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Abstract: Since its outbreak in December 2019, the COVID-19 pandemic has caused the death of
more than 6.5 million people around the world. The high transmissibility of its causative agent, the
SARS-CoV-2 virus, coupled with its potentially lethal outcome, provoked a profound global economic
and social crisis. The urgency of finding suitable pharmacological tools to tame the pandemic shed
light on the ever-increasing importance of computer simulations in rationalizing and speeding up
the design of new drugs, further stressing the need for developing quick and reliable methods to
identify novel active molecules and characterize their mechanism of action. In the present work,
we aim at providing the reader with a general overview of the COVID-19 pandemic, discussing the
hallmarks in its management, from the initial attempts at drug repurposing to the commercialization
of Paxlovid, the first orally available COVID-19 drug. Furthermore, we analyze and discuss the role
of computer-aided drug discovery (CADD) techniques, especially those that fall in the structure-
based drug design (SBDD) category, in facing present and future pandemics, by showcasing several
successful examples of drug discovery campaigns where commonly used methods such as docking
and molecular dynamics have been employed in the rational design of effective therapeutic entities
against COVID-19.
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1. The COVID-19 Pandemic

In December 2019, a cluster of pneumonia cases of unknown etiology emerged in the
Chinese city of Wuhan [1]. Soon after, analyses of patients’ lung fluid, blood, and throat
swabs reconducted this outbreak to a newly identified virus, tentatively named 2019-new
coronavirus (2019-nCoV) [2].

Phylogenetic analyses performed on viral genomes isolated from patients’ samples
revealed a close relationship between the new virus with several bat coronaviruses isolated
in China (>90%). A lower degree of similarity was also found with SARS-CoV (80%) and
MERS-CoV (50%), the causative agents of two recent coronavirus-related epidemics [3].
Based on phylogeny, taxonomy, and established practice, the virus was renamed SARS-
CoV-2 [4], while the associated illness was defined as COVID-19 by the World Health
Organization (WHO) [5].

The striking similarity between the SARS-CoV-2 genome and several bat coronaviruses
led to the hypothesis that bats could be the animal reservoir for SARS-CoV-2, with pangolins
or other mammals acting as the intermediate host before human transmission [6]. The
assumption that bats could be the animal reservoir of SARS-CoV-2 was further reaffirmed
at a later stage by the work of Temmam et al., which identified in the caverns of North Laos
a series of bat coronaviruses that share a high level of sequence similarity (96%) with the
SARS-CoV-2 genome [7].

From a clinical perspective, the spectrum of COVID-19 manifestation is broad, ranging
from asymptomatic infections to severe viral pneumonia with respiratory failure and even
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death [8]. The most common symptoms, similar to influenza, are related to mild upper
respiratory tract affection, such as fever, cough, myalgia, and headache [9]. Less common
but still relevant ones include gastrointestinal manifestations, such as diarrhea, and more
severe respiratory illnesses, such as dyspnea, and multiorgan failure [10].

The long incubation time compared to similar infections [11], the capability of asymp-
tomatic [12] or paucisymptomatic [13] patients to transmit the virus even before the eventual
symptoms’ manifestation, and the aerial transmission modality [14,15] all concurred to
determine a higher transmissibility index (estimated between 2.5 and 3.0) for the SARS-
CoV-2 virus, compared to similar viral infections [16]. These factors contributed to the
rapid spread of SARS-CoV-2 worldwide, resulting in more than 650 million cases and more
than 6.5 million deaths globally [17].

In the first stages of the COVID-19 pandemic, extraordinary sanitary measures, such as
physical and social distancing, wearing face masks, and eye protection devices [18,19] were
adopted to prevent the collapse of the public healthcare system [20], due to the imbalance
between the high demand and the low availability of critical supplies [21,22]. Although
this short-term plan has proven helpful in gaining time [23,24], more sustainable and
long-term oriented strategies were needed to better cope with the socio-economic [25] and
psychological [26] consequences of the pandemic, other than ensuring fair and efficient
resource management [27].

1.1. Drug Repurposing

Considering that bringing a brand-new drug on the market is usually a very long
and expensive process [28], the so-called “drug repurposing” was the first approach to
finding suitable therapeutic options for COVID-19 patients [29,30]. This strategy extends
the applicability domain of already marketed drugs for treating diseases other than the one
it was conceived for [31]. This approach is appealing because it involves using derisked
compounds, with potentially lower overall development costs and shorter development
timelines [32]. Unfortunately, despite all the promising premises [33], this approach was
largely unsuccessful [34]. Indeed, several investigated drugs showed little to no efficacy
in randomized clinical trials [34]. The few successful cases were primarily symptomatic
treatments, mostly limited to hospital usage for the most severe cases due to the therapy’s
high costs or route of administration [35].

Failure of the drug repurposing strategy against COVID-19 can be mostly traced to
the very first stages of the pandemic, where few clinical pieces of evidence were available
for the rational elaboration of therapy plans. For example, the combination of HIV protease
inhibitors Lopinavir and Ritonavir was examined [36], despite a suboptimal predicted
recognition pattern towards the SARS-CoV-2 main protease (Mpro) compared to other
compounds of the same class [37]. Another example is the combined use of an antimalaria
drug (hydroxychloroquine) and an antibiotic (azithromycin) despite no clear indication of
the possible mechanism of action [38,39].

With more and more clinical observations becoming available, more fine-tuned treat-
ments, especially symptomatologic ones, were adopted. This is the case, for example, of
corticosteroids such as dexamethasone [40], employed to tame the inflammatory response
associated with severe COVID-19 cases, and low molecular weight heparins [41], used
to prevent or treat thrombo-embolic events associated caused by interference with the
cardiocirculatory system.

A group of antiarthritis drugs represents another successful example of drug repur-
posing to their ability to modulate the immune response [42] and cytokine storm [43]
caused by severe SARS-CoV-2 infection. This family includes the monoclonal antibodies
Tocilizumab [44] and Sarilumab [45], which both inhibit Interleukin-6 (IL-6) signaling;
Anakinra [46], which interferes instead with IL-1 signaling; and the Janus Kinase (JAK)
inhibitor Baricitinib [47], alone or in conjunction with Remdesivir [48], with the latest
representing maybe the most successful example of drug repurposing against COVID-19
being the first approved drug against this illness [49].
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Originally designed against Ebola virus, Remdesivir is a nucleotide analog prodrug
that acts as a viral polymerase inhibitor [50] and is efficient in shortening the recovery time
in hospitalized adult patients affected by COVID-19 [51]. Unfortunately, as previously men-
tioned, Remdesivir and the other repurposed drugs need parenteral administration, thereby
limiting their massive-scale adoption as pharmacological treatments against COVID-19 [35].

1.2. Convalescent Plasma and Monoclonal Antibodies

With the first round of spontaneously healed patients, doctors started flanking stan-
dard treatment with the use of convalescent plasma (CP), i.e., the plasma derived from
recently recovered donors with a sufficiently high neutralizing antibody titer [52]. A similar
protocol was previously adopted to face Ebola [53] and MERS [54] outbreaks, justifying
its emergency use in the first stages of the COVID-19 pandemic. Unfortunately, despite
promising observational data from the first studies performed on small-size patient co-
horts [55], more thorough investigations from more extensive clinical trials demonstrated
the inefficacy of this treatment [56,57], leading to its dismission from routine clinical prac-
tices. Despite this failure, CP inspired the design of safer and more targeted immunological
treatments in the form of monoclonal antibodies (mAbs) [58,59]. Since the beginning of
the pandemic, several mAbs directed against COVID-19 have been developed, with some
obtaining approval from regulatory agencies [60]. Multiple of these mAbs are often used
in conjunction to combine their neutralizing power and boost their therapeutic efficiency,
exploiting their ability to bind at different epitopes [61].

The list of approved ones contains the therapeutic combinations of casirivimab and
imdevimab (Regeneron/Roche), redanvimab (Celltrion Healthcare), sotrovimab (GSK),
and the combination of tixagevimab and cilgavimab [62,63]. Furthermore, the association
of bamlanivimab and etesevimab is nearly approved, despite the previous failure of trials
investigating bamlanivimab on its own [63].

1.3. Vaccines

As seen in the case of CP and mAbs, a targeted immune response against SARS-CoV-2
can be a beneficial treatment for patients [64]. While immunoglobulins are limited to
treating ongoing infections in hospital settings due to the high costs and the parenteral
administration route, a more economical and scalable approach would be instructing the
human body to produce this type of response without needing external intervention [65].
Based on this assumption and parallel to the drug repurposing approach, the industry
and academia spent a consistent joint effort on developing preventive tools to avoid the
infection in the first place or at least mitigate the most detrimental effects of the illness. This
endeavor resulted in the quick approval by regulatory agencies of several vaccines [66].

Three different classes of these therapeutic entities can be recognized [67]. The first
one, related to inactivated virus vaccines, comprises the Chinese CoronaVac (Sinovac)
and the Russian CoviVac. The second group is formed by adenovirus vector vaccines
such as Vaxzevria/ChAdOx1-S (AstraZeneca), Sputnik V/Gam-COVID-Vac, and Jcov-
den/Ad26.COV2.S (Janssen). Finally, the third one is composed of mRNA-based vac-
cines, including Comirnaty/BNT162b2 (Pfizer-BioNTech) and Spikevax/mRNA-1273 (Mod-
erna) [68,69].

Despite the poor performances of the first class of vaccines [70,71], several independent
studies have asserted worldwide the efficacy of vaccination campaigns based on the other
two types of vaccines, particularly in the case of mRNA-based ones [72,73].

1.4. Spike Protein

The ability of the SARS-CoV-2 virus to infect human cells heavily depends on a surface
glycoprotein known as the S/spike protein [74], named after its peculiar shape [75]. For
this reason, both mRNA vaccines and mAbs are designed to target this protein and prevent
the virus’s entry into the cell, thereby limiting its replication [76].
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Concerning these, although different pathways for SARS-CoV-2 cell entry are possi-
ble [77,78], the principal and better-characterized one involves binding to the human ACE2
receptor (hACE2) [79], a membrane-anchored metallopeptidase that is abundantly present
in various districts of the human body, from the vascular endothelium to the epithelia of
lungs and small intestine [80]. On its own, host cell receptor binding is not sufficient to
ensure entrance within host cells. Priming and activating the S protein by host proteases is
required to enhance its cell–cell and virus–cell fusion processes and increase viral shielding
from neutralizing antibodies [79,81]. The list of priming proteases includes, but is not lim-
ited to, TMPRSS2, a transmembrane serine protease that is often co-expressed with ACE2 in
SARS-CoV-2 target cells; Furin; and cathepsin B/L [79,82,83]. The priming process entails
the exposure of a lipophilic fusion peptide (FP), which penetrates the host cell membrane
triggering the viral fusion [84] thanks to its strong membrane-perturbing capacities [85]

From a structural perspective, the spike is a trimeric transmembrane glycoprotein
composed of 1273 amino acids organized in two main subunits, S1 and S2, and several
functional domains [86].

The S1 subunit comprises two main domains, specifically the N-terminal and C-
terminal domains (NTD and CTD, respectively), which are both involved in the binding
to host cell receptors [86]. The CTD contains the receptor-binding domain (RBD, residues
319–541), consisting of two motifs. Firstly, a core structure is formed by a twisted five-
stranded antiparallel β sheet (β1, β2, β3, β4, and β7), with three short helices (α1, α2, and
α3). Secondly, an extended loop (receptor binding motif, RBM) is formed by a two-stranded
β sheet (β5 and β6), lying at one edge of the core and containing most of the residues
involved in binding to hACE2 [87] (Figure 1).
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The S2 subdomain has significant roles in spike protein trimerization and in mediating
the virion entry into the host cell once the molecular contacts have been established [88].
It is formed by relevant subdomains such as the transmembrane domain (TD) (residues
1296–1317), which exerts both the spike anchoring to the outer side of the viral membrane
and the maintenance of the trimeric quaternary structure [89,90], and a cytoplasm domain
(CD) (residues 1318–1353), which mediates viral assembly and cell–cell fusion [91]. Fur-
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thermore, the previously mentioned fusion peptide, a cleavage S2′ site (residues 815/816),
and two heptad-repeat domains (HR1/HR2) (residues 984–1104/1246–1295) are also part
of S2 [92].

1.5. Viral Variants

Due to its exposition on the external surface of the SARS-CoV-2 membrane and its
pivotal role in the virus’s ability to infect host cells, the spike protein is often subjected
to mutations that alter the virus’s infectivity and antigenicity [93,94]. Therefore, since the
spreading of the original viral strain (Wuhan-Hu-1) began, several viral variants appeared
on the scene [95], particularly in third-world nations where collective sanitary practices
such as social and physical distancing [96] or wearing face masks in public places [18] were
hardly implementable [97].

The insurgence of novel viral strains with different susceptibility to the protective
effect of vaccines [98] demands periodical updates of their original formulations coupled
with multiple booster shots to maintain their efficacy [99], thus hampering the management
of the pandemic based on massive vaccination of the world population [100,101].

Among the large pool of SARS-CoV-2 mutations [102], some gathered the scientific
community’s attention due to their increased fitness, gaining the “variant of concern”
(VOC) status [103].

The first ever SARS-CoV-2 VOC was the B.1.1.7 variant, more commonly referred
to as the “Alpha” or “English” variant due to being first identified in November 2020
in the Kent region of the United Kingdom [104,105]. Despite worries about the higher
transmissibility compared to other circulating variants at the time [106,107], clinical studies
demonstrated how mAbs, CP, and especially vaccines, were still able to confer protection
against B.1.1.7 [108–110], containing its impact on the sanitary system [111].

Unfortunately, soon after the emergence of the Alpha variant, a more threatening
VOC arose. The B.1.617.2 variant, commonly known as the “Delta” or “Indian” variant,
due to being first identified in India in late 2020, quickly overthrew B.1.1.7 thanks to its
strikingly increased transmissibility [105]. The advent of the Delta variant was associated
with the first signs of reduced protection provided by mAbs, CP, and most importantly,
vaccines [112–114], thanks to its increased immune system evasion capability [115], posing
a heavier workload on the sanitary system [116].

The latest hallmark in the history of SARS-CoV-2 variants is represented by the
B.1.1.529 variant, first detected in South Africa and more often called the Omicron vari-
ant [117]. The combination of increased transmissibility [118] and immune system eva-
sion [119] conferred this variant a net selective advantage in bypassing the protection
provided by the complete primary vaccination cycle and a variety of clinically utilized
mAbs [120–122] compared to other circulating strains. The ground-breaking impact the
Omicron variant had on the worldwide spread of SARS-CoV-2 even led to the introduction
of the “booster dose” to compensate for the reduced coverage of the primary vaccine
cycle [98,123].

Lately, several subvariants germinated from the original Omicron strain (also la-
beled as BA.1), namely BA.2, BA.3, BA.4, and BA.5 [124–126]. Although different studies
indicated how the first identified Omicron subvariants (BA.2 and BA.3) were similarly
susceptible to existing treatments despite their increased transmissibility [127–129], it also
emerged how the most recently identified ones (BA.4 and BA.5) are significantly more
efficient in evading the immune response [130–132].

These findings indicate that SARS-CoV-2 continued to evolve by increasing its immune-
evasion capability rather than counting on sheer higher transmissibility, sustaining the virus
spread even in populations with high vaccination frequency and recovery rates [130–132].

1.6. Main Protease (3CLpro)

Considering the uncertainty about the efficacy of existing treatments [133] and booster
vaccinations [134] against present and future Omicron subvariants, the need to find more
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reliable and variant-agnostic therapeutic tools against COVID-19 is emerging. The previ-
ously mentioned issues with the continuously mutating spike protein, which affects most
present gold-standard COVID-19 treatments, indicate that different viral targets should be
explored for developing novel antiviral drugs [135]. Generally speaking, an ideal target
would have to play a pivotal role in the virus replication cycle and be highly conserved
across different viral strains [136]. Within SARS-CoV-2, this role is portrayed by its main
protease [137] (Mpro, or 3C-like protease / 3CLpro due to similarities with the picornavirus
3C protease [138]), thanks to its conserved fold across different coronaviruses [138–141] (in-
cluding SARS-CoV [142]) and essentiality for the replication of this virus’s subfamily [143].

SARS-CoV-2 Mpro, also called nsp5, is a cysteine protease composed of 306 residues [144]
that steers the maturation of two partially overlapping polyproteins (pp1a and pp1ab) into
individual mature nonstructural proteins (including Mpro itself) through their proteolytic
cleavage [145].

Functionally speaking, Mpro exists in equilibrium between a monomeric and a ho-
modimer form [146–148]. This dimerization directly influences the shape of the catalytic
site [147], thus altering the enzymatic activity [138] and playing an indirect regulatory role
during the virus replication cycle [149,150].

Within the Mpro functional dimer, each protomer is composed of three structural
domains. The chymotrypsin-like fold, including β-barrel domain I (residues 1–99) and
II (residues 100–182), hosts the active site and thus has direct control over the catalytic
event [138,147], while the α-helical domain III (residues 198–306) is mainly involved in the
direct regulation of dimerization, exerting only a secondary and indirect role on regulating
Mpro’s enzymatic activity [151]. Between the second and third domains lies a flexible
16-residue loop (residues 183–197) [152].

As anticipated, the catalytic site is located between domains I and II, bordered by
the N-terminal domain I of the second protomer in the dimer (Figure 2). Notably, the
N-finger (residues 1–7) interacts with the binding site through a salt bridge between the
positively charged end of Ser1 and the negatively charged end of Glu166 [153]. The latter
is also involved in forming a hydrogen bond with His172, an essential interaction for
the enzyme’s proteolytic activity [154]. These interactions are so crucial in stabilizing the
catalytic site [155] that N-finger deletion impairs dimerization and abolishes the protease’s
enzymatic activity [156].
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Mpro’s shallow, plastic, and solvent-exposed active site [152,157] comprises several
subpockets (ranging from S6 to S3′), hosting the corresponding substrate residues (which
vary from P6 to P3′) [139]. Speaking of substrates, the SARS-CoV-2 Mpro cleaves peptide
bonds at the C-terminus end of a glutamine residue (P1) [137], which is conserved across
different SARS-CoV-2, SARS-CoV, and even MERS-CoV substrate sequences [152].

SARS-CoV-2 Mpro recognizes sequences as long as ten residues (P6–P5–P4–P3–
P2–P1↓P1′–P2′–P3′ P4′, where ↓ indicates the scissile bond [139]), but only shows re-
markable selectivity at four subsites: S4, S2, S1, and S1′ [158]. On the contrary, prime
recognition subsites located at the C-terminus of the conserved P2 (Leu/Val/Phe), P1
(Gln) ↓-P1′ (Ser/Ala) sequence are not conserved and show remarkable plasticity [152,159].
Furthermore, the main structural alterations of the binding site derive from flexibility
at residues that line the S1 subpocket and segments incorporating methionine 49 and
glutamine 189 [152,160].

Different from many other chymotrypsin-like proteases, Mpro exerts its enzymatic
functions through a catalytic dyad instead of the usual triad, where His41 and Cys145 are
flanked by a conserved water molecule that substitutes the sidechain of the third component
(usually an aspartate or an asparagine) [138,161].

Aside from the catalytic dyad, another vital component of the catalytic machinery
is represented by a set of conserved residues contouring the S1 subpocket known as
the oxyanion loop (138–145) [152,162]. Notably, the correct conformation [87,163,164]
of the oxyanion hole (Gly143-Ser144-Cys145) is required for stabilizing the tetrahedral
transition state through a coordinated series of hydrogen bonds involving the backbone
amides [138,155,165]. Accordingly, alternative oxyanion loop conformations are associated
with catalytically incompetent/inactive proteases [140,152,154,166,167].

1.7. Rational Design of COVID-19 Drugs

Several characteristics of the viral proteases family, including SARS-CoV-2 Mpro,
make them an attractive target for the rational development of tailored drugs against
COVID-19. First, the low sequence identity with human proteases coupled with distinct
cleavage-site specificities reduces the possibility of off-target/side effects associated with
the therapy [168]. Second, the striking conservation of protein fold and structural or-
ganization of the active site among different members of the same family leads to the
possibility of developing pan-coronaviral drugs [169]. Third, the abundance of structural
data about the SARS-CoV-2 main protease (659 structures have been deposited in the
Protein Data Bank [170] to date) makes it possible to exploit the state-of-the-art structure-
based approaches in drug design [171]. Furthermore, a similar strategy has already proved
successful in finding efficient treatments against the hepatitis C virus [172,173] and human
immunodeficiency virus (HIV) [174,175]. Finally, the experience acquired studying the
original SARS-CoV protease [176], in conjunction with the rapid release to the scientific
community of the SARS-CoV-2 protease [164], certainly played a major role in determining
its prominent place within most COVID-19 drug discovery campaigns. A detailed report
on structural features of the 3CLpro protease that can guide the design of novel inhibitors
can be found in the work of Xiong et al. [177].

The first attempts at finding SARS-CoV-2 Mpro inhibitors involved the repurposing
of existing protease inhibitors. Particularly, the hepatitis C protease inhibitor Bocepre-
vir [178,179] and the feline coronavirus 3CLpro inhibitor GC373 (derived from its prodrug
GC376) [180] were found to be active in the low µM potency range against Mpro [181], with
the latter being particularly interesting due its promiscuous anticoronaviral activity [182].
Both candidate drugs share a similar peptidomimetic scaffold, which entails the most
prominent interaction features of the first identified ones [164].

Although these primary hit compounds present a good binding pattern, their evolution
towards clinical candidates and drugs is prevented by two main factors: first, covalent
inhibitors are usually associated with selectivity problems, due to their ability to react
promiscuously with a plethora of nucleophile moieties [183]; second, the peptidomimetic
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scaffold is usually associated with suboptimal pharmacokinetic properties that affect the
preferred route of administration [184].

In this regard, a step forward was obtained when the first SARS-CoV-2 Mpro inhibitors
were able to reach clinical stage experimentation, namely PF-07304814 (lately renamed as
Lufotrelvir), a prodrug for the active principle PF-00835231, and PF-07321332 (Nirmatrelvir).

Lufotrelvir was originally developed by Pfizer in 2002–2003 for the SARS-CoV virus
and later repurposed against the SARS-CoV-2 due to the high similarities between the
two proteases [185]. Due to its efficacy against several viral strains in preclinical stud-
ies [186,187], it was advanced to the clinical stages of experimentation, albeit quickly
overcome by Nirmatrelvir thanks to its more favorable pharmacokinetic profile [188].

Contrary to Lufotrelvir, which, similar to Remdesivir, requires parenteral adminis-
tration, Nirmatrelvir can be administered orally [189], a must-have characteristic for the
widespread adoption of drugs [190,191]. Designed by Pfizer amid the pandemic through
the rational modification of Lufotrelvir [192], the structure of Nirmatrelvir was officially
presented to the general audience on 6 April at the American Chemical Society Spring
2021 meeting [193], only one year after the official start of its development process [192]
(Figure 3).
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This peptidomimetic inhibitor, which is administered in association with the pharma-
cokinetic enhancer Ritonavir and sold under the commercial name of Paxlovid, represents a
hallmark in the history of both the COVID-19 pandemic and structure-based drug discovery,
due to the groundbreaking speed of its discovery campaign [194]. Although clinical studies
highlighted the remarkable therapeutic efficacy of Paxlovid in preventing the most severe
COVID-19 cases [195], its effectiveness on more mild infections remains unclear [196].
Furthermore, the impact of viral mutations on present and future protease inhibitors has
yet to be disclosed [197,198], thus justifying the current effort to find novel and diverse
drugs that can enlarge the pool of pharmacological tools available against COVID-19.

An important step in this direction is represented by the development of Ensitrelvir
(formerly known as S-217622), the first noncovalent, nonpeptidomimetic, orally available
Mpro inhibitor to reach clinical stage experimentation [199]. This compound has success-
fully reached the third and final stage of clinical experimentation, thanks to its proven
efficacy against mild-to-moderate or even asymptomatic infections [200,201]. Possible



Int. J. Mol. Sci. 2023, 24, 4401 9 of 34

approval of this active principle by regulatory agencies would provide an additional and
orthogonal therapeutic tool to Nirmatrelvir in the treatment of COVID-19 cases, thus reduc-
ing the impact of resistance mechanisms associated with the emergence of mutated viral
strains [197,198].

1.8. Potential Targets of Interest

Although targeting the SARS-CoV-2 main protease was successful in individuating
several clinical candidate drugs, even leading to the first approval of a COVID-19 specif-
ically designed drug, other drug discovery campaigns aimed at different viral targets
are needed for therapy diversification, potentially combined and synergic treatment, and
resistance prevention [202–204].

Altogether, the SARS-CoV-2 genome encodes four major structural proteins, including
nucleocapsid (N), membrane (M), envelope (E), and the spike as mentioned earlier (S), plus
16 nonstructural proteins, encompassing the previously mentioned main protease [205].

Although Mpro plays a pivotal role in processing the SARS-CoV-2 viral polyproteins,
it is not the only component of the functional replicase complex that is required for the
viral spread process [206]. Alongside this, a secondary but still relevant enzyme operates,
namely the papain-like protease (PLpro, the catalytic domain of protein nsp3) [207]. Despite
being a cysteine protease similar to Mpro, PLpro exerts its enzymatic functions through a
catalytic triad composed of Cys111, His272, and Asp286 [208]. Further, PLpro processes
peptide bonds located at the C-terminal end of LXGG motifs [209]. Functionally speaking,
this 343-residue segment, which is part of the multidomain nsp3 protein, is responsible for
cleaving the SARS-CoV-2 polyproteins at three different sites, resulting in the liberation
of nsp1, nsp2, and nsp3 proteins [210]. Moreover, PLpro is also responsible for cleaving
post-translational modifications on known regulators of host innate immune response [211].

As demonstrated by the approval of Remdesivir by regulatory agencies, another valu-
able target for the development of COVID-19 drugs is represented by the RNA-dependent
RNA polymerase (RdRp) [49]. This complex machinery comprises four subunits, including
one nsp12, responsible for the catalytic activity of the assembly; one nsp7; and two nsp8,
with the latest two acting as cofactors [212]. The assembled holoenzyme presides RNA
replication, a process that results in the formation of nine subgenomic RNAs [213]. The
active site of nsp12 resides in its C-terminal RdRp domain and includes residues spanning
from Thr611 to Met626, which are involved in binding one turn of double-stranded RNA,
while residues D760 and D761 are required for recognition of the 3′ end and are essential
for RNA synthesis [214,215]. Remdesivir binds within the active site, forming direct contact
with residues K545, R553, D623, S682, T687, N691, S759, D760, and D761 and blocking the
catalytic machinery by delaying the chain termination process [216,217].

During the RNA synthesis process, the RdRp also interoperates with nsp13 (heli-
case) [218], an enzyme involved in unwinding the RNA secondary structure of the 5′

untranslated section of the viral genome [219] to increase the efficiency of the copy pro-
cess [220,221]. From a structural perspective, the nsp13 is a 596 residue, triangular pyramid-
shaped helicase, which exploits its function thanks to the energy provided by its NTPase
domain composed of six conserved residues (K288, S289, D374, E375, Q404, and R567) [222].
Adding to its helicase activity, the nsp13 active site also exerts RNA 5′ triphosphatase activ-
ity, further highlighting its importance in the maturation process of the viral mRNA [223].

The 5′ end of the newly synthetized mRNA is then subjected to post-translational
modifications to boost both its stability (preventing cleavage from exonucleases), protein
translation, and viral immune escape [224]. This activity is sequentially carried out by two
S-adenosyl-L-methionine-dependent methyltransferases, namely nsp14 and nsp16 [225].

Specifically, the 527 residues’ nsp14 encompass both a proofreading exoribonuclease
(ExoN) and an N7-methyltransferase enzymatic activity [226]. Furthermore, it has recently
been suggested that it could encompass also a third, essential function for the viral repli-
cation cycle, based on the fact that SARS-CoV-2 ExoN knockout mutants are nonviable
despite the 95% sequence identity with SARS-CoV [227] and the conservation of important
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active site amino acids including both the cap-binding residues (N306, C309, R310, W385,
N386, N422, and F426) and the S-adenosyl methionine (SAM) binding residues (D352, Q354,
F367, Y368, and W385) [228,229].

After its cleavage by the Mpro, evidence suggests that it forms a binary complex with
nsp10, which cooperatively exerts the proofreading activity on fresh RNAs produced by
the RdRp machinery [230,231]. Although the binary complex theory is the most prominent
one, an alternative hypothesis based on the formation of a ternary nsp10-nsp14-nsp16 has
been proposed due to the flexibility of the lid subdomain of nsp14 and the fact that nsp10
also forms a heterocomplex with nsp16 [231].

Particularly, the nsp16-nsp10 heterodimer is responsible for the 2′ O-methyltransferase
activity that is required to complete the cap-0 → cap-1 conversion of mRNA that is initiated
by nsp14 [225]. While the catalytic activity entirely resides on nsp16, nsp10 provides a
support role, aiding the recruitment of both the m7GppA-RNA substrate (which happens
at a binding site defined by residues K24, C25, L27, Y30, K46, Y132, K137, K170, T172,
E173, H174, S201, and S202) and the SAM cofactor (which binds in a pocket defined by
N43, G71, G73, G81, D99, D114, C115, D130, and M131), thus enhancing nsp16′s catalytic
activity [232–234].

Lastly, another essential target for coronavirus biology is represented by nsp15, a
uridine-specific endoribonuclease (NendoU) [235]. The active form of this enzyme is
a dimer of trimers, with each monomer composed of 345 residues organized in three
different domains: N-terminal, middle, and C-terminal NendoU, where the catalytic activity
resides [236].

The active site contains six conserved residues: His250, His250, and Lys290, which
compose the catalytic triad, and Thr341, Tyr343, and Ser294, with the latest associated
with selectivity in substrate recognition [237]. Due to their localization within the hexamer,
cooperativity or anticooperativity between different binding sites is possible [238]. Nsp15
enzymatic activity involves the cleavage of both single- and double-stranded RNA at
uridine sites producing 2′,3′-cyclic phosphodiester, and 5′-hydroxyl termini [239].

Functionally speaking, Nsp15 seems to directly participate in viral replication through
interference with the innate immune response [237]. Indeed, to evade host pattern recog-
nition receptor MDA5 responsible for activating the host defenses, the Nsp15 cleaves the
5′-polyuridine tracts in (-) sense viral RNAs [240], though it has also been suggested that
Nsp15 degrades viral RNA to hide it from the host defenses [238]. More detailed structural
information about potentially druggable SARS-CoV-2 protein targets can be found in the
works of Littler et al. [241] and Wu et al. [242].

2. Computer Simulations for Rational Drug Design

For most of its existence, the human genre has exploited natural products such as
leaves, seeds, roots, bark, and flowers as medicines, based on empirical observations purely
based on symptom relief [243,244].

Nevertheless, throughout the latest two centuries, the process of drug discovery has
evolved rapidly from the serendipitous discovery of novel active principles derived from
or inspired by natural compounds [245,246] to the rational design of brand-new chemical
entities [247].

The major turning point in the history of modern drug discovery can be traced back
to the 1980s when experimentally solved macromolecular structures become routinely
available [248]. The enhanced accessibility of structural data about biological targets is
reflected in a rapid interest in the development of computational methods that could
valorize this information and aid medicinal chemists’ work [249].

Today, computer simulations are a staple point of drug discovery campaigns, thanks
to their ability to streamline and reduce their attrition rate [250]. From a functional per-
spective, computer-aided drug discovery (CADD) techniques are employed in the earliest
stages of the pipeline for hit identification, hit-to-lead optimization, and pharmacokinetic
evaluations [251].
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CADD methodologies can either fall into one of two subgroups, based on the rationale
behind them: the first group is represented by ligand-based (LBDD) approaches, while the
second one includes structure-based (SBDD) methods [252]. The main difference between
these two orthogonal and complementary approaches is that the first one does not exploit
any information about the target macromolecule structure (e.g., a protein or a nucleic acid),
while the second one does [253].

Nowadays, with the advent of cryo-electron microscopy (cryo-EM) [254] and ground-
breaking tools for de novo prediction of protein structures such as AlphaFold [255], the
second approach has become the gold standard [171].

2.1. CADD Strategies against COVID-19

The starting point of every SBDD campaign is the identification of a target macro-
molecule (a protein or a nucleic acid) that is involved in the etiology and or pathogenesis of
a disease of interest, whose function can be opportunely modulated through a specifically
designed ligand, usually a small organic molecule [171].

Once the target has been identified, its structure must be retrieved, either through
experimental methods such as X-Ray crystallography (XRC, the gold standard) [256],
nuclear magnetic resonance (NMR) [257], and cryo-EM [258] or hypothesized through
homology modeling or de novo prediction [259].

Homology modeling involves the use of a homologous protein with a high primary
sequence identity with the target as a template for the construction of its three-dimensional
model [260,261]. De novo prediction, instead, does not rely on any information about other
proteins’ structures and outputs a structural hypothesis that is solely based on the primary
sequence of the target of interest [262].

While the second approach has gained a lot of momentum during the last two years,
thanks to its unprecedentedly high accuracy [263,264], the first one is still relevant in those
cases where important structural rearrangements occur between different states of the
target functional cycle, other than predicting ligand-bound conformations [265,266].

In the context of the COVID-19 pandemic, where the extraordinary effort promoted by
the scientific community quickly made several experimentally determined structures avail-
able, the relevance of structural modeling was highlighted by the ability to keep up with
the high mutation rate of the virus [135,207], other than providing a useful starting point for
drug discovery campaigns for a target whose structure had yet to be elucidated [267,268].
For example, several studies were conducted to investigate the impact of mutations found
in both the spike protein [135,269–273] and the main protease [135,198,274,275] of emerging
strains on viral fitness and resistance to existing therapies. These studies showed that rela-
tively inexpensive approaches such as homology modeling and positional scanning can be
reliable tools to rationalize the origin of the virus [274,276–278], quickly track the evolution
of the original strain [135,279,280], predict the impact of future possible mutations [270,272]
and adjust existing therapeutics tools accordingly [198,281].

The huge amount of structural information available on several SARS-CoV-2 drug-
gable targets was fertile terrain for various COVID-19 SBDD campaigns [282,283], both
in academia and in industry, with the most effort aimed at hitting well-characterized and
pivotal viral targets such as Mpro or spike [284,285].

A remarkable example is represented by the COVID Moonshot Consortium, a drug
discovery campaign driven by a collaborative effort among different research groups
across the world aimed at targeting the SARS-CoV-2 main protease. This project led to the
advancement of novel noncovalent orally available nanomolar Mpro inhibitors to clinical
stage experimentation [286].

2.2. The Swiss Knife of SBDD: Molecular Docking

Within every SBDD campaign, available information about the target structure is
exploited to fetch molecules able to recognize it selectively and potently [287]. Usually, this
involves the identification of molecules that have good steric and electrostatic complemen-
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tarity with the active site [288]. Depending on the steric and volumetric features of the
binding site, the ligand type can be chosen accordingly, with small organic molecules being
a better solution for buried cavities [289] and peptides, aptamers, or antibodies a better one
for larger, flatter, and solvent-exposed interaction surfaces [290].

To narrow down the list of potentially active molecules to experimentally test to a
feasible number, and to avoid wasting resources on compounds that do not possess the
appropriate features to interact with the target, most SBDD campaigns start with a virtual
screening process (SBVS) [291]. The most widely and successfully adopted method for
SBVS is molecular docking, a computational protocol developed in the 1980s by Kuntz
et al. [292] for predicting the preferred orientation of a certain ligand within the active site
of a receptor [293].

Each docking program has two major components, which cooperate to find the solu-
tion to the protein–ligand docking problem [294]. The first part is the search algorithm (SA),
which explores the ligand degrees of freedom within a user-defined search space centered
around the active site of the protein [295]. The SA generates several ligand conformations
(poses) that are fed to the second element of the program, i.e., the scoring function (SF),
which qualitatively evaluates subsisting protein–ligand interaction features [296].

In the context of the COVID-19 pandemic, docking was also the king of computational
methods used for drug discovery, thanks to the combination of its accuracy [297] and rapid-
ity, which allows it to virtually screen billions of compounds in just a few days [298–300].

For example, Corona et al. reported the discovery of four low micromolar nsp13
inhibitors through a virtual screening carried out with the LiGen [301] docking program on
an in-house natural compounds library [302].

Kolarič et al. identified two micromolar SARS-CoV-2 cell-entry inhibitors that act by
binding human neuropilin-1 (nrp-1) and preventing its interaction with the spike protein, by
performing a virtual screening with the GOLD [303] program on a library of commercially
available compounds [304].

Vatansever et al. performed a virtual screening based on the Autodock [305] program
on a library of drugs approved by the Food and Drug Administration and by the European
Medical Agency (EMA) to discover six micromolar Mpro inhibitors [306].

Kao et al. reported the discovery of three sub-micromolar, synergistic nsp1 inhibitors
identified through two independently executed virtual screenings with ICM [307,308] and
Vina [309] software on a library of FDA-approved drugs [310].

Zhang et al. identified 11 natural compound Mpro inhibitors active in the low micromo-
lar range through a virtual screening purely based on the commercial software Glide [311],
developed by Schrödinger [312]. Another strategic use of docking-based virtual screening
based on the Glide program is portrayed by the work of Huff et al., which designed six
mixed covalent and noncovalent nanomolar Mpro inhibitors [313]. Another Glide-based
virtual screening performed by Liu et al. led to the repurposing of histone deacetylase
(HDAC) inhibitors as SARS-CoV-2 cell entry inhibitors through allosteric modulation of
ACE2 and alteration of its ability to recognize the spike protein [314].

Wang et al. used LibDock [315] to perform a virtual screening on a library composed
of FDA-approved peptides, which led to the identification of a nanomolar SARS-CoV-2 cell
entry inhibitor that exerts its effect by binding the human ACE2 receptor [316].

A remarkable result was obtained by Luttens et al., which identified eight Mpro

inhibitors (including a nanomolar compound with pan coronaviral activity) by combining
fragment-based drug design with ultralarge virtual screening based on the DOCK [292]
program [317].

Welker et al. exploited the molecular docking pipeline of the LeadIT [318] program
to repurpose previously identified SARS-CoV PLpro inhibitors towards its SARS-CoV-2
homolog, demonstrating their activity on viral replication in cell-based assays [319].

Otava et al. utilized docking calculations with the GOLD [303] software to ratio-
nalize the structure–activity relationship of a series of rationally designed S-adenosyl-L-
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homocysteine derivatives, some of which showed inhibitory activity towards SARS-CoV-2
nsp14 in the low nanomolar potency range [320].

Similarly, Wang et al. exploited docking with Vina to rationalize the SAR of a series of
rationally designed phenanthridine nucleocapsid protein (NPro) inhibitors, including two
compounds showing low micromolar inhibitory activity [321].

2.3. Complementary Strategies to Address Docking Limitations

Although a very efficient and useful tool, molecular docking is rarely used on its own
within SBDD campaigns and, indeed, is most often coupled with other methods to compen-
sate for its weak points, such as neglecting receptor flexibility or the role of solvents [322],
thus increasing the virtual screening success rate [323]. Another major limitation is repre-
sented by the poor ranking capabilities of classical scoring functions [324], which is the
main cause of the high false positive rate of docking-based virtual screenings [325]. Indeed,
in order to be universally applicable across different biological targets and computationally
efficient enough to evaluate a large number of compounds, scoring functions have some
limitations in the physical description of the binding event, which prevent any correlation
between docking scores and experimentally determined affinity values [296]. Further-
more, little to no difference in score exists between top-ranking compounds derived from
large virtual screening campaigns, making it practically impossible to distinguish active
from inactive compounds solely based on the docking score [326]. For these reasons, each
docking-based virtual screening cannot be blindly executed and fully automatized, and a
careful setup of the experiment must be executed based on the available literature data and
the knowledge of the target [326,327]. For COVID-19, the importance of this common-sense
medicinal chemistry practice has been highlighted by the retrospective literature analysis
provided by Llanos et al., which showcased the poor performances of structure-based
virtual screenings solely based on ranking provided by docking scoring functions [323].

A possible solution to the limited physical description of the protein–ligand binding
event of docking is to couple it with molecular dynamics (MD) simulations [294,328]. Molec-
ular dynamics is a computational technique that allows investigating the time-dependent
evolution of biological systems following the rules of molecular mechanics, i.e., determining
the atomic trajectories by numerically solving Newton’s equation of motion, where forces
between the particles and their potential energies are calculated according to molecular
mechanical force fields [329]. Due to the heavy computational workload required to run
these types of simulations, MD is rarely used for screening purposes, while it is more
frequently exploited for the refinement of docking results, i.e., evaluating the pose stability
or optimizing the protein–ligand complex geometry for a more accurate estimation of the
free binding energy [330,331].

Regarding the pitfalls of the scoring component of docking programs, one possible
strategy is to apply some form of knowledge-based filter upon docking results, in a similar
fashion to what would happen if each pose were visually inspected [332]. For example,
experimental information about critical protein–ligand interactions required for binding
can be encoded within a pharmacophore filter or an interaction fingerprint, both of which
can be used as constraints in the pose selection process [333]. In the case of pharmacophore
filters, poses are filtered based on their ability to place a given functional group within a
defined volume [334,335], while in the case of protein–ligand interaction fingerprint, the
selection is usually based on the similarity between the reference and the query vector,
representing the interaction features of the reference compound (a true active) and the
investigated molecule respectively [336,337].

For instance, Wang et al. used a combination of structure-based pharmacophore
screening, docking (both performed with the appropriate tools of the Molecular Operating
Environment suite), and postdocking molecular dynamics refinement to identify a set of
four sub-micromolar Mpro inhibitors among a database of in-house compounds [338].

The same protocol was successfully exploited by Tian et al. to identify four sub-
micromolar PLpro inhibitors in the same in-house library [339].
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Furthermore, a slight variation of the protocol was also employed by Yin et al. to
discover a noncovalent cyclic peptide that simultaneously inhibits both SARS-CoV-2 Mpro

and nrp-1 with an activity in the low nanomolar range [340]. Within this scientific work,
pharmacophore constraints were used for scoring peptide poses on Mpro, while traditional
docking scores were used for the nrp-1 screening.

A remarkable joint computational work by Gossen et al. led to the molecular dynamics-
driven design of a structure-based pharmacophore filter, which was then exploited to iden-
tify two nanomolar Mpro inhibitors among a library of publicly available compounds [341].

A similar approach was exploited by Hu et al., which exploited the combination
between MD-based pharmacophore filtering, docking-based virtual screening within the
Molecular Operating Environment suite, and MD-based postdocking refinement to identify
micromolar SARS-CoV-2 cell entry inhibitors targeting the FP of the spike protein [342].

Jang et al. used protein–ligand interaction fingerprint similarity as a postdocking filter
for their double virtual screening on both Mpro and RdRp with the Vina program to identify
seven compounds inhibiting SARS-CoV-2 replication in cell-based assays among a library
of approved drugs [343].

Due to the static nature of molecular docking, which does not consider receptor flexi-
bility, the choice of the input structure is vital for the success rate of a virtual screening [344].
Although molecular dynamics can be a useful posterior refinement of poses, a wrong input
conformation of the target macromolecule could prevent the sampling of native-like poses
for active compounds, leading to a reduced hit-finding rate [345]. For this reason, multiple
conformations of the same receptor derived from MD simulations or experimentally solved
in different conditions can be used in parallel in a process defined as ensemble docking
(ED) [346]. When this approach is used, docking calculations are independently run on
each structure, with virtual hit compounds being identified either through consensus
scoring or a consensus ranking approach [347,348]. In the case of consensus scoring, the
docking score of the same molecule is averaged across the different virtual screenings,
with the final ranking based on the consensus score [349]. Differently, consensus ranking
involves the selection of top-ranking hit compounds across different virtual screenings,
regardless of congruence between scores [350]. A consensus approach can also be utilized
to rank molecules based on virtual screening executed on the same receptor structures with
different docking protocols [351].

For example, Gimeno et al. applied a consensus scoring approach to three indepen-
dently executed virtual screenings through Glide, FRED [352], and Vina software to identify
two Mpro micromolar inhibitors within the Drugbank database, a library that includes all
drugs approved by the Food and Drug Administration (FDA) [353].

Yang et al., instead, employed an ensemble docking approach with the Glide dock-
ing software to identify six Mpro inhibitors among a library of commercially available
peptidomimetic compounds, two of which demonstrated sub-micromolar potency [354].

Rubio-Martinez et al. used a combination of ensemble docking based on QVina2 [355]
and postdocking molecular dynamics refinement to identify five Mpro micromolar inhibitors
within a library of commercially available natural compounds [356].

A mixture of the previous two approaches was exploited by Clyde et al. for their High-
Throughput Virtual Screening (HTVS), based on both ensemble docking and consensus
scoring between the FRED and Vina docking programs, that led to the discovery seven
micromolar Mpro inhibitors among a set of commercially available compounds [357].

Further, a combination of consensus ranking among Autodock, Hybrid, and FlexX
and postdocking molecular dynamics refinement was utilized by Glaab et al. to virtually
screen a library of commercially available compounds and identify two micromolar Mpro

inhibitors [358].
Similarly, Ghahremanpour et al. applied both consensus ranking among three inde-

pendent virtual screenings performed with the Glide, Autodock, and Vina software and
postdocking molecular dynamics refinement to identify 14 micromolar Mpro inhibitors
within the Drugbank database [359].
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Another possible solution to cope with inaccuracy in free binding energy determi-
nation by traditional scoring functions is to rescore docking poses using more computa-
tionally intensive and accurate methods such as Free Energy Perturbation (FEP) [360] or
MMGBSA/MMPBSA [361]. The first approach relies on performing a series of alchem-
ical transformations across a set of ligands that need to be evaluated. This conversion
cycle allows calculating relative differences in the free binding energy that can be used
for a more accurate ranking of hit compounds derived from a virtual screening [362].
The second approach relies instead on correcting the gas phase interaction energy cal-
culated according to the molecular mechanics force field with a term accounting for the
desolvation-free energy, where the polar component is estimated either by numerically
solving the Poisson–Boltzmann equation (MMPBSA) or through the Generalized Born
method (MMGBSA) [363].

Intriguingly, one of the hit compounds identified in the work of Ghahremanpour et al.
was then used by Zhang et al. for the FEP-driven design of multiple nanomolar Mpro

inhibitors [364].
A similar combination of Glide docking and FEP to determine the absolute binding

free energy was also employed by Li et al. to identify 15 micromolar Mpro inhibitors within
the Drugbank database [365]. The efficacy of FEP in estimating the binding energy of
potential Mpro inhibitors was also highlighted by a retrospective study by Ngo et al. [366].

A multistep virtual screening involving semiflexible docking with Glide, Schrödinger
induced-fit docking [367], MD-based postdocking refinement, and binding free energy
estimation with the MMGBSA [368] protocol was exploited by Ibrahim et al. to identify
one low micromolar nsp15 inhibitor [369].

Although the estimation of thermodynamic properties such as the free binding en-
ergy has been a staple point of drug discovery campaigns, both from a computational
and an experimental perspective, lately there has been a major interest shift towards the
determination of kinetic parameters since they better correlate with in vivo efficacy [370].
Specifically, several MD-based methods have been developed throughout the years to rank
compounds based on their predicted residence time, i.e., the time that the ligand spends
in the receptor-bound state [371]. Among those, Pavan et al. developed Thermal Titration
Molecular Dynamics (TTMD), a new method for qualitative estimation of protein–ligand
complex stability (Figure 4), which was successfully applied for correctly discriminating
tight, low nanomolar binders from weak, micromolar SARS-CoV-2 Mpro inhibitors [372].
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Figure 4. Workflow of a Thermal Titration Molecular Dynamics (TTMD) simulation. The time-
dependent conservation of the native binding mode within a protein–ligand complex of interest
is monitored with a scoring function based on interaction fingerprint through a series of short
molecular dynamics simulations performed at progressively increasing temperatures. The simulation
is carried out until the target temperature is reached or the dissociation process is completed. A
coefficient called MS is then calculated and used to rank ligands based on the persistence of their
native binding mode.
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2.4. Beyond Protein–Ligand Docking: Alternative Strategies for Rational Drug Development

Despite the indisputable relevance of molecular docking within most SARS-CoV-2
drug discovery campaigns, other approaches were successfully implemented, especially for
projects which deviate from the design of a standard small molecule noncovalent binder.

For example, Zaidman et al. developed Covalentizer, an automated pipeline for the
conversion of noncovalent binders to irreversible ones, which was successfully applied to
the conversion of a SARS-CoV Mpro reversible inhibitor to a sub-micromolar SARS-CoV-2
Mpro irreversible one [373].

Valiente et al. reported the discovery of D-peptides that bind the spike RBD with
low nanomolar affinity, hence blocking SARS-CoV-2 infection in cell-based assays. These
ACE2-mimicking peptides were selected within the starting library through a combination
of structural alignment, MD-based post docking refinement, and binding free energy
estimation [374].

Similarly, a series of peptides mimicking the HR2 domain of the spike protein able
to prevent SARS-CoV-2 infection in cell-based assays with low micromolar potency were
designed through the combination between structural alignment, mutational scanning with
the BeAtMuSiC [375] tool, and MD-based postdocking refinement [376].

Jeong et al. used Rosetta [377] to rationally design a mAb that recognizes a conserved
surface on the spike RBD of various coronaviruses with picomolar binding affinities, thereby
strongly inhibiting SARS-CoV-2 replication in cell-based assay [378].

A similar strategy was exploited by Miao et al., which employed Rosetta docking and
MD-based postdocking refinement to design an RNA aptamer that binds with picomolar
affinity to the spike RBD and inhibits SARS-CoV-2 replication with sub-micromolar potency
in cell-based assay [379].

Further, Cao et al. utilized a combination of modeling with Rosetta and docking with
RifDock [380] to design ten mini proteins which bind with picomolar affinity to the spike
RBD thus inhibiting SARS-CoV-2 infection within cell-based assays [381].

Moreover, Glasgow et al. combined modeling with Rosetta and computational alanine
scanning with Robetta [382,383] to rationally design “ACE2 receptor traps”, i.e., engineered
proteins that bind the spike RBD with high affinity and neutralize SARS-CoV-2 infection as
effectively as clinically used mAbs [384].

As thoroughly discussed in previous paragraphs, many SARS-CoV-2 drug discovery
campaigns favored static, time-independent approaches such as docking or structural align-
ment, over time-dependent methods such as molecular dynamics. This can be attributed to
the long calculation times, the reduced conformational sampling capabilities, and the lower
accessibility of MD simulations to the general medicinal chemistry audience [331,385].
Despite these issues, several works demonstrated the potential of using full-fledged MD-
based drug discovery pipelines, especially when smart enhanced-sampling strategies are
employed [385].

For example, Bissaro et al. showed how high-throughput supervised molecular
dynamics (HT-SuMD) [386], a virtual screening platform based on an enhanced sampling
MD protocol, could be successfully exploited for docking fragments to the active site of
SARS-CoV-2 Mpro, overcoming accuracy limitations of most docking protocols [387] in
identifying the native-like binding mode for frag-like compounds [388].

Furthermore, the SuMD [389,390] algorithm (Figure 5) was successfully exploited by
Pavan et al. to decipher details about the recognition mechanism of Nirmatrelvir upon
the SARS-CoV-2 Mpro catalytic site before any structural detail was revealed by the drug
developer, with successive structural [189] and molecular medicine [198] studies confirming
the prediction validity [391].

Moreover, an evolved version of the SuMD protocol was developed by Pavan et al. and
successfully applied to the study of the recognition mechanism between RNA aptamers and
proteins, including an RNA-aptamer that binds to the spike RBD with picomolar affinity
thus preventing the viral infection of host cells [392].
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Figure 5. Workflow of a Supervised Molecular Dynamics (SuMD) simulation. The ligand is dy-
namically docked within a user-defined binding site through a series of short, unbiased molecular
dynamics simulations. At the end of each step, the distance of mass between the ligand and the
receptor binding site is computed for each trajectory frame and is fed to a tabu-like algorithm. If the
slope of the straight line that interpolates the data is negative, indicating the ligand is approaching
the binding site, the step is retained, and the simulation continues with the next “SuMD-step”.
If not, the step is discarded and repeated, randomly reassigning particles’ velocities through the
Langevin thermostat. This cycle is repeated until a threshold distance is reached or other user-defined
termination criteria are met.

3. Conclusions and Future Perspectives

Despite an unprecedented vaccination effort, which brought at least one vaccine shot
to 70% of the world’s population [101,393], the battle against COVID-19 is far from won.
Indeed, there is still a huge disparity between vaccination rates across first-world and
low-income countries [101,393]. Furthermore, aside from the vaccines’ availability, several
cultural and sociological factors contribute to the worldwide asymmetric vaccination cover-
age [394,395]. Finally, even in countries with the highest vaccination rates, the continuous
emergence of novel viral variants [396] with enhanced immune escape capability sustains
the viral spread even among the vaccinated population [397], so that to date a hundred
thousand new COVID-19 cases are reported each day, leading, on an average, to a daily
toll of hundreds of deaths globally [398]. Although the task of predicting the insurgence
of novel variants of concern is not trivial [399], and the debate on the mechanism behind
the genesis of these viral variants is still heated [400], it is reasonable to assume, based
on the history of COVID-19 so far and other virus-related illnesses such as flu [401,402],
that this phenomenon will continue to occur at least into the near future, forcing the
scientific community to adapt existing treatments to emerging viral strains, other than
developing novel therapeutics complementary to the existing ones [403]. Moreover, even
if massive vaccination sensibly lowered the harmful effect on patients’ health caused by
acute infection, long-term consequences of COVID-19 infections can still manifest at later
stages [404], further reaffirming the need for tools that can effectively treat the disease other
than preventing it.

In conclusion, the take-home message from the present pandemic situation is that,
among the strategies for identifying new therapeutic classes, with timescales compatible
with those marked as a health emergency caused by a shapeshifting pathogen, the inte-
gration of structural biology information and new computational approaches probably
represents the most promising one. The abundant amount of information provided by
structural biologists coupled with the good predictive power of established computational
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workflows provides a quick platform for finding temporary solutions in the form of drug
repurposing, allowing necessary time to develop more specific and tailored therapeutic
entities. Although this strategy is not always successful in promoting hit compounds for
clinical use [405], it can serve as a rational hypothesis generator for clinical studies, identify
molecules to use as pharmacological tools to expand the knowledge on the etiopathogen-
esis of an emerging illness, and set the basis for the development of derivatives that can
overcome the limitations of first-generation hits.

Despite all the scientific advancements in the field of computer-aided drug discovery,
indeed, the time required for the release to the market of a new drug has not been sensibly
reduced. Indeed, as highlighted in the work of Gupta et al. [406], many active compounds
identified through structure-based drug design and computational techniques possess
comparable activity to compounds in clinical trials. Many of these compounds, however,
despite showing good antiviral activity and having a well-defined mechanism of action,
fail to survive clinical stages of experimentation, due to the lack of good pharmacokinetic
properties, which are essential for ensuring both good therapeutic efficacy and lack of
intolerable side effects.

This fact further stresses the necessity for developing novel and complementary tools
to the existing ones, especially in the evaluation of pharmacokinetic properties and off-
target effects, which are usually the main causes of failure for candidate drugs in the clinical
stages of experimentation. Accordingly, because the presented in silico approaches serve
to provide candidates for preliminary selection, to extract the most value from these tools,
predictions generated from computational approaches must be verified with biological
confirmation, with both in vitro and in vivo models. Furthermore, with the increasing
amount of curated experimental datasets becoming available to the scientific community,
physics-based methods will be flanked more and more by artificial intelligence methods,
both for evaluating the pharmacodynamic and pharmacokinetic properties of investigated
compounds [407,408].

Finally, as estimated by a recent study [409], the likelihood of a highly infectious
disease epidemic could double in the coming decades, indicating that the successful compu-
tational strategies applied in the biology domain that have been adopted against COVID-19
will most likely come in handy soon, providing us with robust and efficient solutions in
tackling challenging diseases including new pandemics.
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