
RunPHI: Enabling Mixed-criticality Containers via
Partitioning Hypervisors in Industry 4.0

Marco Barletta, Marcello Cinque, Luigi De Simone, Raffaele Della Corte, Giorgio Farina, Daniele Ottaviano
DIETI - Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy

{marco.barletta, macinque, luigi.desimone, raffaele.dellacorte2, giorgio.farina, daniele.ottaviano}@unina.it

Abstract—Orchestration systems are becoming a key
component to automatically manage distributed computing
resources in many fields with criticality requirements like
Industry 4.0 (I4.0). However, they are mainly linked to OS-level
virtualization, which is known to suffer from reduced isolation.
In this paper, we propose RunPHI with the aim of integrating
partitioning hypervisors, as a solution for assuring strong
isolation, with OS-level orchestration systems. The purpose is to
enable container orchestration in mixed-criticality systems with
isolation requirements through partitioned containers.

Index Terms—Partitioning hypervisor, Orchestration, Mixed-
criticality, Containers, Industry 4.0

I. INTRODUCTION

Nowadays, we are witnessing the spread of Information
Technologies in several industrial domains (e.g., railways, avionic,
automotive). This transforms industrial scenarios in Edge cloud
environments populated by many Industrial Internet of Things
(IIoT), looking towards the Industry 4.0 (I4.0) vision [1], [2].
Thus, these systems must meet not only mandatory regulatory
requirements involving functional safety and control timeliness,
but also performance scalability, interoperability, low latency,
and reconfigurability through fast and efficient deployment.

Virtualization is an enabling technology for I4.0 since it
responds to the needs of reconfiguration, modularity, and
consolidation through resource partitioning and multiplexing.
It allows the execution of heterogeneous Operating Systems
(OS) (real-time and general-purpose) on the same system-on-
a-chip (SoC), becoming a prominent way for the industry to
realize Mixed-Criticality systems due to the current COVID-
19-induced silicon shortage phenomenon [3]–[5]. Partitioning
hypervisors (e.g., Jailhouse [6], Bao [7], Xtratum [8]) have
gained the attention of both academia and industry [9], [10] due
to the strong isolation provided through static allocation, at the
cost of a reduced flexibility of deployment compared to classical
virtualization (recently named consolidating hypervisors).

However, in the I4.0 vision, the stress is on the automatic
management, reconfiguration, and self-healing of IT systems.
Thus, criticality-aware orchestration systems are paramount
since they automatically place, deploy, monitor, and migrate
the packaged software across the infrastructure [11]; still
being aware of the isolation guarantees required by critical
workloads to prevent interferences in terms of faults and attacks
from non-critical jobs. Currently, containers are seamlessly
integrated into orchestration systems, but ensuring their isolation
is still an open issue, threatening the practicability of OS-
level virtualization under strict real-time, safety, and security

requirements. Unikernels seem to be a solution since they do
not share the underlying host kernel, but their portability issues
and real-time support are still open issues [12].

In this position paper, we propose RunPHI, a framework that
integrates partitioning hypervisors into container orchestration
systems with the aim of leveraging the strong isolation provided
by partitioning solutions while taking advantage of orchestration
techniques. This project advances the state of the art since i) it
simplifies the deployment of critical workloads in edge/cloud
environments, useful for maintenance, upgrades, and new
deployments; ii) it enables failure mitigation through migration
and spawning of new partitions; iii) it is a driving force for
the full reconfigurability of I4.0 for workloads with isolation
requirements.

II. RELATED WORK

In the literature, several solutions (summarized in Table I)
adapt general-purpose hypervisors with the aim of providing
true isolation between containers, aka sandboxed containers.
IBM Nabla1 builds containers on top of unikernels. Google
gVisor2 creates a dedicated guest kernel to run containers.
Amazon Firecracker3 is a lightweight hypervisor for sandbox
applications. Both KubeVirt4 and vSphere Integrated Containers
(VIC)5 integrate VMs and containers under a single orchestration
infrastructure. Kata Containers6 allows running secure container
runtime with lightweight VMs. RunX7 uses Xen hypervisor
to run containers in multiple separate VMs, either with the
provided custom-built Linux-based kernel, or with container-
specific kernel/ramdisk.

TABLE I
STATE-OF-THE-ART SOLUTIONS FOR PARTITIONED CONTAINERS.

Solution Guest Type Used Hypervisor Orchestration Support
Nabla Container Unikernel Nabla Tender Docker

gVisor Container +
user-space kernel KVM Kubernetes, Docker

Firecracker Light VM KVM OCI compliant
KubeVirt VMs and

Containers KVM Kubernetes
vSphere Integrated

Containers (VIC)
VMs and

Containers VMware ESXi VMware Orchestrator,
Docker

KataContainer Light VM QEMU/KVM Kubernetes, Docker
RunX Light VM Xen Kubernetes, Docker

RunPHI Light VM Partitioning
Hypervisors

Kubernetes, Docker, OCI
compliant

1https://nabla-containers.github.io/
2https://gvisor.dev/
3https://firecracker-microvm.github.io/
4https://kubevirt.io/
5https://vmware.github.io/vic-product/
6https://katacontainers.io/
7https://github.com/Xilinx/runx

1

ar
X

iv
:2

20
9.

01
84

3v
1

 [
cs

.D
C

]
 5

 S
ep

 2
02

2

Privileged Partition

Container
Orchestration

Platforms

OCI runtime

RTOS/
unikernel

APP
partition

ops

create
destroy
load
shutdown
start
stats

Bare-metal
APP

Container
ramdisk
kernel

APP

General-purpose
pCPUs

Memory
I/O Devices

General-purpose
pCPUs

Memory
I/O Devices

Real-time pCPUs

vCPU

General-purpose
pCPUs

Colored MemoryColored Memory

APP APP APP

vCPU vCPU vCPU vCPU

APP

. .
.

User

partioned containers descriptions

. . .

criticality = LOW
. . .

PartitionA
. . .

criticality = MID
. . .

PartitionB
. . .

criticality = HIGH
. . .

PartitionC

vCPU

Partitioning Hypervisor

Fig. 1. Proposed RunPHI Architecture.

These solutions are mainly based on general-purpose
hypervisors, which do not fit well with mixed-criticality real-
time requirements. In contrast, current partitioning hypervisor
solutions seem to provide enough guarantees about both safety
and security isolation. To the best of our knowledge, there are
no solutions that support sandboxed containers in conjunction
with partitioning hypervisors. The objective of RunPHI is to
provide both isolation requirements and flexible orchestration
capabilities for next-generation I4.0 scenarios.

III. PROPOSAL

Figure 1 shows a first design of RunPHI. Users provide
partition descriptions via classical tools inherited from container-
based orchestration (e.g., Dockerfiles, Kubernetes manifests).
Partitioned container descriptions can be extended with
requirements related to physical resources, criticality levels (e.g.,
low, mid, or high), real-time constraints, etc. RunPHI leverages
a partitioning hypervisor to provide strong isolation between
containers. In particular, according to partition descriptions,
RunPHI, implemented in the privileged partition, tries to allocate
physical resources in line with free resources within the host
node. The inference engine fills the gaps with predicted values for
resources not specified in the partitioned container description,
according to requests from the orchestration platforms and
current usage of hardware. RunPHI manages the lifecycle of
partitioned containers and is designed to be highly flexible with
the aim of orchestrating partitioned containers with a: i) low-
level criticality (e.g., partition A in Figure 1) that includes a
classical container abstraction with several applications running
on top of it, a number of virtual CPUs (vCPUs) with no specific
affinity on physical CPUs (pCPUs), without specific real-time
guarantees; ii) mid-level criticality (e.g., partition B in Figure 1)
that includes running a RTOS/unikernel single-app with strict
temporal and memory isolation requirements (e.g., by using 1-to-
1 vCPU-pCPU mapping and cache/RAM coloring mechanisms
respectively) and use of GPUs accelerators for running machine
learning algorithms; iii) high-level criticality (e.g., partition C in
Figure 1) that includes same mechanism for mid-level criticality
with the addition of running bare-metal tasks on real-time CPUs
and use of programmable logic blocks like FPGAs.

IV. RESEARCH QUESTIONS AND OBJECTIVES

In the following, we delineate research questions to be
considered in the next steps of our project.

RQ1. How I4.0 mixed-criticality systems can be
deployed via RunPHI?

Objectives:
To support partitioned containers run at different criticality with real-time

constraints
To support running bare-metal applications
To support accelerator devices like FPGAs and GPUs
To induce minimal overhead in terms of CPU, memory, and I/O

RQ2. How to quantify the isolation between
partitioned containers provided by RunPHI?

Objectives:
To support temporal, memory, and fault isolation assessment (e.g., fault

injection testing)
To support security isolation assessment (e.g., fuzzing)

RQ3. How to support orchestration for
partitioned containers in RunPHI?

Objectives:
To support different runtime containers and OCI-compliance
To support partitioned containers description via existing runtime containers

API and existing tools for configuration file (e.g., Dockerfile, Kubernetes
manifest)

To implement an inference engine to determine (sub)optimal resource
allocation for partitioned containers

To support migration, checkpointing, and high-availability mechanisms for
partitioned containers

ACKNOWLEDGMENT

This work has been supported by the project COSMIC of
UNINA DIETI.

REFERENCES

[1] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “Industrial
internet of things: Challenges, opportunities, and directions,” IEEE TII,
2018.

[2] A. Stavdas, “Networked Intelligence: A Wider Fusion of Technologies
That Spurs the Fourth Industrial Revolution—Part I: Foundations,” Pluto
Journals World Review of Political Economy, 2022.

[3] Bloomberg. (2022) Automotive Chip-Shortage Cost Estimate Surges to
$110 Billion. [Online]. Available: https://tinyurl.com/2p9akbhu

[4] M. Cinque, D. Cotroneo, L. De Simone, and S. Rosiello, “Virtualizing
mixed-criticality systems: A survey on industrial trends and issues,” Elsevier
FGCS, 2021.

[5] A. Cilardo, M. Cinque, L. De Simone, and N. Mazzocca, “Virtualization
over Multiprocessor System-on-Chip: an Enabling Paradigm for Industrial
IoT,” IEEE Computer, 2021, DOI: 10.1109/MC.2022.3140896.

[6] R. Ramsauer, J. Kiszka, D. Lohmann, and W. Mauerer, “Look mum, no
vm exits!(almost),” arXiv preprint arXiv:1705.06932, 2017.

[7] J. Martins, A. Tavares, M. Solieri, M. Bertogna, and S. Pinto, “Bao: A
lightweight static partitioning hypervisor for modern multi-core embedded
systems,” in Proc. NG-RES. Schloss Dagstuhl - LZI, 2020.

[8] A. Crespo, I. Ripoll, and M. Masmano, “Partitioned embedded architecture
based on hypervisor: The XtratuM approach,” in Proc. EDCC. IEEE,
2010, pp. 67–72.

[9] HERMES2020, “qualification of High pErformance pRogrammable
Microprocessor and dEvelopment of Software ecosystem.” [Online].
Available: https://cordis.europa.eu/project/id/101004203

[10] SELENE, “SELENE: Self-monitored Dependable platform for High-
Performance Safety-Critical Systems.” [Online]. Available: https:
//cordis.europa.eu/project/id/871467

[11] M. Barletta, M. Cinque, L. De Simone, and R. Della Corte, “Achieving
isolation in mixed-criticality industrial edge systems with real-time
containers,” in Proc. ECRTS. Schloss Dagstuhl - LZI, 2022.

[12] K.-H. Chen, M. Günzel, B. Jablkowski, M. Buschhoff, and J.-J. Chen,
“Unikernel-based real-time virtualization under deferrable servers: Analysis
and realization,” in Proc. ECRTS. Schloss Dagstuhl - LZI, 2022.

2

https://tinyurl.com/2p9akbhu
https://cordis.europa.eu/project/id/101004203
https://cordis.europa.eu/project/id/871467
https://cordis.europa.eu/project/id/871467

	I Introduction
	II Related Work
	III Proposal
	IV Research Questions and Objectives
	References

