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Abstract: Some new dichloro- and dibromotriphenylphosphino isonitrile and N-acyclic (NAC) carbene
complexes of platinum(II) were synthesized, starting from suitable dinuclear precursors. The reaction
of cyclohexylisonitrile with trans-[Pt(µ-X)X(PPh3)]2, followed by the addition of N,N-diethylamine
afforded the corresponding N-acyclic carbene (NAC)derivatives cis-[PtX2(PPh3)(NAC)] in 61–64%
isolated yield. The cis geometry was attributed based on the comparison with known structures. The
stability of the complexes in pure DMSO, DMSO/H2O, and DMSO/NaClaq mixtures was evaluated.
While pure DMSO, as well as DMSO/H2O, did not affect the nature of either dichloro- or dibromo-
compounds, dibromo derivatives were not stable in the presence of chloride ions. Since a high
concentration of chloride ions is essential to perform in vitro cell assays, only dichlorocomplexes
were tested as cytotoxic agents against HepG2 and human tumor cells. Among the tested complexes,
NAC derivatives showed a moderate effect on MSTO-211H.

Keywords: Platinum(II) bromo- and chlorocomplexes; carbene ligands; triphenylphosphine;
chloro-bromo metathesis; cytotoxicity

1. Introduction

Since the first discovery in 1964 of the anticancer activity of cisplatin [1] and its
subsequent introduction into the drug market in the Seventies [2–5], hundreds of new metal-
based drugs have been synthesized and studied. Limiting the bibliographic SciFinder©
search to platinum-based anticancer agents that appeared in the literature in 2022, more
than 150 reviews can be found, showing that cisplatin-derived metal drugs are still a hot
subject. As a matter of fact, although cisplatin-based chemotherapy is very effective against
some kinds of oncological diseases, it has many drawbacks in terms of undesired side
effects [6,7]. Moreover, some cancer cells are intrinsically resistant or can develop acquired
resistance to cisplatin [8–13]. The first structural analogues synthesized to overcome these
limits strictly resembled cisplatin [14–17], and some of them are still commonly used to
heal certain tumors. Afterwards, platinum complexes whose structures are significantly
different in ligands, metal oxidation state, and geometry from that of the original drug,
were prepared and their anticancer properties were described [18–33].

In recent years, we focused on the synthesis and biological studies of many platinum-
based complexes endowed with antiproliferative properties [34–42]. Such investigations
allowed us to conclude that the presence of a triphenylphosphine ligand can promote
cell uptake and, in many cases, provide modes of action against cisplatin-resistant cancer
cells. The trans-[PtCl2(PPh3)(L)] (L = N,N-dialkylamine) [36,42] and [PtCl(PPh3)(L∧L´)]
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(L∧L´= chelating oxime ligand) [38,41] represent interesting examples of such complexes.
More in detail, the mechanism of action of trans-[PtCl2(PPh3)(L)] (L = N,N-dialkylamine)
was investigated [42] and the ability to interfere with the catalytic activity of topoiso-
merase II was evidenced. Since this enzyme is known to play an important role in the
occurrence of resistance, the inhibitory effect observed was considered responsible for over-
coming the resistance. Analogously, the study of the mode of action of [PtCl(PPh3)(L∧L´)]
(L∧L´= chelating oxime ligand) [38] on cisplatin-resistant cell lines evidenced the capacity
to depolarize the transmembrane mitochondrial potential, as well as the ability to pro-
duce reactive oxygen species inside the cells. Interestingly, this behavior was observed
for many metal complexes carrying triphenylphosphine and/or triphenylphosphonium
residues and for some cationic lipophilic N-heterocyclic carbene platinum complexes [43,44].
More recently we have described the synthesis of some [PtX2(PPh3)(NAC)] complexes
(NAC = N-Acyclic Carbene ligand; X = Cl, Br) [34,35], both stable in DMSO/H2O solutions
and thus good candidates for biological investigations. The interest of these systems arises
from the observation that (i) carbene metal complexes have shown great potential in the
field of anticancer compounds [45–47], thus an N-heterocyclic carbene (NAC) ligand and a
triphenylphosphine ligand on the same platinum center could exert a synergistic effect and
(ii) the availability of platinum(II) dihalocomplexes differing in the leaving group would
allow a direct comparison of its role in the biological properties. Indeed; some examples are
described [48,49] where changing the leaving group allows for modulation of the properties
of the complex. We hereby describe the preparation of two novel [PtX2(PPh3)(NAC)]
complexes; discuss their stability in the standard conditions for in vitro cell assays and
evaluate their cytotoxic effect on human tumor cells.

2. Results and Discussion
2.1. Synthesis of Complexes [PtX2(PPh3)(Et2NCN(H)C6H11)]

The synthesis of the title compounds was carried out according to known proce-
dures [34,35], in two steps (Scheme 1) starting from [Pt(µ-X)X(PPh3)] [50]. Briefly, the
suitable dinuclear precursor was reacted with cyclohexyl isocyanide, affording in all cases
a single product, to which a cis geometry was assigned, in strict analogy with similar
compounds [34,35]. cis-[PtX2(PPh3)(CNC6H11)] (X= Cl, 1; Br, 2) were recovered, after the
usual work-up procedures, in 91–92% yield (Scheme 1, step 1). In the IR spectra of 1 and 2
a strong absorption peak was observed around 2230 cm−1 for both compounds, indicat-
ing the coordinated isonitrile. Moreover, the nature of the intermediates was clear when
observing the 13C NMR spectra, where signals around 160 ppm were attributed to the
isonitrile carbon atom. Finally, 31P- and 195Pt NMR spectra afforded for both compounds
a single signal, with 1JP-Pt coupling constants of about 3330–3340 Hz. In the second step,
N,N-diethylamine was added and the corresponding cis-NAC derivatives 3 (X = Cl) and 4
(X = Br) were obtained in a 61–64% yield (Scheme 1, step 2).

A complete spectroscopic characterization (Figures S1–S12) was carried out for all the
unprecedented complexes prepared For ease of comparison, 31P- and 195Pt NMR main sig-
nals for complexes 1–4 are reported in Table 1. For both chloride- and bromido derivatives
a very good agreement with data previously collected for similar compounds [34,35,51,52]
was observed. The carbene nature of the obtained compounds was evident in the 1JP-Pt
coupling constants (around 4000 Hz) observed in both 31P- and 195Pt NMR spectra. In
the IR spectra, the strong absorption around 2230 cm−1 was no longer observed, while
a typical absorption band around 1550 cm−1 appeared and was ascribed to the carbene
functional group. The carbene carbon atom was observed, in the 13C NMR spectrum,
around 170 ppm.
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Scheme 1. Synthesis of cyclo-Hexylisocyanide- and NAC complexes.

Table 1. The 31P- and 195Pt NMR data for complexes 1–4.

Complex
31P NMR

δ ppm (1JP-Pt, Hz)

195Pt NMR
δ ppm (1JP-Pt, Hz)

1 8.4 (3410) −4120 (3410)
2 9.0 (3346) −4402 (3346)
3 8.3 (4092) −4126 (4092)
4 9.3 (4020) −4187 (4020)

As already noticed in the case of the analogous systems, since triphenylphosphine
NAC complexes are characterized by a rigid backbone, most hydrogen atoms in the
aliphatic portion of the molecule are not chemically equivalent and afford, in the 1H
NMR spectrum, a series of peculiar multiplet signals, each integrating as one hydrogen
atom. As an example, the 5.1–1.3 ppm spectral zone of complex 4 1H NMR spectrum is
reported in Figure 1.
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Figure 1. The 1H NMR spectrum (expansion) of complex 4.

The NH residue of NAC (Figure 1, Ha) and the methyne group of cyclohexyl moiety
(Hd) afford two multiplets at 4.93 and 4.81 ppm, respectively, with a 3JH-Pt of 72 Hz for
NH. The two methylene groups of diethylamine moiety and the two methylene groups of
cyclohexyl residue close to Hd afford eight distinct multiplet signals, each integrating as
one hydrogen atom (Hb-c and He-f in Figure 1). The remaining aliphatic hydrogen atoms
of cyclohexyl moiety, as well as the two methyl groups of diethylamine residue, resonate in
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the 1.30–0.88 ppm spectral zone, affording superimposed multiplet signals. The rigidity of
the NAC derivatives was well evident in the 13C NMR spectra as well, where a signal for
each carbon atom of the N-acyclic carbene residue was observed. Elemental analysis was
satisfactory for all the samples.

2.2. Stability of Complexes

DMSO/H2O. Complexes 1–4 are not soluble in water or ethanol, but they are well
soluble in dimethylsulfoxide (DMSO). Although DMSO is commonly used in biological
studies to dissolve samples, its coordinating behavior towards many metal centers can-
not be ignored. In the case of platinum(II), DMSO shows a very good affinity as a soft
S-coordinating ligand towards the metal center, thus competition between DMSO and
other ligands can be observed when it is used to dissolve complexes. The potential al-
teration of the complexes’ nature and/or of their activity in DMSO and DMSO/water
solutions [53,54], makes a stability check necessary each time DMSO is used. In the case of
triphenylphosphine complexes 1–4, the stability in DMSO and DMSO/H2O mixtures can
be conveniently checked by 31P NMR spectroscopy since the complexes originating from
the substitution of isonitrile or NAC ligands by DMSO (cis-[PtX2(PPh3)(DMSO)], X = Cl,
Br) are known [50]. Complex 4 was chosen as representative of the prepared complexes
and was used to carry out the stability tests. The maximum amount of water that can be
added to a DMSO solution of 4 (10 mg in 1 mL) without precipitation of the complex was
determined by subsequent additions of aliquots of water (20 µL) to the DMSO solution
until the solid started to form (120 µL). For the stability tests, first, a solution of 4 (10 mg) in
DMSO (1 mL) was inserted into an NMR tube and analyzed via 31P NMR spectroscopy at
different time spans (t = 0, 6, and 24 h). A single signal was always observed at 9.11 ppm,
and no traces of the substitution byproducts were observed. In a further experiment, 60 µL
of water were added to 1 mL of solution (10 mg of 4 in 1 mL DMSO) and spectra were
registered after 0, 6, and 24 h. Again, a single signal was observed at 9.11 ppm, with no
traces of decomposition nor substitution byproducts.

DMSO/H2O/NaCl. The concentration of chloride ions in culture media commonly
used to grow cells for in vitro biological tests is usually very high. As an example, MEM
and RPMI culture media, used in the biological tests of the present work, contain chloride
ions about 125 and 109 mM, respectively. Since metal complexes are tested usually in a
concentration range between 1 and 20 µM, a chloride/substance molar ratio of at least
545 can be estimated. Considering the coordinating properties of chloride ions and their
high affinity towards platinum, in the case of bromocomplexes, it is necessary to test their
behavior in the presence of chloride ions, to exclude metathesis reactions that would change
the nature of tested substances. Preliminarily, a solubility test was carried out as previously
described above for water, using a 1 M NaCl aqueous solution instead of pure water. In
these conditions, precipitation was observed after adding 100 µL of solution. The sample
for NMR was then prepared by adding 80 µL of NaCl solution to 1 mL of a DMSO solution
of 4 (10 mg). In these conditions, NaCl concentration was 80 mM and the concentration
of the metal complex was 12.5 mM, with a [Cl−]/[4] molar ratio of 6.4. 31P NMR spectra
registered after 0, 6, and 24 h are reported in Figure 2.

As can be easily seen in Figure 2, the signal attributed to 4, initially observed at
9.11 ppm, slowly disappears, while two new signals are observed at 8.57 and 8.29 ppm.
After 24 h the original signal at 9.11 ppm is no longer present, while the signal at 8.57 ppm
is the main one. This last signal was ascribed to cis-[PtCl2(PPh3)(Et2NCN(H)C6H11)] (3),
by comparison with a standard sample in the same mixture of solvents. The experiment
showed that [PtBr2(PPh3)(NAC)] complexes are not stable in the presence of chloride ions,
even when [Cl−]/[PtBr2(PPh3)(NAC)] molar ratio is much lower than that commonly used
in in vitro tests. On the basis of these results, only dichloro derivatives were used to test
their cytotoxicity.
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2.3. Cytotoxic Effect

The isocyanide and carbene platinum(II) dichlorocomplexes 1 and 3 were tested for
their cytotoxicity against two human tumor cell lines, HepG2 (hepatocarcinoma) and
MSTO-211H (biphasic mesothelioma), along with the structurally related 5–8 [35]. All
assayed complexes are reported in Figure 3. Cisplatin was taken as a reference drug.
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Figure 3. [PtCl2(PPh3)(CNR)] and [PtCl2(PPh3)(NAC)] complexes tested for their cytotoxic effect on
human cell lines.

The percentage of cell viability after incubation for 72 h in the presence of 20 µM test
compound was calculated, with respect to untreated control culture.
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The obtained results (Table 2) indicate a higher sensitivity towards the test derivatives
of MSTO-211H than HepG2 cells. Interestingly, in both cell lines, the viability in the presence
of 3, 6, and 8 appears lower than that observed in cells treated with the corresponding 1, 5,
and 7, thus suggesting the carbene moiety is more effective than isocyanide in inducing a
cytotoxic effect.

Table 2. Cell viability after 72 h of incubation in the presence of 20 µM 1,3,5–8.

Compound Cell Viability (% at 20 µM) a

HepG2 MSTO-211H

1 99 ± 1 54 ± 6
3 57 ± 12 2.6 ± 1.8 (4.0 ± 0.9) b

5 93 ± 6 87 ± 11
6 79 ± 15 24 ± 4 (9.4 ± 1.5) b

7 64 ± 9 43 ± 1
8 59 ± 7 38 ± 10

cisplatin (0.6 ± 0.1) b (1.4 ± 0.1) b

a Data are expressed as a percentage of viable cells with respect to untreated control culture. b GI50 values, that
is, the concentration (µM) of the compound able to cause 50% cell death with respect to a control untreated cell
culture. The values are the mean ± SD of at least three independent experiments in duplicate.

For the most cytotoxic 3 and 6, the GI50 value, i.e., the concentration able to induce
50% cell death, was further obtained by incubating the most sensitive MSTO-211H cells in
the presence of different concentrations of test compounds. Interestingly, the calculated
values, shown in the bracket in Table 2, are both in the low micromolar range, even if they
are significantly higher than those observed for the reference drug, pointing to a moderate
cell effect for the tested complexes.

3. Conclusions

Following a simple synthetic protocol four novel complexes [PtX2(PPh3)(CNC6H11)]
(X = Cl,1; Br, 2) and [PtX2(PPh3)(NAC)] complexes (X = Cl, 3; Br, 4) were prepared starting
from suitable dinuclear derivatives. The complexes were characterized and their stability
was evaluated under experimental conditions similar to those usually used to carry out
biological tests in vitro. While all the complexes were stable in the presence of pure
DMSO and DMSO/H2O mixtures, bromo derivatives underwent halide substitution in
the presence of chloride ions. The Cl/Br metathesis was complete in 24 h, even when
chloride ion concentration was about tenfold lower than that usually employed during
the in vitro tests. These data prompted us to investigate solely the chlorocomplexes for
the cytotoxicity on human cell lines. It has to be underlined that, while the stability in
DMSO and/or water is commonly described in works dealing with the biological activity
of halometal complexes [48,49,55], the stability in the presence of chloride ions is not
frequently discussed [56,57]. Since in physiological conditions as well as in vitro cell
assays a high concentration of chloride ions cannot be avoided, our results suggest always
testing the halocomplexes’ stability towards chloride ions before studying their biological
properties. The carbene derivatives were found capable of inducing a higher cytotoxic
effect than the corresponding isocyanides.

4. Materials and Methods

General chemical syntheses were carried out under an inert (Ar) atmosphere, if not oth-
erwise stated. The solvents used were purified and dried following usual procedures [58,59].
Solid, commercially available reagents were used with no further purification. Dinuclear
precursors trans-[Pt(µ-X)X(PPh3)]2 (X = Cl, Br) were prepared according to described pro-
cedures. [50] Samples of 5–8 were prepared according to the described procedures [35].
Cyclohexyl isocyanide was purchased from ™Merck and used without further purification.
N,N-Diethylamine was distilled over KOH and filtered over dry alumina immediately
before use. An elemental analyzer “vario MICRO CUBE” CHNOS was used for elemental
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analysis. IR spectra were acquired on an Agilent “Cary 630” spectrometer, equipped with
an ATR accessory. The following abbreviations were used to describe absorption peak (ν̃,
cm−1) intensities and shapes: s = strong; m = medium; w = weak; br = broad; sh = shoulder.
1H-, 13C{1H}-, 31P{1H}-, and 195Pt{1H} NMR spectra were recorded on JEOL YH 400 MHz
and JEOL CZR 500 MHz spectrometers; CDCl3 solutions were used (™Deutero GmbH,
stored over Ag), if not otherwise stated. When 31P NMR spectra were registered in non-
deuterated solvents, a sealed capillary containing C6D6 was inserted into the sample to
allow instrumental lock. Chemical shifts (δ ppm) are referred to Si(CH3)4 for 1H, H3PO4
(85% in D2O) for 31P and H2PtCl6 for 195Pt. The following abbreviations were used to
describe observed signals: s = singlet, d = doublet, t = triplet, dd = doublet of doublets,
q = quadruplet, and m = multiplet.

4.1. Synthesis of [PtX2(PPh3)(CN C6H11)] (X = Cl, Br)

In a Schlenk tube equipped with a magnetic stirrer a cooled (0 ◦C) suspension of trans-
[Pt(µ-X)X(PPh3)]2 [50] (0.200–0.500 g) in 1,2-DCE (10–15 mL) was treated, under stirring,
with a solution of cyclohexyl isocyanide in the same solvent ([c-HexNC]/[Pt] = 2.0 molar
ratio). The mixture was warmed (25 ◦C) and a clear, yellow solution was obtained (2 h).
The reaction was followed by 31P NMR. As soon as a clear solution was obtained, two
signals were observed at 12.3 ppm (1JPPt = 2980 Hz, 22%) and 8.41 ppm (1JPPt = 3424 Hz,
78%), with the less intense one slowly converting into the other (12 h). Most of the solvent
was removed under vacuum and the residue was treated with n-heptane (25–30 mL). A
waxy-oily solid precipitated, which turned into a colorless powder after cooling (0 ◦C)
and stirring (12 h). The solid was recovered by filtration in air, washed with n-heptane
(2 × 3 mL), and dried at reduced pressure. For each complex the yield, the elemental
analysis, and the spectroscopic (IR and NMR) characterizations are reported.

Cis-[PtCl2(PPh3)(CNC6H11)] (1). 0.243 g (3.81 × 10−4 mol, 91%). El. Anal. Calcd
C25H26Cl2NPPt, %: C 47.1, H 4.1, N 2.2, Found, %: C 46.8, H 3.8, N 2.1. I.R. (ATR, ν̃,
cm−1): 3055 w, 2930 w, 2860 w, 2231 s (stretching N≡C), 1482 m, 1436 s, 1321 w, 1257 w,
1184 w, 1097 s, 998 m, 927 w, 864 w, 747 m, 709 m, 692 s. 1H NMR: 7.86–7.37 (m, 15H,
Harom), 3.38 (m, 1H, CH2CHCH2), 2.02–1.17 (m, 10H, cyclohexyl). 13C NMR: 160.1, 134.6
(d, J = 11 Hz), 131.6, 131.2 (d, J =60 Hz), 128.6 (d, J = 12 Hz), 55.1, 31.3, 24.6, 22.5. 31P NMR:
8.4 (1JPPt = 3410 Hz). 195Pt NMR: −4120 (1JPPt = 3410 Hz).

Cis-[PtBr2(PPh3)(CNC6H11)] (2). 0.600g (8.27 × 10−4 mol, 92%). El. Anal. Calcd
C25H26Br2NPPt, % C 41.3, H 3.6, N 1.9; Found, % C 40.9, H 3.6, N 1.9. IR (ATR, ν̃, cm−1):
IR (ATR, ν, cm−1): 3590–3283 w, 3046w, 2929 m, 2856 w, 2675 w, 2578 w, 2502 w, 2225 s
(stretching N≡C), 1772 w, 1652 w, 1559 w, 1480 m, 1434 s, 1313 w, 1183 w, 1098 s, 996 w,
920 w, 863 w, 746 s, 691 s. 1H NMR: 7.73–7.69 (m, 6H, Harom), 7.50–7.42 (m, 9H, Harom),
3.31 (m, 1H, CNCH), 1.63–1.53 (m, 4H cyclohexyl), 1.35–1.20 (m, 6H cyclohexyl). 13C NMR:
162.0, 134.7 (d, J = 11 Hz), 131.7, 129.2 (d, J =60 Hz), 128.5 (d, J = 12 Hz),55.0, 31.3, 24.7, 22.5.
31P-NMR: 9.0 (JP-Pt = 3346 Hz). 195Pt NMR: −4402 (JP-Pt = 3346 Hz).

4.2. Synthesis of [PtX2(PPh3)(Et2NCN(H)C6H11)] (X = Cl, Br)

In a Schlenk tube equipped with a magnetic stirrer a solution of the suitable
[PtX2(PPh3)(CNR)] (0.180–0.400 g) in 1,2-DCE (10–15 mL) was cooled (0 ◦C) and slowly
treated with a solution of N,N-diethylamine (Et2NH) in 2 mL of the same solvent
([Et2NH]/[Pt] = 2.0 molar ratio), under stirring. The temperature was slowly raised
(25 ◦C) and stirring was maintained for 24 h. The reaction was followed by 31P NMR,
checking the disappearance of the precursor’s signal and the appearance of a new signal,
generally characterized by a bigger 1JP-Pt coupling constant (4000 Hz). After concentrating
the solution under vacuum, n-heptane (20–30 mL) was added at 0 ◦C, under vigorous
stirring. A waxy solid precipitated, which was converted into a colorless powder upon
prolonged stirring (12 h). The suspension was filtered under vacuum in air, the solid was
washed with n-heptane (2 × 3 mL) and dried under vacuum. For each complex the yield,
the elemental analysis, and the spectroscopic (IR and NMR) characterizations are reported.
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Cis-[PtCl2(PPh3)(Et2NCN(H)C6H11)] (3) 0.151 g (2.02 × 10−4 mol, 61%). El. Anal.
Cald. C29H37Cl2N2PPt·2H2O,%: C 46.7, H 5.5, N 3.7, Found: C 46.7, H 5.4, N 3.5. I.R.
(ATR, ν̃, cm−1): 3297 w, 3055 w, 2929 m, 2853 w, 2223 m, 1552 s (stretching C = N), 1482 w,
1435 s, 1378 w, 1260 w, 1206 w, 1157 w, 1096 s, 998 w, 892 w, 801 w, 746 s, 692 s. 1H
NMR: 7.81–7.26 (m,15H, Harom), 5.09 (s,1H, 3JH-Pt = 60 Hz, NH), 4.76 (m, 2H, J = 6.9 Hz,
CH2CHCH2+ CH3CHHNH), 3.38(m, 1H, J = 6.9 Hz, CH3CHHNH), 2.92 (m, 2H, J = 6.9 Hz,
CH3CH’2NH), 2.65(m, 1H, J = 6.9 Hz, CH2CHCHH), 1.94 (m, 1H, CH2CHCHH), 1.68(m, 1H,
CH’H’CHCH2), 1.63–0.80 (m, 13H, CH’H’(CH2)3 + CH3). 13C-NMR: 173.4, 134.5 (broad),
131.1, 128.2 (d, JC-P = 12 Hz), 130.3 (d, 1JC-P = 70 Hz), 58.4, 53.0, 41.5, 33.9, 33.4, 25.3, 25.2,
25.1, 13.2, 12.4.31P NMR: 8.3 (1JPPt= 4092 Hz). 195Pt NMR: −4126(1JPPt = 4092 Hz).

Cis-[PtBr2(PPh3)(Et2N(H)CNC6H11)] (4) 0.142 g (1.46 × 10−4 mol, 64%). El. Anal.
Cald. C29H37Br2N2PPt·2C2H4Cl2, %: C 39.7, H 4.6, N 2.8. Found: C 39.6, H 4.3, N
3.1. IR (ATR, ν, cm−1): 3478 w, 3306 w, 3057 w, 2927 m, 2852 m, 1972 w, 1899 w, 1826
w, 1550 s (stretching C = N), 1434 s, 1376 m, 1158 w, 1096 s, 997 m, 893 w, 746 s, 694
s. 1H-NMR: 7.80–7.25 (m, 15H, Harom), 4.93 (m, 1H, 3JH-Pt = 72 Hz, NH), 4.81 (m, 1H,
J = 6.9 Hz, CH2CHCH2), 4.71(m, 1H, J = 6.9 Hz, NCHHCH3), 3.39 (m, 1H, J = 6.9 Hz,
NCHHCH3), 2.92–2.73 (2m, 2H, NCH’2CH3), 2.63 (m, 1H, J = 6.9 Hz, CHHCHCH2), 1.70
(m, 1H, CHHCHCH2), 1.54 (m, 1H, CH2CHCH’H’), 1.40 (m, 1H, CH2CHCH’H’), 1.24 (m,
2H, c-Hex), 1.11 (t, 3H, NCH2CH3), 1.01 (m, 4H, c-Hex), 0.94 (t, 3H, NCH’2CH’3). 13C-NMR:
174.6, 134.8 (d, J = 11 Hz), 131.04, 128.2 (d, JC-P = 12 Hz), 130.5 (d, 1JC-P = 66 Hz), 58.0, 52.9,
41.4, 33.7, 33.5, 25.3, 25.1, 25.0, 13.0, 12.3.31P NMR: 9.3 (1JP-Pt = 4020 Hz). 195Pt NMR: −4187
(1JPt-P = 4020 Hz).

4.3. Biological Evaluation
4.3.1. Cell Cultures

HepG2 (human hepatocarcinoma, ATCC, HB-8065) were grown in MEM (Merck
M0894) containing 2.2 g/L NaHCO3. MSTO-211H (human biphasic mesothelioma, ATCC,
CRL-2081) were grown in RPMI 1640 (Merck R6504) containing 1.5 g/L NaHCO3 and
supplemented with 2.38 g/L Hepes, 0.11 g/L pyruvate sodium, and 2.5 g/L glucose.

A 10% heat-inactivated fetal bovine serum (Merck F7524), 100 U/mL penicillin,
100 µg/mL streptomycin, and 0.25 µg/mL amphotericin B (Merck A5955) were added
to the media. Cells were maintained at 37 ◦C in a humid atmosphere of 5% carbon dioxide
in the air.

4.3.2. Inhibition Growth Assay

To evaluate the percentage of viability, cells were seeded in 24-well plates at a density
of 3–4 × 10 4 and cultured at 37 ◦C in standard conditions. After 24 h, 20 µM concentration
of the tested compound was added, and cells were cultured for a further 72 h. To evaluate
the GI50 values, defined as the concentration (µM) of complex able to induce 50% cell death
with respect to a control untreated culture, after 24 h of cell growth in standard conditions,
different concentrations of tested compound (0.5, 1, 5, 10, 15, and 20 µM) or cisplatin
(0.05–5 µM) were added and cells were incubated for 72 h. The GI50 values were obtained
by non-linear regression analysis, fitting the standard four-parameter logistic curve to the
data, by using the Sigma Plot version 9.0 (Jandel Scientific, San Rafael, CA, USA).

Cell viability was determined by trypan blue exclusion assay. All experiments were
performed in duplicate and repeated for at least three times.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/inorganics11090365/s1, Figure S1: 1H NMR spectrum of complex
1; Figure S2: 31P NMR spectrum of complex 1; Figure S3: 195Pt NMR spectrum of complex 1; Figure
S4: 1H NMR spectrum of complex 2; Figure S5: 31P NMR spectrum of complex 2; Figure S6: 195Pt
NMR spectrum of complex 2; Figure S7: 1H NMR spectrum of complex 3; Figure S8: 31P NMR
spectrum of complex 3; Figure S9: 195Pt NMR spectrum of complex 3; Figure S10: 1H NMR spectrum
of complex 4; Figure S11: 31P NMR spectrum of complex 4; Figure S12: 195Pt NMR spectrum of
complex 4.
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