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Abstract

We study the semileptonic decays B™X eqey, B™X mqmy in generic supersymmetrics s

extensions of the Standard Model. SUSY effects are parameterized using the mass insertion
approximation formalism and differences with the Constrained MSSM results are pointed out.

Ž .Constraints on SUSY contributions coming from other processes e.g. b™sg are taken into
account. Chargino and gluino contributions to photon and Z-mediated decays are computed and
non-perturbative corrections are considered. We find that the integrated branching ratios and the
asymmetries can be strongly modified. Moreover, the behavior of the differential forward–back-
ward asymmetry remarkably changes with respect to the Standard Model expectation. q 2000
Elsevier Science B.V. All rights reserved.

PACS: 11.30.Pb; 13.20.He
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1. Introduction

Ž .One of the features of a general low energy supersymmetric SUSY extension of the
Ž .Standard Model SM is the presence of a huge number of new parameters. FCNC and

CP-violating phenomena constrain strongly a big part of the new parameter space.
However, there is still room for significant departures from the SM expectations in this
interesting class of physical processes. It is worthwhile to check all these possibilities on
the available data and on those processes that are going to be studied in the future. In
this way it is possible to indicate where new physics effects can be revealed as well as to
establish criteria for model building.

In this work we want to investigate the relevance of new physics effects in the
semileptonic inclusive decay B™X llqlly. This decay is quite suppressed in thes

Standard Model; however, new B-factories should reach the precision requested by the

0550-3213r00r$ - see front matter q 2000 Elsevier Science B.V. All rights reserved.
Ž .PII: S0550-3213 99 00692-6



( )E. Lunghi et al.rNuclear Physics B 568 2000 120–144 121

w xSM prediction 1 and an estimate of all possible new contributions to this process is
compelling.

Semileptonic charmless B decays have been deeply studied. The dominant perturba-
w xtive SM contribution has been evaluated in Ref. 2 and later two-loop QCD corrections

w xhave been provided 3–7 . The contribution due to cc resonances to these results are
w xincluded in the papers listed in Refs. 8–11 . Long distance corrections can have a

different origin according to the value of the dilepton invariant mass one considers.
Ž 2 . w xO 1rm corrections have been first calculated in Ref. 12 and recently corrected inb

w xRefs. 13–16 . Near the peaks, non-perturbative contributions generated by cc reso-
wnances by means of resonance-exchange models have been provided in Refs. 13–

x w x Ž w x.15,17–20 . Far from the resonance region, instead, Ref. 21 see also Ref. 22 estimate
cc long-distance effects using a heavy quark expansion in inverse powers of the

Ž Ž 2 . .charm-quark mass O 1rm corrections .c
w xAn analysis of the SUSY contributions has been presented in Refs. 23–28 where the

authors estimate the contribution of the Minimal Supersymmetric Standard Model
Ž .MSSM . They consider first a universal soft supersymmetry breaking sector at the

Ž .Grand Unification scale Constrained MSSM and then partly relax this universality
condition. In the latter case they find that there can be a substantial difference between
the SM and the SUSY results in the Branching Ratios and in the forward–backward
asymmetries. One of the reasons of this enhancement is that the Wilson coefficient

Ž . Ž .C M see Section 2 for a precise definition can change sign with respect to the SM7 W

in some region of the parameter space while respecting constraints coming from b™sg .
w xThe recent measurements of b™sg 29 have narrowed the window of the possible

Ž .values of C M and in particular a sign change of this coefficient is no more allowed7 W

in the Constrained MSSM framework. Hence, on one hand it is worthwhile considering
B™X llqlly in a more general SUSY framework then just the Constrained MSSM,s

and, on the other hand, the above-mentioned new results prompt us to a reconsideration
w xof the process. In Ref. 30 the possibility of new-physics effects coming from

gluino-mediated FCNC is studied. Effects of SUSY phases in models with heavy first
w xand second generations sfermions have been recently discussed in Ref. 31 .

We consider all possible contributions to charmless semileptonic B decays coming
from chargino–quark–squark and gluino–quark–squark interactions and we analyze
both Z-boson and photon mediated decays. Contributions coming from penguin and box
diagrams are taken into account; moreover, corrections to the MIA results due to a light
t̃ are considered. A direct comparison between the SUSY and the SM contributions toR

the Wilson coefficients is performed. Once the constraints on mass insertions are
established, we find that in generic SUSY models there is still enough room to see large
deviations from the SM expectations for branching ratios and asymmetries. For our final
computation of physical observables we consider NLO QCD evolution of the coeffi-

Ž Ž 2 . Ž 2 . .cients and non-perturbative corrections O 1rm , O 1rm , . . . , each in its properb c

range of the dilepton invariant mass.
ŽBecause of the presence of so many unknown parameters in particular in the scalar

.mass matrices which enter in a quite complicated way in the determination of the mass
eigenstates and of the various mixing matrices it is very useful to adopt the so-called

Ž . w x‘‘Mass Insertion Approximation’’ MIA 32 . In this framework one chooses a basis for
fermion and sfermion states in which all the couplings of these particles to neutral
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gauginos are flavor diagonal. Flavor changes in the squark sector are provided by the
non-diagonality of the sfermion propagators. The pattern of flavor change is then given
by the ratios

2
f̃mž /i j A Bfd s , 1Ž .Ž .i j 2A B Msq

f̃ 2 ˜ ˜Ž .where m are the off-diagonal elements of the fsu,d mass squared matrix that˜i j A B
Ž .mixes flavor i, j for both left- and right-handed scalars A, Bs left,right and M issq

Ž w x.the average squark mass see e.g. Ref. 33 . The sfermion propagators are expanded in
terms of the d s and the contribution of the first two terms of this expansion are
considered. The genuine SUSY contributions to the Wilson coefficients will be simply
proportional to the various d s and a keen analysis of the different Feynman diagrams
involved will allow us to isolate the few insertions really relevant for a given process. In
this way we see that only a small number of the new parameters is involved and a
general SUSY analysis is made possible. The hypothesis regarding the smallness of the
d s and so the reliability of the approximation can then be checked a posteriori.

w xMany of these d ’s are strongly constrained by FCNC effects 33–39 or by vacuum
w xstability arguments 40 . Nevertheless it may happen that such limits are not strong

enough to prevent large contributions to some rare processes. For instance it has been
w xrecently found in Ref. 41 that the off-diagonal squark mass matrix elements can

enhance rare kaon decays by roughly an order of magnitude with respect to the SM
result.

The paper is organized as follows. In Section 2 we define the operator basis, the basic
formulae for the BR, the forward–backward asymmetry and the non-perturbative
corrections. Section 3 and Section 4 treat chargino and gluino contributions in the mass

˜insertion approximation. The light t corrections are presented in Section 5. ConstraintsR

on d ’s are discussed in Section 6 and final results and conclusions are drawn in Sections
7 and 8.

2. Operator basis and general framework

The effective Hamiltonian for the decay B™X llqlly in the SM and in the MSSMs
Ž ) .is given by neglecting the small contribution proportional to K Ku s ub

8 104G aF
) ˜HH sy K K C m Q q C m Q , 2Ž . Ž . Ž .Ý Ýeff t s t b i i i i' 4p2 is1 is9

where

mQ ss g b c g c ,1 La m La Lb Lb

mQ ss g b c g c ,2 La m Lb Lb La

mQ ss g b q g q ,Ý3 La m La Lb Lb

qsu , . . . ,b
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mQ ss g b q g q ,Ý4 La m Lb Lb La

qsu , . . . ,b

mQ ss g b q g q ,Ý5 La m La R b R b

qsu , . . . ,b

mQ ss g b q g q ,Ý6 La m Lb R b R a

qsu , . . . ,b

e
mnQ s m s s b F ,7 b L R mn216p

gs a mn aQ s m s T s b G ,8 b L R mn216p

mQ s s g b lg l ,Ž .9 L m L

mQ s s g b lg g l , 3Ž .Ž .10 L m L 5

1 Ž .K is the CKM matrix and q s 1.g q. This Hamiltonian is known at next-to-LŽR. 52

w x w xleading order both in the SM 3–7 and in the MSSM 26–28 . We find that the most
general low-energy SUSY Hamiltonian also contains the operators

e
X mnQ s m s s b F ,7 b R L mn28p

X mQ s s g b lg l ,Ž .9 R m R

X mQ s s g b lg g l. 4Ž .Ž .10 R m R 5

However, it is shown in the following sections that the contribution of these operators is
negligible and so they are not considered in the final discussion of physical quantities.
SUSY contributions to other operators are negligible because they influence our
observables at an higher perturbative order.

With these definitions the differential branching ratio and the forward–backward
asymmetry can be written as

1 d G B™X llqllyŽ .s
R s 'Ž .

G B™X en d sŽ .c

22 )a K 1ysŽ .t s 2 2 2eff˜ ˜< < < < < <s 1q2 s C s q C q4 1q2rs CŽ . Ž . Ž .ž /9 10 72 K f z k z4p Ž . Ž .cb

) eff˜q12Re C C s , 5Ž . Ž .7 9

d2G B™X llqllyŽ .1 s Ž .d cosu Sgn cosuH
d cosu d sy1Ž .A s 'FB q y2d G B™X ll llŽ .1 s

d cosuH
d cosu d sy1

˜) ˜eff Ž .3Re C s C s q2Cw xŽ .10 9 7
sy , 6Ž .2

2 2 2eff ) eff˜ ˜ ˜< < < < < <Ž . Ž . Ž .1q2 s C s q C q4 1q C q12Re C C sw xŽ .9 10 7 7 9ž /s
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Ž .2 2
q ywhere ss p qp rm , u is the angle between the positively charged lepton andll ll b

Ž . Ž .the B flight direction in the rest frame of the dilepton system, f z and k z are the
Ž . Ž .phase space factor and the QCD correction factor zsm rm that enter G B™X enc b c

˜effw x Ž .and can be found in Refs. 7,42,43 . C s includes all the contributions of the9

operators Q yQ and Q and its complete definition for the SM and MSSM can be1 6 8
w xfound again in Refs. 3–7,26 .

w xIn the literature the energy asymmetry is also considered 26 but it is easy to show
that these two kinds of asymmetries are completely equivalent; in fact a configuration in
the dilepton c.m.s. in which llq is scattered in the forward direction kinematically

Ž w x.q yimplies E -E in the B rest frame see for instance Refs. 13–15 .ll ll
Ž .It is worth underlying that integrating the differential asymmetry given in Eq. 6 we

do not obtain the global forward–backward asymmetry which is by definition

d2G B™X llqllyŽ .1 s
d cosu d s Sgn cosuq q Ž .H HN ll yN llŽ . Ž . d cosu d s™ § y1s 7Ž .q q q y2N ll qN ll d G B™X ll llŽ .Ž . Ž . 1 s™ §

d cosu d sH H
d cosu d sy1

where llq and llq stand respectively for leptons scattered in the forward and
™ §

backward directions.
To this extent it is useful to introduce the following quantity:

d2G B™ X llq llyŽ .1 s Ž .d cosu Sgn cosuH
d cosu d sy1Ž .A s 'FB q y2d G B™ X ll llŽ .1 s

d cosu d sH H
d cosu d sy1

2) eff˜ ˜ Ž . Ž .y3Re C s C s q2C 1y sw xŽ .10 9 7
s ,2

2 2 22 eff ) eff˜ ˜ ˜< < < < < <Ž . Ž . Ž . Ž .d s 1y s 1q2 s C s q C q4 1q C q12Re C C sw xŽ .H 9 10 7 7 9ž /s

8Ž .

Ž .whose integrated value is given by Eq. 7 .
Ž . Ž .Eqs. 5 and 6 have been corrected in order to include several non-perturbative

Ž 2 . w xeffects. First of all O 1rm effects have been estimated by 13–15b

d 2 R sŽ .1r m b

22 )3l a K 12 t s 2 22 3 eff˜ ˜< < < <s 1y15s q10 s C s q CŽ . Ž .ž /9 102 2 žK f z k z2m 4p Ž . Ž .cbb

2< <C g zŽ .73 2 ) eff˜y4 6q3sy5s y 5q6 sy7s Re C C s q R s ,Ž . Ž . Ž . Ž .7 9 /s f zŽ .
9Ž .
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d 2 A sŽ .1r m FBb

) 2 eff 2˜ ˜Re C s 9q14 sy15s C s q2 7q10 sy9s CŽ . Ž . Ž .3l 10 9 72
s 2 2 2 2eff ) eff2m ˜ ˜ ˜< < < < < <1q2 s C s q C q4 1q2rs C q12Re C C sŽ . Ž . Ž . Ž .b ž /9 10 7 7 9

d 2 R s3l g z 4l s Ž .Ž . 1r m2 1 bqA s q y , 10Ž . Ž .FB 2 2 2ž /f z R s2m 3mŽ . Ž .1ysŽ .b b

where

2 4 6 8 4 w xg z s3y8 z q24 z y24 z q5z q24 z log z .Ž .
Ž .l and l are the two parameters that appear in the Heavy Quark Expansion HQE .1 2

Ž Ž 2 2 . .
)While the value of l is quite well established l s M yM r4 , l is not yet2 2 B B 1

w x 2well known. In Refs. 44–46 l is estimated as l sy0.52"0.12 GeV and in Ref.1 1
w x 247 l sy0.10"0.05 GeV . In what follows we consider the weighted average of the1

2 w xtwo results l sy0.16 GeV . As was pointed out by the authors of Refs. 13–15 these1

corrections are no more valid near the endpoint region, s™1, where they diverge
because of the breaking down of the HQE. Following some recent analyses we have

Ž . Ž w x.stopped the BR’s corrections given in Eq. 9 at ss0.78 see Ref. 16 and the ones in
Ž . Ž w x.Eq. 10 at ss0.7 see Refs. 13–15 .

In order to account for the corrections to the parton model approximation in the high
w x w xs region Refs. 13–15 and Ref. 16 adopt two different approaches. The former

considers a Fermi-motion model and the latter invokes the Heavy Hadron Chiral
Ž .Perturbation Theory HHChPT . A discussion about the usefulness of the Fermi-motion

model for semileptonic charmless B-decays is beyond the scope of this paper. In order
to have a model-independent description of the high energy region of the spectrum we
have considered the HHChPT corrections.

Ž .2 2For 0.88-s-s s M yM rm s0.99 the branching ratio is dominated bymax B K b
q y q y w xthe exclusive decays B™K ll ll and B™Kp ll ll ; in Ref. 16 it is shown that the

contribution of the latter is completely negligible. In the following we report the
expression of the branching ratio, valid in the interval of the spectrum given above,
computed in the HHChPT framework

2 5 2 2 2t B G M a f s m rMŽ . Ž . 2d F B 1 b B2
) 2 EP˜< <R s s K K f s CŽ . Ž .Ch ½t s t b q 9ž3 2R B™X en 2192p 4pŽ .c

2 22 2 ) EP˜ ˜q C qa s m C y2 f s a s m Re C C , 11Ž . Ž . Ž . Ž .510 T b 7 q T b 7 9/
where

g f 1B
a s 12Ž .T

)f ÕPp q M yM q M yMŽ . Ž .p K B B B Bs

˜EP w xand the definitions of f , f , C , ÕPp can be found in Ref. 16 . Moreover, we have1 q 9 K
w xput gs0.5 according to the theoretical estimate given in Ref. 48 . In the intermediate
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region 0.78-s-0.88 we have interpolated the obtained results. The form factors fq
Ž w xand a can be computed also using other methods QCD sum rules 49–51 , light-coneT

w x . w xQCD sum rules 52,53 , QCD relativistic potential model 54 but the HHChPT
approach is preferable in the endpoint region of the spectrum.

The asymmetries receive no contribution from the single kaon mode B™K llqlly

q y Žand the endpoint of their spectrum is fixed, instead, by B™Kp ll ll at ss M yMB K
.2 2yM rm s0.93. In the region 0.7-s-0.93 we use the parton model result becausep b

these asymmetries have not been computed yet in the HHChPT framework.
Ž 2 . Ž w x.Finally, the following O 1rm corrections occur for s-0.2 see e.g. Ref. 21c

2 2
)8l a K 1ysŽ .2 t s

2d R s sy CŽ .1r m 22 2c K f z k z9m 4p Ž . Ž .cbc

=

21q6 sys
) eff )˜Re F s C qC 2qs , 13Ž . Ž . Ž .7 9ž /s

d 2 A sŽ .1r m FBc

3l2
s C 1q3sŽ .229mc

=

)˜Re F s CŽ . 10
.

2 2 2eff ) eff˜ ˜ ˜< < < < < <1q2 s C s q C q4 1q2rs C q12Re C CŽ . Ž . Ž .ž /9 10 7 7 9

14Ž .
2 2Ž . Ž .The O 1rm and O 1rm corrections to A can be easily computed because ofb c FB

the following relation:

R sŽ .
A sA . 15Ž .FB FB

d s R sŽ .H
All the effects coming from the mass insertion approximation can be included in

˜eff ˜Ž . Ž . Ž .formulae 5 – 14 writing the coefficients C , C s , C as7 9 10

C sCSM qCdiag qC MI ,7 7 7 7

SM diag MIeff eff eff eff˜ ˜ ˜ ˜C s s C s q C q C ,Ž . Ž .Ž . Ž . Ž .9 9 9 9

˜ ˜SM ˜diag ˜MIC sC qC qC 16Ž .10 10 10 10

where all the contributions are evaluated at the M scale and the various Cdiag
B i

summarize all the contributions coming from graphs including SUSY Higgs bosons and
Žsparticles in the limit in which we neglect all the mass insertion contributions they

would be the only SUSY diagrams if the scalar mass matrices were diagonalized by the
. diagsame rotations as those needed by the fermions . The explicit expressions for C cani

w xbe found in Ref. 26 .
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Fig. 1. Some of the relevant penguin diagrams for b™ s llq lly. The bubble indicates a mass insertion.
Ž . Ž .Diagrams A,B are based on chargino interaction. Diagrams c and d consider gluino interactions.

The Feynman diagrams with MI relevant for b™s llqlly are drawn in Figs. 1 and 2.
We have considered gluino-like and chargino-like contributions with both single and
double mass insertions.

Both photons and Z-bosons can mediate the decay. Usually one finds that Z-boson
Ž .contributions are dominant in those graphs where an ‘‘explicit SU 2 breaking’’ isL

provided, i.e. both left and right squarks are present in the same loop. In the latter cases
the photon cannot feel any gauge-symmetry-breaking and its contribution to the Wilson
coefficients is suppressed by a factor m2rM 2 with respect to the Z-boson one. ForZ sq

M ;300 GeV, this factor amounts to about an order of magnitude. On the other handsq
Ž .if the graph does not give any SU 2 explicit breaking we are in the opposite situationL

and the Z-boson contribution is suppressed by a factor m2rm2 ;3=10y3. Moreover, ab Z

general feature of g-mediated four fermion contributions is that, for high average squark
masses, they decouple much faster than in the Z-boson case. This can be understood
simply using dimensional arguments. While Wilson coefficients for Z-boson mediated

Ž 2 2 .four-fermion interactions are proportional to Dr m M , the same coefficients must beZ sq
4 Žproportional to DrM for the g D here is a generic off-diagonal element of thesq

2 .sparticle squared mass matrices and it cannot rise as fast as M for high values of M .sq sq

Thus photon graphs can compete with Z-boson graphs if the sparticle spectrum is not
too heavy.

Fig. 2. Relevant box diagram for b™ s llq lly. The bubble indicates a mass insertion.
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Table1
Central values of physical constants used in the phenomenological analysis

m 173.8 GeVt

m 4.8 GeVb

m 1.4 GeVc

m 125 MeVs

M 5.27 GeVB
Ž .a m 0.119s Z

Ž .1ra m 128.9el Z
2sin u 0.2334W

Finally the value of the physical constants we use is reported in Table 1.
In the following subsections we describe in detail the contributions of each graph of

Figs. 1 and 2.

3. Chargino interactions

In the weak eigenstate basis the chargino mass matrix is given by

'M 2 M sinb2 W
M s , 17Ž .x 'ž /2 M cosb mW

where the index 1 of rows and columns refers to the wino state, the index 2 to the
higgsino state, m is the Higgs quadratic coupling and M the soft SUSY breaking wino2

mass. In order to define the mass eigenstates the unitary matrices U and V which
diagonalize M are introduced,x

diag M , M sU )M Vq. 18Ž .Ž .x x x1 2

After the rotation to mass eigenstates it is always possible to speak of wino–quark–squark
or higgsino–quark–squark interactions. In order to identify the wino and higgsino states
from the chargino ones it is sufficient to pick up the right elements from the U and V
matrices. To be clear we write them explicitly for the cases of interest in the super-CKM

˜ Žbasis. The wino–quark–squark, d Wu, vertex is d and u are a generic down-quark and˜ ˜L
.up-squark

)ig K V d x u qh.c., 19Ž .˜Ý Ý2 k j a1 jL a k L
j,ks1,2,3 as1,2

˜and the higgsino–quark–squark, dHu, vertex is˜
) u d )i K l V d x u y l U d x u qh.c., 20Ž . Ž . Ž .˜ ˜Ý Ý k kk j a2 jL a k R a2 jR a k L

j,ks1,2,3 as1,2

where K is the CKM matrix,
u u'2 M M g2ug sersinu , l s s2 W 'Õsinb 2 sinbMW

and
d'2 M

dl s
Õcosb

are the Yukawa matrices for the up- and down-quarks.
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Chargino graphs can contribute to the decay via both single and double insertions
Ž .see Figs. 1 and 2 . The double insertion is particularly convenient if the corresponding

w xd ’s are not very constrained 41 . In the following subsections we examine both cases.
In the case of a single insertion approximation both g- and Z-mediated decays are
considered.

In all what follows our results for the integrals are written in terms of the functions

jiy 1yyŽ .1 1
P a,b ' dx dy . 21Ž . Ž .H Hi jk k

0 0 1yyqaxyqb 1yx yŽ .Ž .

To get a feeling with numbers it is sufficient to say that for asbs1,

w xP 1,1 sb 1q i ,1q j , 22Ž . Ž .i jk E

where b is the Euler b-function.E

3.1. Single mass insertion – Z

The Z-boson mediated decay can proceed in two ways depending on the type of
Ž .chargino–quark–squark vertices we consider. If an explicit SU 2 breaking on theL

squark line of Fig. 1a is required we must take both an higgsino and a wino vertex. In
this way we get a contribution to the Wilson coefficients

C l K ) 19 t c suy sC s dŽ .10 23 L R )2 2g K1y4sin u 4sin u2 t sW W

= ) ) )V V U U x x P x , x qV V P x , xŽ . Ž .(Ý i1 j2 i1 j1 i j 112 i j i1 j1 111 i j½
i , js1,2

1
y d P x , x , 23Ž . Ž .i j 021 i j 52

where x sM 2rM 2 . This diagram, however, is exactly null in the limit in which U, Vi x sqi

approximate the identity matrix and so it is negligible for high M .2

With two wino–quark–squark vertices we obtain

C9
y sC1021y4sin uW

)K 1csu ) )sy d V V U U x x P x , xŽ .Ž . (Ý ½23 i1 j1 i1 j1 i j 112 i jL L ) 2K 4sin ut s W i , js1,2

qV ) V P x , x yd P x , x , 24Ž . Ž . Ž .5i1 j1 111 i j i j 021 i j

where we have retained only the contribution which arises because of the explicit
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Ž . Ž . Ž .SU 2 breaking with a double wino–higgsino mixing in the wino line ; in fact Eq. 24L

is null in the limit of a diagonal chargino mass matrix.
Graphs with two higgsino–quark–squark vertices are suppressed with respect to these

ones by Yukawa or CKM factors.

3.2. Single mass insertion – g

The contributions of the g penguin with two wino vertices are

M 2 1 K )

W cs 3u )C sy d V V P x , x qP x , x ,Ž . Ž .� 4Ž . Ý7 23 i1 i1 222 i i 132 i i2L L )2 3 KM tssq is1,2

M 2 2 K )

W csu )C sy d V V P x , xŽ .�Ž . Ý9 23 i1 i1 312 i iL L )2 3 KM tssq is1,2

1q P x , x qx P x , x ,Ž . Ž . 4042 i i i 313 i i3

M 2 1 K ) mW cs sX 3u )C sy d V V P x , x qP x , x . 25Ž . Ž . Ž .� 4Ž . Ý7 23 i1 i1 222 i i 132 i i2L L )2 3 K mM ts bsq is1,2

The contributions of the g penguin with an higgsino and a wino vertices are

2 )M K lW cs t 1 1) uC s V V P x , x q P x , x dŽ . Ž .� 4 Ž .Ý7 i2 i1 222 i i 132 i i 232 3 L R)2 K gM ts 2sq is1,2

M lx bi 2) uqU V P x , x q P x , x d ,Ž . Ž .� 4 Ž .i2 i1 212 i i 122 i i 233 L Lm gb 2

M 2 2 l K )

W t csu )C s d V V P x , xŽ .�Ž . Ý9 23 i2 i1 312 i iL R )2 3 g KM 2 t ssq is1,2

1q P x , x qx P x , x ,Ž . Ž . 4042 i i i 313 i i3

M 2 1 l K ) mW t cs sX 3u )C s d V V P x , x qP x , x .Ž . Ž .� 4Ž . Ý7 23 i2 i1 222 i i 132 i i2L R )2 3 g K mM 2 t s bsq is1,2

26Ž .

3.3. Single mass insertion – box

Finally we compute the contributions which come from chargino box diagrams of
Fig. 2.
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In the wino exchange case the result is

K ) M 2 1cs Wu ) )C syC s d V V V V f x , x , x , 27Ž . Ž .Ž . Ž .Ý9 10 23 i1 j1 i1 j1 i j nL L ˜) 2 2K M sin ut s sq W i , js1,2

where

f x , x , xŽ .i j ñ

21 yz 1yzŽ .1 1 1
s dx dy dzH H H 22 0 0 0 y 1yz qx 1yy 1yz qz x xqx 1yxŽ . Ž . Ž . Ž .Ž .n i j˜

28Ž .

and x sM 2rM 2 .n n sq˜ ˜
If the wino–bottom–stop vertex is replaced by a higgsino–bottom–stop one we

obtain

K ) M 2 lcs W tu ) )C syC sy d V V V V f x , x , x .Ž .Ž . Ž .Ý9 10 23 i1 j1 i1 j2 i j nL R ˜) 2 2K M g sin ut s sq 2 W i , js1,2

29Ž .

3.4. Double mass insertion – Z

w xIt was recently pointed out 41 that a double mass insertion can provide a great
enhancement of the SUSY contribution to the decay width, at least in the K-system case,
if the d ’s are not very constrained.

For B decay we obtain contributions from this graph to C and C ,9 10

C9
y sC1021y4sin uW

u u )d d KŽ . Ž .23 33 csL R L R
) )sy V V U U x x P x , xŽ .(Ý i1 j1 i1 j1 i j 123 i j

)2 ½K4sin u t sW i , js1,2

di j1 )q V V P x , x y P x , x . 30Ž . Ž . Ž .i1 j1 122 i j 032 i j2 53

4. Gluino interactions

The main contribution of this kind of interactions comes from the graphs drawn in
Fig. 1c,d. In what follows we analyze the single and double mass insertion cases.
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4.1. Single mass insertion – g

The corrections to the coefficients in the photon mediated decay case are

2'2 1 N y1 pa mc s s 1d dC s d q d P x , xŽ .Ž . Ž .7 23 23 1324L L R R)2 ž /3 2 N K K mM G c ts tb bsq F

Mgldq d P x , x ,Ž .Ž .23 122R L mb

2'2 1 N y1 pa mc s sX 1d dC s d q d P x , xŽ .Ž . Ž .7 23 23 1324R R L L)2 ž /3 2 N K K mM G c ts tb bsq F

Mgldq d P x , x ,Ž .Ž .23 122L R mb

2'2 1 N y1 pa 1c s dC sy P x , x d ,Ž . Ž .9 042 23 L L)2 3 2 N K K 3M G c ts tbsq F

2'2 1 N y1 pa 1c sX dC sy P x , x d . 31Ž . Ž .Ž .9 042 23 R R)2 3 2 N K K 3M G c ts tbsq F

Ž .The term proportional to the gluino mass in Eq. 31 seems to be strongly enhanced
with respect to the others. However, the mass insertion which enters the diagram is also

w xstrongly constrained from b™sg 33 .

4.2. Single mass insertion – Z

The only relevant contributions to the Z-boson mediated decay width come from
Ž .diagrams in which the Z feels directly the breaking of SU 2 . According to theL

argument of Section 2 all the diagrams that do not respect this condition are suppressed
with respect to the photon mediated ones and can be neglected. However, for penguins

Ž .containing a gluino, an explicit SU 2 breaking can be provided only with a double MI.L

If only one MI is considered, Z-mediated decays are completely negligible with respect
to the g-mediated ones.

4.3. Double mass insertion – Z

For completeness we report here also the result obtained performing a double mass
insertion in the gluino penguin,

C d d d d N 2 y1 aŽ . Ž .9 33 23 c sL R R Ly sC s P x , x ,Ž .10 032
)2 K K 2 N 12a1y4sin u t b t s cW

CX
d d d d N 2 y1 aŽ . Ž .9 33 23 c sR L L RXy sC s P x , x . 32Ž . Ž .10 122

)2 K K 2 N 12a1y4sin u t b t s cW
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˜5. Light t effectsR

In the mass insertion approximation framework we assume that all the diagonal
entries of the scalar mass matrices are degenerate and that the off diagonal ones are
sufficiently small. In this context we expect all the squark masses to lie in a small region
around an average mass which we have chosen not smaller than 250 GeV. Actually

˜there is the possibility for the t to be much lighter; in fact the lower bound on its massR

˜is about 70 GeV. For this reason it is natural to wonder how good the MIA is when a tR

explicitly runs in a loop.
Among those we have computed, the diagrams interesting in this effect are the

Ž u . ˜chargino penguins and box with the d insertion. To compute the light-t contribu-23 L R R
w xtion we adopt the approach presented in Ref. 55 . There the authors consider an

expansion valid for unequal diagonal entries which gives exactly the MIA in the limit of
complete degeneration.

The new expressions for the contributions to the coefficients C and C are the9 10

following.

Ø Chargino Z–penguin with both an higgsino and a wino vertex:

C l K ) 19 t c suy sC s dŽ .10 23 L R )2 2g K1y4sin u 4sin u2 t sW W

= ) )V V yU U x x j x , x , xŽ .(Ý ½ ˜i1 j2 i1 j1 i j i j tR
i , js1,2

1 1)q V V k x , x , x y d k x , x ,1 , 33Ž .Ž . Ž . 5˜ ˜i1 j1 i j t i j i t2 2R R

Ž .2 Ž . Ž .where x s m rM and the functions j x, y, z and k x, y, z can be found in˜ ˜t t sqR R

w xRef. 55 .
Ø Chargino g–penguin with both an higgsino and a wino vertex:

M 2 2 l K )

W t csu )C s d V V g x , x ,Ž .Ž . Ý ˜9 23 i1 i2 7 i tL R )2 R3 g KM 2 t ssq is1,2

M 2 1 l K )

W t csu )C s d V V g x , x , 34Ž .Ž .Ž . Ý ˜7 23 i1 i2 1 i tL R )2 R6 g KM 2 t ssq is1,2

where

1
f x y f x yŽ . Ž .i iy

g x , y s ,Ž .i 1yy

52y153 xq144 x 2 y43 x 3 q 36y54 xq12 x 3 log xŽ . Ž .
f x s ,Ž .7 46 y1qxŽ .

y8q3 xq12 x 2 y7x 3 q6 x y3q2 x log xŽ . Ž .
f x s . 35Ž . Ž .1 46 y1qxŽ .
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Ø Chargino box with an higgsino vertex:

C syC9 10

1 K ) M 2 lcs W tu ) )s d V V V V k x , x , x , x ,Ž .Ž . Ž .Ý ˜23 i1 j1 i1 j2 i j n tL R ˜) 2 2 R4 K M g sin ut s sq 2 W i , js1,2

36Ž .

Ž . w xwhere k x, y, z,t is defined in Ref. 55 .

All the above formulas reduce exactly to those presented in Section 3 in the limit
x s1.t̃R

6. Constraints on mass insertions

In order to establish how large the SUSY contribution to B™X llqlly can be, ones

can compare, coefficient per coefficient, the MI results with the SM ones taking into
account possible constraints on the d ’s coming from other processes.

The most relevant d ’s interested in the determination of the Wilson coefficients C ,7
Ž u . Ž u . Ž u . Ž d . Ž d .C and C are d , d , d , d and d .9 10 23 L L 23 L R 33 R L 23 L L 23 L R

Ø Vacuum stability arguments regarding the absence in the potential of color and
w xcharge breaking minima and of directions unbounded from below 40 give

2 2(2 M q2 M m˜u l t˜ud (m ,2 . 37Ž .Ž .i3 tL R 2 MM sqsq

For M (300 GeV this is not an effective constraint on the mass insertions.sq
Ž d,u.Ø A constraint on d can come from the possible measure of DM .23 L L Bs

w x Ž d .2 ŽIn fact the gluino–box contribution to DM 39 is proportional to d see forB 23 L Ls

w x.instance Ref. 39 . A possible experimental determination of DM , sayBs

DM -30 psy1 38Ž .Bs

would imply that

d d -0.5 39Ž .Ž .23 L L

for squark masses about 250 GeV. Moreover the LL up- and down-squark soft
breaking mass matrices are related by a Cabibbo–Kobayashi–Maskawa rotation

2 2d † uM sK M K 40Ž .Ž .Ž .sq sqL L L L

Ž .so that the limit 39 would be valid for the up sector too:

d u -0.5 . 41Ž .Ž .23 L L
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Ø Some constraints come from the measure of B™X g . The branching ratio of thiss

process depends almost completely on the Wilson coefficients C and C X which are7 7
Ž d . Ž u .proportional respectively to d and d . The most recent CLEO esti-23 L R or R L 23 L L

w xmate of the branching ratio for B™X g is 29s

B B™sg s 3.15"0.35"0.32"0.26 =10y4 . 42Ž . Ž . Ž .exp

where the first error is statistical, the second is systematic and the third comes from
w xthe model dependence of the signal. The limits given at 95% C.L. are 29

2.0=10y4 - B B™sg - 4.5=10y4 .Ž . 43Ž .exp

effŽ .We can define a C M as7 B

B B™sgŽ .2 expeffC M s , 44Ž . Ž .7 B 2
)K K rK 6aFrp g zŽ Ž .Ž .t s t b cb

w xwhere F can be found for instance in Refs. 57,58 . Considering the experimental
limits we find at 95% C.L.

< eff <0.28- C M -0.41. 45Ž . Ž .7 B

< effŽ . < 2 < Ž . < 2 < X Ž . < 2 Ž .Actually C M s C M q C M and the constraint given in Eq. 457 B 7 B 7 B

should be shared between the two coefficients. However, in order to get the
maximum SUSY contribution, we observe that in physical observables CX does not7

interfere with C , the CX C term is suppressed by a factor m rm with respect to the7 7 9 s b
X X Ž X .C C one and C C is numerically negligible in fact C is much smaller than C .7 9 7 9 9 9

Ž . Ž .For these reasons we choose to fulfill the constraint of Eq. 45 with C M alone.7 B
Ž .The bounds 45 are referred to the coefficient evaluated at the M scale while weB

are interested to the limits at the much higher matching scale. After the RG evolution
has been performed we find that for an average squark mass lower than 1 TeV, the
MIA contribution alone with a suitable choice of d ’s, can always fit the experimental
constraints.

Ž .Thus, since we are interested in computing the maximum enhancement suppression
effŽ .SUSY can provide, we can choose the total C M anywhere inside the allowed7 B

Ž .region given in Eq. 45 still remaining consistent with the MIA.
Ž d . y2The limit we get for d is of order 10 and this rules out Z-mediated gluino23 L R

penguins contributions to C and C .9 10
Ž u .For what concerns d we find that the constraint changes significantly according23 L L

effŽ .to the sign of C M . In this case it is important to consider both the positive and7 B

negative region as this delta can give a non-negligible contribution to C and C .9 10

The limits depend on the choice of the parameters in the chargino sector; the
numerical results given below are computed for M ,250 GeV, m,y160 GeV,sq

ŽM ,50 GeV, tanb,2 in Section 7 we will show that these are the conditionsñ

.under which we find the best SUSY contributions . Considering the positive interval
Ž u . <Ž u . <we find y0.7- d -y0.5 while in the negative one d -0.1.23 L L 23 L L

Ø Finally a comment on the d ’s coming in graphs with a double MI is in order.
Ž d .Given the constraints on d one can see that the gluino-penguins with a double23 L R

Ž d . Ž .MI give negligible contributions to the final results even if d is of order OO 1 .33 R L
Ž u . Ž .A d of order OO 1 , can give rise to light or negative squark mass eigenstates. In33 R L
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˜particular a light t would contribute too much to the r -parameter. EventualL W

model-dependent cancelation can provide an escape to these constraints. In any case
the numerical value of these contributions is not particularly important for the
determination of physical observables. Since we want to provide a model-indepen-
dent analysis we prefer not to consider in our final computation these double
insertion graphs and we present them only for completeness.
Contributions with three mass insertions are suppressed due to small loop integrals
and to the various constraints on the deltas.

7. Results

The results of the calculations of Sections 3 and 4 are presented in Figs. 3 and 4 and
in Tables 2 and 3. While the gluino sector of the theory is essentially determined by the

Ž .knowledge of the gluino mass i.e. M , the chargino one needs two more parametersgl
Ž .i.e. M , m and tanb . Moreover it is a general feature of the models we are studying2

the decoupling of the SUSY contributions in the limit of high sparticle masses: we
expect the biggest SUSY contributions to appear for such masses chosen at the lower
bound of the experimentally allowed region. On the other hand, these considerations

Ž u . Ž . Ž u . Ž .Fig. 3. d above and d below contributions to C coming from chargino diagrams as functions23 L R 23 L L 9
Ž .of m expressed in GeV . M is fixed to 250 GeV while tanb varies between 2 and 30.sq
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Ž u . Ž . Ž u . Ž .Fig. 4. d above and d below contributions to C coming from chargino diagrams as functions23 L R 23 L L 10
Ž .of m expressed in GeV . M is fixed to 250 GeV while tanb varies between 2 and 30.sq

suggest us to constrain the three parameters of the chargino sector by the requirement of
the lighter eigenstate not to have a mass lower than the experimental bound of about 70

Table2
Contributions to the coefficients C , C and C from diagrams involving gluino loops. M and M both7 9 10 gl sq

vary between 250 GeV and 1000 GeV. Exchanging L with R in the mass insertions we get the contributions of
gluino diagrams to CX , CX and CX . For further explanations see the caption in Table 37 9 10

Diagram M M C Csq gl 7 9

d d dŽ . Ž . Ž .gg y1 ins 250 250 y0.192 d y33.4 d y0.513 d˜ 23 L L 23 L R 23 L L
d d dŽ . Ž . Ž .250 500 y0.125 d y31.2 d y0.189 d23 L L 23 L R 23 L L

d d dŽ . Ž . Ž .500 500 y0.0449 d y15.6 d y0.12 d23 L L 23 L R 23 L L
d d dŽ . Ž . Ž .250 1000 y0.0344 d y10.3 d y0.0463 d23 L L 23 L R 23 L L
d d dŽ . Ž . Ž .500 1000 y0.0291 d y14.5 d y0.0439 d23 L L 23 L R 23 L L
d d dŽ . Ž . Ž .1000 1000 y0.0105 d y7.26 d y0.0279 d23 L L 23 L R 23 L L

C C10 9
d d d dŽ . Ž . Ž . Ž .gZy2 ins 250 250 y10.2 d d 0.763 d d˜ 23 L R 33 R L 23 L R 33 R L
d d d dŽ . Ž . Ž . Ž .250 500 y17.3 d d 1.29 d d23 L R 33 R L 23 L R 33 R L

d d d dŽ . Ž . Ž . Ž .500 500 y9.49 d d 0.712 d d23 L R 33 R L 23 L R 33 R L
d d d dŽ . Ž . Ž . Ž .250 1000 y17.6 d d 1.32 d d23 L R 33 R L 23 L R 33 R L
d d d dŽ . Ž . Ž . Ž .500 1000 y16.1 d d 1.21 d d23 L R 33 R L 23 L R 33 R L

d d d dŽ . Ž . Ž . Ž .1000 1000 y8.85 d d 0.664 d d23 L R 33 R L 23 L R 33 R L
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Table3
Contributions to the coefficients C , C and C from diagrams involving chargino loops. We assume7 9 10

msy160 GeV, M s50 GeV, tanb s2, m s50 GeV, M s90 GeV while M varies between 250 GeV˜2 n t sq˜ R

and 1000 GeV. In the first column we indicate the number of mass insertions present in each squark line,
Žwhich charginos are present at the vertexes and the kind of graph computed g-penguin, Z-penguin or box

.diagram

Diagram M C Csq 7 9

u u˜ ˜ Ž . Ž .WWg y1 ins 250 0.35 d 1.4 d23 L L 23 L L
u uŽ . Ž .500 0.12 d 0.76 d23 L L 23 L L

u uŽ . Ž .1000 0.033 d 0.32 d23 L L 23 L L
u u u˜ ˜ Ž . Ž . Ž .HWg y1 ins 250 y2.1 d y0.25 d y0.71 d23 L L 23 L R 23 L R
u u uŽ . Ž . Ž .500 y1.1 d y0.27 d y0.87 d23 L L 23 L R 23 L R

u u uŽ . Ž . Ž .1000 y0.45 d y0.27 d y0.93 d23 L L 23 L R 23 L R

C C10 9
u u u u˜ ˜ Ž . Ž . Ž . Ž .WWZy2 ins 250 1.4 d d y0.092 d d23 L R 33 R L 23 L R 33 R L
u u u uŽ . Ž . Ž . Ž .500 1.8 d d y0.12 d d23 L R 33 R L 23 L R 33 R L
u u u uŽ . Ž . Ž . Ž .1000 2.1 d d y0.14 d d23 L R 33 R L 23 L R 33 R L
u u˜ ˜ Ž . Ž .WHZy1 ins 250 y8.4 d 0.56 d23 L R 23 L R

u uŽ . Ž .500 y11. d 0.74 d23 L R 23 L R
u uŽ . Ž .1000 y13. d 0.84 d23 L R 23 L R

u u˜ ˜ Ž . Ž .WWZy1 ins 250 y0.91 d 0.06 d23 L L 23 L L
u uŽ . Ž .500 y0.47 d 0.031 d23 L L 23 L L
u uŽ . Ž .1000 y0.19 d 0.013 d23 L L 23 L L

u u˜ Ž . Ž .box W y1 ins 250 2.7 d y2.7 d23 L L 23 L L
u uŽ . Ž .500 1.3 d y1.3 d23 L L 23 L L

u uŽ . Ž .1000 0.55 d y0.55 d23 L L 23 L L
u u˜ ˜ Ž . Ž .box HW y1 ins 250 y0.97 d 0.97 d23 L R 23 L R

u uŽ . Ž .500 y1.1 d 1.1 d23 L R 23 L R
u uŽ . Ž .1000 y1.2 d 1.2 d23 L R 23 L R

w xGeV 56 . The remaining two-dimensional space has yet no constraint. For these reasons
we scan the chargino parameter space by means of scatter plots for which M ssq

< <250 GeV, M s50 GeV, 80 GeV( m (300 GeV and 2( tanb(30; for every choiceñ

of these two parameters, M is determined imposing to the lighter eigenstate a mass of2

about 70 GeV. In the plots we sum all contributions coming from different graphs
Žproportional to a common mass insertion the actual values of the coefficients are

.obtained multiplying the points in the plots by the MI .
In the tables we report the contribution of each diagram and the explicit dependence

on the mass insertion parameters. We evaluate the coefficients varying M and Msq gl

between 250 GeV and 1 TeV. The other parameters in Table 3 are fixed from the scatter
plots in order to give the best SUSY contributions to C and C .9 10

Thus, with m,y160, M ,M ,250 GeV, M ,50 GeV, M s90 GeV, tanb,˜gl sq n t˜ R

2 one gets

C MI M sy1.2 d u q0.69 d u y0.51 d dŽ . Ž . Ž . Ž .9 B 23 23 23L L L R L L
46Ž .

MI u u½ C M s1.75 d y8.25 d .Ž . Ž . Ž .10 B 23 23L L L R
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Ž .In order to numerically compare Eq. 46 with the respective SM results we note that
Ž effŽ ..SM Ž . SMthe minimum value of C s M is about 4 while C sy4.6. Thus one9 B 10

MI Ž .deduces that SM expectations for the observables are enhanced when C M is9 b
MI Ž .positive. Moreover the big value of C M implies that the final total coefficient10 B

Ž .C M can have a different sign with respect to the SM estimate. As a consequence of10 B

this, the sign of asymmetries can be the opposite of the one calculated in the SM.
The diagonal contributions to C , C introduced in Section 2, and computed in the9 10

same range of the parameters are

Cdiag M sy0.35Ž .9 B
47Ž .

diag½ C M sy0.27Ž .10 B

The sign and the value of the coefficient C has a great importance. In fact the7
Ž Ž .. < < 2integral of the BR see Eq. 5 is dominated by the C rs and C C term for low7 7 9

values of s. In the SM the interference between O and O is destructive and this7 9

behavior can be easily modified in the general class of models we are dealing with.
In the following, according to the discussion of Section 6, we give the configurations

of the various d ’s for which we find the best enhancements and suppressions of the SM
expectations.

Ø Best enhancement

eff MI MI u,d uŽ . Ž . Ž .C M C C d d7 B 9 10 23 L L 23 L R

R 0.41 1.5 y8.3 y0.5 0.9
A 0.41 0.96 y2.1 y0.5 0.15FB

A 0.28 0.96 y2.1 y0.5 0.15FB

It is important to note that with such choices the behavior of the asymmetries in the low
s region of the spectrum is greatly modified: the coefficients of the operators Q and Q7 9

sum up instead of cancel each other in such a way that the asymmetries are never
negative. It is also important to stress that the asymmetries get their extremal value with

Ž u .a rather small d : the enhancement given here will survive possible future23 L R

constraints on this insertion.
Ø Best enhancement with C -07

eff MI MI u,d uŽ . Ž . Ž .C M C C d d7 B 9 10 23 L L 23 L R

R, y0.41 1.5 y8.3 y0.5 0.9

A , A y0.28 0.75 0.36 y0.5 y0.15FB FB

Ø Best depression

effŽ . MI MI Ž u,d. Ž u .C M C C d d7 B 9 10 23 L L 23 L R

R y0.28 y1.3 5.8 0.5 y0.6

A , A 0.28 y1.5 8.3 0.5 y0.9FB FB
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Fig. 5. Differential branching ratio for the decay B™ X ll q ll y. The solid line corresponds to the SMs

expectation; the dashed and dotted–dashed lines correspond respectively to the SUSY best enhancement
Ž eff MI MI . Ž eff MI MI .C s0.41, C s1.5, C sy8.3 and depression C sy0.28, C sy1.3, C s5.8 ; the dotted line7 9 10 7 9 10

Ž eff MI MIis the maximum enhancement obtained without changing the sign of C C sy0.41, C s1.5, C s7 7 9 10
.y8.3 .

Ž . Ž . Ž .The plots of BR s , A s and A s are drawn in Figs. 5–8. Here both SM andFB FB

SUSY results are shown. The discontinuity in the A plot at ss0.7 corresponds to theFB
Ž 2 .point at which we have stopped the corrections O 1rm . In fact, a model-independentb

description of the differential asymmetry in the region 0.7-s-0.93 beyond the parton
Ž .2model is still lacking. Further, the peak, which occurs at ss 2m rm ,0.3, is due toc b

the perturbative remnant of the cc resonance.
The integrated BR’s and asymmetries for the decays B™X eqey and B™X mqmy

s s
Ž .in the SM case and in the SUSY one with the above choices of the parameters are

summarized in Table 4. There we computed the total perturbative contributions neglect-
Žing the resonances; these occur in the intermediate range of the spectrum Jrc at 3.1

Ž . X Ž . .GeV ss0.42 and c at 3.7 GeV ss0.59 plus others at higher energies . However,
it is possible to exclude the resonant regions from the experimental analysis by
opportune cuts and to correct the effects of their tails in the remaining part of the
spectrum.

Ž . q yFig. 6. Forward–backward asymmetry A for the decay B™ X ll ll . The solid line corresponds to theFB s
Ž effSM expectation; the dashed and dotted-dashed line corresponds to the SUSY best enhancement C s0.41,7

MI MI . Ž eff MI MI .C s0.96, C sy2.1 and depression C s.28, C sy1.5, C s8.3 ; the dotted line is the9 10 7 9 10
Ž eff MI MI .maximum enhancement obtained without changing the sign of C C sy0.28, C s0.75, C s0.36 .7 7 9 10
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q yŽ .Fig. 7. Forward–backward asymmetry A for the decay B™ X m m . The solid line corresponds to theFB s

SM expectation; the dashed and dotted–dashed lines correspond respectively to the SUSY best enhancement
Ž eff MI MI . Ž eff MI MI .C s0.28, C s0.96, C sy2.1 and depression C s0.28, C sy1.5, C s8.3 ; the dotted line7 9 10 7 9 10

Ž eff MIis the maximum enhancement obtained without changing the sign of C C sy0.28, C s0.75,7 7 9
MI .C s0.36 .10

The results of Table 4 must be compared with the experimental best limit which reads
w x59

BR -5.8=10y5 . 48Ž .exp

Ž .A comment on the CMSSM Constrained MSSM prediction for the observables we
w xhave computed is now necessary. An analysis on the subject is presented in Ref. 26 . In

this paper the authors show that the effect of CMSSM on the integrated BR’s,
considering only contributions to C and C , varies between a depression up to 10%9 10

and an enhancement of few percents relative to the corresponding SM values. The
asymmetries get even smaller corrections. On the other hand, a direct computation of

MSSMŽ . w xC M yields 267 W

y0.59-C MSSM M -q0.49 in the large tanb regime,Ž .7 W

y0.26-C MSSM M -y0.20 in the low tanb regime. 49Ž . Ž .7 W

It is worth noting that comparing the above intervals with the experimentally allowed
Ž . Žregion obtained via RG evolution at the M scale of the limits in Eq. 45 we use onlyW

q yŽ . Ž .Fig. 8. Forward–backward asymmetry A for the decay B ™ X e e See the caption of Fig. 7 .FB d s
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Table4
Integrated BR, A and A in the SM and in a general SUSY extension of the SM for the decaysFB FB

B™ X eq ey and B™ X mqmy. The second and third columns are the extremal values we obtain with as s

positive Ceff while the fourth one is the Ceff -0 case. The actual numerical inputs for the various coefficients7 7
Ž .can be found in the text. The BR is just the integral of R s multiplied by the BR of the semileptonic

Ž Ž . .dominant B decay BR B™ X en s0.105c

Observable SM SUSY SUSYr SUSY SUSYrSM SUSY SUSYrSM
Ž .maximal SM minimal C -07

y6 y5 y6 y5Ž .BR e 9.6=10 4.4=10 4.6 3.9=10 0.41 3.9=10 4.0
Ž .A e 0.23 0.33 1.5 y0.18 y0.78 0.31 1.4FB

Ž .A e 0.071 0.24 3.3 y0.19 y2.7 0.11 1.5FB
y6 y5 y6 y5Ž .BR m 6.3=10 4.0=10 6.3 1.6=10 0.26 3.4=10 5.4

Ž .A m 0.23 0.33 1.5 y0.18 y0.78 0.31 1.4FB

Ž .A m 0.11 0.27 2.5 y0.27 y2.4 0.15 1.3FB

the SM contribution to C ; the inclusion of the MSSM corrections does not change8
.significantly the result

y0.39-C M -y0.099 and 0.66-C M -0.95 50Ž . Ž . Ž .7 W 7 W

effŽ .it is excluded that the CMSSM could drive a positive value for C M . For what7 B
effŽ .concerns the negative interval of values of C M we see that it can be accommo-7 B

dated both in the CMSSM and in our framework.
Looking at Figs. 5–8. and Table 4 we see that the differences between SM and SUSY

predictions can be remarkable. Moreover a sufficiently precise measure of BR’s, A ’sFB

and A ’s can either discriminate between the CMSSM and more general SUSY modelsFB

or give new constraints on mass insertions. Both these kind of information can be very
useful for model building.

8. Conclusions

In this paper an extensive discussion about SUSY contributions to semileptonic
decays B™X eqey, B™X mqmy is provided. We see that the interplay betweens s

b™sg and B™X llqlly is fundamental in order to give an estimate of the SUSYs

relevance in these decays. The two kinds of decays are in fact strongly correlated.
Given the constraints coming from the recent measure of b™sg and estimating all

possible SUSY effects in the MIA framework we see that SUSY has a chance to
strongly enhance or depress semileptonic charmless B-decays. The expected direct
measure will give very interesting information about the SM and its possible extensions.
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