Van Der Putten, 2014; 

Wagg et al., 2014; Delgado-Baquerizo et al., 2020). The soil biodiversity change driven 

by human activities could significantly diminish the benefits that people derive from 

ecosystem services(Cardinale et al., 2011; Isbell et al., 2017)., which highlights the 

need for biodiversity surveys in understudied regions currently threatened by 

environmental change (i.e., to inform baseline conditions). 

Soil microbes, as the critical and indispensable living beings in the soil environment, 

are extremely diverse and exhibit complex communities and interactions(Torsvik and 

Øvreås, 2002; Faust and Raes, 2012). The ability of soils to provide various ecological 

services, including nutrient cycling, decomposition, carbon storage, ruling plant 

productivity and diversity, and regulation of human immune responses, is highly 

dependent on soil microbial diversity and community composition(Boetius, 2019; 

Crowther et al., 2019; Jansson and Hofmockel, 2020; Guerra et al., 2021; Banerjee 

and van der Heijden, 2023; Sun et al., 2023). The microbial diversity and assemblages 

could have the potential to be efficient biological indicators for the environmental health 

of the terrestrial ecosystem(Astudillo-García et al., 2019). There is a strong need to 

investigate how soil microbial communities are influenced by anthropogenic pressure, 

to better help determining the consequence of multiple stress factors on ecosystem 

Jo
ur

na
l P

re
-p

ro
of



 3 

sustainability(Yang et al., 2022). 

Anthropogenic pressure is often hypothesized to alter community assembly processes 

that determine the presence and abundance of species. In order to investigate the 

underlying processes governing microbial community assembly, Stegen et al. (2012) 

developed ‘null models’ that couple phylogenetic community composition with 

randomization procedures, thereby characterizing how the relative influences of 

stochastic and deterministic processes. Indeed, studies have been conducted in a 

wide range of terrestrial habitats, including hypothec soils(Stomeo et al., 2013), 

successional soils(Tripathi et al., 2018), a salt marsh(Dini-Andreote et al., 2015), 

incipient basaltic soil(Sengupta et al., 2019), subsurface sediment(Stegen et al., 2013), 

and a grassland(Li et al., 2015). The research suggested that microbial community 

assembly is simultaneously affected by deterministic processes, which involve 

selection due to environmental filtering and species interactions, and stochastic 

processes, which encompass unpredictable disturbances, probabilistic dispersal, and 

random birth-death events(Chase, 2010; Ofiţeru et al., 2010; Vellend, 2010; 

Langenheder and Székely, 2011). Moreover, the relative importance of community 

assembly processes may depend on a variety of factors, such as initial conditions, soil 

chemical properties, disturbance, degree of change in environmental variables, 

etc.(Zhang et al., 2011; Ferrenberg et al., 2013; Zhang et al., 2016; Tripathi et al., 2018). 

For example, soil pH mediates the balance between the stochastic and deterministic 

assembly of bacteria, and extreme soil pH will lead to the deterministic assembly of 

soil bacterial communities(Tripathi et al., 2018). At the regional scale, the variation in 

soil organic matter could regulate the dominance of deterministic or stochastic 

processes in shaping soil bacterial communities(Feng et al., 2018). However, our 

ability to predict changes in community diversity patterns following human activities is 

still extremely limited. 

The limits between resistance to an endurable strass and failed resilience vs. the 

opposite, when seen in evolutionary time scales is recognized as the result of fruitful 

interconnectivity among community members(Fierer et al., 2012; Messier et al., 2013; 

Polverigiani et al., 2018; Yi and Jackson, 2021; Angeler et al., 2023). Assessing and 

detecting the potential patterns of soil microbial communities under habitat 

fragmentation and/or habitat conversion conditions requires the characterization of the 

differences between community composition and diversity in natural and 

anthropogenic habitats and a proper understanding of the mechanisms of microbial 

community assembly in both types. Hence, our research investigates the soil microbial 

across an environmental and landscape gradient, having individuated a suitable site 

between land and sea where two iso-pedological, iso-climatic adjacent coastal strips 

presented in one case  an extended  peninsula featuring a successional vegetation 

series, protected by the law within a restricted-access  natural reserve, facing an 

originally identical  island that had been instead turned into a recreational resort, 

paved with roads, covered with bungalows and heavily exploited by tourism for over 

fifty years. Compared to natural habitats, anthropogenic habitats are strongly affected 

by habitat fragmentation and/or habitat conversion,such as sealing, mixing, and 
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incorporation of novel anthropogenic materials, and microbial community results 

significantly affected by human management(Mo et al, 2022). This perfect setting with 

a pristine control and an artificialized terrain allowed to test the outcomes of a 

measurable ecological disturbance by analyzing soil bacteria and fungi and asking 

whether and how new equilibria would be reached by reorganization upon impact and 

which alpha and beta diversities would be presented across and within these paired-

sites communities, for which we had a uniquely arranged setting. 

Specifically, we compared α and β-diversity and inferred assembly mechanisms within 

natural and anthropogenic landscapes within the Po River delta lagoon system, 

located in the southern part of Veneto, Italy. Due to different management practices, 

the two peninsular strips of land (i.e. Porto Caleri and the Island of Albrella) make 

excellent model sites, differing only by the anthropic pressure for assessing the effect 

of human activities and land use change on microbial diversity and assembly 

processes at local and regional scales. We postulated that physiochemical properties 

and ecosystem processes related to anthropogenic ecosystems would differ from 

those of natural ecosystems, likely resulting in distinct microbial assembly patterns. 

The specific research questions, expanding beyond extant knowledge(Farooq et al., 

2023; He et al., 2023; Heděnec et al., 2023) were: 1) To what extent are soil 

environmental features and microbial community structures affected by anthropogenic 

management or disturbances? 2) Which specific mechanisms allow certain microbes 

to persist under anthropogenic pressures or environmental modifications while others 

decline or disappear? 3) Can communities of natural environments be less biodiverse 

and /or endowed by higher measurable phylogenetic signal, than those occurring in 

man-impacted ones?  

The findings led to questioning and resizing the phylogenetic signal relevance but at 

the same time opened novel interesting evidence and perspectives to address how the 

soil microbial network in natural systems can provide a basis for understanding soil 

microbial communities in response to anthropogenic pressures and what specific 

management strategies can be implemented to promote sustainability by assessing 

species presence-absence and abundance, ecological assembly processes, and 

species coexistence patterns.  

2. Materials and Methods 

2.1 Study Area Description and Sampling  

The study was conducted at two peninsular strips of land within the Po River delta 

lagoon system, located in the southern part of Veneto, Italy (Fig. 1). A century ago 

these two territories were covered by the same vegetation. The Porto Caleri peninsula 

(45°05′53′′N 12°19′27′′E), also known as the ‘Giardino Botanico Litoraneo del Veneto’, 

is a nature preserve and wild botanical garden, and represents such natural control 

ecosystem. It is still well preserved only in the first strips that today cover Caleri towards 

the sea. The composition of the Caleri forest has instead undergone silviculture and 

planting operations. The adjacent Island Albarella (45°04′32′′N 12°20′38′′E) with many 

lodging accommodations, leisure facilities, and economic activities, so the largest part 

Jo
ur

na
l P

re
-p

ro
of



 5 

of the area is occupied by houses, apart from the Mediterranean scrub area which is 

difficult to access, the rest has undergone important changes in structure and floristic 

composition. As anthropogenic ecosystems, it provides an attractive model to 

investigate the influence of human activities on soil biodiversity when compared to sites 

that feature isogenic soil, vegetation, and climate conditions but are spared from 

human settlement exploitation. We had previously studied47 two series of 10 sample 

areas - one series in a rather natural environment, Porto Caleri, and one in the rather 

anthropized environment, Albarella - along a gradient that goes from the sea to the 

inland. For the phytosociological study and the survey of the distribution of the 

vegetation units, the information contained in specific works applied to the local flora 

was used, combining observation with Google Earth and classification of the species 

and units in the field in Albarella and Caleri(Piva and Scortegagna, 1993; Ballasso, 

1998; Sanità, 1998; Buffa et al., 2007; Caniglia, 2007; Buffa et al., 2012). 

After the first campaign, we refined the study of the vegetation, encountering 

environments that could complete the first series and which were included in the new 

sampling plan, in particular a holm-oak wood, a mixed forest, a new shrubland, a reeds 

dune, a lawn with trees cores, fresh grassland and a new wetland.Previously, the 

points had been marked in the different natural phytocoenoses; then we looked for the 

corresponding phytocoenoses (point by point) in equivalent anthropized environments, 

finding some still close in composition to the natural ones, while others were quite 

transformed into new phytocoenoses. In the present campaign, we took a series of 

sample plots lying in a line approximately from sea to inland following the natural 

vegetation succession in Porto Caleri, equidistantly at about 50m every from each 

other. The vegetation series in Albarella was cut into pieces by roads and bungalows, 

and we made sample plots taylored as much as possible to correspond to the Porto 

Caleri habits in plant-covered areas. There are some particular vegetation types in 

both natural and anthropized environments, totally 14 sampling points in each site (Fig. 

1). Sampling points in Porto Caleri: Herbaceous with Ammophila arenaria = C1, C2, 

and C3, Shrubby with Juniperus communis, Phillyrea angustifolia, Hippophae 

rhamnoides and Ligustrum vulgare = C4, C6, and C11, Arboreous with Pinus pinaster, 

Quercus ilex and Ulmus minor = C7, C8, and C13. Other = C0 (beach without plant), 

C5 (low meadow with Tortula ruralis moss), C9 (moist lawn based on Limonium 

narbonense), C10 (wetland perennial Juncus acutus), and C12 (pine forest on the 

edge of a brackish pond), corresponding to vegetation particular to Porto Caleri only. 

Sampling points in Albarella: Herbaceous with Ammophila arenaria, Ambrosia 

psilostachya and Asparagus acutifolius = A1, A2, and A3, Shrubby with Hippophae 

rhamnoides, Juniperus communis and Ligustrum vulgare = A4, A5, and A6, Arboreous 

with Pinus pinea and Quercus ilex = A7, C8, and A12. Other = A9 (new plantation of 

small Pinus pinea and Quercus ilex and Acer campestre, Populus alba (1m)), A10 

(flowerbed with Adonis spp., Bellis spp., Dianthus spp.), A11 (Populus x canescens on 

lawn of Arenaria serpyllifolia, Geranium molle, etc.), A13 (managed lawn with Dactylis 

glomerata, Avena fatua, Carex flacca, Holcus lanatus. Taraxacum officinalis, etc.), and 

A14 (golf green with Poa spp, Carex flacca, Plantago lanceolata, Geranium molle etc.), 

corresponding to vegetation particular to Albarella only. Each sample was composed 
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of three subsamples, equidistantly every 5 m from each other. The litter layer was 

removed before sampling collection. The soils are all calcic Arenosol(WRB, 2022), 

while the humus systems varying from Aqueous (in the tidal zone) to Histic (inland with 

outcropping aquifer) to Terrestrial (dunes)(Zanella et al., 2022). In such humus systems, 

the most common humus forms are respectively Tidalic Redoxitidal in tidal zone, 

Saprianmoor in peat environment and Eumull, Hemimoder and Eumoder for 

terrestrials on the dune for herbaceous, shrubby and forest ecosystems. The organic 

carbon content in the first 30 cm of soil varies from the sea towards the innermost 

forest from 6 t/ha to more than 250 t/ha, also considering the litter when present. For 

the study of soil microorganisms, soil samples from the 0–10 cm profile were taken 

with a brass tube (1.3 cm diameter × 10 cm depth). A total of 84 soil samples were 

collected (14 sample points × 3 replicates per site × 2 ecosystems). For the study of 

soil properties, soil samples from the 0–10 cm profile were taken with tubes (10 cm 

diameter × 10 cm depth), which correspond to the plots investigated for 

microorganisms.

 

Fig. 1. Left Southern end of the Porto Caleri natural reserve; Right Northern end of 

the Island of Albarella. The sampling points of Caleri range from C0 to C13, while 

those of Albarella range from A1 to A14. The colors of the points correspond to 

those in the vegetation legend. 

2.2. DNA Extraction, Sequencing, and Bioinformatics 

These have been carried out as previously described (Mo et al., 2022). The BioProject 

accession number for these SRA data is: PRJEB68196; 

https://www.ncbi.nlm.nih.gov/sra/PRJEB68196. 

2.3. Soil Properties Analysis 

Edaphic variables, including pH, total carbon (TC), total nitrogen (TN), total 

phosphorous (TP), total potassium (TK), soil organic carbon (SOC), available 

phosphorous (AP), and available potassium (AK), were measured using standard 

analytical methods. For a complete list of environmental parameters, see Table S1 in 
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the supplemental material. 

2.4. Statistical Analysis 

Taxonomic alpha diversity was calculated as estimated community diversity by the 

Shannon index and Chao 1 index. The diversity indices were analyzed by the Wilcoxon 

test or Kruskal-Wallis test to determine significant differences among the samples. 

Beta diversity was calculated using species occurrence data, which was then 

partitioned into turnover and nestedness components by applying the 'betapart' 

function within the R ‘betapart’ package(Baselga and Orme, 2012). The principal 

coordinates analysis (PCoA) was selected to illustrate the clustering of different 

samples, which was carried out using the ‘pcoa’ function in R package ‘ape’ (Paradis 

and Schliep, 2019). Subsequently, the permutational multivariate analysis of variance 

(PERMANOVA) was used to determine the distances of each sample to the group 

centroid in a PCoA and to provide a p-value for the significance of the grouping, which 

was implemented using the ‘adonis’ function in the R ‘vegan’ package(Ovaskainen et 

al., 2017). To test for a homogenization effect of natural and anthropic ecosystems on 

the soil microbial, we used the ’betadisper’ function in the R ‘vegan’ package to 

calculate the dispersion within each group, and the ‘permutetest’ function was used to 

compare dispersions between natural ecosystems(Ovaskainen et al., 2017).  

Co-occurrence network analysis was conducted according to Spearman's correlations 

between OTUs computed by ‘picante’ package(Kembel et al., 2010), and the 

connections were considered statistically robust if the Spearman's correlation 

coefficients (r >= 0.7 as well as p-values <0.05)(Guseva et al., 2022). Moreover, 

network-level topological features were also calculated for each network including 

node numbers (Nodes), edge numbers (Edges), average weighted degree, average 

clustering coefficient, average path length, diameter, centralization of eigenvector 

centrality,and modularity. The network was visualized by using Gephi software (V0.9.2). 

The nearest-taxon index was used to estimate the mean phylogenetic relatedness 

between each OTU in a community and its nearest relative. The value of NTI is 

equivalent to −1 times the standardized effect size of MNTD (mean nearest-taxon 

distance) which was calculated by using the null model ‘taxa. labels’ (999 

randomizations) in the ‘ses.mntd’ function in the “picante” R package(Kembel et al., 

2010). To assess the process in the microbial community assemblies, the 

“mantel.correlog” function in the “vegan” package was used to test for significant 

phylogenetic signal(Ovaskainen et al., 2017). Then, the Raup–Crick index (RCBray) and 

βNTI were calculated using the scripts provided by Stegen et al. (2013) in R. |βNTI| > 

2 indicates the dominance of deterministic processes with significantly less 

(homogeneous selection; βNTI < −2) or more (variable selection; βNTI > 2) 

phylogenetic turnover than expected. When |βNTI| < 2, RCBray < −0.95 and RCBray > 

0.95 represent the relative influences of homogeneous dispersal and dispersal 

limitation, respectively, and |RCBray| < 0.95 indicates the influence of the “non-dominant” 

fraction. To assess the relative influence of assembly processes, we compared all 

possible pairwise comparisons of βNTI values with each major environmental variable 

Jo
ur

na
l P

re
-p

ro
of



 8 

by using the ‘mantel’ function of the ‘vegan’ package in R(Ovaskainen et al., 2017), 

and the statistical significance of these comparisons was determined with 999 

permutations.  

3. Results 

3.1 Composition and diversity of soil microbial community  

Totally 52,756 of bacteria were identified after a sequence of processing procedures. 

Overall, Proteobacteria, which occupied 23.48%-37.77% of the bacterial community, 

had the highest abundance, followed by Actinobacteria, Acidobacteria, Firmicutes 

(accounting for 6.23%-24.32%, 5.78%-18.28%, and 0.4%-27.32%, respectively. 

Fig.2A.). Soil fungal sequences were identified into 11,676 OTUs. Ascomycota, 

Basidiomycota, and Zygomycota (accounting for 39.50% - 77.50%,10.27% - 43.05%, 

and 0.53 %-13.07% of the sequences, respectively) were the dominant phyla across 

all soil samples (Fig.2B).  
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Fig. 2. Relative abundances of soil bacterial(A) and fungal(B) community in Caleri 

and Albarella 

We compared the Shannon diversity index and Chao1 richness index for the Caleri 

and Albarella soil microbial to gain further insight into the relative diversities of the 

microbial communities. After checking the normality and homogeneity of all the 

diversity indices, the Wilcoxon test and the Kruskal-Wallis test were used to test 

differences between and within islands, respectively. There were large differences 

between Caleri and Albarella microbial diversity and richness indices (p < 0.001), and 

higher indices were found in Albarella (Fig. 3). In addition, both indices of soil microbial 

were significantly different between Caleri and Albarella. For bacterial communities, 

the Shannon-Wiener and Chao1 indices grew along the increasing complexity of 

vegetation, from herbaceous to shrubby and ending in arboreous (Fig. 3A, B). As for 

fungal communities, soils from the herbaceous had the lowest Shannon and Chao1 
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indices, the highest value were found in the shrubby of Albarella (Fig. 3C, D). 

 
Fig. 3. Differences in soil bacterial (A, B) and fungal diversity (C, D) between Caleri 

and Albarella. All data are presented as the mean and standard error. Asterisks 

indicate that a horizon has significant influence (*** indicates p < 0.001; ** indicates 

p < 0.01; * indicates p < 0.05; ns indicates no significant difference). 

We profiled the similarity of the soil bacterial and fungal community composition in Albarella 

and Caleri using Principal coordinates analysis (PCoA). The compositions of soil bacteria 

and fungi differed significantly across Albarella and Caleri (PERMANOVA: R2 = 0.07826 

and F = 6.9617 for bacteria, R2 = 0.04319 and F = 3.7013 for fungi, p < .001 in both cases, 

Fig. 4A, C). In addition, our analyses also revealed that Albarella tended to host more 

homogeneous microbial communities than those found in Caleri (Betadisper: p < 0.001 for 

bacteria, and p < 0.01 for fungi; Fig. 4B, D). In other words, our analyses show a greater 

similarity in the community composition of bacteria and fungi across the anthropic 

ecosystem than across the corresponding natural ecosystems (Fig. 4).  
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Fig. 4. PCoA of bacterial and fungal community composition across all soil samples 

in Caleri and Albarella (A and C). The soil community composition heterogeneity of 

the soil bacterial and fungal in Caleri and Albarella ecosystems (B and D). Asterisks 

indicate significant differences in compositional heterogeneity based on the 

permutation test for homogeneity of multivariate dispersions (*** indicates p < 0.001; 

** indicates p < 0.01).  Jo
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Fig. 5. Differences in bacterial and fungal communities’ turnover component and 

nestedness-resultant fraction between Caleri and Albarella. Asterisks mean 

significant difference examined using the Wilcox test (*** indicates p < 0.001; ** 

indicates p < 0.01; * indicates p < 0.05). 

3.2 Co-occurrence network of soil microbial community  

The co-occurrence network of the soil microbial community in Caleri and Albarella was 

compared. After Modular analysis, closely linked species belonged to one module and 

were marked with the same color. Figure 6 shows 7 and 20 modules in bacterial networks 

in Caleri and Albarella, respectively. There are 32 and 41 modules in fungal networks in 

Caleri and Albarella, respectively. This indicated that the network structure of the soil 

microbial community had substantial differences in Caleri and Albarella. The microbial 

networks in the natural environment showed a more complex and relatively close 

relationship than that in the artificial environment.  

Table 1 shows the microbial network topological features in Caleri and Albarella. Microbial 

networks in Caleri had a higher number of network nodes and edges than Albarella, as 

well as average path length, average weighted degree, average clustering coefficient, and 

density. However, the microbial network in Albarella presented relatively stronger 

modularity. These results indicated that the soil microbial network in Caleri was relatively 

larger and more complex.  
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Fig. 6. Co-occurrence networks of soil microbial community in Caleri and Albarella. 

Table 1. Network topological features of Caleri and Albarella. 

Network Indexes 
Bacteria Fungi 

Caleri Albarella Caleri Albarella 

Nodes 434 187 279 146 

Edges 9133 300 655 164 

Average weighted degree 33.385  2.397  3.781  1.803  

Average clustering coefficient 0.650  0.365  0.614  0.637  

Average path length 3.352  7.736  6.327  2.584  

Diameter 11 22 17 9 

Centralization of eigenvector centrality 0.068  0.013  0.339  0.015  

Density 0.097  0.017  0.017  0.015  

Modularity 0.526 0.781 0.856 0.909 

 

3.3 Quantitative analysis of assembly processes in soil microbial 

In order to measure the phylogenetic relatedness of microbial communities, we tested 

the level of phylogenetic clustering of soil microbial communities in both island 

ecosystems by using the nearest taxon index (Fig. 7) (Stomeo et al.). High or positive 

(low or negative) NTI values indicated that microbial communities had a tendency to 
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be more phylogenetically clustered (overdispersion) than expected by chance(Webb, 

2000; Horner-Devine and Bohannan, 2006). The bacteria NTI of Albarella was 

significantly higher than Caleri (p < 0.001) which suggested there were more 

phylogenetically clustered across the Albarella. The NTI of the fungi community was 

not significantly different between the two ecosystems. 

 

Fig. 7. Differences in soil bacterial and fungal nearest taxon index between Caleri 

and Albarella. Asterisks mean significant difference examined using the Wilcox test 

(*** indicates p < 0.001; NS indicates p > 0.05).  

 
Fig. 8. Phylogenetic Mantel correlogram showing significant phylogenetic signal 

across phylogenetic distances. Solid and open symbols denote significant and 

nonsignificant correlations, respectively, relating between-OTU niche differences to 

between-OTU phylogenetic distances, across a given phylogenetic distance. 
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We found a significant phylogenetic signal for bacteria and fungi in Albarella and Caleri 

(Fig. 8). Collectively, the community assembly mechanisms of microbial communities 

with different ecosystems resulted differently (Fig. 9). The bacterial community 

assembly of Caleri appeared mainly driven by variable selection (40%) and 

homogeneous selection (11.92%), while undominated processes (26.03%) also seem 

to have played an important role. Dispersal limitation (52.15%) resulted to have played 

a main role in the assembly of the bacterial community of Albarella, and the 

contribution of selection (38.91%) to the assembly of all the sub-communities was 

pointed out to be also important by the analysis output. As for the fungal community, 

the community assembly of Caleri appeared driven by selection (25.9%), dispersal 

(38.1%), and undominated processes (35.19%) together. The assembly of the Albrella 

fungal community was indicated as mainly driven by dispersal, especially dispersal 

limitation (66.09%), while the contribution of heterogeneous selection and 

homogenizing dispersal to the assembly of the community was almost negligible. 

 

Fig. 9. The community assembly mechanisms of the bacterial and fungal 

communities 

3.4 The relative influence of environmental factors on microbial 

community composition and phylogenetic turnover 

The intrinsic factors driving the community variation were explored. We performed 

Kruskal–Wallis and Wilcoxon tests to examine soil samples from herbaceous, shrubby, 

arboreous, and unique habitats (other) taken from Caleri and Albarella (Supplementary 

Table S1). When comparisons were performed between Caleri and Albarella, the pH was 

significantly lower in Albarella, while TC, TN, TK, SOC, AP, and AK were significantly 

higher. Then, we identified correlations between microbial taxonomic composition and 

environmental factors (Fig. 10). The bacterial composition of Albarella was significantly 

correlated with pH, TC, TN, SOC, and AK, while the Caleri bacterial composition was 

significantly correlated with pH, TN, TP, and AK. Moreover, the fungal composition of 

Albarella was significantly correlated with pH, TC, TN, SOC, and AK, and Caleri fungal 
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composition was significantly correlated with all factors.  

 

Fig. 10. Environmental factors influencing the taxonomic composition (OTUs level) 

of bacterial and fungal communities in Albarella and Caleri. Pairwise comparisons 

between environmental factors are shown in a color gradient. The composition of 

bacterial and fungal communities was related to each environmental factor by partial 

Mantel tests. Edge width corresponds to the Mantel's r statistic for the corresponding 

distance correlations, and edge color corresponds to Mantel's p denoting the 

statistical significance based on 999 permutations. TC, total carbon; TN, total 

nitrogen; TP, total phosphorous; TK, total potassium; SOC, soil organic carbon; AP, 

available phosphorous; AK, available potassium, the same below. 

Table 2. Mantel tests of environmental variables against the phylogenetic turnover 

(β-nearest taxon index) 

 of microbial communities in Caleri and Albarella 

 Bacteria Fungi 
 Caleri Albarella Caleri Albarella 

pH -0.075 0.266 * -0.01 -0.014 

TC 0.249 ** 0.302 ** 0.085 -0.0205 

TN 0.165 * 0.332 ** -0.117 -0.0671 

TP -0.066 -0.094 -0.117 0.095 

TK -0.037 0.069 0.147 ** 0.023 

SOC 0.266 ** 0.328 ** 0.124 * -0.053 

AP 0.007 0.17* 0.127 * 0.073 

AK 0.358 ** 0.212 ** 0.022 -0.029 

Note: the bold values represent significant variables (** indicates p < 0.01; * 

indicates p < 0.05).  

Mantel test results showed that soil AK, SOC, TC, and TN were important environmental 

variables in assembly processes in the bacterial communities in Caleri, while two more 
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variables pH and AP (in order of decreasing significance: TN, SOC, TC, pH, AK, and AP) 

resulted the predominant variables that contribute to the bacterial communities in Albarella 

(Table 2). As for fungi, pairwise comparisons of βNTI values for the fungal communities in 

Caleri appeared significantly correlated with TK, AP, and SOC, but all measured 

environmental variables were not significantly correlated with fungal phylogenetic turnover 

in Albarella. 

 
Fig. 11. The effect of environmental factors on bacterial deterministic and stochastic 

assembly processes in anthropogenic and natural ecosystems, respectively. The 

relationships between βNTI and differences in soil pH (A) and AK (B) were 

associated with the Caleri bacterial community while the differences in soil TC (C) 

and SOC (D) were observed for the Alberlla bacterial community. Linear regression 

models (shown as blue lines) and associated correlation coefficients are provided 

on each panel. Horizontal dashed lines indicate the βNTI thresholds of +2 and − 2. 

Linear models were used to further investigate the relationships between the β-nearest 

taxon index (βNTI) and major environmental variables used to infer changes in the relative 

influences of assembly processes. Pairwise comparisons of βNTI values for bacterial 

communities in Caleri were significantly and negatively correlated with differences in soil 

pH and positively correlated with differences in AK (Fig. 11A and B), indicating that in the 

natural ecosystem, an increasing divergence of pH led to a shift from variable selection to 

stochasticity while increasing divergence of AK led to a shift from stochasticity to variable 
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selection. In Albarella, pairwise comparisons of bacterial βNTI values were significantly 

and positively correlated with differences in soil TC and SOC (Fig. 11C and D), suggesting 

that the relative influence of variable selection increased with increasing differences in TC 

and SOC. However, no environmental variables significantly correlated with the βNTI of 

fungal communities in both ecosystems. 

4. Discussion 

4.1 Anthropogenic pressures promote soil microbial alpha diversity but cause 

the homogenization of microbial communities. 

The diversity of the soil microbial community is crucial for preserving the function of 

the soil ecosystem(Bardgett and Van Der Putten, 2014; Wagg et al., 2014; Delgado-

Baquerizo et al., 2020). Understanding the ecological mechanisms that drive the 

responses of microbial communities to global environmental changes is a central aim 

of current microbial ecology(Nemergut et al., 2013). In line with this pursuit, our study 

findings demonstrate substantial alterations in soil bacterial and fungal diversity within 

anthropogenic ecosystems when compared to neighboring natural ecosystems. 

Overall, the diversity and richness of soil microbial appears to increase in the 

anthropogenic ecosystems (Fig. 3). These results might seem positive and contrast 

with predictions of a decline in global terrestrial biodiversity(Barnosky et al., 2011; 

Chase et al., 2020; Lu et al., 2020; Isbell et al., 2023). Different types of organisms 

probably respond differently to global change(Gossner et al., 2016). Such relatively 

higher microbial diversity could be hypothesized to depend on the complexity of human 

activities and landscape fragmentation in anthropogenic systems. The intermediate 

disturbance hypothesis states that environmental heterogeneity can be increased by 

intermediate interferences, which create a more diversified microenvironment for 

species cohabitation or more independent ecological niches(Mayor et al., 2012), then 

increasing the possibility of multiple species coexisting in adjacent habitats without 

resource competition(Chau et al., 2011). Gossner et al. (2016) reported that high land-

use intensity had neutral or positive effects on below-ground organisms. Higher soil 

bacterial and fungal diversity in highly disturbed environments than that in less-

disturbed environments also has been observed previously(Delgado-Baquerizo et al., 

2021; Xiong et al., 2021; Christel et al., 2023; Labouyrie et al., 2023). However, such 

results did not necessarily provide a more optimistic outlook for the future of the planet. 

Our analyses show the homogenization effect for the soil microbial under 

anthropogenic pressures which means a decrease in the dissimilarity of soil microbial 

communities across locations, with communities becoming more similar to each other. 

This was supported by a more concentrated cluster in Albarella than in Caleri in 

ordination plots (Fig. 4A and C), which is the predominant approach to quantify biotic 

homogenization with the dispersion metric calculated by the distance to group centroid 

in PERMDISP analysis (Fig. 4B and D). In a community, species presence-absence 

and abundance can be interpreted by species replacement and abundance 

difference(Legendre, 2014). We analyzed the nestedness and turnover of the paired 

Caleri and Albarella samples, the results showed that both ecosystems were 
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dominated by turnover. That is, rather than the change in species richness, the 

difference in species composition among quadrats was mainly a result of species 

replacement.  

4.2 Soil microbial networks become less connected under anthropogenic 

pressures. 

It is proposed that environmental filtering may be a strong mechanism for 

microorganisms' homogenization in assemblages (Zhang et al., 2019; Geng et al., 

2022), and has been shown to cause phylogenetic clustering (Horner-Devine and 

Bohannan, 2006), because it tends to exclude intolerant species and harbor more 

adapted species, ultimately leading to regional soil microbial communities to become 

more similar through the range expansion of tolerant species or the decline of intolerant 

species. But the observed patterns of β-diversity alone cannot be used to 

unambiguously discern the relative importance of community assembly mechanisms. 

As noted by prior reports(Anderson et al., 2011), extreme caution should be taken in 

interpreting these relationships. In the present study, the positive NTI observed in both 

natural and anthropogenic systems indicates that species were more clustered in their 

distributions than expected by chance (Fig. 5). Moreover, the significantly lower mean 

NTI values obtained for natural ecosystems (Fig. 7) indicate that the bacteria in the 

natural environment are more distantly related than in the anthropogenic environment. 

In a mirror way, the bacterial communities of a more anthropized environment (es. 

Albarella) tend to be more grouped phylogenetically than if they were by chance, 

compared to those of a more natural environment (Caleri). At the level of organisms, 

Molleman et al. (2023) suggest that soil fauna profits from the resource concentration 

in local plant communities that are uniform in both functional traits and phylogenetic 

lineages (high phylogenetic signal). Soil fauna would hence benefit from co-occurrence 

of closely related plants that have conserved the same trait values, rather than of 

distantly related plants that have converged in traits. This might result in faster 

decomposition and positive feedback between trait conservatism and ecosystem 

functioning. 

Is it therefore possible to distinguish man-made environments from natural ones, 

bringing to light differences in the functionality of the food web? Biotic interactions 

between soil microbial taxa should not be overlooked when analyzing community 

assembly. The anthropogenic pressures may lower the stabilizing properties in the 

bacterial and fungal interactive network, then finally disturb the soil microbial co-

occurrence interactions, which indeed appears supported by a less complicated and 

weaker connectivity of bacterial and fungal nodes in Albarella (Fig. 6, Table. 1). 

Simultaneously, the lower average degree values of bacterial and fungal networks in 

the Albarella ecosystem suggested that the interactions within microbial members 

were less intense (Table 1). It is generally accepted that network complexity and 

connectivity are usually positively correlated with the stability of the community and 

ecosystem multifunctionality (Mougi and Kondoh, 2012; Schmidt et al., 2017; Wagg et 

al., 2019; Qiu et al., 2021). A more clustered network structure and stronger 

connections between species could enhance the efficiency of resource and information 
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transfer, which contribute to the high stability of community function (He et al., 2021). 

Previous studies showed that connectivity, the density of the links, and transitivity 

decrease in disturbed environments(Karimi et al., 2016; de Vries et al., 2018). Zhang 

et al. (2020) provided evidence that impervious surfaces coupled with human 

population density could affect microbial connectivity indirectly by changing soil 

physicochemical characteristics. A relatively higher soil bacterial diversity and an 

unstable community status were also found in the city of Chicago, and the main reason 

might be traced to the excessive anthropogenic interference (Wang et al., 2018). A 

higher modularity in the bacterial and fungal networks was observed in Albarella. The 

more the modules, the more niches overlap with each other, and a higher overlap of 

niches produces a neutral process(Banerjee et al., 2016; Carmel et al., 2017). 

Consequently, 1) networks of more stochastically assembled communities (in Albarella 

and anthropogenic systems in general) feature a greater number of modules than 

those mainly shaped by deterministic selection; 2) microbial networks of more 

deterministically assembled communities (as in Porto Caleri , representative of natural 

systems) show a higher number of network nodes and edges than those shaped by 

stochastic assembly mechanisms, as well as average path length, average weighted 

degree, average clustering coefficient, and density (Fig. 6). The soil microbial network in 

natural systems results relatively larger and more complex than in anthropogenic systems, 

albeit less biodiverse. This is particularly important, considering that network complexity 

can have important implications for microbial stability and ecosystem multifunctionality; our 

results suggest that anthropogenic disturbance generally decreases the complexity and 

stability of species interactions, possibly as a trade-off for biodiversity loss to support 

ecosystem function when faced with frequent disturbance. 

4.3 Anthropogenically-induced SOC and soil pH change regulates the assembly 

processes of bacterial communities in anthropogenic ecosystems. 

The contemporary coexistence theory suggests that species pool, environmental 

filtering, dispersal assembly processes, ecological drift, and biotic interactions 

collectively determine the composition patterns of communities(Vellend, 2010; Stegen 

et al., 2012). Uncovering the balance between community assembly processes under 

different habitats could provide us with a better understanding of the maintenance of 

species diversity (Stegen et al., 2012; Nemergut et al., 2013; Langenheder and 

Lindström, 2019). Hence, we further examined the community assembly processes 

driving the respective relationships. In the present study, the deterministic assembly 

processes were dominant in the natural bacterial communities, while the dispersal 

limitation was found to be more important than selection in anthropogenic ecosystems 

(Fig. 9). As for fungi, the deterministic, stochastic, and undominated processes 

combined resulted to drive community assemblage in natural ecosystems, and 

anthropogenic ecosystems had relatively high dispersal limitations. To some extent, 

our results were supported by some previous observations reporting that 

anthropogenic pressure affects the assembly of soil microbial communities primarily 

by mediating stochastic processes (e.g., dispersal limitation) (Ferrenberg et al., 2013; 

Zhang et al., 2016),and stochastic assembly processes were dominant in high α-
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diversity communities(Xun et al., 2019). The environmental conditions within the 

natural ecosystem progressively exhibit spatial heterogeneity from seaside to inland, 

thereby exerting influence on the composition and distribution of species within the 

community (e.g., habitat specialization and strategy differentiation)(Dini-Andreote et 

al., 2014). Consequently, environmental constraints and selection assume a more 

pronounced role in natural systems, instead of stochastic processes. Soil microbes in 

the relatively natural environment may be less limited by dispersal than those in 

anthropogenic environments, and thus can sufficiently be delivered to suitable habitats 

with suitable environmental conditions(Cottenie, 2005). On the contrary, fragmentation 

of anthropogenic habitats not only causes loss of the area of natural habitat but also 

changes the properties of the habitat by creating small and isolated patches, that 

prevent microorganisms from dispersing into new habitats, thereby adversely affecting 

the ability of species to disperse among suitable habitat remnants(Li et al., 2020). 

Hence, it could be suggested that dispersal limitation emphasizes the retention of 

location-specific taxa. Jiao et al. (2020) suggested that in low environmental stress 

ecosystems which experience lower environmental heterogeneity, or in scenarios 

where competitive interaction among environmental generalists is diminished, 

stochastic assembly mechanisms have the potential to overrule deterministic 

processes. 

It is essential to individuate the factors regulating the relative influences of stochastic 

and deterministic assembly processes of microbial communities, in order to advance 

mechanistic understanding of community assembly processes(Feng et al., 2018). Here, 

based on the mantel test and linear model, we found βNTI of bacterial communities in 

the natural system to be associated with differences in soil pH and AK, while the βNTI 

in the anthropogenic system was mostly affected by soil differences in TC and SOC 

(Table 2 and Fig 11). We are on calcareous sandy substrate and in the natural 

ecosystems a variation of pH values favors the deterministic selection of bacterial 

communities, while a divergence of K availability favors stochastic selection. In more 

anthropized ecosystems, the deterministic variable selection is influenced by the 

values of SOC. It is not surprising that soil pH and carbon influence the assembly of 

bacterial communities, the major significance of these factors in soil microbial 

composition and diversity is well-known and supported by many previous studies 

(Feng et al., 2018; Tripathi et al., 2018; Zhang et al., 2019; Jiao and Lu, 2020). In this 

study, the differences in major factors that influenced soil bacterial assemblage might 

be ascribed to the divergences between human-managed and natural ecosystems. 

Long-term accumulation of soil carbon under natural vegetation is lower in comparison 

to anthropogenic in this survey. However, land use change and related management 

practices (i.e. cropping, fertilization, and irrigation) are usually driving the dynamics of 

soil carbon stock in anthropogenic ecosystems. Soil bacterial communities respond 

quickly to changes in soil carbon changes because they are often C-limited (Delgado-

Baquerizo et al., 2013; Luo et al., 2022; Yang et al., 2022). In this case, we speculated 

that soil carbon might influence the bacterial community assembly via two mechanisms: 

(i) soil bacteria are directly involved in carbon cycling, and soil carbon indirectly 

interacts with plants to shape the bacterial community assembly. The fact that 
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relationships between fungi and environmental factors were not observed may be due 

to the fungal compositional shifts being influenced to a larger extent by spatial 

restrictions(Abrego and Salcedo, 2013; Reese et al., 2016). Overall, the governing 

ecological processes exhibited the impacts of similarities of environmental conditions, 

as well as the potential impacts of anthropogenic disturbances, natural environmental 

selections, and stochastic interspecies interactions.  

These results help to explain the forces responsible for the generation and 

maintenance of microbial diversity, and these factors should be considered when 

determining ecosystem management practices. However, our study was limited to two 

simple ecosystems, and a broader examination of more complex areas is warranted. 

Furthermore, a thorough vision of these phenomena still requires a better description 

and consideration of the context-dependency of the soil microbial processes with 

respect to biotic and abiotic environmental conditions. 

5. Conclusions 

The soil bacterial and fungal communities in natural and anthropogenic ecosystems 

were comparatively screened by amplicon sequencing and multiple statistical analyses. 

When the data were viewed at a local scale, anthropogenic pressure showed the 

potential to lead to an increase in species diversity of soil microbes within the different 

sample communities (i.e., α-diversity), but accompanied by a reduction in the variation 

in species composition among communities (i.e., β-diversity). This could be arguably 

due to the fact that although the influence of stochastic processes increases, niche-

based selection also imposes some constraints on communities, following availability 

of SOC and consequent mineral nutrients, mediated by soil pH. Deterministic and 

stochastic processes can both be critical for bacterial and fungal communities. This 

suggests comprehensively considering multiple aspects of microbial communities 

when evaluating their assembly processes, which would improve our understanding of 

the assembly of soil microbial communities in a changing environment. Microbial 

networks in natural systems exhibit higher numbers of nodes and network edges, as 

well as averages of path length, weighted degree, clustering coefficient, and density 

than equivalent systems in more anthropized environments, the latter on the other 

hand presents a stronger modularity.  

The microorganisms that coexist in communities of natural environments do not show 

a higher phylogenetic signal than those of communities of anthropized environments, 

or at least not in Caleri and Albarella, as cautiously suggested in a previous article(Mo 

et al., 2022). The explanation can be linked to the fact that horizontal gene transfer 

and illegitimate recombination events could have allowed the microorganisms that 

reproduce in a more natural environment to respond in a collaborative way to the 

selection imposed by the environment and consequently express a significant 

phylogeny, not stand up to the verification that we made in the present work (Fig. 8). 

The guess of our previous article has been confirmed by this widened analysis: the 

functionality of the relationships between groups of microorganisms co-existing in 

communities is more relevant to the concept of functional biodiversity than the plain 
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number of their different taxa; fewer but well-organized lineages could make better use 

of the resources than many ones when those are not equally interconnected in their 

habitat exploitation (scientific and philosophical foundations with figure in 

Supplementary Materials. “Global impact: Do you like cycling?” And Fig. S1). 
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