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A MULTIMATERIAL TRANSPORT PROBLEM AND ITS CONVEX
RELAXATION VIA RECTIFIABLE \bfitG -CURRENTS\ast 

ANDREA MARCHESE\dagger , ANNALISA MASSACCESI\ddagger , AND RICCARDO TIONE\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . In this paper we study a variant of the branched transportation problem, that we call
the multimaterial transport problem. This is a transportation problem, where distinct commodities
are transported simultaneously along a network. The cost of the transportation depends on the
network used to move the masses, as is common in models studied in branched transportation.
The main novelty is that in our model the cost per unit length of the network does not depend
only on the total flow, but on the actual quantity of each commodity. This allows us to take into
account different interactions between the transported goods. We propose an Eulerian formulation
of the discrete problem, describing the flow of each commodity through every point of the network.
We prove existence of solutions under minimal assumptions on the cost. Moreover, we prove that,
under mild additional assumptions, the problem can be rephrased as a mass minimization problem
in a class of rectifiable currents with coefficients in a group, allowing us to introduce a notion of
calibration. The latter result is new even in the well-studied framework of the ``single-material""
branched transportation.
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Introduction. In this paper we study the multimaterial transport problem,
(MMTP). Informally, given two arrays

\mu  - = (\mu  - 
1 , . . . , \mu 

 - 
m), \mu + = (\mu +

1 , . . . , \mu 
+
m)

of discrete positive measures on \BbbR d, we study transportation networks between \mu  - 

and \mu + of the form T = (T1, . . . , Tm), where each Ti is a vector valued measure on \BbbR d

(with values also in \BbbR d) having distributional divergence

(0.1) div(Ti) = \mu  - 
i  - \mu +

i \forall i = 1, . . . ,m .

More precisely, we will consider only transportation networks with a certain structure,
namely, we require that there exists a 1-rectifiable set E \subset \BbbR d (endowed with a unit
vector field \tau , orienting the approximate tangent of E) and for every i = 1, . . . ,m a
subset Ei \subset E and a multiplicity \theta i \in \BbbZ such that

Ti := \theta i\tau H 1 Ei,

where the latter means that, for every continuous and compactly supported vector
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1966 A. MARCHESE, A. MASSACCESI, AND R. TIONE

field v on \BbbR d, we have

\langle Ti, v\rangle =
ˆ
Ei

\langle \tau (x); v(x)\rangle \theta i(x) dH 1(x) .

Then we associate with T
\bullet the multiplicity \theta = (\theta 1, . . . , \theta m), which is a function on E with values in \BbbZ m,
\bullet the vector valued measure on \BbbR d (with values in \BbbR d\times m)

T := (\tau \otimes \theta )H 1 E,

\bullet and the energy

(0.2) \BbbE (T ) :=
ˆ
E

\scrC (\theta ) dH 1,

where \scrC : \BbbZ m \rightarrow [0,+\infty ) is a cost function.
The MMTP consists in the minimization of the energy (0.2) under the constraint
(0.1).

We briefly step back for a heuristic introduction to the problem. In optimal trans-
port problems one can focus on specific (concave) costs, which favor the aggregation
of moved particles and generate optimal structures with branching. The branched
transport problem is named after this peculiar phenomenon. A great interest has
been devoted to branched transportation problems in recent years, providing several
results concerning existence of solutions [42, 30, 3, 2, 11, 37, 18], regularity and sta-
bility [43, 7, 22, 21, 35, 44, 8, 10, 16, 15, 17], and strategies to compute minimizers or
to prove minimality of concrete configurations [36, 6, 14, 34, 5, 4, 32, 31, 29].

Nonetheless, to our knowledge only problems involving the transport of one (ho-
mogeneous) material have been studied and modeled as variational problems. These
models do not apply in planning a network for the transportation of different goods,
whose mutual interactions require a formulation which involves several variables. The
easiest examples of a natural MMTP concern mixed-use roads (where vehicles of
different sizes and pedestrians are allowed to circulate) and the transport through
vehicles of goods and passengers.

Another notable example is given by the power line communications (PLC) tech-
nology (see [26, 23]), which uses the electric power distribution network for data
transmission. PLC was introduced into the United States of America more than a
century ago and used for communications of moving trains or, more generally, for
maintenance operations of the electric power network. Recently, a special type of
PLC, the broadband over power lines is being studied and improved for high-speed
data transmission, being particularly convenient for isolated areas. Electric power
and data signals are impossible to treat as a homogeneous ``material"" for several rea-
sons, the main one being the fact that electricity and internet supply are subject to
different costs, depending on the users' concentration and demands.

Similar problems, usually grouped under the name of multicommodity flow prob-
lems, were studied (see, e.g., [28, 24]) as minimization problems on graphs, often also
considering constraints on the capacity of the network. Up to now, the aim of the
research in this area was mainly devoted to studying the complexity of the problem
and to improving the efficiency of algorithms for numerical solutions.

The main results of the present paper are the existence of solutions to the min-
imization of the energy (0.2) under the constraint (0.1) with minimal assumptions
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MULTIMATERIAL TRANSPORT PROBLEM 1967

on the cost \scrC (Theorem 2.3) and, under mild additional assumptions, the equiva-
lence between the MMTP and a mass minimization problem in a class of rectifiable
currents with coefficients in a group (Theorem 2.4). The equivalence between the
two problems allows us to introduce the notion of calibrations in this context. This
was initiated in previous works [32, 31] for ``single-material"" branched transportation
problems and for very special choices of the cost functionals (i.e., the Steiner cost and
the Gilbert--Steiner \alpha -mass, respectively) and the benefit of introducing calibrations
in such contexts is witnessed, e.g., by [34, 5, 12, 13]. Under our general assump-
tions on the cost, the equivalence result is new even in the case of single-material
transportation problems.

1. Notation and preliminaries. Consider a norm \| \cdot \| on \BbbR n and its dual norm
\| \cdot \| \ast . The Euclidean norm is instead denoted by | \cdot | and we will always denote an
orthonormal basis of (\BbbR n, | \cdot | ) by \{ e1, . . . , en\} . The scalar product between vectors
v and w of \BbbR n is denoted \langle v;w\rangle . Our aim is to define (1-dimensional) currents in
\BbbR d with coefficients in (\BbbR n, \| \cdot \| ). Through the paper we will always use d for the
dimension of the ambient space. In section 2, two quantities m and N will arise in our
variational problem and we will work with currents with coefficients in \BbbR m and \BbbR N ,
respectively. The letter n, used in this preliminary section, stands for the dimension
of the vector space of coefficients of our currents. In the following, one can refer to
the definitions of this section replacing n = m or n = N .

Currents with coefficients in a normed (abelian) group (G, | \cdot | G) have been intro-
duced in [27] and already studied by several authors (see [40, 41, 20]). Our interest is
restricted to the case (G, | \cdot | G) = (\BbbR n, \| \cdot \| ), and we follow a ``nonstandard"" approach,
defining currents by duality with \BbbR n-valued differential forms in \BbbR d (instead of com-
pleting the space of polyhedral \BbbR n-chains). With this approach we obtain an integral
representation of currents, (see (1.1)) which allows us to introduce calibrations in a
natural way.

We introduce now some notation about currents with coefficients in (\BbbR n, \| \cdot \| ). For
the rest of this section, we will often drop the norm \| \cdot \| , meaning that we will write
\BbbR n-valued 1-covector/differential form or 1-current with coefficients in \BbbR n instead
of (\BbbR n, \| \cdot \| )-valued 1-covector/differential 1-form or 1-currents with coefficients in
(\BbbR n, \| \cdot \| ). We limit ourselves to define what is strictly necessary for the purposes of
our paper. To begin with, we give the following definitions.

Definition 1.1 (\BbbR n-valued 1-covector). A map \alpha : \BbbR d\times \BbbR n \rightarrow \BbbR is an \BbbR n-valued
1-covector in \BbbR d if

(i) \forall \tau \in \BbbR d, \alpha (\tau , \cdot ) \in (\BbbR n)\ast ;
(ii) \forall \theta \in \BbbR n, \alpha (\cdot , \theta ) : \BbbR d \rightarrow \BbbR is a ``classical"" 1-covector.

The evaluation of \alpha on the pair (\tau , \theta ) is also denoted by \langle \alpha ; \tau , \theta \rangle . The space of \BbbR n-
valued 1-covectors in \BbbR d is denoted by \Lambda 1(\BbbR d;\BbbR n).

Observe that the space \Lambda 1(\BbbR d;\BbbR n) is a normed vector space when endowed with
the comass norm

\| \alpha \| c := sup\{ \| \alpha (\tau , \cdot )\| \ast : | \tau | \leq 1, \tau \in \BbbR d\} .
We can write the action of an \BbbR n-valued 1-covector \alpha as

\alpha (\tau , \theta ) =

n\sum 

j=1

\alpha j(\tau )\langle ej ; \theta \rangle ,

where, for j = 1, . . . , n, \alpha j := \alpha (\cdot , ej) are the components of \alpha .
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1968 A. MARCHESE, A. MASSACCESI, AND R. TIONE

Fix now a convex open set U \subset \BbbR d. It is clear that such an assumption is not
restrictive for most of the reasonable cases, nonetheless we remark that other choices
of U could change the homology class in which we set the variational problem.

Definition 1.2 (\BbbR n-valued differential 1-form). An \BbbR n-valued differential 1-form
in U is a map \omega : U \rightarrow \Lambda 1(\BbbR d;\BbbR n). We say that \omega is smooth if and only if every
component \omega j belongs to C\infty (U ; \Lambda 1(\BbbR d;\BbbR )), where the components of an \BbbR n-valued
differential 1-form are defined similarly to the components of an \BbbR n-valued 1-covector.
We denote by C\infty 

c (U ; \Lambda 1(\BbbR d;\BbbR n)) the vector space of smooth, \BbbR n-valued differential
1-forms, with compact support in U .

Finally, we define the comass norm of the \BbbR n-valued differential 1-form \omega as

\| \omega \| c := sup
x\in U

\| \omega (x)\| c.

The exterior derivative of an \BbbR n-valued function (0-form) is once again defined using
the components.

Definition 1.3 (exterior derivative of an \BbbR n-valued 0-form). Let \eta \in C\infty 
c (U ;\BbbR n)

be an \BbbR n-valued 0-form and, for j = 1, . . . , n, denote with \eta j its components (i.e.,
\eta j := \langle \eta ; ej\rangle ). Then the exterior derivative of \eta is the \BbbR n-valued differential 1-form
which is defined componentwise by

(d\eta )j := d(\eta j), j = 1, . . . , n.

We are now ready to define 1-currents with coefficients in \BbbR n.

Definition 1.4 (1-currents with coefficients in \BbbR n). Let T be a linear functional
on C\infty 

c (U ; \Lambda 1(\BbbR d,\BbbR n)). By definition, T is continuous if T (\omega i) \rightarrow 0 for every sequence
of \BbbR n-valued differential 1-forms \omega i \in C\infty (U ; \Lambda 1(\BbbR d,\BbbR n)) such that

(i) spt(\omega i) \subset K for some compact set K \subset U ;
(ii) every component of \omega i converges uniformly to 0 with all its derivatives when

i \rightarrow \infty .
The space of linear, continuous functionals on C\infty 

c (U ; \Lambda 1(\BbbR d,\BbbR n)) is the space of 1-

currents in U with coefficients in \BbbR n. We write T i \ast 
\rightharpoonup T when the sequence of currents

(T i)i\geq 1 with coefficients in \BbbR n is weakly*-converging to T , i.e., when

T i(\omega ) \rightarrow T (\omega ) \forall \omega \in C\infty 
c (U ; \Lambda 1(\BbbR d,\BbbR n)).

Furthermore, if T is a 1-current with coefficients in \BbbR n, we define its mass as

\BbbM (T ) := sup\{ | T (\omega )| : \| \omega \| c \leq 1\} .

The boundary of T is the \BbbR n-valued distribution \partial T which fulfills the relation

\partial T (\eta ) := T (d\eta ) \forall \eta \in C\infty 
c (U ;\BbbR n).

Finally, when we mention the components of the current T , we refer to the classical
currents Tj, j = 1, . . . , n, defined as

Tj(\omega ) := T (\omega ej) \forall \omega \in C\infty (U ; \Lambda 1(\BbbR d;\BbbR )),

where we denoted by \omega ej the \BbbR n-valued differential 1-form whose jth component co-
incides with \omega and all other components are all null.
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MULTIMATERIAL TRANSPORT PROBLEM 1969

Remark 1.5. Analogously, the definitions of \BbbR n-valued k-covectors, \BbbR n-valued dif-
ferential k-forms, and k-currents with coefficients in \BbbR n are given by specifying their
components, i.e., an array made of n classical k-covectors, differential k-forms, and
k-currents, respectively. Similarly, the definitions of the exterior derivative of an \BbbR n-
valued differential k-form and of the boundary of a k-current with coefficients in \BbbR n

are understood.

Remark 1.6. Notice that, if T is a current with coefficients in \BbbR m with at most
one nontrivial component Tj , then the mass \BbbM (T ) differs from the classical mass of Tj

by a multiplicative constant, namely, the ratio between the Euclidean norm on \BbbR and
the restriction of the norm \| \cdot \| on span(ej). Therefore, to avoid a possibly misleading
abuse of notation, we denote by \BbbM the mass of classical currents.

We are going to consider the following special class of currents. We recall that a
1-rectifiable set E \subset U is an H 1-measurable set which can be covered, up to an H 1-
null subset, with the images of countably many curves of class C1. A 1-rectifiable set
E has a well-defined notion of tangent line at H 1-a.e. point x \in E, which is denoted
Tan(E, x).

Definition 1.7 (rectifiable 1-currents with coefficients in \BbbZ n). A rectifiable 1-
current in U with coefficients in \BbbZ n is a 1-current with coefficients in \BbbR n with finite
mass admitting the integral representation

(1.1) T (\omega ) =

ˆ
\Sigma 

\langle \omega (x); \xi (x), \theta (x)\rangle dH 1(x) \forall \omega \in C\infty (U ; \Lambda 1(\BbbR d;\BbbR n)),

where \Sigma \subset U is a countably 1-rectifiable set, \xi (x) : \Sigma \rightarrow \BbbS d - 1\cap Tan(E, x) for H 1-a.e.
x is called the orientation, and \theta \in L1

loc(\Sigma ;\BbbZ n) is the multiplicity. We denote such a
current T as J\Sigma , \xi , \theta K.

We have the following characterization of the mass of a rectifiable current (see
[38, 26.8] for the analogous statement for classical currents).

Lemma 1.8 (characterization of the mass). If T = J\Sigma , \xi , \theta K is a rectifiable 1-
current with coefficients in \BbbZ n, then

\BbbM (T ) =

ˆ
\Sigma 

\| \theta (x)\| dH 1(x).

For the rest of the paper, we mainly focus on rectifiable 1-currents with coef-
ficients in \BbbZ n whose boundary has finite mass. With a small abuse of notation we
call them 1-dimensional integral \BbbZ n-currents. The following structure theorem for
1-dimensional integral \BbbZ n-currents is an immediate consequence of its counterpart for
classical integral 1-currents [25, 4.2.25]. See also [19, Theorem 2.5]. Roughly speak-
ing, it states that a 1-dimensional integral \BbbZ n-current can be thought of simply as a
superposition of oriented curves with (vectorial) multiplicities.

Theorem 1.9 (structure of 1-dimensional integral \BbbZ n-currents). Let T = J\Sigma , \tau , \theta K
be a 1-dimensional integral \BbbZ n-current in U . Then

T =

M\sum 

k=1

\~T k +

\infty \sum 

h=1

\r Th,

where
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1970 A. MARCHESE, A. MASSACCESI, AND R. TIONE

\bullet \~T k = J\Gamma k, \tau k, \~\theta kK, \Gamma k being the image of an injective, Lipschitz, open curve

\gamma k : [0, 1] \rightarrow U , \tau k(\gamma k(t)) =
\cdot 
\gamma k(t)

| \cdot \gamma k(t)| 
for a.e. t, and \~\theta k \in \BbbZ n being constant on

\Gamma k. Moreover, for j = 1, . . . , n it holds

(1.2)

M\sum 

k=1

| (\~\theta k(x))j | \leq 
1

2
\BbbM (\partial Tj) for H 1 a.e. x \in \bigcup M

k=1 \Gamma k.

Additionally, for j = 1, . . . , n it holds

(1.3)

\bigm| \bigm| \bigm| \bigm| \bigm| 
M\sum 

k=1

\langle \tau k(x); \tau (x)\rangle (\~\theta k(x))j
\bigm| \bigm| \bigm| \bigm| \bigm| \leq | (\theta (x))j | for H 1 a.e. x \in \bigcup M

k=1 \Gamma k

and in the inequality above the two quantities
\sum M

k=1\langle \tau k(x); \tau (x)\rangle (\~\theta k(x))j and
(\theta (x))j have the same sign;

\bullet \r Th = JZh, \nu h,\r \theta hK, Zh being the image of a Lipschitz, closed curve \zeta h : [0, 1] \rightarrow 
U , which is injective on (0, 1), \nu h(\zeta h(t)) =

\cdot 
\zeta h(t)

| 
\cdot 
\zeta h(t)| 

for a.e. t, and \r \theta h \in \BbbZ n being

constant on Zh.

1.1. Compactness. The following compactness theorem holds.

Theorem 1.10 (compactness). Consider a sequence (T l)l\in \BbbN of 1-dimensional
integral \BbbZ n-currents in U such that

sup
l\in \BbbN 

\bigl( 
\BbbM (T l) +\BbbM (\partial T l)

\bigr) 
< +\infty .

Then there exists a 1-dimensional integral \BbbZ n-current T in U and a subsequence\bigl( 
T lr
\bigr) 
r\in \BbbN such that

T lr \ast 
\rightharpoonup T .

Moreover it holds
lim inf
r\rightarrow \infty 

\BbbM (T lr ) \geq \BbbM (T ).

The proof of this result is a straightforward application of the closure theorem
for integral currents (see [25, 4.2.16]) to each component T l

j of the elements of the

sequence (T l)l\in \BbbN . The lower semicontinuity of the mass is straightforward. By direct
methods we get the existence of a mass-minimizing rectifiable current for a given
boundary.

Corollary 1.11. Let T \flat be a 1-dimensional integral \BbbZ n-current in U . Then
there exists a 1-dimensional integral \BbbZ n-current T \sharp in U such that

\BbbM (T \sharp ) = min
\partial T=\partial T \flat 

\BbbM (T ) ,

where the minimum is computed among 1-dimensional integral \BbbZ n-currents in U .

1.2. Calibrations. The main advantage of proving the equivalence between the
MMTP and a mass minimization problem is that, in the latter case, we can make use
of calibrations to prove minimality.

Definition 1.12 (calibration). Consider a rectifiable 1-current T = J\Sigma , \tau , \theta K
in U , with coefficients in \BbbZ n. A smooth \BbbR n-valued differential 1-form \omega in U is a
calibration for T if the following conditions hold:
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MULTIMATERIAL TRANSPORT PROBLEM 1971

(i) for a.e. x \in \Sigma we have that \langle \omega (x); \tau (x), \theta (x)\rangle = \| \theta (x)\| ;
(ii) the form is closed, i.e., d\omega = 0;
(iii) for every x \in U , every unit vector \tau \in \BbbR d and every \eta \in \BbbR n we have that

\langle \omega (x); \tau , \eta \rangle \leq \| \eta \| .

The existence of a calibration is a sufficient condition for minimality.

Theorem 1.13 (minimality of calibrated currents). Let T = J\Sigma , \tau , \theta K be a recti-
fiable 1-current in U , with coefficients in \BbbZ n, and let \omega be a calibration for T . Then
T minimizes the mass among rectifiable 1-currents in U with coefficients in \BbbZ n with
the same boundary \partial T .

Proof. A competitor T \prime = J\Sigma \prime , \tau \prime , \theta \prime K satisfies \partial T \prime = \partial T . Since U is convex, there
exists a 2-dimensional current R in U , with coefficients in \BbbR n, such that \partial R = T  - T \prime .
As a consequence, together with the properties of \omega listed in Definition 1.12, we obtain
that

\BbbM (T ) =

ˆ
\Sigma 

\| \theta (x)\| dH 1(x)

(i)
=

ˆ
\Sigma 

\langle \omega (x); \tau (x), \theta (x)\rangle dH 1(x) = \partial R(\omega ) + T \prime (\omega )

(ii)
=

ˆ
\Sigma \prime 
\langle \omega (x); \tau \prime (x), \theta \prime (x)\rangle dH 1(x)

(iii)

\leq 
ˆ
\Sigma \prime 

\| \theta \prime (x)\| dH 1(x) = \BbbM (T \prime ) .

2. Multimaterial transport problem. In this section, we define the MMTP
and we state the main result of the paper. First of all, let us introduce some notation.
Our ambient is the Euclidean space \BbbR d. For n = 1, 2, . . . , we consider the following
partial order on \BbbR n, where the coordinates are always expressed with respect to the
standard basis \{ e1, . . . , en\} . Given two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn),
we write x \preceq y if and only if

(2.1) | xj | \leq | yj | and xjyj \geq 0 \forall j = 1, . . . , n.

We say that a norm \| \cdot \| on \BbbR n is monotone if \| x\| \leq \| y\| for every x \preceq y \in \BbbR n. We
say that \| \cdot \| is absolute if \| x\| = \| \=x\| \forall x \in \BbbR n, where \=x = (| x1| , . . . , | xn| ). Now we
fix an integer m \in \BbbN (which represents the number of different types of commodities
involved in the transportation problem).

Definition 2.1 (multimaterial cost). A multimaterial cost is a function \scrC :
\BbbZ m \rightarrow [0,+\infty ) with the following properties:

(i) \scrC is even, i.e., \scrC (x) = \scrC ( - x), and \scrC (x) = 0 if and only if x = 0.
(ii) \scrC is increasing, i.e., \scrC (x) \leq \scrC (y) for every x \preceq y.
(iii) \scrC is subadditive, i.e., \scrC (x+ y) \leq \scrC (x) + \scrC (y) for every x, y \in \BbbZ m.

In order to prove the equivalence between the MMTP and a mass minimization prob-
lem, we will replace (iii) with a stronger property, namely,

(iii\prime ) there exists a monotone norm \| \cdot \|  \star on \BbbR m with respect to which \scrC is sublinear,

i.e., \scrC (x)
\| x\|  \star 

\leq \scrC (x\prime )
\| x\prime \|  \star 

for every x, x\prime \in \BbbZ m \setminus \{ 0\} with x\prime \preceq x.
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1972 A. MARCHESE, A. MASSACCESI, AND R. TIONE

Remark 2.2 (extension of multimaterial costs). If \scrC is defined only on a rectangle

R := [ - a1, a1]\times \cdot \cdot \cdot \times [ - am, am] \subset \BbbZ m

and it satisfies (i), (ii), (iii) (respectively (i), (ii), (iii\prime )) on R, then one can define a
new cost \=\scrC : \BbbZ m \rightarrow [0,+\infty ] defining

\=\scrC (x) := max
y\in R

\{ \scrC (y) : y \preceq x\} .

One can see immediately that the cost \=\scrC satisfies (i), (ii), (iii) (respectively (i), (ii),
(iii\prime )).

A multimaterial cost induces a functional on 1-dimensional integral \BbbZ m-currents,
that we denote \BbbE . Given a 1-dimensional integral \BbbZ m-current T = J\Sigma , \tau , \theta K, we denote
its energy by

(2.2) \BbbE (T ) :=
ˆ
\Sigma 

\scrC (\theta ) dH 1 .

Let us now fix a rectifiable 0-current \scrB on \BbbR d with coefficients in \BbbZ m, which is
the boundary of a 1-dimensional integral \BbbZ m-current. In particular \scrB is represented
by the discrete \BbbR n-valued measure

(2.3) \scrB =

M\sum 

\ell =1

\eta \ell \delta p\ell 
,

where p\ell are points in \BbbR d, \eta \ell = (\eta \ell ,1, . . . , \eta \ell ,m) \in \BbbZ m, and
\sum M

\ell =1 \eta \ell = (0, . . . , 0) \in \BbbZ m.
If we read the problem as an optimization problem for the transportation of

different goods among factories, the interpretation of \scrB as a given datum should be
the following. At each of the M points p\ell a certain amount of some of the m materials
is produced or requested. A negative sign in the coefficient \eta \ell ,i represents the fact that
an amount | \eta \ell ,i| of the material indexed by i is produced by the factory located at
the point p\ell , while a positive sign represents the fact that the corresponding amount
is requested by that factory.

We are now able to state the MMTP. Let \scrC satisfy properties (i), (ii), (iii) of
Definition 2.1.
(MMTP:) Among all 1-dimensional integral \BbbZ m-currents T = J\Sigma , \tau , \theta K in \BbbR d such

that \partial T = \scrB , find one which minimizes the energy \BbbE (T ).
Theorem 2.3 (existence of solutions). The MMTP admits a solution.

Proof. The proof goes through the direct method of the calculus of variations.
The lower semicontinuity of the functional \BbbE is stated in [41, section 6] (see also [18]).
In [33], we prove the lower semicontinuity in a more general framework in order to
obtain the existence of solutions to a ``continuous"" version of the MMTP. The only
issue is that a minimizing sequence \{ T l\} l\in \BbbN for the MMTP does not necessarily have
equibounded masses, hence it is not possible to apply Theorem 1.10 directly to obtain
a minimizer. Nevertheless one can obtain a uniform bound on the masses ``removing
the cycles"" from the T l's. Namely, writing each T l = J\Sigma l, \tau l, \theta lK according to Theorem
1.9 as

T l =

M(l)\sum 

k=1

\~(T l)
k
+

\infty \sum 

h=1

\r (T l)
h
,
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MULTIMATERIAL TRANSPORT PROBLEM 1973

and denoting \~T l = J\~\Sigma l, \tau l, \~\theta lK :=
\sum M(l)

k=1
\~(T l)

k
, we get by (1.3) that for every l \in \BbbN 

it holds \~\theta l \preceq \~\theta l H 1-a.e. on \Sigma l, hence, by the monotonicity of \scrC , we deduce that

\BbbE ( \~T l) \leq \BbbE (T l). Observing that \scrB = \partial T l = \partial \~T l, we have that \{ \~T l\} l\in \BbbN is also a
minimizing sequence. Moreover, (1.2) implies that \| \~\theta l\| is bounded by a uniform
constant M , H 1-a.e. on \~\Sigma l, and by properties (i) and (ii) of Definition 2.1 the cost
of each nonzero element of \BbbZ m is bounded from below by a value P . Hence the ratio
\| \~\theta l\| /\scrC (\~\theta l) is bounded by C := M

P H 1-a.e. on \~\Sigma l. Integrating on \~\Sigma l, we deduce that

\BbbM ( \~T l) \leq C\BbbE ( \~T l). This allows us to apply Theorem 1.10 and to find a subsequential
limit, which is a solution to the MMTP.

We remark here that, under the additional assumption (iii\prime ) on the cost functional,
the existence is also a trivial consequence Theorem 2.4 below.

The main result of the paper is the fact that, with the additional assumption
(iii\prime ) on the cost functional, the MMTP is equivalent to the superposition of a certain
number of mass minimization problems among 1-dimensional integral currents, with
coefficients in a group (which is larger than \BbbZ m). Introducing such problems requires
some additional notation.

Let \scrB be as in (2.3). For i = 1, . . . ,m, let

(2.4) Ni :=
1

2

M\sum 

\ell =1

| \eta \ell ,i| and let N :=

m\sum 

i=1

Ni.

Note that, since | \eta \ell ,i| \in \BbbN \forall \ell , i, then Ni are natural numbers for every i, and so is
N . Since i represents an index for the m different types of materials, then Ni should
be thought as the total amount of the production of the material corresponding to the
index i among all factories. Similarly N represents the total amount of production of
the union of all materials. We associate with \scrB a rectifiable 0-current, with coefficients
in \BbbZ N with the following procedure. Heuristically, for every i = 1, . . . ,m, we will give
different labels to each of the Ni copies produced of the ith material, so that in total
we will have N different labels. Note that this is in a certain sense an ``unnatural""
operation, since in the original problem different copies of the same material are
indistinguishable. Let us explain first how we assign the labels. We begin by splitting
the set \{ 1, . . . , N\} into an ordered sequence made by the m groups \{ 1, . . . , N1\} , \{ N1+
1, . . . , N1 +N2\} , . . . , \{ N  - Nm + 1, . . . , N\} . We will use the ith group (i = 1, . . . ,m)
as the set of labels for the Ni copies produced of the ith material. Hence to every
index j \in \{ 1, . . . , N\} we associate the corresponding i(j) which is describing to which
of the m materials the label j corresponds. Formally, for every j \in \{ 1, . . . , N\} , we
denote i(j) the first index i such that N1 + \cdot \cdot \cdot + Ni \geq j. Now we want to identify
one of the points \{ p\ell \} M\ell =1 in which we will think that the copy of the i(j)th material,

labeled with j, is produced. Therefore we let \=j :=
\sum i(j) - 1

k=0 Nk (observe that j  - \=j
describes the position of the index j in the i(j)th group defined above) and moreover
we let \ell  - (j) be the first index \ell such that

\sum 

\eta \ell ,i(j)<0

| \eta \ell ,i(j)| \geq j  - \=j.

Similarly, let \ell +(j) be the first index \ell such that

\sum 

\eta \ell ,i(j)>0

\eta \ell ,i(j) \geq j  - \=j.
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Finally we define

P (j) := p\ell  - (j) and D(j) := p\ell +(j).

Since it is too restrictive to assume that, for every j = 1, . . . , N , the i(j)th material
produced in P (j) will be sent to the point D(j), we need to allow some ``reshuffling"".
To this aim, we let \sigma = (\sigma 1, . . . , \sigma m) \in \scrS N1

\times \cdot \cdot \cdot \times \scrS Nm
, where \scrS q is the group of

permutations on q elements. With a small abuse of notation, we write \sigma (j) for the
number \=j+\sigma i(j)(j - \=j). Note that each \sigma i (i = 1, . . . ,m) is thought as a permutation
acting on the ith group defined above.

Last we define our rectifiable 0-current with coefficients in \BbbZ N as

(2.5) \scrB \sigma :=  - 
N\sum 

j=1

ej\delta Pj +

N\sum 

j=1

ej\delta D\sigma (j)
.

Observe that every fixed permutation prescribes in which of the M points the
copy of each labeled material will be moved. Since in our transportation problem it
is not natural to prescribe such assignments, we will let the permutation vary.

Now we can state our alternative formulation of the MMTP, which is simply a
mass-minimization problem (MMP):

(MMP:) Let \| \cdot \| be a norm on \BbbR N . Among all \sigma \in \scrS N1 \times \cdot \cdot \cdot \times \scrS Nm and among all
1-dimensional integral \BbbZ N -currents \=T = J\=\Sigma , \=\tau , \=\theta K in \BbbR d such that \partial \=T = \scrB \sigma 

(defined in (2.5)), find one which minimizes the mass \BbbM ( \=T ), where the mass
is computed with respect to the norm \| \cdot \| .

The main result of the paper is the following.

Theorem 2.4 (equivalence between MMTP and MMP). Let \scrB be as in (2.3) and
N as in (2.4). Then, for every \scrC as in Definition 2.1, satisfying (i), (ii), (iii\prime ), there
exists a norm \| \cdot \| on \BbbR N such that the problems MMTP and MMP are equivalent.
Namely, the minima are the same and moreover there is a canonical way to construct
a solution of the MMTP from a solution of the MMP and vice versa.

Remark 2.5 (irrigation-type problems). A corollary of the proof of Theorem 2.4
is the following. If there exists one index \=\ell \in \{ 1, . . . ,M\} such that | \eta \=\ell ,i| =

\sum 
\ell \not =\=\ell | \eta \ell ,i| 

for every i = 1, . . . ,m, then in the MMP it is not necessary to minimize among the
permutations \sigma (i.e., the minimum is the same for every permutation). In the single-
material case, the assumption corresponds to the case called the ``irrigation problem,""
where the initial (or the target) measure is a Dirac delta.

Remark 2.6 (MMP as a Lagrangian formulation of the MMTP). Recalling the
interpretation of the coordinates of \BbbR N as labels for different copies of the m ma-
terials, we can view the MMP as a version of the MMTP where one can trace the
trajectory of every particle of each type of material. The equivalence between Eu-
lerian formulations (describing the flow of particles at every point) and Lagrangian
formulations (describing the particles' trajectories) of branched transportation prob-
lems is an interesting problem in general (see, e.g., [9]) which is based on a profound
result of Smirnov on the structure of classical normal 1-currents (see [39]). For our
discrete problem, instead, the equivalence is a simple consequence of Theorem 1.9.
For the sake of brevity, we will not pursue this in the present paper.

3. Equivalence between MMTP and MMP. The aim of this section is to
establish the equivalence between the MMTP and the MMP of section 2. This follows
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(1, 0)

(−1, 0)

(−1, 0)

(0,−1)

(0, 1)

(1, 0)

(1, 0)

(2, 0)

(2, 1)

−1

−1

1

1

T1

1

2

2

−1

1

T2

1

Figure 1. On the left a 1-dimensional integral Z2-current T = (T1, T2) and on the
right its two components.

with1

M(Ti) =

Ni∑

k=1

M(T̃ ki ) +
∞∑

h=1

M(T̊hi ) and M(∂Ti) =
∑Ni
k=1 M(∂T̃ ki ), (3.3)

where:

◦ T̃ ki := JΓki , τki , 1K are integral 1-currents associated to simple, Lipschitz, open curves γki :

[0, 1]→ Rd, where Γki := Im(γki ) and τki :=
(γki )′

|(γki )′| ;

◦ T̊hi := JZhi , νhi , 1K are integral 1-currents associated to simple, Lipschitz, closed curves (cycles)

ζhi : [0, 1]→ Rd, where Zhi := Im(ζhi ) and νhi :=
(ζhi )′

|(ζhi )′| .

For every i = 1, . . . ,m, denote by Σi := ∪Nik=1Γki and by T ′ the 1-current

T ′i :=

Ni∑

k=1

T̃ ki .

Since each T ′i is supported on Σ, we can write T ′i := JΣ, τ, θ′iK. Let T ′ be the 1-dimensional integral
Zm-current whose components are (T ′1, . . . , T

′
m).

It follows from (3.2) that for every i = 1, . . . ,m and for H 1-a.e. x ∈ Σ it holds

θi(x) =

Ni∑

k=1

χΓki
(x)〈τki (x); τ(x)〉+

∞∑

h=1

χZhi (x)〈νhi (x); τ(x)〉, (3.4)

where we denoted by χE the characteristic function of the set E taking values 0 and 1. Combining
(3.4) and (3.3) we deduce that for every i = 1, . . . ,m it holds

τki (x) = sign(θi(x))τ(x), for H 1-a.e. x ∈ Γki , for every k

and
νhi (x) = sign(θi(x))τ(x), for H 1-a.e. x ∈ Zhi , for every h.

Hence it holds (θ′1(x), . . . , θ′m(x)) � (θ1(x), . . . , θm(x)), for H 1-a.e. x ∈ Σ, which yields E(T ′) ≤ E(T ),
by property (ii) of Definition 2.1. Moreover by (3.2) it holds ∂T ′ = ∂T .

Next we associate to T ′ a 1-dimensional integral ZN -current T̄ , simply defining T̄ to be the current
with components (T̄1, . . . , T̄N ), where we set, for j = 1, . . . , N (recalling the definition of i(j) and j̄

from §2) T̄j := T̃ ki(j), for k = j − j̄.
Applying the boundary operator to (3.2), it follows that T̄ is a competitor for the MMP. Moreover

by (3.4) and (3.1) it follows that M(T̄ ) = E(T ′) ≤ E(T ).

Step 2: from MMP to MMTP. Let σ ∈ SN1 × · · ·×SNm . Let T̄ := JΣ̄, τ̄, θ̄K be a 1-dimensional
integral ZN -current which is a competitor for the MMP and in particular ∂T̄ = Bσ (defined in (2.5)).
The aim of this step is to construct from T̄ a competitor T for the MMTP associated to B, such that
E(T ) ≤M(T̄ ).

Let
T̄1 := JΣ̄, τ̄, θ̄1K, . . . , T̄N := JΣ̄, τ̄, θ̄N K

1Observe that all the currents in (3.3) are “classical” currents, therefore the notion of mass is the standard one.

9

Fig. 1. On the left a 1-dimensional integral \BbbZ 2-current T = (T1, T2) and on the right its two
components.

from Theorem 1.9, once we find a norm \| \cdot \| on \BbbR N which is monotone and satisfies,
for every \sigma \in \scrS N1

\times \cdot \cdot \cdot \times \scrS Nm
,

(3.1)

\scrC (\theta 1, . . . , \theta m)

=
\bigm\| \bigm\| \bigm\| sign (\theta 1)

| \theta 1| \sum 

j=1

e\sigma (j) + sign (\theta 2)

N1+| \theta 2| \sum 

j=N1+1

e\sigma (j) + \cdot \cdot \cdot + sign (\theta m)

N - Nm+| \theta m| \sum 

j=N - Nm+1

e\sigma (j)

\bigm\| \bigm\| \bigm\| ,

where N and Ni (i = 1, . . . ,m) are defined in (2.4). The existence of such a norm
would imply that the cost of the transportation of a vector of materials (\theta 1, . . . , \theta n)
along a stretch of the network corresponds to the mass of the current with coefficients
in \BbbR N that we will associate with that stretch of the network.

The existence of such a norm is proved in Theorem 3.2. First we show how to
prove Theorem 2.4 using the existence of \| \cdot \| .

Proof. Fix \scrB as in (2.3). We divide the proof into two steps.
Step 1: from MMTP to MMP. Let T := J\Sigma , \tau , \theta K be a 1-dimensional integral

\BbbZ m-current which is a competitor for the MMTP. The aim of this step is to construct
from T a competitor \=T for the MMP ``associated"" with \scrB , such that \BbbM ( \=T ) \leq \BbbE (T ).

Consider the components of T (see Figure 1)

T1 := J\Sigma , \tau , \theta 1K, . . . , Tm := J\Sigma , \tau , \theta mK.

By [25, 4.2.25] we can write, for i = 1, . . . ,m

(3.2) Ti =

Ni\sum 

k=1

\~T k
i +

\infty \sum 

h=1

\r Th
i

with1

(3.3) \BbbM (Ti) =

Ni\sum 

k=1

\BbbM ( \~T k
i ) +

\infty \sum 

h=1

\BbbM (\r Th
i ) and \BbbM (\partial Ti) =

\sum Ni

k=1 \BbbM (\partial \~T k
i ),

where:
\bullet \~T k

i := J\Gamma k
i , \tau 

k
i , 1K are integral 1-currents associated with simple, Lipschitz,

open curves \gamma k
i : [0, 1] \rightarrow \BbbR d, where \Gamma k

i := Im(\gamma k
i ) and \tau ki :=

(\gamma k
i )

\prime 

| (\gamma k
i )

\prime | ;

1Observe that all the currents in (3.3) are classical currents, therefore, the notion of mass is the
standard one.
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−1

1

T̄1

−1

1
T̄2

−1

1

T̄3

Figure 2. The components T̄1, T̄2, and T̄3 of the integral Z3-current T̄ .

be the components of T̄ (see Figure 2).
As in the previous step, by [25, 4.2.25] and using the fact that M(∂T̄j) = 2, we can write for

j = 1, . . . , N

T̄j = T̃j +

∞∑

h=1

T̊hj , (3.5)

with

M(T̄j) = M(T̃j) +
∞∑

h=1

M(T̊hj ), (3.6)

where:

◦ T̃j := JΓj , τj , 1K are integral 1-currents associated to simple, Lipschitz, open curves γj : [0, 1]→
Rd, where Γj := Im(γj) and τj :=

(γj)
′

|(γj)′| ;

◦ T̊hj := JZhj , νhj , 1K are integral 1-currents associated to simple Lipschitz closed curves ζhj :

[0, 1]→ Rd, with ζ(0) = ζ(1), where Zhj := Im(ζhj ) and νhj :=
(ζhj )′

|(ζhj )′| .

Let T ′ be the 1-dimensional integral ZN -current whose components are (T̃1, . . . , T̃N ). By (3.5) and

(3.6), for j = 1, . . . , N it holds 〈τ̄ ; τ̃j〉 = sign(θ̄j) H 1-a.e. in Γ̃j and hence, since ‖ · ‖ is a monotone
norm, we have M(T ′) ≤M(T̄ ). Moreover, by (3.5) it holds ∂T ′ = ∂T̄ .

Let T be the 1-dimensional integral Zm-current with components (recalling the definition of i(j)
from §2)

Ti :=
∑

j:i(j)=i

T̃j .

Since ∂T ′ = Bσ, then ∂T = B. Moreover by (3.1) it holds E(T ) = M(T ′) ≤M(T̄ ). �
We conclude this section by proving the existence of a monotone norm ‖ · ‖ satisfying (3.1).
In the proof of the next theorem, we will use the following fact, which can be found in [1]. Recall

the notions of monotone and absolute norm given at the beginning of Section 2, as well as the partial
order introduced there.

Lemma 3.1. An absolute norm on Rn is monotone.

We will use the term orthant in Rn for the following subset of Rn. Consider a vector ξ ∈ Rd whose
coordinates are only ±1. The ξ-orthant is:

{x ∈ Rd : ξ`x` ≥ 0,∀` = 1, . . . , n}.
Note that an orthant is always closed.

Theorem 3.2 (Existence of a norm satisfying (3.1)). Let C : Zm → [0,+∞) be a function satisfying
(i), (ii), (iii′) of Definition 2.1. Let B be as in (2.3) and let N and Ni (i = 1, . . . ,m) be the natural
numbers defined in (2.4). Then there exists a monotone norm ‖ · ‖ on RN satisfying (3.1).

Proof. Step 1: First of all, let us suppose that C has the additional property that

C(x) = C(x̄) (3.7)

for every x ∈ Zm, where we used the notation introduced at the beginning of Section 2.

General strategy

10

Fig. 2. The components \=T1, \=T2, and \=T3 of the integral \BbbZ 3-current \=T .

\bullet \r Th
i := JZh

i , \nu 
h
i , 1K are integral 1-currents associated with simple, Lipschitz,

closed curves (cycles) \zeta hi : [0, 1] \rightarrow \BbbR d, where Zh
i := Im(\zeta hi ) and \nu hi :=

(\zeta h
i )\prime 

| (\zeta h
i )\prime | .

For every i = 1, . . . ,m, denote by \Sigma i := \cup Ni

k=1\Gamma 
k
i and by T \prime the 1-current

T \prime 
i :=

Ni\sum 

k=1

\~T k
i .

Since each T \prime 
i is supported on \Sigma , we can write T \prime 

i := J\Sigma , \tau , \theta \prime iK. Let T \prime be the 1-
dimensional integral \BbbZ m-current whose components are (T \prime 

1, . . . , T
\prime 
m).

It follows from (3.2) that for every i = 1, . . . ,m and for H 1-a.e. x \in \Sigma it holds

(3.4) \theta i(x) =

Ni\sum 

k=1

\chi \Gamma k
i
(x)\langle \tau ki (x); \tau (x)\rangle +

\infty \sum 

h=1

\chi Zh
i
(x)\langle \nu hi (x); \tau (x)\rangle ,

where we denoted by \chi E the characteristic function of the set E taking values 0 and
1. Combining (3.4) and (3.3) we deduce that for every i = 1, . . . ,m it holds

\tau ki (x) = sign(\theta i(x))\tau (x) for H 1-a.e. x \in \Gamma k
i for every k

and
\nu hi (x) = sign(\theta i(x))\tau (x) for H 1-a.e. x \in Zh

i for every h.

Hence it holds (\theta \prime 1(x), . . . , \theta 
\prime 
m(x)) \preceq (\theta 1(x), . . . , \theta m(x)) for H 1-a.e. x \in \Sigma , which

yields \BbbE (T \prime ) \leq \BbbE (T ) by property (ii) of Definition 2.1. Moreover by (3.2) it holds
\partial T \prime = \partial T .

Next we associate with T \prime a 1-dimensional integral \BbbZ N -current \=T , simply defining
\=T to be the current with components ( \=T1, . . . , \=TN ), where we set, for j = 1, . . . , N
(recalling the definition of i(j) and \=j from section 2), \=Tj := \~T k

i(j) for k = j  - \=j.

Applying the boundary operator to (3.2), it follows that \=T is a competitor for the
MMP. Moreover by (3.4) and (3.1) it follows that \BbbM ( \=T ) = \BbbE (T \prime ) \leq \BbbE (T ).

Step 2: from MMP to MMTP. Let \sigma \in \scrS N1
\times \cdot \cdot \cdot \times \scrS Nm

. Let \=T := J\=\Sigma , \=\tau , \=\theta K
be a 1-dimensional integral \BbbZ N -current which is a competitor for the MMP and in
particular \partial \=T = \scrB \sigma (defined in (2.5)). The aim of this step is to construct from \=T a
competitor T for the MMTP associated with \scrB , such that \BbbE (T ) \leq \BbbM ( \=T ).

Let
\=T1 := J\=\Sigma , \=\tau , \=\theta 1K, . . . , \=TN := J\=\Sigma , \=\tau , \=\theta N K

be the components of \=T (see Figure 2).
As in the previous step, by [25, 4.2.25] and using the fact that \BbbM (\partial \=Tj) = 2, we

can write for j = 1, . . . , N

(3.5) \=Tj = \~Tj +

\infty \sum 

h=1

\r Th
j
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MULTIMATERIAL TRANSPORT PROBLEM 1977

with

(3.6) \BbbM ( \=Tj) = \BbbM ( \~Tj) +

\infty \sum 

h=1

\BbbM (\r Th
j ),

where
\bullet \~Tj := J\Gamma j , \tau j , 1K are integral 1-currents associated with simple, Lipschitz, open

curves \gamma j : [0, 1] \rightarrow \BbbR d, where \Gamma j := Im(\gamma j) and \tau j :=
(\gamma j)

\prime 

| (\gamma j)\prime | ;

\bullet \r Th
j := JZh

j , \nu 
h
j , 1K are integral 1-currents associated with simple Lipschitz

closed curves \zeta hj : [0, 1] \rightarrow \BbbR d with \zeta (0) = \zeta (1), where Zh
j := Im(\zeta hj ) and

\nu hj :=
(\zeta h

j )\prime 

| (\zeta h
j )\prime | .

Let T \prime be the 1-dimensional integral \BbbZ N -current whose components are ( \~T1, . . . , \~TN ).
By (3.5) and (3.6), for j = 1, . . . , N it holds \langle \=\tau ; \~\tau j\rangle = sign(\=\theta j) H 1-a.e. in \~\Gamma j and,
hence, since \| \cdot \| is a monotone norm, we have \BbbM (T \prime ) \leq \BbbM ( \=T ). Moreover, by (3.5) it
holds \partial T \prime = \partial \=T .

Let T be the 1-dimensional integral \BbbZ m-current with components (recalling the
definition of i(j) from section 2)

Ti :=
\sum 

j:i(j)=i

\~Tj .

Since \partial T \prime = \scrB \sigma , then \partial T = \scrB . Moreover by (3.1) it holds \BbbE (T ) = \BbbM (T \prime ) \leq 
\BbbM ( \=T ).

We conclude this section by proving the existence of a monotone norm \| \cdot \| 
satisfying (3.1).

In the proof of the next theorem, we will use the following fact, which can be found
in [1]. Recall the notions of monotone and absolute norm given at the beginning of
section 2, as well as the partial order introduced there.

Lemma 3.1. An absolute norm on \BbbR n is monotone.

We will use the term orthant in \BbbR n for the following subset of \BbbR n. Consider a
vector \xi \in \BbbR d whose coordinates are only \pm 1. The \xi -orthant is:

\{ x \in \BbbR d : \xi \ell x\ell \geq 0 \forall \ell = 1, . . . , n\} .
Note that an orthant is always closed.

Theorem 3.2 (existence of a norm satisfying (3.1)). Let \scrC : \BbbZ m \rightarrow [0,+\infty ) be
a function satisfying (i), (ii), (iii\prime ) of Definition 2.1. Let \scrB be as in (2.3) and let N
and Ni (i = 1, . . . ,m) be the natural numbers defined in (2.4). Then there exists a
monotone norm \| \cdot \| on \BbbR N satisfying (3.1).

Proof. Step 1: First of all, let us suppose that \scrC has the additional property that

(3.7) \scrC (x) = \scrC (\=x)
for every x \in \BbbZ m, where we used the notation introduced at the beginning of section
2.

General strategy. Let us denote by \scrA the set of elements of \BbbZ N whose coordinates
are only 0's and 1's, and denote \=\scrA := \{ x \in \BbbZ N : \=x \in \scrA \} .

Let A = (a1, . . . , aN ), B = (b1, . . . , bN ) \in \scrA . We say that the pair (A,B) \in \scrA \times \scrA 
is good if A - B \not = 0 and the following implications hold for every i = 1, . . . ,m (again,
we set N0 := 0):
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1978 A. MARCHESE, A. MASSACCESI, AND R. TIONE

\bullet if aj = 1 for some j between N1 + \cdot \cdot \cdot + Ni - 1 + 1 and N1 + \cdot \cdot \cdot + Ni then
bh = 0 for all indices h in the same range;

\bullet if bj = 1 for some j between N1 + \cdot \cdot \cdot + Ni - 1 + 1 and N1 + \cdot \cdot \cdot + Ni then
ah = 0 for all indices h in the same range.

Recalling the heuristic interpretation described in section 2, any vector of \BbbR N whose
coordinates are only  - 1, 1, or 0, represents a collection of labeled materials, possibly
of different types. If (A,B) is a good pair, then on each of the m groups into which we
split the set of labels \{ 1, . . . , N\} at most one among A and B can have some nonzero
coordinates. Therefore in the corresponding vector A - B, all the coordinates in each
group belong either to \{ 0, 1\} or to \{ 0, - 1\} . This represents the fact that all the
materials of the same type are assumed to travel with the same orientation.

If (A,B) is a good pair we define

(3.8) cA,B := \scrC 

\left( 
 

N1\sum 

j=1

(aj  - bj), . . . ,

N\sum 

j=N - Nm - 1+1

(aj  - bj)

\right) 
 .

This represents the cost of transporting the collection of goods labeled by A - B along
a stretch of unit length. Observing that, if A - B \not = 0 we have cA,B \not = 0, we can define

qA,B :=
A - B

cA,B

for any good pair (A,B). Observe that if (A,B) and (A\prime , B\prime ) are good pairs with
A - B = A\prime  - B\prime , then by (3.7) it holds cA,B = cA\prime ,B\prime . Hence given D \not = 0 any vector
in \=\scrA , it is convenient to define cD := c \=D,0, which is well defined since ( \=D, 0) is a good

pair. As above, we define qD := D
cD

. Consider the convex hull

C := co(\{ qD : D \in \=\scrA \setminus \{ 0\} \} ) \subset \BbbR N .

The theorem is proven if we show three properties of C:
(1) C is a convex body (i.e., the closure of its nonempty interior) which is bounded

and symmetric with respect to the origin;
(2) C is a monotone set, i.e., for every x, y \in \BbbR N with y \preceq x, if x \in C, then also

y \in C.
(3) it holds

qA,B \in \partial C \forall A,B \in \scrA , such that (A,B) is a good pair.

Indeed, if (1) holds, there exists a norm \| \cdot \| on \BbbR N whose unit ball is the set C. Then,
(2) implies that \| \cdot \| is monotone. Moreover (3) implies that \| \cdot \| satisfies (3.1). Indeed,
take anm-tuple (\theta 1, . . . , \theta m) and denote, for every i = 1, . . . ,m, \theta +i := max\{ sign \theta i, 0\} ,
\theta  - i := max\{  - sign \theta i, 0\} . Now define for every \sigma \in \scrS N1 \times \cdot \cdot \cdot \times \scrS Nm ,

A\sigma := \theta +1

| \theta 1| \sum 

j=1

e\sigma (j) + \theta +2

N1+| \theta 2| \sum 

j=N1+1

e\sigma (j) + \cdot \cdot \cdot + \theta +m

N - Nm+| \theta m| \sum 

j=N - Nm+1

e\sigma (j)

and

B\sigma := \theta  - 1

| \theta 1| \sum 

j=1

e\sigma (j) + \theta  - 2

N1+| \theta 2| \sum 

j=N1+1

e\sigma (j) + \cdot \cdot \cdot + \theta  - m

N - Nm+| \theta m| \sum 

j=N - Nm+1

e\sigma (j).
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MULTIMATERIAL TRANSPORT PROBLEM 1979

One can verify that A\sigma , B\sigma \in \scrA and (A\sigma , B\sigma ) is a good pair. Hence we have

1
(3)
= \| qA\sigma ,B\sigma \| =

\| A\sigma  - B\sigma \| 
cA\sigma ,B\sigma 

(3.8)
=

\| A\sigma  - B\sigma \| 
\scrC (\theta 1, . . . , \theta m)

.

We conclude noting that A\sigma  - B\sigma coincides with the right-hand side (RHS) of (3.1).

Proof of (1) and (2). To prove (1), notice that for every j = 1, . . . , N , q\pm ej are
contained in C, hence 0 \in int(C). The fact that C is symmetric with respect to
the origin follows from the fact that the multimaterial cost \scrC is even. Finally, the
boundedness is trivial, since C is the convex hull of a finite set.

We will now prove (2), i.e., that C is a monotone set. To prove it, we show that
the norm with unit ball C is absolute. This implies the monotonicity by Lemma 3.1.
Let x \in \BbbR N with \| x\| = 1. The fact that \| x\| = 1 implies that x \in \partial C \subset C, therefore,
we can write

x =

K\sum 

k=1

tkqDk ,

where Dk \in \=\scrA \setminus \{ 0\} , \sum K
k=1 tk = 1 with tk positive. There exists a diagonal matrix

M \in MatN\times N with entries 1, - 1, 0 such that Mx = \=x. Therefore,

\| \=x\| = \| Mx\| =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
K\sum 

k=1

tkMqDk

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
K\sum 

k=1

tkqMDk

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \leq 
K\sum 

k=1

tk\| qMDk\| \leq 
K\sum 

k=1

tk \leq 1,

where the third equality follows from the fact that cDk = cMDk (the latter being
a consequence of the fact that MD = D for every D \in \=\scrA \setminus \{ 0\} ) and the second
inequality follows from the fact that \| qD\| \leq 1 \forall D \in \=\scrA , by the definition of C. This
proves that

\| \=x\| \leq \| x\| \forall x \in \BbbR N .

The proof of the reverse inequality is analogous.

Proof of (3). The proof of (3) is more involved. We can prove equivalently that
for every A,B \in \scrA , such that (A,B) is a good pair, and for every t > 0 the following
implication holds:

(3.9) tqA,B \in C =\Rightarrow t \leq 1.

Since tqA,B \in C, we can write

(3.10) tqA,B =

K\sum 

k=1

\lambda kqDk ,

where Dk \in \=\scrA ,
\sum K

k=1 \lambda k = 1, with \lambda k positive. Formula (3.10) can be rewritten
componentwise, denoting Dk = (dk1 , . . . , d

k
N ),

t
aj  - bj
cA,B

=
\sum 

k

\lambda k

dkj
cDk

for every j = 1, . . . , N.

For k = 1, . . . ,K, we define vectors F k := (fk
1 , . . . , f

k
N ) \in \=\scrA by

(3.11)

\Biggl\{ 
fk
j := 0 if aj  - bj = 0,

fk
j := dkj otherwise.
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1980 A. MARCHESE, A. MASSACCESI, AND R. TIONE

Note that

(3.12) t
aj  - bj
cA,B

=
\sum 

k

\lambda k

fk
j

cDk

for every j = 1, . . . , N.

Indeed, the equality
\sum 

k

\lambda k

dkj
cDk

=
\sum 

k

\lambda k

fk
j

cDk

holds for those j such that
\sum 

k \lambda k
dk
j

c
Dk

\not = 0 because in that case fk
j = dkj for every k.

On the other hand, for those indices j for which
\sum 

k \lambda k
dk
j

c
Dk

= 0 by the definition of

F k, also fk
j = 0 for every k, so that

\sum 

k

\lambda k

fk
j

cDk

= 0 =
\sum 

k

\lambda k

dkj
cDk

.

Moreover

(3.13) cFk \leq cDk

by property (ii) in Definition 2.1 (because \=F k \preceq \=Dk by the definition of F k). Denote,
for i = 1, . . . ,m,

xi :=

N1+\cdot \cdot \cdot +Ni\sum 

j=N1+\cdot \cdot \cdot +Ni - 1+1

aj  - bj ,

and for k = 1, . . . ,K,

xk
i :=

N1+\cdot \cdot \cdot +Ni\sum 

j=N1+\cdot \cdot \cdot +Ni - 1+1

ekj .

Define, for every k = 1, . . . ,K and for every i = 1, . . . ,m,

yki :=

\Biggl\{ 
xk
i if xk

i xi \geq 0,

 - xk
i if xk

i xi \leq 0.

Finally, denote x := (x1, . . . , xm), and yk := (yk1 , . . . , y
k
m), for k = 1, . . . ,K. By

(3.11), we have that yk \preceq x for every k. To see this, note that, by the definition of yk,
it immediately follows that yki xi \geq 0. To prove that | yki | \leq | xi| for every i and k, we
recall the fact that (A,B) is a good pair, so that, in particular, we have the following
property:

(3.14)

N1+\cdot \cdot \cdot +Ni\sum 

j=N1+\cdot \cdot \cdot +Ni - 1+1

| aj  - bj | =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

N1+\cdot \cdot \cdot +Ni\sum 

j=N1+\cdot \cdot \cdot +Ni - 1+1

aj  - bj

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\forall i.

Also, since | aj  - bj | \in \{ 0, 1\} for every j, by the definition of fk
j , it readily follows that

(3.15) | fk
j | \leq | aj  - bj | \forall j, k.
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MULTIMATERIAL TRANSPORT PROBLEM 1981

We also have

| yki | = | xk
i | \leq 

N1+\cdot \cdot \cdot +Ni\sum 

j=N1+\cdot \cdot \cdot +Ni - 1+1

| fk
j | 

(3.15)

\leq 
N1+\cdot \cdot \cdot +Ni\sum 

j=N1+\cdot \cdot \cdot +Ni - 1+1

| aj  - bj | 

(3.14)
=

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

N1+\cdot \cdot \cdot +Ni\sum 

j=N1+\cdot \cdot \cdot +Ni - 1+1

aj  - bj

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
= | xi| .

Moreover, by (3.12), for every i = 1, . . . ,m it holds

txi

cA,B
=
\sum 

k

\lambda k
xk
i

cDk

,

hence the fact that sign(yki ) = sign(xi) implies

t| xi| 
cA,B

=
t sign(xi)xi

cA,B
=
\sum 

k

\lambda k
sign(xi)x

k
i

cDk

=
\sum 

k

\lambda k
sign(xi) sign(x

k
i )| xk

i | 
cDk

=
\sum 

k

\lambda k
sign(xix

k
i )| yki | 

cDk

=
\sum 

k

\lambda k
sign(xk

i )y
k
i

cDk

.

From the equality sign(yki ) = sign(xi), holding for every k, i, we also deduce that, if
we fix i, the quantity sign(yki ) remains constant when varying k. Now, if yki is positive,
for every k, since sign(xk

i ) \leq 1, we get

t| xi| 
cA,B

\leq 
\sum 

k

\lambda k
yki
cDk

=

\bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 

k

\lambda k
yki
cDk

\bigm| \bigm| \bigm| \bigm| \bigm| .

Otherwise, using the fact that sign(xk
i ) \geq  - 1,

t| xi| 
cA,B

\leq 
\sum 

k

\lambda k
 - yki
cDk

=

\bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 

k

\lambda k
yki
cDk

\bigm| \bigm| \bigm| \bigm| \bigm| .

We have just proved that

(3.16) t
x

cA,B
\preceq 

\sum 

k:Fk \not =0

\lambda k
yk

cDk

.

Finally, note also that \=yk = \=xk. By (3.7) it holds cA,B = \scrC (x) and cFk = c \=Fk =
\scrC (xk) = \scrC (yk); this implies, by property (iii\prime ) of Definition 2.1 that

(3.17)
cA,B\| yk\|  \star 
cFk\| x\|  \star 

=
\scrC (x)\| yk\|  \star 
\scrC (yk)\| x\|  \star 

\leq 1 \forall k = 1, . . . ,K such that F k \not = 0,

where \| \cdot \|  \star is the norm appearing in such definition. Using that \| \cdot \|  \star is monotone,
(3.13), and (3.16), we get

t\| x\|  \star \leq 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\sum 

k:Fk \not =0

\lambda k
cA,By

k

cDk

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
 \star 

\leq 
\sum 

k:Fk \not =0

\bigm\| \bigm\| \bigm\| \bigm\| \lambda k
cA,By

k

cDk

\bigm\| \bigm\| \bigm\| \bigm\| 
 \star 

=
\sum 

k:Fk \not =0

\lambda k
cA,B\| yk\|  \star 

cDk

\leq 
\sum 

k:Fk \not =0

\lambda k
cA,B\| yk\|  \star 

cFk

.
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B\scrO 

1-1

1

-1

B\scrO \prime 

1-1

1

-1

Fig. 3. The unit balls relative to the norm associated with two costs \scrC \scrO and \scrC \scrO \prime . Here \scrO is
the positive orthant and \scrO \prime is its symmetric with respect to the y-axis.

Finally, dividing by \| x\|  \star , (3.17) yields

t \leq 
\sum 

k:Fk \not =0

\lambda k \leq 1.

Step 2: Now consider a general cost \scrC , which does not necessarily satisfy (3.7).
We will construct a closed, convex, and symmetric set C, whose associated norm is
monotone and satisfies (3.1).

General strategy. For any orthant \scrO \subset \BbbR m, we define a cost \scrC \scrO : \BbbZ m \rightarrow [0,+\infty ),
imposing the following properties:

(a) \scrC \scrO (x) = \scrC (x) if x \in \scrO ;
(b) \scrC \scrO (x) = \scrC \scrO (\=x) for every x.

Trivially, properties (i), (ii), (iii\prime ) of Definition 2.1 are satisfied by C\scrO .
Let \| \cdot \| \scrO be the norm on \BbbR N obtained applying Step 1 to the cost \scrC \scrO and let

B\scrO be the unit ball with respect to such norm (see Figure 3). Let us take any point
x \in int(\scrO ) and define

\sigma \scrO := (sign(x1), . . . , sign(xm)) \in \BbbR m.

Let us also denote

\tau \scrO := sign(x1)(e1 + \cdot \cdot \cdot + eN1
) + \cdot \cdot \cdot + sign(xm)(eN - Nm+1 + \cdot \cdot \cdot + eN ) \in \BbbR N ,

and let H\scrO be the unique orthant in \BbbR N containing the point \tau \scrO . Finally, consider
A\scrO := H\scrO \cap B\scrO and (see Figures 4 and 5)

C\scrO := \{ p \in \BbbR N : \exists q \in A\scrO with (\tau \scrO )j(pj  - qj) \leq 0 for every j = 1, . . . , N\} .

Observe that

(3.18) C\scrO \cap H\scrO = A\scrO ,

by the monotonicity of A\scrO , which is implied by the monotonicity of B\scrO (the inter-
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H\scrO 

A\scrO 

B\scrO 

C\scrO 

1-1

1

-1

H\scrO \prime 

A\scrO \prime 

B\scrO \prime 

C\scrO \prime 

1-1

1

-1

Fig. 4. The construction of the sets C\scrO and C\scrO \prime .

H - \scrO 

A - \scrO 

B\scrO 

C - \scrO 

1-1

1

-1

H - \scrO \prime 

A - \scrO \prime 

B\scrO \prime 

C - \scrO \prime 

1-1

1

-1

Fig. 5. The construction of the sets C - \scrO and C - \scrO \prime .

section of monotone sets is monotone). Last we denote

C :=
\bigcap 

\scrO \subset \BbbR m

C\scrO ,

where the intersection is taken among the 2m orthants in \BbbR m (see Figure 6).
We claim that C is a closed, convex, and monotone set, with nonempty interior,

which is symmetric with respect to the origin, bounded, and satisfies

(3.19) C \cap H\scrO = A\scrO for every orthant \scrO \subset \BbbR m.

The monotonicity of C would imply that the norm \| \cdot \| on \BbbR N , whose unit ball is C,
is monotone. Moreover, Step 1 implies that (3.1) holds for the norm \| \cdot \| \scrO and the
cost \scrC \scrO . We also observe that, in the orthant \scrO of \BbbR m, the costs \scrC and \scrC \scrO coincide.
Also, (3.19) implies that, in the orthant H\scrO of \BbbR N , \| \cdot \| and \| \cdot \| \scrO coincide. In this
way, we get that (3.1) holds also for \| \cdot \| and for the cost \scrC .

The fact that C is closed, convex, and monotone follows from the fact that each
set C\scrO is so, moreover, each C\scrO contains a neighborhood of the origin, hence C has
nonempty interior. The fact that C is bounded and symmetric with respect to the
origin follows from the fact that C\scrO \cap C - \scrO is so for every \scrO , where we denoted by
 - \scrO the orthant which is symmetric to \scrO with respect to the origin. To conclude, we
have to prove (3.19). To prove (3.19), we make the following claim.
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C

1-1

1

-1

Fig. 6. The construction of the set C.

Claim 1. A\scrO \prime \cap H\scrO = A\scrO \cap H \prime 
\scrO for every pair of orthants \scrO ,\scrO \prime \subset \BbbR m.

Proof of (3.19) using Claim 1. Let us show first how Claim 1 implies (3.19). By
the definition of C, it is sufficient to show that

(3.20) C\scrO \prime \cap A\scrO = A\scrO for every pair of orthants \scrO ,\scrO \prime \subset \BbbR m;

indeed

C \cap H\scrO =
\bigcap 

\scrO \prime \subset \BbbR m

C\scrO \prime \cap H\scrO =
\bigcap 

\scrO \prime \subset \BbbR m

C\scrO \prime \cap C\scrO \cap H\scrO 
(3.18)
=

\bigcap 

\scrO \prime \subset \BbbR m

C\scrO \prime \cap A\scrO 
(3.20)
= A\scrO .

To prove (3.20) using Claim 1, we write

C\scrO \prime \cap A\scrO =
\bigcup 

H

(C\scrO \prime \cap H \cap A\scrO ),

where H varies among the 2N orthants of \BbbR N . Then (3.20) would follow from

(3.21) C\scrO \prime \supseteq H \cap A\scrO \forall \scrO ,\scrO \prime , H.

To prove (3.21), consider z \in H \cap A\scrO . We define a new vector, y \in \BbbR N , in this way:

yj =

\Biggl\{ 
zj if (\tau \scrO \prime )jzj \geq 0,

0 otherwise.

It is immediate to see that (\tau \scrO \prime )j(zj  - yj) \leq 0 \forall j, and that y \in H\scrO \prime . Hence, to prove
that z \in C\scrO \prime it is sufficient to prove that y \in A\scrO \prime . We observe that y \in A\scrO , because
y \preceq z and z \in A\scrO . By Claim 1, this yields

y \in A\scrO \cap H\scrO \prime = A\scrO \prime \cap H\scrO .

Therefore y \in A\scrO \prime as desired.
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Proof of Claim 1: strategy. To prove Claim 1, we will prove the more precise
formula

(3.22) A\scrO \prime \cap H\scrO = co(\{ 0\} \cup \{ qD : D \in ( \=\scrA \cap H\scrO \cap H\scrO \prime \setminus \{ 0\} )\} ) \forall \scrO ,\scrO \prime \subset \BbbR m.

Equation (3.22) implies Claim 1 because its RHS does not change if we swap \scrO and
\scrO \prime . Denote E the RHS of (3.22), i.e.,

E := co(\{ 0\} \cup \{ qD : D \in ( \=\scrA \cap H\scrO \cap H\scrO \prime \setminus \{ 0\} )\} ),

and observe that E \subseteq A\scrO \prime \cap H\scrO , since qD \in A\scrO \prime \cap H\scrO for everyD \in \=\scrA \cap H\scrO \cap H\scrO \prime \setminus \{ 0\} ,
by Step 1.

In order to prove (3.22), we need to prove the reverse inclusion, hence, since
A\scrO \prime \cap H\scrO is a compact convex set, we can assume by contradiction that (by the
Krein--Milman theorem) there exists an extreme point z of A\scrO \prime \cap H\scrO that does not
belong to E.

Since z \in A\scrO \prime \subset B\scrO \prime , we can write it as a convex combination

z =

K\sum 

k=1

\lambda kqDk ,

where we recall that qDk = Dk

c
Dk

, Dk \in \=\scrA , and cDk := c \=Dk,0 are those defined in

(3.8), with \scrC \scrO \prime in place of \scrC . Our aim is to replace the elements qDk appearing in the
convex combination above with suitable elements qFk , where the points F k belong to
\=\scrA \cap H\scrO \cap H\scrO \prime . First we will prove only that one can write z as a convex combination
of 0 and some points qGk , where the points Gk can be chosen in \=\scrA \cap span\{ H\scrO \cap H\scrO \prime \} .
Then we will reduce this to the points qFk with F k in \=\scrA \cap H\scrO \cap H\scrO \prime which would
give a contradiction to the fact that z \not \in E.

Proof of Claim 1: first reduction. For k = 1, . . . ,K, we define vectors Gk :=
(gk1 , . . . , g

k
N ) \in \=\scrA by

(3.23)

\Biggl\{ 
gkj := 0 if zj = 0,

gkj := dkj otherwise.

Note that, as a consequence of (3.23) and the fact that z \in H\scrO \prime \cap H\scrO , for every k we
have that Gk \in \=\scrA \cap span\{ H\scrO \cap H\scrO \prime \} . Moreover

(3.24) z =

K\sum 

k=1

\lambda k
Gk

cDk

.

We also have that

(3.25) cGk \leq cDk

by the monotonicity of the cost \scrC \scrO \prime . Hence we can write, denoting \lambda \prime 
k := \lambda k

c
Gk

c
Dk

\leq \lambda k,

z =

K\sum 

k=1

\lambda \prime 
kqGk .
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1986 A. MARCHESE, A. MASSACCESI, AND R. TIONE

Hence we have written z as a convex combination of 0 and some qGk for points

Gk \in \=\scrA \cap span\{ H\scrO \cap H\scrO \prime \} .

Proof of Claim 1: second reduction. Let now \eta := (\eta 1, . . . , \eta N ) be a point in the
relative interior of H\scrO \cap H\scrO \prime . Note that one can choose \eta = \tau \scrO + \tau \scrO \prime . Indeed, the
relative interior of H\scrO \cap H\scrO \prime is the set of points p = (p1. . . . , pN ) \in \BbbR N such that

\Biggl\{ 
pj = 0 if (\tau \scrO )j(\tau \scrO \prime )j =  - 1,

sign(pj) = (\tau \scrO )j if (\tau \scrO )j(\tau \scrO \prime )j = 1.

For k = 1, . . . ,K, we define vectors F k := (fk
1 , . . . , f

k
N ) \in \=\scrA by

(3.26)

\Biggl\{ 
fk
j := gkj if \eta jg

k
j \geq 0,

fk
j :=  - gkj otherwise.

Since, for every k, Gk \in \=\scrA \cap span\{ H\scrO \cap H\scrO \prime \} , then F k \in \=\scrA \cap H\scrO \cap H\scrO \prime . Indeed
H\scrO \cap H\scrO \prime is the set of points p = (p1, . . . , pN ) \in span\{ H\scrO \cap H\scrO \prime \} \subset \BbbR N such that
pj\eta j \geq 0 for every j. Since z \in H\scrO \cap H\scrO \prime and, since \scrC \scrO \prime satisfies (3.7), it holds
cGk = cFk for every k, then

(3.27) z =

K\sum 

k=1

\lambda \prime 
kqGk \preceq 

K\sum 

k=1

\lambda \prime 
k

F k

cGk

=

K\sum 

k=1

\lambda \prime 
kqFk =: z\prime ,

where we remind that \preceq is the order relation defined in (2.1).

Proof of Claim 1: last contradiction, i.e., z = z\prime . We observe that by (3.27) and
since F k \in \=\scrA \cap H\scrO \cap H\scrO \prime it follows that z\prime \in E. We will prove now that z\prime = z, which
would be a contradiction, since z \not \in E by assumption. Assume by contradiction that
z\prime \not = z and observe that

(3.28) zj = 0 for some j \Rightarrow z\prime j = 0.

Indeed, (3.23) yields that gkj = 0 for every k if zj = 0, and then by (3.26) also fk
j = 0.

Therefore, by (3.27),

z\prime j =
K\sum 

k=1

\lambda \prime 
k

fk
j

cFk

= 0.

Define now, for \varepsilon > 0, w\varepsilon := z  - \varepsilon (z\prime  - z). Note that, by (3.28), we have w\varepsilon \preceq z \preceq z\prime 

for \varepsilon sufficiently small. This implies that, for \varepsilon sufficiently small, w\varepsilon \in A\scrO \prime \cap H\scrO ,
because A\scrO \prime \cap H\scrO is an intersection of monotone sets, therefore monotone. Hence we
can write z as a nontrivial convex combination of the points w\varepsilon and z\prime in A\scrO \prime \cap H\scrO ,
which violates the extremality of z.

As we observed before, Theorem 2.4 provides a proof of the existence of a solution
to the MMTP, which does not require a proof of the lower semicontinuity of the energy
\BbbE .

Corollary 3.3. Under assumptions (i), (ii), (iii\prime ) on the cost functional \scrC , the
problems MMTP and MMP admit a solution.
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Proof. The fact that the MMP admits a solution follows from Theorem 1.10. The
fact that the MMTP admits a solution then follows from Theorem 2.4.

The property (iii\prime ) of Definition 2.1 appears to be the most restrictive. However,
at least in the single-material case is also necessary to obtain the equivalence with the
MMP.

Theorem 3.4. If m = 1, and \scrC is a cost that fulfills (i), (ii) of Definition 2.1,
then (iii\prime ) holds if and only if there exists a monotone norm \| \cdot \| that satisfies (3.1).

Proof. One implication has already been proven in Theorem 3.2. Suppose now
that there exists a monotone norm \| \cdot \| on \BbbR N that satisfies (3.1). Fix any E \in \scrA ,
where \scrA is defined at the beginning of the proof of Theorem 3.2. We can write E as

E =
\sum 

k\in K

eik ,

K being a subset of \{ 1, . . . , N\} . We denote with \#K the cardinality of K. By (3.1),
we have

(3.29) \| E\| = \scrC (\#K) = \| F\| 

for any F \in \scrA such that F =
\sum 

k\in K\prime eik and \#K \prime = \#K. For every \ell \in K define
K\ell := K \setminus \{ \ell \} . Define E\ell :=

\sum 
k\in K\ell 

eik . Therefore,

(\#K  - 1)E =
\sum 

\ell \in K

E\ell 

and, by (3.29), we get

(\#K  - 1)\scrC (\#K) = (\#K  - 1)\| E\| =
\bigm\| \bigm\| \sum 

\ell \in K

E\ell 

\bigm\| \bigm\| \leq 
\sum 

\ell \in K

\| E\ell \| 

=
\sum 

\ell \in K

\scrC (\#K  - 1) = \#K\scrC (\#K  - 1).

Since K \subset \{ 1, . . . , N\} is arbitrary, we obtain, \forall x \in \{ 2, . . . , N\} ,

C(x)

x
\leq C(x - 1)

x - 1

and, by induction,
C(x)

x
\leq C(y)

y
if 1 \leq y \leq x.

It is well known that, if \scrC : [0,\infty ) \rightarrow [0,\infty ) is concave and \scrC (0) = 0, then the

quantity \scrC (x)
x is nonincreasing. Hence we obtain the following corollary.

Corollary 3.5. In the case m = 1, Theorem 3.2 holds if (iii\prime ) is replaced by the
request that \scrC coincide on \BbbN with a concave function.

Remark 3.6. The previous corollary allows us to include in the list of cost func-
tionals for which Theorem 2.4 applies the cost considered in [9], which describes a
model for urban planning (or a discrete version of it, in our case). More precisely the
cost is \scrC (z) = min\{ az; z + b\} with a > 1, b > 0, which is clearly concave.
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4. Properties of minimizers. Most of the regularity properties for classical
continuous models of single-material branched transportation, such as single-path
properties and finite tree structure away from the boundary (see [3]) are deduced
using a crucial property of discrete optimal networks, which is the absence of cycles.
Even in our case, removing cycles from each of the m components of a competitor for
the MMTP does not increase the energy (note that we have used this fact in the proof
of Theorem 2.4). Nevertheless it might happen that the operation does not strictly
reduce the energy as well and, in particular, minimizers could contain cycles. The
aim of this section is to provide a simple example of such phenomena.

Consider the multimaterial cost

\scrC (\theta 1, \theta 2, \theta 3, \theta 4) = max\{ | \theta 1| + | \theta 2| + | \theta 3| , | \theta 4| \} .

Since the cost is additive in the first three variables, it follows that, for every boundary
datum \scrB whose fourth component is trivial, a solution to the associated MMTP can
be obtained as a superposition of the solutions of three single-material problems (see
Remark 5.1). Namely, those minimization problems whose boundaries are defined,
respectively, by the three components \scrB 1, \scrB 2, and \scrB 3 of \scrB (and the corresponding
single-material cost is simply \scrC (\theta ) = | \theta | for \theta \in \BbbZ ).

Let us now fix a specific boundary \scrB . Take three noncollinear points x1, x2, and
x3 on \BbbR 2 and denote

\scrB := ( - 1, 0, 1, 0)\delta x1
+ (1, - 1, 0, 0)\delta x2

+ (0, 1, - 1, 0)\delta x3
.

By the discussion above, a minimizer for the MMTP associated with the cost \scrC for the
boundary \scrB is the 1-dimensional integral \BbbZ 4-current T , which is written in component
form as T := (T1, T2, T3, 0), where

(i) T1 := Jx1x2, \tau 1, 1K is the classical integral current associated with the segment
x1, x2 oriented from x1 to x2 with unit multiplicity;

(ii) T2 := Jx2x3, \tau 2, 1K;
(iii) T3 := Jx3x1, \tau 3, 1K.

Observe also that the 1-dimensional integral \BbbZ 4-current T \prime := (T1, T2, T3, T1+T2+T3)
satisfies \BbbE (T \prime ) = \BbbE (T ), and since \partial (T1+T2+T3) = 0, it follows that \partial T \prime = \partial T , hence
T \prime is also a minimizer of the MMTP associated with \scrB . Observe that not only T \prime 

contains a topological cycle in its support (that property holds for T itself), but the
fourth component of T \prime contains a cycle (actually it is a cycle) in the sense of currents.

One could find this example unsatisfactory, because the material associated with
the cyclic component of T \prime does not appear in the boundary datum. Nevertheless
it is easy to modify the example above in order to add the fourth material in the
boundary datum, still obtaining the previous phenomenon. More precisely, denoting
T4 a nontrivial oriented segment which is ``very far"" from the supports of T1, T2,
and T3, then clearly the current T \prime \prime := T \prime + (0, 0, 0, T4) is also a minimizer for the
corresponding boundary: roughly speaking, even if in general it would be convenient
for the fourth material to interact with the first three, there is no convenience in this
case, due to the large distance of the corresponding sources and sinks (see Figure 7).

As was observed in [10], in order to get better properties of minimizers of the
single-material branched transportation problem it is necessary to require the concav-
ity of the cost. In our case we will require that the cost is concave in every component.
In this case it is possible to prove that there exists a solution T of the MMTP whose
components Ti (i = 1, . . . ,m) are all supported on trees (in particular they are acyclic
currents). Let us stress that this does not imply the absence of loops in the support
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 - 6  - 5  - 4  - 3  - 2  - 1 1 2 3 4 5 6

1

2

T1

T2

T3

T4
x2 x3

x1

x4 x5

Fig. 7. The component T4 does not interact with T1, T2, and T3 because the corresponding
boundaries are too far away.

of T , but only in the support of each Ti. More precisely, we have the following two
propositions, which are the analogue of [10, Lemma 2.6, Remark 2.7]. The proofs are
also analogous. We say that a multimaterial cost \scrC : \BbbZ m \rightarrow \BbbR is concave (respectively,
strictly concave) if it coincides on \BbbZ m with a function f : \BbbR m \rightarrow \BbbR which is concave
(respectively, strictly concave) in every component, i.e., f(z1, . . . , zm) is a concave
(resp., strictly concave) function of each variable zi. We call a tree a set in \BbbR d which
does not contain the support of any nontrivial closed curve.

Proposition 4.1. Let \scrC be a concave multimaterial cost. Then for every 1-
dimensional integral \BbbZ m-current T , there exists another current T \prime with \partial T \prime = \partial T ,
\BbbE (T \prime ) \leq \BbbE (T ), and T \prime 

i is supported on a tree for every i = 1, . . . ,m.

Proposition 4.2. Let \scrC be a strictly concave multimaterial cost. Then for every
1-dimensional integral \BbbZ m-current T which is a solution to the MMTP associated with
its boundary, every component Ti of T is supported on a tree.

5. Examples. In this section, we consider some concrete cost functionals \scrC and
we exhibit a possible norm \| \cdot \| which turns a MMTP associated with such cost into
an MMP. At the end of the section we also provide some examples of calibrations.

5.1. Examples of costs.
(1) Steiner energy. For m = 1, let

\scrC (z) :=
\Biggl\{ 
0, z = 0,

1, z \not = 0.

The minimization of the energy \BbbE associated with such cost corresponds to
the minimization of the size functional. Clearly the corresponding norm \| \cdot \| 
on \BbbR N given by Theorem 2.4 is simply the supremum norm.

(2) Gilbert--Steiner energy. For m = 1, fix 0 \leq \alpha \leq 1 and let

\scrC (z) :=
\Biggl\{ 
0, z = 0,

| z| \alpha , z \not = 0.

The minimization of the corresponding energy \BbbE corresponds to the minimiza-
tion of the \alpha -mass (see, e.g,. [42]). As is shown in [31], the corresponding
norm \| \cdot \| on \BbbR N is the p-norm with p = 1

\alpha . Note that for \alpha = 0 we recover
the Steiner energy.
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(3) Linear combinations. For m = 1, fix K \in \BbbN and for k = 1, . . . ,K let 0 \leq 
\alpha k \leq 1 and let \lambda k > 0. Define

\scrC (z) :=
\Biggl\{ 
0, z = 0,\sum K

k=1 \lambda k| z| \alpha k , z \not = 0.

It is easy to see that \scrC satisfies properties (i), (ii), and (iii\prime ) of Definition 2.1.

The corresponding norm \| \cdot \| on \BbbR N is \| x\| =
\sum K

k=1 \lambda k| x| pk , where pk = 1
\alpha k

.

Such a cost is considered for example in [14] in order to approximate the
Steiner energy and to perform numerical simulations.

(4) Supremum of costs. For m = 1, fix K \in \BbbN and for k = 1, . . . ,K let \scrC k be a
cost functional satisfying properties (i), (ii), and (iii\prime ) of Definition 2.1. Define

\scrC (z) := max
k=1,...,K

\scrC k(x).

The corresponding norm \| \cdot \| on \BbbR N is the maximum of the norms associated
with each \scrC k.

(5) PLC technology. For m = 2, let 0 < \alpha 1 \ll \alpha 2 \leq 1. Define

\scrC (z1, z2) := max\{ \lambda 1| z1| \alpha 1 ;\lambda 2| z2| \alpha 2\} 

with \lambda 1, \lambda 2 > 0. A monotone norm \| \cdot \| on \BbbR N which satisfies (3.1) is

\| (x1, . . . , xN1 , y1, . . . , yN2)\| = max\{ \lambda 1| (x1, . . . , xN1)| p1 ;\lambda 2| (y1, . . . , yN2)| p2\} ,

where pi = \alpha  - 1
i for i = 1, 2. The fact that \alpha 1 \ll \alpha 2 expresses the idea that

once the infrastructure transporting the second material (i.e., the electricity)
is built one can add ``almost any"" quantity of the first material (i.e., internet
signal) for free.

(6) Composite multimaterial costs. For general m \geq 2, consider any monotone
norm | \cdot |  \star in \BbbR m and single-material costs \scrC 1, . . . , \scrC m : \BbbZ \rightarrow \BbbR , associated
with monotone norms \| \cdot \| 1, . . . , \| \cdot \| m on \BbbR N1 , . . . ,\BbbR Nm , respectively. Define

\scrC (z1, . . . , zm) := | (\scrC 1(z1), . . . , \scrC m(zm))|  \star .

A monotone norm \| \cdot \| on \BbbR N which satisfies (3.1) for the multimaterial cost
\scrC is

\| (x1, . . . , xN )\| = | (\| (x1, . . . , xN1
)\| 1, . . . , \| (xN - Nm+1, . . . , xN )\| m)|  \star .

Observe that the cost associated with the PLC technology corresponds to the
choice | \cdot |  \star = \| \cdot \| \infty on \BbbR 2, \scrC 1(z) = \lambda 1| z| \alpha 1 , and \scrC 2(z) = \lambda 2| z| \alpha 2 .

(7) Mailing problem. For general m \geq 2 and \alpha > 0 consider the following cost

\scrC (z1, . . . , zm) :=
\Bigl( \sum 

i:zi\geq 0

zi

\Bigr) \alpha 
+
\bigm| \bigm| \bigm| 
\sum 

i:zi<0

zi

\bigm| \bigm| \bigm| 
\alpha 

.

Observe that this multimaterial cost does not satisfy (3.7). A monotone norm
\| \cdot \| on \BbbR N which satisfies (3.1) is clearly

\| (x1, . . . , xN )\| = \| x+\| \ell p + \| x - \| \ell p ,
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(0, 1)

(1, 0)

(1, 1)

p3

p1

p2

Fig. 8. A solution to the mailing problem with Steiner cost for the boundary \scrB .

where p = \alpha  - 1 and x+ (respectively, x - ) is obtained by x setting all the
negative (respectively, positive) coordinates of x equal to zero. Such cost is
well suited to giving a better description of the discrete mailing problem (see
[3]), encoding the fact that, on every branch of a transportation network,
there is a gain in the cost of the transportation in grouping particles flowing
with the same orientation, but there should be no gain for two groups of
particles flowing with opposite orientations.

5.2. Examples of calibrations. We now focus on elementary multimaterial
transportation problems with different costs, for which we are able to exhibit constant
calibrations.

(1) Mailing problems with Steiner cost. Let us consider the multimaterial cost
\scrC : \BbbZ 2 \rightarrow \BbbR defined by \scrC (x, y) = | x| 0 + | y| 0, where we mean that 00 = 0.
First, we consider the vertices of an isosceles triangle in \BbbR 2, for instance,
p1 := (\ell , h), p2 := (\ell , - h), and p3 := (0, 0) for some positive numbers h, \ell 
with \ell \geq 

\surd 
3h, and we fix as a boundary

\scrB := ( - 1, - 1)\delta p3
+ (1, 0)\delta p1

+ (0, 1)\delta p2
.

A solution to the MMTP associated with such boundary and cost is a 1-
dimensional integral \BbbZ 2-current supported on a Y-shaped graph, with angles
of 2\pi /3 between the segments at the junction point (see Figure 8).
In order to translate this into an MMP, we endow \BbbR 2 with the norm \| \cdot \| 
which has the unit ball depicted in Figure 9.
In this special case we have to solve an MMP for the same boundary \scrB . Now
we show that the \BbbR 2-valued differential 1-form represented by the matrix

(5.1) \omega 1 :=

\Biggl( 
1
2

\surd 
3
2

1
2  - 

\surd 
3
2

\Biggr) 

is a calibration for the minimizer. Indeed

\Bigl\langle 
\omega 1;
\Bigl( 
1/2,

\surd 
3/2
\Bigr) 
, (1, 0)

\Bigr\rangle 
=
\Bigl\langle 
\omega 1;
\Bigl( 
1/2, - 

\surd 
3/2
\Bigr) 
, (0, 1)

\Bigr\rangle 
= \langle \omega 1; (1, 0), (1, 1)\rangle =1

and the form is constant, hence properties (i) and (ii) in Definition 1.12 are
fulfilled. Moreover, to check (iii), notice that, for every \phi \in \BbbR and every pair
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1-1

1

-1

Fig. 9. Unit ball for the norm \| \cdot \| associated with the cost \scrC .

(0, 1)

(1, 0)

p3

p2

p1

Fig. 10. A solution to the mailing problem with Steiner cost for the boundary \scrB \prime .

of (g1, g2) \in \BbbR 2 with \| (g1, g2)\| = 1, we have

| \langle \omega 1; (cos\phi , sin\phi ), (g1, g2)\rangle | 

=

\bigm| \bigm| \bigm| \bigm| \bigm| 

\Biggl( 
1

2
cos\phi +

\surd 
3

2
sin\phi 

\Biggr) 
g1 +

\Biggl( 
1

2
cos\phi  - 

\surd 
3

2
sin\phi 

\Biggr) 
g2

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 1 ,

where the inequality can be inferred from that fact that the expression in the
absolute value is linear in (g1, g2) and takes its maximum at some extremal

point of the set depicted in Figure 9, where the values are \pm ( 12 cos\phi +
\surd 
3
2 sin\phi )

= \pm (sin(\pi 6 + \phi )),\pm ( 12 cos\phi  - 
\surd 
3
2 sin\phi ) = \pm (sin(\pi 6  - \phi )), and \pm cos\phi .

Let us now fix as a boundary (supported on the same points)

\scrB \prime := (1, - 1)\delta p3
+ ( - 1, 0)\delta p1

+ (0, 1)\delta p2
.

A minimizer in this case is supported in the union of the two segments joining
p1 to p3 and p3 to p2, respectively (see Figure 10).
A calibration is the \BbbR 2-valued differential 1-form represented by the matrix

\omega 2 :=

\biggl( 
 - cos \theta  - sin \theta 
cos \theta  - sin \theta 

\biggr) 
,
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q1

q4

q2

q3

(0, 1)

(1, 0)

(1, 0)

(0, 1)

(1, 1)

Fig. 11. A solution to the mailing problem with Steiner cost for the boundary \scrB \prime \prime .

where \theta is the positive angle between the segment p3p1 and the horizontal axis.
Again, properties (i) and (ii) of Definition 1.12 are verified by construction
of this \BbbR 2-valued constant 1-form. Moreover, to test (iii), we notice that, for
every \phi \in \BbbR and every pair (g1, g2) \in \BbbR 2 with \| (g1, g2)\| = 1, we have

| \langle \omega 2; (cos\phi , sin\phi ), (g1, g2)\rangle | 
= |  - (cos \theta cos\phi + sin \theta sin\phi )g1 + (cos \theta cos\phi  - sin \theta sin\phi )g2| \leq 1 ,

again because the expression in the absolute value is linear in (g1, g2) and takes
its maximum at some extremal point of the set depicted in
Figure 9, where the values are \pm (cos \theta cos\phi + sin \theta sin\phi ) = \pm cos(\theta  - \phi ),
\pm (cos \theta cos\phi  - sin \theta sin\phi ) = \pm cos(\theta + \phi ), and \pm 2 sin(\theta ) sin(\phi ) (observe that
sin(\theta ) \leq 1

2 due to the choice of h and \ell ).
Last, let us consider a boundary datum which is supported on the vertices of
a square, say q1 := (0, 1), q2 := (1, 1), q3 := (1, 0), q4 := (0, 0). We set

\scrB \prime \prime := (0, - 1)\delta q1 + (1, 0)\delta q2 + (0, 1)\delta q3 + ( - 1, 0)\delta q4 .

A minimizer is given in Figure 11 and it is supported on the set \Sigma 1, which
is one of the two well-known solutions to the Steiner tree problem for the
vertices of the square. This is calibrated by the same \omega 1 as in (5.1), for which
all the checks have already been done.
Observe also that the other solution \Sigma 2 to the Steiner tree problem (namely,
the one obtained from a rotation of \Sigma 1 by 90\circ ) does not support any solution
to the MMTP for the boundary \scrB \prime \prime . Indeed there is only a 1-dimensional inte-
gral \BbbZ 2-current T with \partial T = \scrB \prime \prime supported on \Sigma 2, and by direct computation
one can see that this is not a minimizer. Note that T has a vertical stretch
(oriented by the vector (0, 1)) carrying the multiplicity ( - 1, 1) and we have
\langle \omega 1; (0, 1), ( - 1, 1)\rangle =

\surd 
3, hence property (i) of Definition 1.12 is not satisfied.

Since a calibration always calibrates all the minimizers of the problem, this
is another proof that T is not a minimizer.

(2) Mailing problems with Gilbert--Steiner cost. Let us consider the multimate-
rial cost \scrC : \BbbZ 2 \rightarrow \BbbR defined by \scrC (x, y) =

\sqrt{} 
| x| 2 + | y| 2. Now consider the

boundary datum

\scrB := (N, 0)\delta r1 + (0, 1)\delta r2 + ( - N, - 1)\delta r3 ,
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(N, 0)

(0, 1)

(N, 1)

r2

r1

r3

Fig. 12. A solution to the mailing problem with the Gilbert--Steiner cost for the boundary \scrB .

where r1 := (0, 1), r2 := (1, 0), r3 := ( - cos \~\theta , - sin \~\theta ) with

\~\theta := arccos

\biggl( 
1\surd 

N2 + 1

\biggr) 
.

Then the Y-shaped graph made by three segments joining at the origin (0, 0)
supports a solution of the MMTP (see Figure 12). To prove this, first we
observe that the associated MMP for currents with coefficients in \BbbZ N+1 has
boundary equal to

( - 1, . . . , - 1, - 1)\delta r3 + (1, . . . , 1, 0)\delta r1 + (0, . . . , 0, 1)\delta r2 ,

and a possible norm \| \cdot \| on \BbbR N+1 associated with \scrC is

\| (g1, . . . , gN+1)\| =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\left( 
 

N\sum 

j=1

| gj | , gN+1

\right) 
 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
.

Next we check that a constant calibration for such MMP is given by the
\BbbR N+1-valued differential 1-form represented by

\omega :=

\left( 
    

0 1
...

...
0 1
1 0

\right) 
    .

In fact, (i) holds since

\biggl\langle 
\omega ;

\biggl( 
1\surd 

N2 + 1
,

N\surd 
N2 + 1

\biggr) 
, (1 . . . , 1, 1)

\biggr\rangle 
=
\sqrt{} 

N2 + 1 = \scrC (N, 1),

\langle \omega ; (0, 1), (1, . . . , 1, 0)\rangle = N = \scrC (N, 0),

and

\langle \omega ; (1, 0), (0, . . . , 0, 1)\rangle = 1 = \scrC (0, 1).
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1-1

1

-1

Fig. 13. A norm associated with the cost \scrC .

Property (ii) is satisfied, as usual, because \omega is constant. Moreover, for every
\phi \in \BbbR and every (g1, . . . , gN+1) \in \BbbR N+1 with \| (g1, . . . , gN+1)\| = 1 one has

| \langle \omega ; (cos\phi , sin\phi ), (g1, . . . , gN+1)\rangle | \leq 
\Biggl\langle 
(| cos\phi | , | sin\phi | );

\Biggl( 
| gN+1| ,

N\sum 

j=1

| gj | 
\Biggr) \Biggr\rangle 

,

and by the definition of \| \cdot \| , the RHS is the scalar product between two
vectors of \BbbR 2 having unit Euclidean norm, hence it is bounded by 1.

(3) For the linear combinations of costs discussed in point (3) of the previous
subsection, stepping back to the specific case of [14], we take K = 2 and
\alpha 1 = 0, \alpha 2 = 1. Let us also assume that \lambda 1 + \lambda 2 = 1. Hence the single-
material cost is \scrC (z) = \lambda 1| z| 0 + \lambda 2| z| .
We consider the irrigation problem with source of multiplicity 2 in the point
p3 and targets with multiplicity 1 in the points p1, p2, where p1, p2, and p3
are as in point (1) of this subsection. As we have already observed, a norm
on \BbbR 2 which turns this single-material transport problem into an MMP is
\lambda 1\| \cdot \| \infty + \lambda 2\| \cdot \| 1. Nevertheless, since we are free to choose any monotone
norm which coincides with the above on the positive orthant, then we decide
to choose the norm \| \cdot \| whose unit ball is depicted in Figure 13 (such choice
is aimed at reducing the number of extreme points of the unit ball, which
makes it easier to estimate the comass norm of the form).
The minimizer for the transportation problem is supported on a Y-shaped
graph similar to that shown in point (1), in which the positive angle between
the horizontal and the segment joining the branching point to p1 is \theta =
arccos ((1 + \lambda 2)/2). A calibration, in this case, is represented by

\omega :=

\left( 
 

1+\lambda 2

2

\sqrt{} 
1 - 

\bigl( 
1+\lambda 2

2

\bigr) 2

1+\lambda 2

2  - 
\sqrt{} 

1 - 
\bigl( 
1+\lambda 2

2

\bigr) 2

\right) 
 .

To check property (i) of Definition 1.12 we observe that

\langle \omega ; (1, 0), (1, 1)\rangle = 1 + \lambda 2 = \lambda 1 + 2\lambda 2 = \scrC (2),
\langle \omega ; (cos \theta , sin \theta ), (1, 0)\rangle = 1 = \lambda 1 + \lambda 2 = \scrC (1),
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and
\langle \omega ; (cos \theta , - sin \theta ), (0, 1)\rangle = 1 = \lambda 1 + \lambda 2 = \scrC (1).

As usual, property (ii) is trivially verified. To check property (iii), we first
observe that the extreme points of the unit ball for the norm \| \cdot \| are
\pm ((1 + \lambda 2)

 - 1, (1 + \lambda 2)
 - 1), \pm (1, 0), and \pm (0, 1). Now, for every \phi \in \BbbR we

have to check that, whenever \| (g1, g2)\| \leq 1, it holds

| \langle \omega ; (cos\phi , sin\phi ), (g1, g2)\rangle | 
= | (cos \theta cos\phi + sin \theta sin\phi )g1 + (cos \theta cos\phi  - sin \theta sin\phi )g2| \leq 1 .

We observe that the values of the left-hand side of such an inequality at the
extreme points above are, respectively, given by 2(1+ \lambda 2)

 - 1| cos(\theta ) cos(\phi )| =
| cos\phi | , | cos \theta cos\phi +sin \theta sin\phi | = | cos(\theta  - \phi )| , and | cos \theta cos\phi  - sin \theta sin\phi | =
| cos(\theta + \phi )| . Therefore property (iii) is verified.

Remark 5.1 (sum of single-material costs). To conclude this section, we add a
simple, but very useful observation: when the multimaterial cost is a composite one
(in the sense of point (6) in the previous subsection) but of the form

\scrC (z1, . . . , zm) = \scrC 1(z1) + \cdot \cdot \cdot + \scrC m(zm) ,

then the norm | \cdot |  \star in \BbbR m is the \ell 1 norm. Hence roughly speaking, the materials ``do
not interact."" More precisely, the minimizer is the sum of the individual minimizers
of each (single-material) problem associated with the cost \scrC i. This remark matches
with the fact that the Monge-type optimal transport of atomic measures is made of
``independent"" segments joining directly the points at the boundary. Moreover, if one
can calibrate with \omega i the problem concerning the ith material with cost \scrC i, then a
calibration of the global problem is a block-diagonal matrix where each block is given
by \omega i.
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