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Unbounded randomness from uncharacterized
sources
Marco Avesani 1✉, Hamid Tebyanian 1, Paolo Villoresi1,2 & Giuseppe Vallone1,2,3

Randomness is a central feature of quantum mechanics and an invaluable resource for both

classical and quantum technologies. Commonly, in Device-Independent and Semi-Device-

Independent scenarios, randomness is certified using projective measurements, and its

amount is bounded by the quantum system’s dimension. Here, we propose a Source-Device-

Independent protocol, based on Positive Operator Valued Measurement (POVM), which can

arbitrarily increase the number of certified bits for any fixed dimension. Additionally, the

proposed protocol doesn’t require an initial seed and active basis switching, simplifying its

experimental implementation and increasing the generation rates. A tight lower-bound on the

quantum conditional min-entropy is derived using only the POVM structure and the

experimental expectation values, taking into account the quantum side-information. For

symmetric POVM on the Bloch sphere, we derive closed-form analytical bounds. Finally, we

experimentally demonstrate our method with a compact and simple photonic setup that

employs polarization-encoded qubits and POVM up to 6 outcomes.
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Random numbers are necessary for many different applica-
tions, ranging from simulations to cryptography and fun-
damental physics tests, such as Bell tests1–3. Despite its

common use, the certification of randomness is a complex task.
Classical processes cannot generate genuine randomness because
of the determinism of classical mechanics. On the other hand,
randomness is an intrinsic feature of quantum mechanics due to
the probabilistic nature of its laws. However, the generation and
certification of randomness, even from quantum processes,
always require some assumptions4.

The most reliable type of certification is given by Device-
Independent (DI) protocols4 where the violation of a Bell
inequality can certify the randomness and privacy of the numbers
without any assumption on the devices used. Despite recent
demonstrations5–9, DI-QRNGs are extremely demanding from an
experimental point of view, and their performances also cannot
satisfy the needs for practical implementation. For this reason, all
current commercial QRNGs use trusted protocols, where both the
source and measurements are trusted.

Although trusted QRNGs are high-rate, easy-to-implement
and cheap, the security and privacy of the generated random
numbers could be compromised. Recently, a new class of pro-
tocols, called Semi-Device-Independent (Semi-DI)10,11 have been
proposed as a compromise between the DI and the trusted ones.
The Semi-DI protocols work in a similar "paranoid scenario” of
DI, although with few assumptions on the devices’ inner working.
Assumptions can be related to the dimension of the exchanged
system12, the device used for the measurement13–17, the device
used for the source18,19, the overlap between the states20 the
energy21–27or general apparatus imperfections28. These protocols
are promising, since they can provide a higher level of security
with a generation rate compatible with practical needs.

Most of the DI and Semi-DI protocols employ projective
measurement, limiting the maximal certification to the under-
lying Hilbert space’s dimension. The possibility of increasing the
generation rate using general measurement has recently been
discussed for entangled systems in the DI scenario29–31. While
projective measurements can only certify up to one bit of ran-
domness for every pair of entangled qubits, POVM can saturate
the optimal bound of 2 bits30. Additionally, unbounded genera-
tion is possible if repeated non-demolition measurements are
performed on one of the qubits, but the protocol is not robust to
noise32,33. However, all of these scenarios need entanglement,
which is a strong requirement and involves an increased experi-
mental complexity.

In this work, we will consider a prepare-and-measure scenario
where the coherence (or purity) of the source is the resource for
the protocol. We will show that a robust unbounded randomness
certification can be obtained in the Source-DI scenario when non-
orthogonal POVMs are used. For a fixed dimension of Hilbert
space, we demonstrate that the amount of extractable random bits
scales up as / log2ðNÞ with N the number of POVM outcomes. In
such a way, an infinite number of random bits can be certified for
any dimension of the quantum system to be measured. In addi-
tion, the use of non-orthogonal POVMS instead of multiple
projective measurements allows to implement the Source-DI
protocol without an active switching of the measurement basis,
but in a completely passive way. This feature greatly simplifies the
experimental implementation which does not require fast elec-
tronics for the switching and can increase the generation rate,
which is not limited by the switching frequency. Moreover, no
additional randomness and an initial seed is required for the basis
selection. We specialize our analysis for polarization qubits,
considering symmetric POVM measurements. In particular, we
derive tight analytical bounds for equiangular POVMs restricted
on the plane of the Bloch sphere and for POVMs that correspond

to Platonic solids inscribed in the Bloch sphere. Finally, to vali-
date our findings, we experimentally implement three equian-
gular measurements on a plane with 3, 4, and 6 outcomes, and the
octahedron measurement with 6 outcomes, using a simple
optical setup.

Results
Randomness certification with POVM. In the prepare and
measure scenario, a QRNG is composed of two systems: a source
that emits a quantum state ρ̂A and a measurement station. At
each round, the measurement produces an outcome K= k with
some probability Pk.

While in the trusted scenario, both the measurement and
preparation stages are trusted and characterized, in the Source-DI
scenario only the measurement is trusted and characterized, while
the source is considered untrusted and under the control of the
eavesdropper(Eve). Trusted measurement means that the user has
full control of the measurement apparatus. In particular, trusted
POVM means that any adversary has no classical or quantum
correlation with the measurement setup and he cannot access the
Naimark extension of the POVM.

In this case, the amount of private randomness that can be
extracted by the QRNG can be quantified by quantum
conditional min-entropy34, related to the guessing probability as

HminðXjEÞ ¼ �log2ðpgðXjEÞÞ ð1Þ

Here, the probability of correctly guessing the measurement
outcome pg is conditioned on Eve’s (quantum) side information E
on the system.

As discussed in ref. 13, if the prepared state ρ̂A is pure, Eve does
not have access to any quantum side information. On the
contrary, if ρ̂A is mixed, there is always a purification ρ̂AE of ρ̂A,
such that the systems A and E are correlated. Bounding the
Hmin(X∣E) is then directly linked with the problem of bounding
the purity of the unknown state ρ̂A.

In this scenario, a single projective measurement fP̂ig cannot
certify any amount of randomness13,35.

A solution to this problem, proposed in ref. 13, uses two
conjugate projective measurements Z and X and the Entropic
Uncertainty Principle to bound the value of HminðXjEÞ. However,
this approach requires the active switching of the two conjugate
measurements that comes with two major drawbacks: first, the
switching requires an initial source of private randomness and
then requires active elements in the experimental implementa-
tion, increasing the complexity of the setup. For this protocol, the
maximum value of min entropy is upper bounded by the
dimension d of the measurement HminðXjEÞ≤ log2ðdÞ.

In the following, we will show that the use of a single POVM
fF̂kg with k= 1,⋯ ,N at the measurement station will solve the
above issues. No initial randomness and no active devices are
required; the maximum value of the min-entropy is bounded by
the number of POVM elements N, but is not limited by the
dimension d of the underlying Hilbert space.

Since we are working in the source-device-independent
framework, we do not have assumptions on the quantum source,
which can share, in general, quantum correlations with the
adversary, meaning that there are no restrictions to the bipartite
state ρ̂AE. On the other hand, the measurements are characterized,
and the POVM operators are known, so we do not consider
quantum-side information on the measurement side.

In the Methods we demonstrate the following:

Proposition 1. In the source-device independent framework with
a trusted measurement device described by the POVM fF̂kg with
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k= 1,⋯ ,N, the guessing probability can be written as

pgðXjEÞ ¼ max
fpk;τ̂kg

∑
N

k¼1
pkTrA F̂kτ̂k

� � ð2Þ

where the normalized states τ̂k belong to the A system and the
maximization is subjected to the following constraint on the
states τ̂k

TrA½F̂jð∑
N

k¼1
pkτ̂kÞ� ¼ Pj; j ¼ 1; � � � ;N; ð3Þ

and Pj are the experimental observed probabilities.
The above constraint ensures that the states τ̂k form a

decomposition of the state ρ̂0A � ∑kpkτ̂k that has the same
outcome probabilities Pj of the unknown state ρ̂A when measured
with the POVM fF̂jg. Differently from the common definition of
pg for classical-quantum states presented in ref. 36, the above
formulation is easier to calculate in scenarios where the source is
untrusted.

From this definition of pg(X∣E), we can see why a single
projective measurement fΠ̂kg (that satisfies Π̂jΠ̂k ¼ δj;kΠ̂k)
cannot be used to extract randomness: for every set of Pk we
can choose in Eq. (2)τ̂k ¼ Π̂k and pk= Pk, such that
∑jpjTr½Π̂kτ̂j� ¼ Pk and Tr½Π̂kτ̂k� ¼ 1. Thus, pg(X∣E) reaches
unity, which means that Eve is able to guess Alice’s result
deterministically. On the other hand, if the POVM used by Alice

have non-orthogonal elements F̂
N
j F̂

N
k ≠ δj;k the attacker can never

guess with certainty the outcome of the measurement.
Let us first consider the simple case where the equiangular

three-state POVM for a qubit is used, namely:

F̂
3
k ¼

2
3
ψk

�� �
ψk

� �� ð4Þ

where

ψ1

�� � ¼ 0j i
ψ2

�� � ¼ 1
2 0j i þ

ffiffi
3

p
2 1j i

ψ3

�� � ¼ 1
2 0j i �

ffiffi
3

p
2 1j i

ð5Þ

By solving the optimization problem in Eq. (2), we can calculate
HminðXjEÞ for every possible set of states ρ̂A sent by the attacker.

Since the POVM elements F̂k belong to the ZX plane of the
Bloch sphere, all the ρ̂A that have the same projection in the ZX
plane will lead to the same result. The min-entropy in function of
the projection of the state ρ̂A in the ZX plane are shown in Fig. 1.

It is possible to distinguish two different areas: the region
inside the triangle (formed by the lines that connect the three
jψki), and the one outside it. Within this region, the min-entropy
is constant and it reaches the minimal value of
HminðXjEÞ ¼ �log2ð2=3Þ � 0:58. This result is in contrast with
projective measurements, where a single projective measurement
can never achieve Hmin(X∣E) > 0. Outside this region, the min-
entropy increases monotonically and reaches its maximum
Hmin(X∣E)= 1 for three pure states, each orthogonal to one of
the states jψki:

The reason can be intuitively understood. Consider that the

state orthogonal to ψ1

�� �
is sent: the output corresponding to F̂

3
1

never appears, and this result alone certifies the purity of ρA. On

the other hand, the other two outcomes relative to F̂
3
2 and F̂

3
3

occur with the same probability of 0.5. Then, in this case, it
behaves like an unbiased coin, and the maximum achievable
randomness is 1 bit per measurement.

Exploiting the geometrical properties of the POVM we derived
an analytical relation on pg(X∣E) as a function of the measured

outcomes for general regular POVMs with N outcomes, as
stated below.

Proposition 2. Consider the N-outcome qubit POVM fF̂N
k g

defined by

F̂
N
k ¼ 1

3
ð1þ a!k � σ!Þ; k ¼ 1; � � � ;N ð6Þ

with a!k representing the vertices of a regular polygon in the ZX
plane, namely a!k ¼ 1 and a!k � a!kþ1 ¼ cos 2πN . The measured
output probabilities Pk uniquely identify a point r! in the ZX
plane with coordinates (rz, rx). The guessing probability pg(X∣E) is
given by

pg ¼
1
N
þ 1

N
∑
k
f Nð r!� u!k; αÞ θ ð r!� u!k � cos αÞ ð7Þ

where

f N ðx; αÞ ¼ x cos αþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
sin α

α ¼ π

N

ð8Þ

and u!k the unit vectors orthogonal to the edges of the polygon.
We note that if the point r! is inside the polygon, then

pg(X∣E)= 2/N. Otherwise, if the point r! is outside the polygon,
only one term in the sum (7) is nonvanishing. From the
experimental probabilities we can obtain the point r! with
different methods: it is possible to employ a simple linear
inversion, however, a more reliable method is to use the approach
described in ref. 37.

For an arbitrary set of POVM, the guessing probability can be
numerically obtained by Semidefinite Optimization (SDP), as
shown in the Methods.

Analytical results for regular POVMs of Eq. (7) has been
compared with the numerical solutions for N up to 100. The
results were calculated with respect to the statistics reproduced by
ρ̂A sampled from the entire Bloch sphere. The numerical and
analytical methods always agreed, up to a factor smaller than the
numerical tolerance.

In Fig. 2, for N= 4, 5, 6 and 10, we show the contour plots of
the min-entropy as a function of the projection of the unknown
state ρ̂A in the ZX plane of the Bloch sphere. By increasing the

Fig. 1 Min-entropy contour plot. Contour plot of Hmin(X∣E) for the
three-outcome POVM F̂

3
k in function of the projection of ρ̂A in the ZX plane

of the Bloch sphere. The states Ψi

�� �
are associated to the POVM elements.

For experimental probabilities inside the red triangle 0.58 bits of
randomness can be certified, while for the region outside the triangle up to
1bit can be certified.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-01038-3 ARTICLE

COMMUNICATIONS PHYSICS |           (2022) 5:273 | https://doi.org/10.1038/s42005-022-01038-3 | www.nature.com/commsphys 3

www.nature.com/commsphys
www.nature.com/commsphys


number of outcomes, both the lowest and the highest Hmin(X∣E)
increase. From Eq. (7) we obtain:

MN � max
r!

HminðXjEÞ
� 	 ¼ log2ð

N
1þ cos α

Þ ð9Þ

mN � min
r!

HminðXjEÞ
� 	 ¼ log2 Nð Þ � 1 ð10Þ

with α ¼ π
N. This scaling as a function of N for a qubit system and

equiangular POVM on a plane is reported in Fig. 3.
The difference between MN and mN is given by:

MN �mN ¼ 1� log2 1þ cos
π

N


 �
� π2

2N2 ln 2
ð11Þ

which becomes negligible for large N, since the distance between
the POVM’s elements also gets smaller.

The analytical bounds of Eq. (7) can be extended to general
POVM, not restricted to a plane of the Bloch sphere. We also
considered symmetric POVMs, representing platonic solids
inscribed in the Bloch sphere38. We show in Supplementary
Method 1 that for these measurements, Eq. (9), with different
values of α, correctly bounds the maximum amount of min-
entropy that can be certified. In Fig. 3 we compare the scaling of
such measurements with the POVM restricted to the plane.

Additionally, in Fig. 3 we show a comparison between the
extractable randomness in the trusted and Source-DI scenarios.
In the trusted scenario (i.e., both source and measurement
trusted, without quantum correlation between the devices and the
attacker), up to log2N bits can be certified per measurement,

sending for example the completely mixed state 1̂2.

The gap between the trusted and the untrusted bounds is never
larger than 1 bit, for any ρA, meaning that the price to pay for the
increased security of the Source-DI certification is at most 1 bit
per measurement. The results indicate that in the asymptotic limit

Fig. 2 Min-entropy 3D plot for different POVM outcomes. 3D plot of Hmin(X∣E) in function of the projection of ρ̂A in the ZX plane. The POVM considered
have 4, 5, 6, 10 equispaced elements in the ZX plane. In the region inside the red lines the lower-bound of the min-entropy is reached.

Fig. 3 Min-entropy scaling as a function of the number of POVM
elements. Scaling of Hmin(X∣E) as a function of N. In the untrusted scenario,
we report the max and the min Hmin(X∣E) for N equispaced POVM on a
plane of the Bloch sphere. We also report the max Hmin(X∣E) for POVM
representing platonic solids inscribed in the Bloch sphere. The dashed line
represents the upper-bound for the trusted model. Finally, the colored dot
represent estimated min-entropy from the experimental data. The error
bars represent the standard deviation of the mean but they are smaller than
the symbols of the datapoints.
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N→∞ the min-entropy tends to Hmin(X∣E)→∞, showing that
unbounded randomness can be certified even from quantum
systems with finite dimension d, including qubits.

Finally, we would like to highlight several advantages of the
proposed protocol over previous discrete variable source-DI
protocols13,35,39,40. In addition to the increased Hmin(X∣E) per
measurement, the protocol allows for an important simplification
of the experimental setup. Indeed, the non-orthogonal POVMs
considered in this work can be implemented with only passive
optical element. On the contrary, previous protocols based on
Quantum State Tomography35 or the Entropic Uncertainty
Principle13,39,40 require an active and random switching of the
measurement basis. The active switching requires fast electronics
to implement it in real-time during the execution of the protocol
and is often the main factor limiting the speed of the QRNG40.
Moreover, basis switching requires an initial random seed for
random selection of the basis and consumes part of the produced
randomness after the start of the protocol, lowering the final
generation rate. In contrast, the protocol presented in this work
does not require any initial seed for the implementation of the
protocol.

Experimental implementation. To test the certification protocol
with a proof-of-principle experiment, we developed a simple
optical setup that employs a heralded single-photon source and
four different POVM configurations. The preparation and mea-
surement exploit the polarization degree of freedom of single
photons. A schematic representation of the setup is shown in
Fig. 4. The heralded source is composed of a continuous-wave
laser at 404 nm, which optically pumps a 30 mm long Periodically
Poled Potassium Titanyl Phosphate crystal. This configuration
produces photon pairs at 808 nm through type-II collinear-phase-
matching spontaneous parametric down-conversion.

The photons are deterministically separated by a polarizing
beam splitter (PBS), and the detection of a photon at D0 (see
Fig. 4) heralds the presence of the single photon Hj is, which is
sent to the preparation stage.

Here a Half Wave Plate (HWP) and a Quarter Wave Plate
(QWP) are used to prepare the photon in any required
polarization. The photon is then sent to Alice’s measurement.
Taking into account filtering and finite SPAD efficiency, we
obtain a heralded photon generation rate of ≈10 kHz.

We decided to implement the protocol using a heralded single-
photon source in order to reduce the contribution of dark counts

and background noise. However, since we work in the Source-DI
scenario, no assumptions are made on the source or on the
channel losses and any implementation can be used.

The POVM fF̂N
k g used by Alice are N-output measurement in

the two-dimensional Hilbert space of photon polarization. The
optical implementation of such POVM can be realized by using
interferometric setups (as in ref. 41): however, this technique
requires high precision in the alignment and offers low temporal
stability. For this reason, we decided to follow the approach
presented in42, which does not require any interferometric
scheme.

In the three outcomes equiangular POVM F̂
3
k, shown in Fig. 4,

the photon passes through a Partially Polarizing Beam Splitter
(pPBS), which reflects with probability 2/3 the state Vj i, while
fully transmits Hj i.

Thus, detecting the reflected photons implements the first

POVM element F̂
3
1 ¼ 2

3 Vj i Vh j. The transmitted part is instead
measured in the diagonal basis, implementing the remaining

operators F̂
3
2 and F̂

3
3 (see ref. 42 for more detail).

The POVM with four and six outcomes can be implemented in a
similar way, and they only require standard BS, PBS and waveplates.

The four-outcome POVM F̂
4
k is realized in the following way: a

50:50 BS reflects and transmits the photons with equal probability,
then in the reflected path a PBS measures in theZ basis, while in the
transmitted path the HWP at π

8 followed by the PBS, performs a
measurement in theX basis. Accordingly, the four POVM elements

fF̂4
kg ¼ f14 Hj i Hh j; 14 þj i þh j; 14 Vj i Vh j; 14 �j i �h jg are realized. Simi-

larly, for the six-outcome POVM on the plane F̂
6
k, a BS with

transmissivity 2
3 followed by a BS with transmissivity 1

2, creates three
different optical paths where the probability of detecting a photon is
1
3. Later, one path is measured directly along with the Z basis with a

PBS, implementing the elements F̂
6
1;4 ¼ 1

6 Hj i Hh j; 16 Vj i Vh j. In the
second arm, an HWP at π

12 before the PBS implements the elements

F̂
6
2;5 ¼ 1

6 ð
ffiffi
3

p
2 Hj i þ 1

2 Vj iÞð
ffiffi
3

p
2 Hh j þ 1

2 Vh jÞ; 16 ð12 Hj i �
ffiffi
3

p
2 Vj iÞð12 Hh j�ffiffi

3
p
2 Vh jÞ. Similarly, in the third arm, an HWP at π

6 before the PBS

implements the elements: F̂
6
3;6 ¼ 1

6 ð12 Hj i þ
ffiffi
3

p
2 Vj iÞð12 Hh j þ

ffiffi
3

p
2 Vh jÞ;

1
6 ð

ffiffi
3

p
2 Hj i � 1

2 Vj iÞð
ffiffi
3

p
2 Hh j � 1

2 Vh jÞ. Finally, the implementation of

the six-outcome POVM Ŝ
6
is similar to the previous one. One of the

HWP is now rotated at π
8 while the other HWP is replaced with a

QWP at π4. In this way, each arm measures along one of theX;Y;Z

Fig. 4 Experimental setup. An heralded single photon source made from a Periodically Poled Potassium Titanyl Phosphate (PPKTP) crystal in a Sagnac
interferometer, generates single photons at 808 nm. After the polarizing beam splitter (PBS), the heralded photon is prepared in any desired polarization by
using an Half-Wave Plate (HWP) and a Quarter-Wave Plate (QWP). The photon is then measured using Single Photon Avalanche Diodes (SPAD) with
four different POVM configurations with 3, 4, and 6 outcomes. The coincidences between the heralding photon detector D0 and the detectors in the
measurement station are recorded by a timetagger on a PC.
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bases, implementing the following POVM elements fŜ6kg ¼
1
6 Hj i Hh j; 16 þj i þh j; 16 Lj i Lh j; 16 Vj i Vh j; 16 �j i �h j; 16 Rj i Rh j� 


.
After the polarization measurements, the photons are collected

by multimode fibers and detected by Silicon SPAD (Excelitas
SPCM-NIR).

The electrical signals generated by the SPADs are registered by
a Time-to-Digital Converter with a resolution of 81 ps, which
streams the data to a PC. On the PC, we keep only the timetags
that are inside a coincidence window of 1ns between the
heralding detector and any other detector.

Experimental results. In this section we describe the results of
our experimental run. For each of the four measurement con-
figurations described in the previous section, we prepare four
different quantum states ρA and we evaluate the corresponding
min-entropy Hmin(X∣E)a in the asymptotic limit. The states are
chosen in order to maximize or minimize the min-entropy.
However, since the protocol assumes uncharacterized light, we do
not use any information about the preparation for the actual
estimation of the randomness in the system.

For each run of the protocol, we use the heralded source to
prepare the state, and we record the number of coincidences
between the heralding detector D0 and any other detector D1-DN,
associated to a particular POVM element. Then the total number
of events per detector Nk is directly converted to a probability
pk ¼ Nk

∑iNk
of the occurrence of a particular POVM element F̂k.

For a typical run of the experiment, we acquire a total number
Ntot of 107 coincidence events. However, since the prepared states
are (almost) pure, the finite statistics could lead to non-physical
quantum states, similarly to what happens for quantum state
tomography43,44. To enforce a physical reconstruction, we use the
constrained maximum-likelihood estimation technique presented
in ref. 37 to retrieve a physical state ~ρA compatible with the
measured statistics pk. The asymptotic min-entropy Hmin(X∣E)a
has been calculated using both the numerical methods presented
in Methods and the analytical expression given by Eq. (7) (or its
general version given in Eq. S25) for the reconstructed state ~ρA.

The results are shown graphically in Fig. 3, while the estimated
~ρA and Hmin(X∣E)a are reported in the Supplementary Methods 3,
in particular in the Supplementary Tables I, II, III, IV. As we can
see, the experimental data confirm the expected scalings up to
N= 6, for both the maximum and minimum of the Hmin(X∣E).
Considering the heralded photon generation rate of ≈ 10kHz of
our source, depending on the specific configuration implemented
and the obtained min-entropy, the random generation rate is
between 5 and 20 kbps.

Although the theoretical lower bound was always experimen-
tally achievable (up to numerical precision), the maximum of the
Hmin(X∣E) could not be achieved exactly. This effect is due to the
limited accuracy in the preparation of the ρA state and the
unavoidable dark counts in F̂k due to accidental coincidences.

In the present proof-of-principle experiment, we considered a
perfect POVM as defined above. However, any experimental
measurement device is subject to imperfection. To deal with the
experimental realization of POVM subjected to errors, we could
recall that our results are completely general and they can be
applied to any POVM. Therefore, since the measurement device
is trusted, it is possible to characterize all the imperfections of the
beam-splitters, polarizing beam-splitters, single-photon detectors
and other elements. To perform this characterization of the
implemented POVM, Quantum Measurement Tomography
(QMT) can be used45. After these characterizations a well-
defined POVM is obtained. While for "symmetric” POVM such
as (6) it is possible to find analytic results, for generic POVM it is
possible to use the numerical tools illustrated in Methods to

evaluate the conditional min-entropy. In this way, by using the
QMT and the numerical tools, it is possible to bound the min-
entropy not only for SIC-POVM and ideal measurements, but
also for any general non-ideal measurement, greatly simplifying
the experimental requirements and increasing the robustness of
the protocol.

Under the i.i.d. condition, it is possible to exploit the numerical
approach presented in the Methods to include finite-size effects.
To obtain bounds without the I.I.D assumption, several
approaches are possible. A simple, but non-tight method would
be to bound the guessing probability without constraints. In this
way, the min-entropy would be minimized over all the possible
quantum states, not only the ones compatible with the observed
statistics. We detail this approach in Supplementary Methods 2.
However, this method is not tight, since it always bounds the
min-entropy with the lowest possible value obtainable by that
specific POVM, regardless of the output statistics. To obtain
tighter bound without the I.I.D assumption it is possible to
exploit the newly developed Entropy Accumulation Theorem
(EAT)46 or Quantum Probability Estimation47. As an example, if
the EAT is chosen, it is possible to follow the construction
detailed in48, where a min-tradeoff function for the EAT is built
from the single-round quantum conditional min-entropy. Using
that framework it is possible to obtain the (accumulated) smooth
conditional min-entropy for n rounds without the I.I.D
assumption. A similar approach can be done for QPE, as, for
example, in ref. 28. The full inclusion of finite-size effects by the
EAT is out of the scope of this work and will be investigated in
our future research.

Conclusion
We have presented a protocol for the generation of random
numbers from quantum measurement based on the Source-
Device-Independent scenario: no assumptions are included in the
source of quantum states, while the measurement device is fully
trusted and characterized. We have shown that the amount of
extractable random bits scales up as / log2ðNÞ when the mea-
surement is performed by a N-outcome POVM. Thus, an infinite
number of random bits can be certified for any dimension of the
quantum system to be measured. We derived an analytical bound
for the estimation of the extractable randomness using symmetric
POVM on the Bloch sphere. Our findings were validated
experimentally by implementing several POVMs in the polar-
ization space of single photons with a simple optical setup.
Compared to previous DV Source-DI protocols, the one pre-
sented here allows for a passive implementation without an active
switching of the measurement basis. This feature greatly sim-
plifies the experimental implementation, which does not require
fast electronics for the switching and can increase the generation
rate, which is not limited by the switching frequency. Moreover,
no additional randomness and an initial seed is required for the
basis selection.

Note added: After the completion/submission of this manu-
script, we became aware of a similar work which also considers
Source-DI randomness generation with POVM measurements49.

Methods
Source-DI guessing probability: proof of Proposition 1. The framework we are
considering is a QRNG whose output is obtained by measuring a quantum system
A with a POVM fF̂jg obtaining the observed probabilities Pj. Since the system A
may have correlation with the adversary E, as shown in ref. 50, the probability of
guessing the output of the QRNG is given by

pg ðXjEÞ ¼ ∑
M

a¼1
PðaÞmax

j
½pð jjaÞ� ð12Þ

where j= 0,⋯ , d− 1 are the possible classical outcomes of the QRNG, a is the
state (possibly quantum) hold by the adversary Eve, M is an arbitrary integer,
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p(j∣a) the probability of guessing j when the state a is prepared, P(a) the
probability of preparing the state a.

In the source-device-independent scenario, we may assume that Eve can
arbitrarily prepare the joint state of the AE system ρ̂aAE , while the measurement
POVMs fF̂jg on Alice’s side are trusted. Since the E system is arbitrary, any
quantum state ρ̂aAE prepared with probability P(a) can also be seen as the post-
measurement state obtained after a generalized measurement Êa in a bipartite
system ρAE, namely

ρ̂aAE ¼ ÊaρAEÊ
y
a

PðaÞ ; PðaÞ ¼ TrAE½ÊaρAEÊ
y
a� ð13Þ

By defining the POVM M̂a ¼ Ê
y
aÊa the above guessing probability can be

written in complete generality as

pg ðXjEÞ ¼ max
fPðaÞ;ρ̂aAE g

∑
M

a¼1
PðaÞmax

j
TrAE½ðF̂j � 1̂Þρ̂aAE� ð14Þ

¼ max
f ^MðaÞ;ρ̂AEg

∑
M

a¼1
PðaÞmax

j

TrAE½ðF̂j � M̂aÞρ̂AE�
PðaÞ ð15Þ

The maximization over fPðaÞ; ρ̂aAEg is constrained to be compatible with the
experimental outcomes on Alice’s side given by Pj ¼ TrA½F̂jρ̂A� where ρ̂A ¼
∑aPðaÞTrE ½ρ̂aAE� is the reduced state on A subsystem. By tracing the E system, the
above expression can be written in terms of states on A, defined by

TrE½ρ̂aAE� ¼ ρ̂Aa ) TrAE ½ðF̂j � 1̂Þρ̂aAE� ¼ TrA½F̂jTrE½ρ̂aAE�� ¼ TrA½F̂jρ̂
A
a � ð16Þ

where ρ̂Aa is a normalized state. We note that, by the above definition, the reduced
state on the A system can be written as ρ̂A ¼ ∑aPðaÞρ̂Aa . Therefore, the guessing
probability can be written only by using states and measurement in the A
subsystem as

pgðXjEÞ ¼ max
fPðaÞ;ρ̂ag

∑
M

a¼1
PðaÞmax

j
TrA F̂jρ̂

A
a

h i
ð17Þ

where the maximization over fPðaÞ; ρ̂Aa g is constrained to TrA½F̂jð∑aPðaÞρ̂Aa Þ� ¼ Pj .
The above equation has a simple physical interpretation: by using the optimal
measurement strategy on the state ρAE, the eavesdropper effectively prepares, on
Alice’s side, the states ρ̂Aa with probabilities P(a). The states ρ̂Aa and probabilities
P(a) are constrained to reproduce the experimental measured probabilities Pj.
When the eavesdropper prepares the state ρ̂Aa her guessing probability is
pð jjaÞ ¼ maxj Tr½F̂jρ̂

A
a �, namely she guessed the output with maximum output

probability. Equation (17), averaging and maximizing over all the different
prepared states, represents the optimization of her strategy.

Now we can simplify the above expression. For a given decomposition E �
fPðaÞ; ρ̂Aa g we can group the indices a= 1,⋯ ,M into the N disjoints subset SkðEÞ,
with k= 1,⋯ ,N. The subset SkðEÞ includes all indices a so that Tr½F̂jρ̂

A
a � is

maximized for j= k. Therefore,

pgðXjEÞ ¼ max
fPðaÞ;ρ̂Aa g

∑
N

k¼1
∑

a2SkðEÞ
PðaÞmax

j
TrA F̂jρ̂

A
a

h i
ð18Þ

¼ max
fpk ;τ̂Ak g

∑
N

k¼1
pkTrA F̂k τ̂

A
k

� �
ð19Þ

where we defined τ̂Ak ¼ ∑a2SkðEÞPðaÞρ̂
A
a =pk and pk ¼ ∑a2SkðEÞPðaÞ. We note that

since ∑aPðaÞρ̂Aa ¼ ∑k∑a2SkðEÞPðaÞρ̂
A
a ¼ ∑kpk τ̂

A
k the constraints on the normalized

states ρ̂Aa can be rewritten as

Pj ¼ Tr
�
F̂j

�
∑
k
pk τ̂

A
k

	�
; j ¼ 1; � � � ;N: ð20Þ

The proposition is thus demonstrated.
We can also relate our relation to a standard expression typically used for

QRNG derived for classical-quantum states (see ref. 36). In the framework
considered in ref. 36, a joint state ρAE is measured on the A subsystem by obtaining
the classical-quantum state ρ̂XE ¼ ∑jPj j

�� �
X

j
� ��� σ jE where Pj are the output

probabilities after the POVM fF̂jg, X represents a classical system encoding the

outputs and σ jE are the resulting states on the E system after the measurement. Eve
can perform arbitrary measurements on her quantum system to maximize the
guessing probability of Alice’s outcomes. The guessing probability is then defined
as pg ðXjEÞ ¼ maxfM̂kg ∑

N
j¼1 PjTrE ½M̂jσ̂

j
E� where M̂k is a POVM on the E subsystem.

In the source-device-independent framework, the initial state ρ̂AE is not defined, so

we need to optimize also over the possible state σ̂ jE compatible with the observed
statistic. Now we show that the above expression is equivalent to (18). By repeating
the reasoning leading to (18) from (17), we can rewrite eq. (14) without the internal

maximization as

pg ðXjEÞ ¼ max
fM̂k ;ρ̂AE g

∑
N

k¼1
TrAE½ðF̂k � M̂kÞρ̂AE� ð21Þ

where the maximization over ρ̂AE is constrained to satisfy the observed statistic,
namely Pj ¼ TrAE½ðF̂j � 1Þρ̂AE�. Due to the above constraint, we can define the
normalized states

σ̂kE ¼ 1
Pk

TrA½ðF̂k � 1Þρ̂AE� ð22Þ

such that the guessing probability can be written as

pg ðXjEÞ ¼ max
fM̂k ;σ̂

k
E g
∑
N

k¼1
PkTrE

�
M̂kσ̂

k
E

�
ð23Þ

that is the expression mentioned above and typically used to define the guessing
probability for QRNG (see discussion after eq. (17) in ref. 36). Therefore eqs. (23)
and (18) are completely equivalent and they represent the guessing probability
evaluated by considering the E or A subsystem respectively.

We note that the two scenarios considered above both correspond to start from
a joint state ρ̂AE and perform measurement F̂k on Alice’s side and measurement M̂k
on Eve’s side. If we consider performing first Alice’s measurement, the post-
measurement state is given by ρ̂XE ¼ ∑kPk kj iX kh j � σ̂kE . If we consider to perform
first the Eve’s measurement, the post-measurement state is given by ρ̂AY ¼
∑kpk τ̂

A
k � kj iY kh j where Y is a classical system in which Eve’s encode her results.

The two equivalent expressions (18) and (23) for the guessing probability are
obtained by considering, respectively, the post-measurement state ρ̂AY or ρ̂XE .

Numerical tools for bounding the Hmin(X∣E) with arbitrary POVM. In this
section we introduce a numerical tool based on Semidefinite Optimization (SDP)
which can be used to bound the Hmin(X∣E) in the Source-DI scenario for an
arbitrary set of POVM. Besides bounding the min-entropy, this numerical tool can
also be useful to get a more precise understanding of Eve’s optimal strategy, since it
also returns the states ρ̂a of the decomposition used by Eve. To start, we write Eq.

(17) in the form of the primal SDP, where we introduce the states δ̂k ¼ pk τ̂k :

maximize
δ̂k

∑
N

k¼1
TrA

�
F̂kδ̂k

�

subject to δ̂k ≥ 0 8k;

Tr ∑
k
δ̂k

� �
¼ 1;

jTr F̂i ∑
k
δ̂k

� �
� Pij≤ ζðϵ; nÞ

ð24Þ

where ζ(ϵ, n) is a bound on the experimental probabilities Pi, such as the Chernoff-
Hoeffding51 that is used to take into account finite-size effects.

We can rewrite the last constraint using slack variables si, ti in order to have
only the equality constraint except for the positive semidefinite condition.

maximize
δ̂k

∑
d

x
TrA F̂kδk

� �

subject to δ̂k ≥ 0 8k;

Tr ∑
k
δ̂k

� �
¼ 1;

Tr F̂i ∑
k
δ̂k

� �
� Pi þ si ¼ ζðϵ; nÞ;

�Tr F̂i ∑
k
δ̂k

� �
þ Pi þ ti ¼ ζðϵ; nÞ;
si ≥ 0;

ti ≥ 0

ð25Þ

This problem can be solved numerically directly using efficient SDP solvers
such as refs. 52,53. After the optimization we obtain not only the maximum of the
objective function p�guess but also the optimal states τ̂k ¼ δ̂k=Tr½δ̂k� that Eve
employs to maximize her pguess. However, a solution to the primal problem
provides a lower-bound on the guessing probability Pg, not an upper-bound.
Thus, if the solver does not converge to the exact solution it will over-estimate
the true amount of private randomness, compromising the security. To solve
this problem, we can use the approach described in ref. 25 to derive the dual
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form, which can be written as:

minimize
b;ei ;f i

�bþ∑
i
Piðei � f iÞ þ ζðϵ; nÞðei þ f iÞ

subject to
�
F̂k þ b1̂þ∑

i
ðf i � eiÞF̂i

	
≤ 0 8k;

ei ≥ 0 8i;
f i ≥ 0 8i

ð26Þ

The solution of this dual problem always provides an upper-bound to the
guessing probability, resulting always in conservative bounds. Moreover, this dual
formulation provides other advantages: the first advantage is related to the speed of
the computation. With the primal, every time we obtain new data Pi, it is necessary
to run the SDP again to obtain a bound on the guessing probability. With the dual,
since the objective function is a linear function of the Pi, after an optimal solution
has been found, a new (sub-optimal) upper-bound can be easily evaluated for
different Pi, without running the optimization again. This aspect is particularly
interesting for real-time applications, where the post-processing can be done
efficiently using a Lookup table.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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