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Introduction

Matching theory was born as a branch of graph theory between the end of the XIX and

the beginning of XX century in the seminal works of Petersen (1891), König (1916), and

their followers. In these early works, the main research questions were the existence of a

matching in a given graph, i.e. a subset of edges such that every vertex in the graph is the

endpoint of exactly one edge in the subset, or the finding of a matching of maximal weight in

a weighted graph such as in Egerváry (1931).1 A very relevant innovation for the economic

applications of the theory was the introduction of the notion of stable matching by Gale

and Shapley (1962), which is defined in a context where every vertex of the graph has a

preference on the vertices it can be matched with. In this setting, a matching is said to be

stable when there is no pair of vertices in which both prefer the other vertex of the pair

rather than their respective partners in the matching. In this context, vertices of the graph

are usually referred to as agents. Gale and Shapley (1962) proved that there always exists

a stable matching when the underlying graph is bipartite (the existence of such a matching

is called the Stable Marriage Problem), while there could be none if the underlying graph is

complete (the existence of such a matching is called the Stable Roommate Problem).

Matching theory had several economic applications in recent years, the most famous are the

organization of labor market for medical interns (Roth (1984),Roth and Peranson (1999)),

house allocation (Abdulkadiroğlu and Sönmez (1999)), school choice (Abdulkadiroğlu and

Sönmez (2003)) and kidney exchange (Roth et al. (2004)).

Following these illustrious examples, our work focuses on matching models, in a Stable

Roommate Problem style, aimed to represent problems of task assignment to pair of agents.

We focus on matchings that guarantee Pareto efficiency and stability. The original notion of

stability introduced by Gale and Shapley (1962) can not be applied directly in our settings,

as it was defined only on preferences over possible partners, without taking in consideration

tasks. Therefore, an ad-hoc notion of stability is defined for each model that we discuss.

In every model we present, we show that a stable and Pareto efficient outcome exists for

every admissible preference profile. Proofs of these existence results are constructive: we

present algorithms whose outcome always respects stability and efficiency, plus other desir-

able properties that depend on the specific model.

1See Lovász and Plummer (2009) for a more detailed discussion about early works and history of matching

theory.
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In the first chapter, Stable Sharing, we propose a simple model in which agents are

matched in pairs in order to complete a task. Here, tasks are assumed to be identical and

are represented by a unit value interval of time or effort that is needed to complete them.

This value, when a task is assigned to a pair, is split between the two agents. We assume that

the agents care only about their share of the task and not about the partner. We assume

that the effort or time to complete the task is rewarded proportionally. It is then natural

to consider that the preferences of agents are single-peaked and continuous on the amount

of time they devote to it. Our model combines features of two models: assignment games

(Shapley and Shubik (1971)) and the division problem (Sprumont (1991)). We provide an

algorithm (Select-Allocate-Match) that generates a stable and Pareto efficient allocation. We

show that stable allocations may fail to exist if either the single-peakedness or the continuity

assumption fail.

In the second chapter, Welfare Maximisation in Stable Sharing, we further elaborate on

the model proposed in the first chapter to study the utilitarian welfare of the outcomes of the

algorithm. Thus, agents are matched in pairs in order to complete a job of unit size. To have

a meaningful discussion about the welfare of an allocation, we will restrict the preference

domain and consider a case where agents’ utility functions have a cardinal interpretation

and agents’ utility decreases proportionally with the distance from the best option, called

the agent’s peak. We will show that the Select-Allocate-Match algorithm in this framework

can be re-expressed in a more compact form and that it always generate a welfare maximising

allocation. We will then discuss about incentive compatibility and present further results for

welfare functions different from the utilitarian welfare.

Finally, in the third chapter, Stable and Efficient Task Assignment to Pairs, we study

another model in which agents are matched in pairs in order to undertake a task. This model,

however, is very different from the models presented in the first two chapters. Here, tasks are

indivisible and distinguishable objects taken from a finite set. Agents have preferences over

both the partner and the task they are assigned to. Every agent has a set of tasks (possibly

empty) that she likes to perform with a potential partner, and this may change depending

on the partner. Moreover, preferences over tasks are assumed to be pairwise aligned: the set

of tasks that agent i likes to perform with agent j coincides with the set of tasks that agent

j would like to perform with agent i. Individual preferences partition the set of partner-task

pairs in three indifference classes. The topmost indifference class consists of the pairs in

which an agent is matched with a partner and a task they like to perform. The second class

contains all the pairs in which the agent is matched with a partner that she likes, but the

task assigned to the pair is not in the set of preferred tasks. Finally, the third class contains

all pairs in which the agent is matched with someone with whom she has no commonly liked

tasks. We also provide the possibility for agents to remain unmatched and receive no task.

x



We assume that this option is preferred with respect to being in the third indifference class.

We characterise a class of algorithms that identify a Pareto efficient and stable assignment

and satisfy a pair of additional axioms: Restricted Maskin Monotonicity and Invariance with

Respect to Deleted Links.
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1 Stable Sharing
Based on work by A. Nicolò, P. Salmaso, A. Sen, S. Yadav.

In this chapter we consider a model where agents are matched in pairs. Each pair has

to provide a unitary amount of input or effort in order to generate an output of fixed value.

Agents differ in their cost of effort. In particular, each agent’s preference over the amount

of effort supplied is single-peaked. Several examples come to mind. Consider for instance

a joint venture to undertake a risky project with a fixed cost. The inputs are monetary

amounts and the share of revenue is proportional to the money invested in the project.

Agents are heterogeneous in their degree of risk aversion. Under standard assumptions, they

have single-peaked preferences over the amount of money to invest in the venture. Another

example is the problem of formation of two-person teams in order to perform tasks, each of

which requires a fixed amount of time. Agents receive an hourly wage and have standard

quasi-concave preferences on consumption and leisure.

In our model, an allocation consists of a matching that assigns all agents in pairs and a

contribution for each agent. The sum of contributions for agents who are paired together by

the matching, is one. We impose two standard requirements on allocations - stability and

Pareto efficiency. A pair of agents can block an allocation by proposing contributions that

sum to one that make them strictly better off than they were in the allocation. An allocation

is stable if it cannot be blocked by any pair of agents. Stability is an important requirement

in decentralized market design because it can be interpreted as a form of envy-freeness. The

motivation for Pareto efficiency is, of course, evident.

Our main result is that a stable and Pareto efficient allocation exists for every profile of

single-peaked and continuous preferences. Our existence proof is constructive - we provide

an algorithm, the Select-Allocate-Match (SAM) algorithm that identifies a stable and Pareto

efficient allocation at every preference profile. Stability fails if either of the assumptions on

preferences, single-peakedness and continuity are violated.

The SAM algorithm proceeds by partitioning agents into high type (H) and low type

(L) agents depending upon whether their peaks are greater than or less than 0.5. The

algorithm relies on the key notion of an improvement set which is defined with respect to

an agent’s contribution. Roughly speaking, the improvement set for an L type agent is the
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set of her contributions in the interval [0, 0.5] that would make her strictly better-off. The

improvement set for an H type agent is the set of contributions of her partner in [0, 0.5]

that would make her strictly better-off. An important result that undergirds our algorithm

is that an allocation is stable if the intersection of the improvement sets for each (L,H) pair

is empty and 0.5 does not belong to the improvement set of any agent.

In an initializing step, an equal pool of H and L agents is created by removing the “ex-

cess” agents of one type. This is done by choosing agents whose “equivalent contribution”

to 0.5 is closest to 0.5.1 These agents are matched to each others with each contributing

0.5. In subsequent steps, an agent of one type, called the primary agent, is selected and her

contribution chosen. This is done in a manner such that the primary agent does not want to

block with any of the agents who have been assigned in a previous step, by considering their

improvement sets. This may involve the primary agent being given a contribution equal to

her peak. Then an agent of the opposite type, called the secondary agent, is selected based

on the equivalent of the chosen contribution. We continue in this fashion until all agents

are matched. It is worth emphasizing that the partitioning of agents into H and L types

is artificial in the sense that blocking pairs can be formed by agents of the same type. In

our procedure, we first select a primary agent, allocate a contribution to her and match her

with an appropriate secondary agent. This motivates our use of the SAM term. The SAM

algorithm works in polynomial time and its time complexity is O(n2), where n is the number

of the agents.

The apparent simplicity of our model may suggest that more naive approaches to finding

stable and Pareto efficient allocations exist. The examples in Section 1.2 show that several

natural procedures fail. These include procedures based on rewarding agents on “the short

side of the market”, “top peak-bottom peak” matching and on the uniform rule (Sprumont

(1991)).

The existence of a stable allocation in our problem is far from obvious for several reasons.

Unlike the celebrated Shapley-Shubik assignment game (Shapley and Shubik (1971)), we

do not have a bipartite structure on the set of agents. Instead, we have a roommate type

problem (Gale and Shapley (1962)) where every pair of agents can potentially be matched.

It is well-known that non-fractional stable matchings in the roommate model do not exist

in general (see Teo and Sethuraman (1998) and Eriksson and Karlander (2001)). There are

two additional features of our model that are absent in the Shapley-Shubik model. The

first is that the free-disposal assumption is violated in ours. Agents cannot always be made

better-off by giving them “more” - making an agent contribute more than her peak results

in the agent being worse-off. The second feature is that the assumption of single-peaked

1For an L agent, this is the contribution in [0, 0.5] that is indifferent to 0.5. The equivalent for a H type

agent can be suitably defined. The notion of an equivalent contribution is used extensively in the algorithm.

We are glossing over important details here which can be found in Section 1.3.
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preferences implies that our model cannot be represented by a transferable utility game.

The underlying non-transferable utility game is hard to analyze using standard techniques

because of satiation in preferences, the roommate type structure and the non-convexity of

stable allocations (see Section 1.5.5).

Our model is also related to the class of division problems first studied in Sprumont

(1991). The uniform rule plays a central role in this setting and has been a characterized

in a variety of ways (see Sprumont (1991), Sönmez (1994), Ching (1994), Schummer and

Thomson (1997) etc.). However it does not appear to be important for the analysis of

stability in our model. We provide an example where there is no agent matching that

generates a stable allocation if the uniform rule is used to determine the contribution of the

paired agents.2

In our model, agents do not have preferences over their partner as in the classical room-

mate problem. Nicolò et al. (2019) study a model where agents are matched in pairs and

have preferences over both the partner and the project they are assigned to. They show that

the existence of stable allocations cannot be guaranteed except when specific assumptions

are made on an agent’s ranking of partners and projects. The assumption that agents only

care about the amount of time (or effort) they devote to the task, and not about their partner

or the specific portion of the day or the week they work, is indeed a simplification.3

An interesting open question is whether the existence of stable allocations in our model

can be derived from existing stability results such as Scarf (1967) and Shapley and Vohra

(1991). Proving balancedness of the game and dealing with the absence of free-disposal

appears to be non-trivial. In any case, we believe that our approach is more direct and

illuminating since we provide an algorithm which generates a stable and Pareto efficient

allocation.

The rest of the chapter is organized as follows. In Section 1.1 we introduce the model and

basic definitions. Section 1.2 contains some illustrative examples. Section 1.3 introduces the

concept of improvement sets while Section 1.4 presents the algorithm and the main result.

Section 1.5 discusses various aspects of our model and results. The proof is contained in the

Appendix.

2A more detailed discussion of the literature on stability in division problems can be found in Section

1.5.3.
3The model nevertheless captures relevant features of job sharing such as the demand for reduced working

time and the need to find a compatible match. The assumption that workers are indifferent towards their

matched partner is likely to be satisfied in routine jobs, or jobs in which the contribution of each worker is

fully verifiable.
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1.1 The Model

Let the set of agents be N = {1, . . . , n}, where n is even. Agents have to be assigned in

pairs and each pair has to complete a task of unit value. No agent can remain on her own4

and each agent has only one partner.

An allocation σ is a collection of triples, (i, j, ti) where i, j ∈ N and ti ∈ [0, 1]. We interpret

ti as the contribution of agent i. The contribution of agent i’s partner j is tj = 1 − ti. We

refer to (ti, tj) as the contribution vector associated with the matched pair (i, j).

We say (i, j, ti) ∈ σ if the pair (i, j) has the contribution vector (ti, tj) in σ. Let Σ denote

the set of all feasible allocations.

Each agent i has a preference ordering %i over her contribution.
5 We assume %i is single-

peaked and continuous. The ordering %i is single-peaked if there exists a unique contribution

pi ∈ [0, 1] such that for all x, y ∈ [0, 1], if x < y < pi or x > y > pi then y �i x.6

The contribution pi will be referred to as the peak of agent i in %i. A special instance of

a single-peaked preference is a symmetric or Euclidean preference: x %i y if and only if

|x − pi| ≤ |y − pi|. The ordering %i is continuous if the sets {y : y %i x} and {y : x %i y}

are closed for all x ∈ [0, 1]. A preference profile % is an n-tuple of preferences (%1, . . . ,%n).

The fundamental property that an allocation should satisfy is stability.

Definition 1. Let σ be an allocation and i, j ∈ N be agents with contributions ti and tj
respectively in σ. Then the pair (i, j) blocks σ if there exists a contribution vector (t′i, t

′
j) with

t′i + t′j = 1, t′i �i ti and t′j �j tj. An allocation is stable if it cannot be blocked by any pair of

agents.

Blocking can occur in two ways. It is possible that i and j are matched together in σ,

but can propose an alternative contribution vector which makes both of them better-off.7

The other possibility is that i and j are not matched together in σ, but can abandon their

partners and come together with a contribution vector which makes both better-off.

A more permissive notion of blocking is weak blocking, where only one of the blocking agents

is better-off and the other one no worse-off.

Definition 2. Let σ be an allocation and i, j ∈ N be agents with contributions ti and tj
respectively in σ. Then the pair (i, j) weakly blocks σ if there exists a contribution vector

(t′i, t
′
j) with t′i + t′j = 1, t′i %i ti and t′j %j tj with either t′i �i ti or t′j �j tj. An allocation is

strongly stable if it cannot be weakly blocked by any pair of agents.

4For further discussion on this assumption, see Section 5.3.
5The asymmetric and symmetric components of %i are denoted by �i and ∼i respectively.
6The notion of single-peaked preferences is standard - see Mas-Colell et al. (1995). It is used extensively

in a variety of contexts such as political economy and axiomatic allocation theory.
7See Section 1.6.2 for a detailed discussion about blocking by a pair of agents who are matched together

in an allocation.
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We are also interested in Pareto efficient allocations. Note that we are using the stronger

notion of Pareto efficiency.

Definition 3. Let σ be an allocation where the contribution of agent i is tσi . The allocation

τ Pareto dominates σ at preference profile % if tτi %i t
σ
i for all i ∈ N and tτi �i t

σ
i for some

i ∈ N . The allocation σ is Pareto efficient at % if there does not exist τ ∈ Σ that Pareto

dominates it.

Stability and Pareto efficiency are independent properties in our model. Consider a

problem with four agents, all of whom have symmetric preferences with their peak at 0.3.

An allocation where one agent in each pair receives her peak is Pareto efficient. However,

it is not stable because their partners contribute 0.7 and can strictly improve by forming a

pair with each contributing 0.5.

To show that stability does not imply Pareto efficiency, consider the problem with four agents,

1, 2, 3 and 4, who have symmetric preferences with peaks 0.1, 0.2, 0.8 and 0.9, respectively.

The allocation (1, 3, 0.1) and (2, 4, 0.2) is stable because 1 and 2 are receiving their peaks.

It is not Pareto efficient because the allocation (1, 4, 0.1) and (2, 3, 0.2) dominates it.

A characterization of stable allocations is not straightforward. However the two proposi-

tions below identify some of their important features.

Fix a preference profile %. Partition the set of agents into “high” type (H) and“low” type

(L) agents depending upon whether their peaks are greater than or equal to or less than 0.5.

Formally, H = {i ∈ N : pi ≥ 0.5} and L = {i ∈ N : pi < 0.5}. Furthermore, the set of

strictly high type agents is Ĥ = {i ∈ N : pi > 0.5}. A mixed pair in an allocation is a pair

consisting of an agent from L and an agent from Ĥ. The next proposition shows that the

number of mixed pairs in any stable allocation is maximal.

Proposition 1. In any stable allocation, the number of mixed pairs must be equal to

min{|Ĥ|, |L|}.

Proof : Assume for contradiction that there exists an agent i1 ∈ L who is matched to an

agent i2 /∈ Ĥ and an agent j1 ∈ Ĥ who is matched to an agent j2 /∈ L. There are two cases

to consider.

The first case is when each of the agents i1, i2, j1, j2 contribute 0.5 in σ. There exists

ε > 0 small enough such that pi1 ≤ 0.5− ε and pj1 ≥ 0.5 + ε. Thus the pair (i1, j1) blocks σ

with (0.5− ε, 0.5 + ε).

Suppose the first case does not hold. Then there exists at least one agent whose contri-

bution is not 0.5. Suppose i1 is one of these agents. We must also have ti2 6= 0.5. Clearly

either ti1 or ti2 is greater than 0.5. Suppose ti2 > 0.5. Consider the pair (j1, j2). There are

two possibilities: tj1 ≤ 0.5 and tj1 > 0.5. If tj1 ≤ 0.5, then there exists ε > 0 small enough

such that 0.5+ ε ≤ pj1 and 0.5− ε �i2 ti2 . Thus σ is blocked by (i2, j2) with (0.5− ε, 0.5− ε).

If tj1 > 0.5, then tj2 < 0.5 and the pair (i2, j2) blocks σ with (0.5, 0.5).
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The remaining case is where i1 and i2 contribute 0.5 in σ. Then j1, j2 have contributions

not equal to 0.5. This case can be dealt with in a manner similar to the earlier case. �

According to Proposition 2, surplus agents who do not belong to mixed pairs must con-

tribute 0.5 in any stable allocation.

Proposition 2. In any stable allocation, the following must hold:

(a). If |Ĥ| − |L| > 2, then every agent i ∈ Ĥ who is not matched to an agent in L must

contribute 0.5.

(b). If |L| − |Ĥ| > 2, then every agent i ∈ L who is not matched to an agent in Ĥ must

contribute 0.5.

Proof : We only prove Part (a) since the proof of Part (b) is the symmetric analogue. Let

σ be a stable allocation. Assume for contradiction that there exists (i1, j1, ti1) ∈ σ where

i1 ∈ Ĥ, j1 /∈ L and ti1 6= 0.5. By hypothesis, there exists at least another triple, say

(i2, j2, ti2) ∈ σ where i2 ∈ Ĥ, j2 /∈ L.

Since ti1 6= 0.5, either ti1 < 0.5 or ti1 ≥ 0.5 (this implies tj1 < 0.5) must hold. Suppose

ti1 < 0.5. There are two subcases to consider. If ti2 ≤ 0.5, there exists ε > 0 and small

enough such that ti1 < 0.5 − ε and 0.5 + ε �i2 ti2 . Then the pair (i1, i2) blocks σ with

(0.5− ε, 0.5+ ε). Otherwise, tj2 < 0.5. In this case, there exists ε > 0 and small enough such

that ti1 < 0.5− ε and 0.5 + ε �j2 tj2 . Then (i1, j2) blocks σ with (0.5− ε, 0.5 + ε).

Suppose tj1 < 0.5. Note that pj1 ≥ 0.5 whereas pi1 > 0.5. However, it is easily verified

that the argument in the previous paragraph works in this case as well. �

1.2 Illustrative Examples

The purpose of this section is to highlight important features of our model with simple

examples. The first example shows that strongly stable allocations may not exist.

Example 1. Let N = {1, 2, 3, 4}. Agents’ preferences are symmetric and the peaks are

summarized in Table 1.1.

p1 p2 p3 p4

0.8 0.3 0.3 0.3

Table 1.1: Peaks of agents in Example 1.

Consider an arbitrary allocation. Since agents 2, 3 and 4 have identical preferences, we

can assume w.l.o.g. that (1, 2) and (3, 4) are the matched pairs. At least one of the agents
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in {3, 4} must have a contribution of at least 0.5. Suppose this agent is 3. The pair (1, 3)

blocks with the contribution vector (t1, t3) = (0.8, 0.2). Agent 1 is at least as well-off as

before while agent 3 is strictly better-off. Clearly there are no strongly stable allocations. 2

A stable allocation does exist in Example 1, for instance, (1, 2, 0.8) and (3, 4, 0.5). In fact

in any stable allocation, agent 1 must receive her peak. Otherwise agent 1 together with the

agent who contributes at least 0.5 will block.

Agents whose peaks sum exactly to 1 are obviously perfect matches. This suggests the

following procedure for generating stable allocations. First create as many perfect matches

as possible. Then order all possible remaining pairs by the distance of the sum of their peaks

from one and select the “best possible” pairs. Unfortunately this algorithm does not produce

a stable matching as the next example shows.

Example 2. Let N = {1, 2, 3, 4, 5, 6}. Agents’ preferences are symmetric and the peaks are

summarized in Table 1.2.

p1 p2 p3 p4 p5 p6

0 0.4 0.41 0.41 0.41 0.75

Table 1.2: Peaks of agents in Example 2

The procedure outlined earlier generates the following matching: (2, 6),(4, 5),(1, 3). By

Proposition 2, we know that agents 1, 3, 4, 5 must contribute 0.5 in any stable allocation. Also

agent 6 must receives her peak, otherwise (1, 6) can block the allocation with (0.25, 0.75). So

agent 2’s contribution is 0.25. Then the pair (2, 3) can block with (0.49, 0.51). Thus no stable

allocation can be obtained using this procedure. Observe that (1, 6, 0.25), (2, 3, 0.5)(4, 5, 0.5)

is a stable allocation.

The following example shows that giving the peaks to either side of the market when

the market is balanced (the number of high type agents is equal to the number of low type

agents) may not generate a stable allocation. We consider a procedure where agents are

partitioned into high and low type agents as before. An allocation is constructed by giving

the peaks of the agents on one side of the market and matching them with agents of the

other type.

Example 3. Let N = {1, 2, 3, 4, 5, 6}. Agents’ preferences are symmetric and the peaks are

summarized in Table 1.3.

The set of low and high type agents are {1, 2, 3} and {4, 5, 6} respectively. Assume

w.l.o.g. that the pairs in the allocation are (1, 4), (2, 5) and (3, 6). The allocation where

all high type agents get their peaks is not stable. Consider the allocation with the triples
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p1 p2 p3 p4 p5 p6

0 0.45 0.45 0.65 0.65 0.65

Table 1.3: Peaks of agents in Example 3

(1, 4, 0.35), (2, 5, 0.35) and (3, 6, 0.35). The pair (2, 3) blocks with the contribution vector

(0.5, 0.5). Similarly the allocation where all low type agents get their peaks is not stable.

For instance, the allocation (1, 4, 0), (2, 5, 0.45) and (3, 6, 0.45) is blocked by the pair (4, 5)

using the contribution vector (0.35, 0.65).

Stable allocations exist in this case as well. One such allocation is (1, 4, 0.2), (2, 5, 0.45)

and (3, 6, 0.45). 2

The examples illustrate the important role of “same side” blocking in the model. Propo-

sition 1 also seems to suggest a natural partitioning of agents into low and high types.

However, doing so and naively following a Shapley and Shubik (1971) type procedure will

not work because of the possibility of same-side blocking.

Another “obvious” procedure would be to arrange the agents in order of their peaks from

the highest to the lowest. The highest agent would then be matched with the lowest, the

second highest with the second lowest and so on. In Chapter 2 we show that this procedure

works when all agents have symmetric preferences. However, the next example shows that

this procedure may fail even when one agent has non-symmetric preferences.

Example 4. Let N = {1, 2, 3, 4}. The peaks of the agents are summarized in Table 1.4.

Agents 2, 3 and 4 have symmetric preferences while 1 has single-peaked but non-symmetric

preferences with the following restriction: 0.35 ∼1 0.51.

p1 p2 p3 p4

0.39 0.4 0.4 0.9

Table 1.4: Peaks of agents in Example 4.

The pairs formed by the procedure are (1, 4) and (2, 3). Let (t1, t4) and (t2, t3) be their

contribution vectors in a stable allocation.

By feasibility, one of the agents i ∈ {2, 3} will have a contribution ti ≥ 0.5. Assume

w.l.o.g. i = 2. We claim t1 ≥ 0.35. If t1 < 0.35, then the pair (1, 2) can block by proposing

the contribution vector (0.51, 0.49). Agent 2 strictly improves as 0.49 �2 t2. For agent 1,

single-peakedness implies 0.35 �1 t1. Since 0.35 ∼1 0.51, we have 0.51 �1 t1 and agent 1

strictly improves.
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We also claim t4 ≥ 0.68. If t4 < 0.68, then (2, 4) can block by proposing (0.31, 0.69).

Agent 4 strictly improves by blocking as she moves closer to her peak. For agent 2, symmetry

and t2 ≥ 0.5 implies 0.31 �2 t2. Thus agent 2 also strictly improves.

We have argued that t1 ≥ 0.35 and t4 ≥ 0.68. Since 1 and 4 are paired together, we

have a violation of feasibility. Hence there are no stable allocations with the pairs (1, 4) and

(2, 3). 2

The previous procedure first specified a way to match agents in pairs and then attempted

to find suitable contributions. An alternative approach would be to first choose a rule

for determining the contributions of agents and then finding a way to form pairs. The

uniform rule characterized by Sprumont (1991) is a natural candidate for determining agents’

contributions.

Let i and j be agents with peaks pi and pj respectively who are paired together. The

uniform rule contribution vector (tui , t
u
j ) is defined as follows. Suppose pi + pj ≥ 1. Then

tui = min{pi, λ} and tuj = min{pj, λ} where λ solves the equation min{pi, λ}+min{pj, λ} = 1.

If pi + pj < 1, then tui = max{pi, λ} and tuj = max{pj, λ} where λ solves the equation

max{pi, λ}+max{pj, λ} = 1.

In Example 5 below, we show that the uniform rule cannot be used to determine the

contribution vector irrespective of the pairing of agents.

Example 5. Let N = {1, 2, . . . , 6}. Agents’ preferences are symmetric and Table 1.5 sum-

marizes the peaks of the agents.

p1 p2 p3 p4 p5 p6

0.3 0.3 0.3 0.3 0.9 0.9

Table 1.5: Peaks of agents in Example 5.

Since the first four agents have the same preferences, as also agents 5 and 6, w.l.o.g. we

consider only two types of pairings in an allocation: one where agents 5 and 6 are paired

together and one where they are not.

Consider an allocation where agents 5 and 6 are paired together. The uniform rule

assigns to each agent a contribution equal to 0.5.8 The allocation is blocked by the coalition

(3, 6, 0.3). Consider an allocation where agents 5 and 6 are not paired together. Assume

w.l.o.g. that the pairs (1, 6), (2, 5) and (3, 4) belong to the allocation. The uniform rule

assigns 0.3 to agents 1 and 2, 0.7 to agents 5 and 6, and 0.5 to agents 3 and 4. This

allocation is blocked by the coalition (3, 6, 0.29). 2

8Note that 0.5 solves the equation max{λ, 0.3} + max{λ, 0.3} = 1 and the equation min{λ, 0.9} +

min{λ, 0.9} = 1.
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1.3 Improvement sets and stability

We introduce the notion of improvement sets, which plays a key role in our algorithm.

We partition agents into “high” type (H) and “low” type (L) agents depending upon

whether their peaks are greater than or less than 0.5. Formally, H = {i ∈ N : pi ≥ 0.5}

and L = {i ∈ N : pi < 0.5}. We represent the peaks and the contributions of agents in the

interval [0, 0.5]. The peak of a low type agent will be measured from left to right starting at

0, while the peak of a high type agent will be measured from right to left starting at 0.5.9

Definition 4. Consider agent i ∈ L with preference %i (with peak pi) and contribution ti.

We define the improvement set for i at ti as follows:

Ii,ti =

{

{x ∈ [0, 0.5] : x �i ti} if ti 6= pi,

∅ if ti = pi.

Definition 5. Consider agent i ∈ H with preference %i (with peak pi) and contribution ti.

We define the improvement set for i at ti as follows:

Ii,ti =

{

{x ∈ [0, 0.5] : 1− x �i ti} if ti 6= pi,

∅ if ti = pi.

We make a brief remark about the asymmetry in the definitions of improvement sets for

low and high type agents. For an agent i ∈ L, the improvement set consists of contributions

in [0, 0.5] which she strictly prefers to ti. For an agent i ∈ H, the improvement set consists

of contributions made by a potential partner in [0, 0.5] which would make agent i strictly

better-off relative to ti.

The assumptions of single-peakedness and continuity on %i imposes structure on the

improvement sets which we record below as an observation.

Observation 1. The improvement set of an agent is a connected open subset of [0, 0.5] or

equivalently an open interval in [0, 0.5].

Example 6 illustrates improvement sets for both low and high type agents.

Example 6. Let N = {1, 2, 3, 4}. Agents’ preferences are symmetric. Table 1.6 summarizes

their peaks and contributions. Agents 1 and 2 are matched together as are 3 and 4.

9The interval [0, 0.5] can be thought of as a truncated one-dimensional Edgeworth box. For a low type

agent, we are not interested in representing contributions greater than 0.5. Similarly we do not need to

represent contributions smaller than 0.5 for a high type agent.
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Agent 1 2 3 4

pi 0.6 0.75 0.10 0.75

ti 0.3 0.7 0.25 0.75

Table 1.6: Peaks of agents in Example 6.

0

1 0.5

0.5

1− p1

0.40.1

]

I1,0.2

Figure 1.1: Improvement set for agent 1 in Example 6.

Figure 1 shows the improvement set of agent 1 while Figure 2 shows the improvement

sets of agents 2 and 3. The improvement set of agent 4 is empty. Improvement sets of high

types are marked in red while that of the low type is marked in blue. 2

0

1 0.5

0.50.25

1− p2

0.30.2

I2,0.7

0.10
p3

I3,0.25

Figure 1.2: Improvement sets in Example 6.

It is useful to define the notion of an equivalent contribution. We denote the equivalent

contribution for agent i at ti by ei(ti) when i ∈ L and ei(1− ti) when i ∈ H.10

Consider i ∈ L. If there exists a contribution x ∈ [0, 0.5] such that x ∼i ti and x 6= ti,

then ei(ti) = x. The equivalent ei(ti) is an end-point of the improvement set, but it is not

included in the latter. Here the improvement set is one of the following: (ti, ei(ti)) if ti < pi,

(ei(ti), ti) if pi < ti ≤ 0.5 or (ei(ti), 0.5] if pi < 0.5 < ti.

If such an x does not exist, then ei(ti) is defined as follows:

10We suppress the dependence of the equivalent of agent i on %i since we keep the latter constant through-

out the analysis.
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ei(ti) =







−ε if Ii,ti = [0, ti) or Ii,ti = [0, 0.5],

0.5 + ε if Ii,ti = (ti, 0.5],

ti if Ii,ti = ∅,

where ε is any small positive number.

Consider i ∈ H. If there exists a contribution x ∈ [0, 0.5] such that 1−x ∼i ti and 1−x 6= ti,

then ei(1− ti) = x. As before, the equivalent ei(1− ti) is an end-point of the improvement

set but not included in it. Here the improvement set is one of the following: (1− ti, ei(ti)),

(ei(ti), 1− ti) or (ei(ti), 0.5] if ti < 0.5.

If such an x does not exist, then ei(1− ti) is defined as follows:

ei(1− ti) =







−ε if Ii,ti = [0, 1− ti) or Ii,ti = [0, 0.5],

0.5 + ε if Ii,ti = (1− ti, 0.5],

1− ti if Ii,ti = ∅,

where ε is any small positive number.

Improvement sets provide a natural way to check for the existence of stable allocations.

For instance, in Example 6 agents 2 and 3, who receive contributions 0.7 and 0.25, respec-

tively, in an allocation, will block. This is evident from the fact that their improvement sets

have a non-empty intersection.

Definition 6. An allocation satisfies Condition S if the associated improvement sets satisfy

the following:

1. For every h ∈ H and l ∈ L, Ih,th ∩ Il,tl = ∅.

2. For all i ∈ N , 0.5 /∈ Ii,ti.

Proposition 3. If an allocation satisfies Condition S, then it is stable. Moreover, if an

allocation is stable, then it satisfies Part 1 of Condition S.

Proof : Consider an allocation that satisfies Condition S but is not stable, i.e. there exists

a pair of agents who block. There are two cases to consider.

Case 1: The blocking pair is (l, h) where l ∈ L and h ∈ H. Let tl and th be the contributions

of l and h respectively in the allocation. Suppose they block with the contribution vector

(t′l, t
′
h). If t

′
l ≥ 0.5, single-peakedness implies 0.5 ∈ Il,tl , which would contradict requirement

2 of Condition S. Therefore t′l < 0.5, i.e. 1−t′l = t′h > 0.5. Since t′l �l tl and t′l < 0.5, we have

t′l ∈ Il,tl . Since t′h �h th and t′h = 1 − t′l > 0.5, we have t′l ∈ Ih,th . Therefore t′l ∈ Il,tl ∩ Ih,th
contradicting requirement 1 of Condition S.

Case 2: Both agents in the blocking pair are of the same type. Suppose (l1, l2) is the blocking
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pair where l1, l2 ∈ L. Let tl1 and tl2 be the contributions of agents l1 and l2 respectively in

the allocation. In the contribution vector used to block, at least one of the agents in the pair,

say l1 has a contribution of at least 0.5. Single-peakedness implies 0.5 ∈ Il1,tl1 , contradicting

requirement 2 of Condition S. The argument in the case where both agents are of the high

type is virtually identical.

We now show that any stable allocation must satisfy requirement 1 of Condition S.

Consider a stable allocation. Assume for contradiction that there exist i ∈ L and j ∈ H

such that Ii,ti ∩ Ij,tj 6= ∅ where ti and tj are contributions of agents i and j respectively in

the allocation. Consider x ∈ Ii,ti ∩ Ij,tj . By the definition of improvement sets, we have

x �i ti and 1 − x �j tj. Thus the pair (i, j) blocks the allocation with the contribution

vector (x, 1− x). �

Requirement 2 of Condition S is not necessary for the existence of stable allocations. For

instance, consider the case where there are four agents l1, l2, h1, h2 with symmetric prefer-

ences. The peaks of l1 and l2 are 0.4 and 0.3 while the peaks of h1 and h2 are 0.9 and 0.7.

The allocation with the triples (l1, h1, 0.1) and (l2, h2, 0.3) is stable because all agents except

l1 are satiated. However 0.5 ∈ Il1,0.1.

In fact, there is another condition, that we call Condition S+ and that we define below,

with the property that every allocation that satisfies it is also stable. Moreover, every stable

allocation satisfy either condition S or condition S+, as we will show in Proposition 5.

Definition 7. An allocation satisfies Condition S+ if there exists a special agent s ∈ N

such that the associated improvement sets satisfy the following:

1. For every h ∈ H and l ∈ L, Ih,th ∩ Il,tl = ∅.

2. For all i ∈ N , 0.5 ∈ Ii,ti ⇒ i = s.

3. For every h ∈ H \ {s} {x ∈ [0, 0.5]|x �s ts} ∩ Ih,th = ∅.

4. For every l ∈ L \ {s}, {x ∈ [0, 0.5]|1− x �s ts} ∩ Il,tl = ∅.

Notice that agent s is either a high type or a low type agent, thus her improvement set

is either the set {x ∈ [0, 0.5]|x �s ts} or the set {x ∈ [0, 0.5]|1 − x �s ts}. However, agent

s behaves as an agent of both kinds concerning the nature of her improvement set, in this

sense she is a special agent. In particular, if s ∈ L the requirement 3 of Condition S+ is

implied by requirement 1 of Condition S+ while if s ∈ H the requirement 4 of Condition S+

is implied by requirement 1 of Condition S+.

Proposition 4. If an allocation satisfies Condition S+, then it is stable.

Proof : Consider an allocation that satisfies Condition S but is not stable, i.e. there exists

a pair of agents who block. There are three cases to consider.
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Case 1: agent s does not belong to the blocking pair. In this case the proof is identical to

the one presented for Proposition 3.

Case 2: the blocking pair is formed by a high type agent h and agent s. Let ts and th
be the contributions of s and h respectively in the allocation. Suppose they block with

the contribution vector (t′s, t
′
h). If t′h ≤ 0.5, by single peakedness 0.5 ∈ Ih,th , which would

contradict requirement 2 of condition S+ since h 6= s and s is the only agent in N that

has 0.5 in her improvement set. Therefore t′h > 0.5 and t′s < 0.5. Since t′h �h th and

t′h > 0.5, we have t′s = 1 − t′h ∈ Ih,th . t′s ∈ {x ∈ [0, 0.5]|x �s ts} by hypothesis. Therefore

t′s ∈ {x ∈ [0, 0.5]|x �s ts} ∩ Ih,th contradicting requirement 3 of Condition S+.

Case 3: the blocking pair is formed by a low type agent l and agent s. Let tl and ts
be the contributions of s and h respectively in the allocation. Suppose they block with

the contribution vector (t′l, t
′
s). If t′l ≥ 0.5, by single peakedness 0.5 ∈ Il,tl , which would

contradict requirement 2 of condition S+ since l 6= s and s is the only agent in N that has

0.5 in her improvement set. Therefore t′l < 0.5 and t′s > 0.5. Since t′l �l tl and t′l < 0.5,

we have t′l =∈ Il,tl . t′l = 1 − t′s ∈ {x ∈ [0, 0.5]|1 − x �s ts} by hypothesis. Therefore

t′l ∈ {x ∈ [0, 0.5]|1− x �s ts} ∩ Il,tl contradicting requirement 4 of Condition S+.

�

Proposition 5. If an allocation is stable, then it either satisfies Condition S or it satisfies

condition S+.

Proof : Let σ be a stable allocation and {ti}i∈N be the set of the contribution values in σ.

Let us consider now the set M := {i ∈ N |0.5 �i ti} = {i ∈ N |0.5 ∈ Ii,ti}.
11 Let us suppose

by contradiction that |M | ≥ 2. In this case there is a pair of agents (i, j) that are both in

M : this means that 0.5 �i ti and 0.5 �j tj, thus they can block σ with the contribution

vector (0.5, 0.5). Therefore |M | ∈ {0, 1}. Let us distinguish the two cases.

Case 1: |M | = 0. In this case σ satisfies condition S. In Proposition 3 we proved that

requirement 1 of Property S is necessary for stability, and requirement 2 of property S is

true by hypothesis.

Case 2: |M | = 1. In this case here is exactly one agent in M , we call this agent s and we

want to prove that σ satisfies Property S+.

Requirement 1 of Condition S+ is identical to requirement 1 of Condition S, which is neces-

sary for stability as proved in Proposition 3. Requirement 2 is satisfied by hypothesis.

Let us now suppose by contradiction that σ does not satisfy requirement 3 of Condition S+.

Thus, there exist an agent h ∈ H and a value y ∈ {x ∈ [0, 0.5]|x �s ts} ∩ Ih,th . In this

11Since 0.5 = 1 − 0.5, 0.5 is the only point in [0, 0.5] that belong to the improvement set of a high type

agent if and only if it is preferred by that agent to her contribution.
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case y �s ts and 1 − y �h th by definition of Ih,th , thus the pair (s, h) blocks σ with the

contribution vector (y, 1− y).

Let us now suppose by contradiction that σ does not satisfy requirement 4 of Condition S+.

thus there exist an agent l ∈ L and a value y ∈ {x ∈ [0, 0.5]|1− x �s ts} ∩ Il,tl . In this case

1−y �s ts and y �l tl by definition of Il,tl , thus the pair (l, s) blocks σ with the contribution

vector (y, 1− y). �

1.4 The Select-Allocate-Match (SAM) Algorithm

In this section, we provide a formal description of our algorithm and state our main result.

In the rest of the chapter, we adopt the following convention: whenever we write a triple

(i, j, ti) in the description of an allocation, we assume pi ≤ pj.
12

Let �N be a linear ordering of the set N : this ordering will serve as a tie-breaking rule.

Fix an arbitrary preference profile %. The peaks of the agents at % are p1, p2, . . . , pn. We

begin by partitioning the set of agents N into the sets H and L.

Step 0: We remove excess agents from either the set H or the set L to ensure that the

cardinality of the adjusted H and L sets is equal. If |H| > |L|, we remove |H| − |L| agents

(chosen in a specific way) from the set H. We denote the set of agents removed from H by

H̄. Similarly if |H| < |L|, we remove |L| − |H| agents from L. The set of agents removed

from L is denoted by L̄. In addition, we define two sets U1 and D1 with U1, D1 ⊆ [0, 0.5]

which are the union of the improvement sets of low type agents and of high type agents,

respectively, matched in this step.

There are three possibilities to consider.

1. |H| = |L|. Here H̄ = ∅ and L̄ = ∅. Also U1 = ∅ and D1 = ∅.

2. |H| > |L|. Compute ei(0.5) for all i ∈ H. Pick the |H| − |L| agents whose equivalents

ei(0.5) are closest to 0.5. Ties are broken using the ordering �N . The set of these

agents is H̄. Pair the agents in H̄ arbitrarily and the contribution of all agents is 0.5.

Here L̄ = ∅, U1 = ∪i∈H̄Ii,0.5 and D1 = ∅.

3. |H| < |L|. Compute ei(0.5) for all i ∈ L. Pick the |L| − |H| agents whose equivalents

ei(0.5) are closest to 0.5. Ties are broken using the ordering �N . The set of these

agents is L̄. Pair the agents in L̄ arbitrarily and the contribution for all agents is 0.5.

Here H̄ = ∅, D1 = ∪i∈L̄Ii,0.5 and U1 = ∅.

12Suppose agents 1 and 2 are paired in an allocation. Let p1 = 0.4, p2 = 0.7 and their contributions in the

allocation be t1 = 0.1, t2 = 0.9. We shall write the triple as (1, 2, 0.1).
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The adjusted partition of N isH1 = H\H̄ and L1 = L\L̄. By construction, |H1| = |L1| = K.

The algorithm has K + 1 steps including Step 0. In each Step q (where 1 ≤ q ≤ K) we

form a pair consisting of a high type agent and a low type agent. We denote these agents

by hq and lq respectively. At the start of that step the algorithm is provided three inputs:

(i) Preferences of the agents in Hq and Lq (ii) Uq where Uq ⊆ [0, 0.5] and (iii) Dq where

Dq ⊆ [0, 0.5]. The set Dq is the union of the improvement sets of the L type agents who

have been matched until Step q. A similar comment holds for Uq and H type agents.

Step q: Each step q is divided into four substeps, referred to as Substep q.s where s ∈

{1, 2, 3, 4}. We will determine the agents lq ∈ Lq and hq ∈ Hq who will be matched to each

other and their contribution vector (tlq , thq
). At the end of the step, we will determine Lq+1,

Hq+1, Dq+1, and Uq+1.

Step q.1: Consider the set {h : 1 − ph > infDq}. If it is empty, proceed to Step q.2.

Otherwise, choose hq to be the agent with the lowest peak (or the highest 1 − ph) in this

set. The agent hq is the primary agent in this substep. The contribution of agent hq is

thq
= max{phq

, 1 − inf Uq}. Choose lq to be the low type agent in Lq who has the highest

e(1 − thq
) (using the tie-breaking ordering �N on agents if necessary). The agent lq is the

secondary agent in this substep. We add the triple (lq, hq, 1 − thq
) to the allocation and

proceed to Step q.4.

Step q.2: Consider the set {l : pl > inf Uq}. If it is empty, proceed to Step q.3. Otherwise,

choose lq to be the agent with the highest peak in this set. The contribution of agent lq is

tlq = min{plq , infDq}. Choose hq to be the high type agent in Hq who has the highest e(tlq)

(using the tie-breaking ordering �N on agents in case of ties). We add the triple (lq, hq, tlq)

to the allocation and proceed to Step q.4. In this substep, lq is the primary agent while hq

is the secondary agent.

Step q.3: If 1 − ph ≤ infDq for all h ∈ Hq and pl ≤ inf Uq for all l ∈ Lq, we identify the

following agents.

1. The high type agent with the lowest peak in Hq. Denote this agent by h̃q.

2. The low type agent with the highest peak in Lq. Denote this agent by l̃q.

There are two possibilities leading to Steps q.3.1 and q.3.2.

Step q.3.1: If pl̃q ≤ 1−ph̃q
, choose hq = h̃q. The contribution of agent hq is thq

= max{phq
, 1−

inf Uq}. Choose lq to be the low type agent in Lq who has the highest e(1− thq
) (using the

tie-breaking ordering �N on agents if necessary). We add the triple (lq, hq, 1 − thq
) to the

allocation and proceed to Step q.4. In this substep, hq is the primary agent while lq is the

secondary agent.
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Agent 1 2 3 4 5 6 7 8

Peak 0 0.32 0.45 0.45 0.45 0.65 0.75 0.77

Table 1.7: Peaks of agents in Example 7.

Step q.3.2: If pl̃q > 1−ph̃q
, choose lq = l̃q. The contribution of agent lq is tlq = min{plq , infDq}.

Choose hq to be the high type agent in Hq who has the highest e(tlq) (using the tie-breaking

ordering �N on agents in case of ties). We add the triple (lq, hq, tlq) to the allocation. Pro-

ceed to Step q.4. In this substep, lq is the primary agent while hq is the secondary agent.

Step q.4: Sets Dq+1 = Dq ∪ Ilq ,tlq and Uq+1 = Uq ∪ Ihq ,thq
. Also sets Hq+1 = Hq \ {hq} and

Lq+1 = Lq \ {lq}. Proceed to Step q + 1.

...

...

Step K: Note that |LK | = |HK | = 1. After the completion of this step, all agents in N have

been matched and the algorithm terminates.

We illustrate the algorithm with an example.

Example 7. Let N = {1, 2, . . . , 8}. Table 1.7 summarizes the peaks of the agents. All

agents except agent 6 have symmetric preferences. Agent 6 has non-symmetric preferences

with the following equivalents; e6(0.4) = 0.08 < 0.10 and e6(0.32) = 0.37.

The priority order of agents is 1 �N 2 �N 3 . . . �N 8. The partition of agents is

L = {1, 2, 3, 4, 5} and H = {6, 7, 8}.

Step 0: We remove two agents from L. Since all agents in L have symmetric preferences and

p1 < p2 < p3 = p4 = p5, we have e1(0.5) < e2(0.5) < e3(0.5) = e4(0.5) = e5(0.5). Agents 3,

4 and 5 have the highest equivalent and ties are broken using �N . Thus L̄ = {3, 4}. Note

that H̄ = ∅.

Agents 3 and 4 are paired with the contribution vector (0.5, 0.5). We add the triple (3, 4, 0.5)

to the allocation. The improvement set for agent i ∈ {3, 4} is Ii,0.5 = (0.4, 0.5). Thus

D1 = (0.4, 0.5). Since H̄ = ∅, we have U1 = ∅. Table 1.8 summarizes these facts. The

remaining high and low type agents are H1 = {6, 7, 8} and L1 = {1, 2, 5} respectively.

Step 1: The sets H1, L1, D1 and U1 are the inputs in this step.

Substep 1.1 is not applicable as there does not exist an h ∈ H1 such that 1 − ph >

infD1 = 0.4. Substep 1.2 obviously does not apply.
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Step q Triple (i, j, ti) Ii,ti Ij,tj Dq+1 Uq+1

0 (3, 4, 0.5) (0.4, 0.5) (0.4, 0.5) (0.4, 0.5) ∅

Table 1.8: Output of Step 0.

Step q Triple (i, j, ti) Ii,ti Ij,tj Dq+1 Uq+1

1 (5, 7, 0.4) (0.4, 0.5) (0.1, 0.4) (0.4, 0.5) (0.1, 0.4)

Table 1.9: Output of Step 1.

In Substep 1.3, we have h̃1 = 6 and l̃1 = 5. Since pl̃1 > 1 − ph̃1
, Substep 1.3.2 applies

and agent 5 is the primary agent. The contribution of agent 5 is t5 = min{p5, infD1} =

0.4. In order to choose the secondary agent, we compute ei(0.4) for all i ∈ H1. Recall

e6(0.4) = 0.08. Since agents 7 and 8 have symmetric preferences, we have e7(0.4) = 0.1 and

e8(0.4) = 0.06. Agent 7 is therefore selected as the secondary agent and is paired with agent

5. The contribution vector is (0.4, 0.6) and the triple (5, 7, 0.4) is added to the allocation.

The improvement sets for the agents paired in this step are I5,0.4 = (0.4, 0.5) and I7,0.6 =

(0.1, 0.4). Thus D2 = D1 ∪ I5,0.4 = (0.4, 0.5) and U2 = U1 ∪ I7,0.6 = (0.1, 0.4). Table 1.9

summarizes these facts. Also H2 = {6, 8} and L2 = {1, 2}.

Step 2: The sets H2, L2, D2 and U2 are the inputs to this step.

Substep 2.1 does not apply. Substep 2.2 is applicable as p2 = 0.32 > inf U2 = 0.1. Agent

2 is the only low type agent whose peak is greater than inf U2. Agent 2 is the primary

agent. The contribution of agent 2 is t2 = min{p2, infD2} = 0.32. In order to choose the

secondary agent, we compute ei(0.32) for all i ∈ H2. Since 1 − p6 = 0.35 > 0.32, we have

e6(0.32) > 0.35. Since 1 − p8 = 0.23 < 0.32, we have e8(0.32) < 0.23. So agent 6 has the

highest equivalent and is chosen as the secondary agent. Agent 6 is paired with agent 2 and

the contribution vector is (0.32, 0.68).

The triple (2, 6, 0.32) is added to the allocation. The improvement sets of the agents matched

in this step are I2,0.32 = ∅ and I6,0.68 = (0.32, 0.37) (recall e6(0.32) = 0.37). Thus D3 =

(0.4, 0.5) and U3 = (0.1, 0.4) ∪ (0.32, 0.37) = (0.1, 0.4). Table 1.10 summarizes these facts.

Also H3 = {8} and L3 = {1}.

Step q Triple (i, j, ti) Ii,ti Ij,tj Dq+1 Uq+1

2 (2, 6, 0.32) ∅ (0.32, 0.37) (0.4, 0.5) (0.1, 0.4)

Table 1.10: Output of Step 2.
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Step q Triple (i, j, ti) Ii,ti Ij,tj

0 (3, 4, 0.5) (0.4, 0.5) (0.4, 0.5)

1 (5, 7, 0.4) (0.4, 0.5) (0.1, 0.4)

2 (2, 6, 0.32) ∅ (0.32, 0.37)

3 (1, 8, 0.1) [0, 0.1) (0.1, 0.36)

Table 1.11: The allocation and improvement sets in Example 7

Step 3: The sets H3, L3, D3 and U3 are inputs to this step.

Clearly Substeps 3.1 and 3.2 are not applicable. Since 1 − p8 = 0.23 > p1 = 0, Sub-

step 3.3.1 is applicable. Agent 8 is the primary agent. The contribution of agent 8 is

t8 = max{p8, 1− inf U3} = 0.9. Thus 1− t8 = 0.1.

Agent 1 is the secondary agent. The triple (1, 8, 0.1) is added to the allocation. The im-

provement sets for the agents matched in this step are I1,0.1 = [0, 0.1) and I8,0.9 = (0.1, 0.36).

Thus D4 = [0, 0.1) ∪ (0.4, 0.0.5) and U3 = (0.1, 0.4).

This is the termination step of the algorithm. Table 1.11 summarizes the allocation

generated by the algorithm and the improvement sets of the agents. 2

We state our result below.

Theorem 1. The SAM algorithm generates a stable and Pareto efficient allocation.

The proof of Theorem 1 is in the Appendix. The allocation generated by the SAM

algorithm is stable since it satisfies Condition S. The key step in the proof is to show that

the sets Dq and Uq do not intersect and do not contain 0.5 at any step q of the algorithm.

The proof of Pareto efficiency requires several steps.

1.5 Discussion

In this section, we discuss various aspects of our model.

1.5.1 Single-peaked preferences

In Example 8 we show that the single-peakedness assumption on preferences is vital for the

existence of stable allocations.

Example 8. Let N = {1, 2, . . . , 6}. Table 1.12 summarizes the peaks of agents 1 to 5 and

the dip of agent 6. All agents in {1, . . . , 5} have symmetric single-peaked preferences. Agent

6 has symmetric single-dipped preferences with 0.5 as the dip. This means that 0.5 is her
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worst contribution and she is progressively better-off as she moves farther away from 0.5. As

a result, 0 and 1 are her most preferred contributions.

Agent 1 2 3 4 5 6

Peak 0.49 0.49 0.49 0.01 0.98 -

Dip - - - - - 0.5

Table 1.12: Peaks/dip of agents in Example 8.

We argue that there are no stable allocations. Notice that one of the agents in {1, 2, 3}

must be paired with an agent from {4, 5, 6}. Assume w.l.o.g. that agent 3 is paired with an

agent from {4, 5, 6}. We consider each case in turn.

Case A: Agent 3 is paired with agent 4. Let their contribution vector be (t3, t4). If the

allocation is stable, it must be the case that t3 ≥ 0.49 and t4 ≥ 0.01.13

One of the agents 3, 4 must be at a distance of max{t3 − 0.49, t4 − 0.01} for any (t3, t4).

Minimising over (t3, t4), we infer that one of the agents must be a distance of at least 0.25

from her peak. Suppose this agent is 3. An immediate consequence is that agents 1 and

2 must be receiving their peaks in the allocation. Otherwise agent 3 can block with the

non-satiated agent by offering her 0.49 and being only 0.02 away from her own peak. This

implies that agents 1 and 2 are not paired together but are paired with 5 and 6. Moreover

agents 5 and 6 will each get a contribution of 0.51. Then the pair (5, 6) blocks with the

contribution vector (0.98, 0.02).

Suppose agent 4 is the agent who is at a distance of at least 0.25 from her peak. Then agent

5 must get her peak and agent 6 must be getting either 0 or 1. If not, agent 4 can block with

5 by offering her 0.98 and being 0.01 away from her peak. Agent 4 can block with agent 6

by offering her 1 and being 0.01 away from her own peak. It follows that 5 and 6 cannot be

paired together but are paired with 1 and 2. The agent paired with 5, say agent 1, gets 0.02,

while agent 2 (paired with 6) gets either 0 or 1. In either case, the pair (1, 2) blocks with

the vector (0.5, 0.5). These arguments establish that Case A cannot occur.

Case B: Agent 3 is paired with agent 5. Let (t3, t5) be the contribution vector. Using

arguments similar to those in Case A, we can argue that t3 ≤ 0.49 and t5 ≥ 0.98. One of

the agents 3, 5 must be at a distance of max{0.49− t3, 0.98− t5} for any (t3, t5). Therefore

either 3 or 5 must be at a distance of at least 0.235 from her peak.

Suppose agent 3 is this agent. Like in Case A, agents 1 and 2 must receive their peaks.

Thus they are not paired together and are paired with 4 and 6. Moreover 4 and 6 are each

13If t3 > 0.49 and t4 < 0.01, then the pair (3, 4) blocks by proposing a contribution vector (t′3, t
′
4) such

that t′3 < t3 and t′4 > t4. Similarly the case t3 < 0.49 and t4 > 0.01 is ruled out. Of course t3 < 0.49 and

t4 < 0.01 is infeasible.
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receiving 0.51. The pair (4, 6) blocks with (0, 1).

Suppose agent 5 is at a distance of at least of 0.235 from her peak. Like in Case A, agents

4 and 6 must get their peaks. So they cannot be paired together and are paired with 1 and

2. Once again, 1 and 2 will form a blocking coalition.

Case C: Agent 3 is paired with agent 6. Since 1, 2 and 3 have the same preferences, we

can apply Cases A and B to argue that neither 1 nor 2 can be matched to an agent in

{4, 5}. Consequently the pairs in this allocation are (1, 2) and (4, 5). Note that there must

be an agent in each pair who does not get her peak. Assume w.l.o.g. that 1 is not getting

her peak. To ensure that (1, 3) does not block with (0.49, 0.51), it must be the case that

0.47 ≤ t3 ≤ 0.51. Thus 0.49 ≤ t6 ≤ 0.53. If 4 is the agent in the pair (4, 5) who is not

getting her peak, then (4, 6) blocks with (0.01, 0.99). If 5 is the agent not getting her peak,

then (5, 6) blocks with (0.98, 0.02).

Therefore, Case C cannot occur and there are no stable allocations. 2

Example 8 illustrates the key role played by the “complementarity of preferences” in the

existence of stable allocations in our model. For simplicity, suppose all agents have symmetric

(single-peaked) preferences. Consider two agents of very high type (with peaks close to one)

and one of a very low type (with a peak close to zero). Each of the two high type agents

are a “good fit” for the low type agent but are not well-suited to be paired together. This

prevents the cyclical pattern of blocking which typically underlies the non-existence of stable

allocations. This is exactly what occurs in Example 8 - agents 4, 5 and 6 are mutually “good

fits” for each other.

1.5.2 Continuity of preferences

The following example shows that stable allocations may not exist if preferences are single-

peaked but not continuous.

Example 9. Let N = {1, 2, . . . , 6}. Table 9 summarizes the peaks of the agents. Preferences

of agents 1 and 2 are symmetric and continuous. For any agent i ∈ {3, 4, 5, 6}, %i is

single-peaked but not continuous at 0.3. In particular, %i satisfies: (i) for any z such that

0.3 < z ≤ 0.41, z �i 0.5 and (ii) ∃ ε̄ > 0 such that 0.5+ ε̄ �i 0.3. Continuity of %i will imply

0.3 %i 0.5. Single-peakedness implies 0.5 �i 0.5 + ε̄. Thus 0.3 �i 0.5 + ε̄ contradicting (ii).

Agent 1 2 3 4 5 6

Peak 0.7 0.7 0.41 0.41 0.41 0.41

Table 1.13: Peaks of agents in Example 9.
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We claim that stable allocations do not exist.

Consider an arbitrary allocation. If it is stable, agents 1 and 2 are not paired together. If they

are, one of them, say 1, gets a contribution of at most 0.5. One of the agents in {3, 4, 5, 6},

say 3, has a contribution of at least 0.5. Then the pair (1, 3) blocks with (0.51, 0.49).

We can therefore assume w.l.o.g. that the pairs (1, 3), (2, 4) and (5, 6) belong to the alloca-

tion. By feasibility, one of the agents in {5, 6}, say 5 has a contribution t5 ≥ 0.5.

Let (t1, t3) be the contribution vector for the pair (1, 3). In order for (1, 3) not to block, we

must have 0.59 ≤ t1 ≤ 0.7 and 0.3 ≤ t3 ≤ 0.41. There are two cases to consider.

The first is when t3 > 0.3. Since t3 ≤ 0.41, we can find δ > 0 small enough such that

t3 − δ ∈ (0.3, 0.41) and t1 + δ < 0.7. By assumption (i), t3 − δ �5 t5 as t5 ≥ 0.5. Therefore

the pair (1, 5) can block with (t1 + δ, t3 − δ).

The remaining case is t3 = 0.3. If t5 > 0.5, the pair (3, 5) blocks with (0.5, 0.5). Agent 3

strictly improves as 0.5 �3 0.3 (Assumption (ii) and single-peakedness). Agent 5 strictly

improves as she moves closer to her peak. Suppose t5 = 0.5. Pick 0 < ε < ε̄ where ε̄ is speci-

fied in Assumption (ii). By single-peakedness and Assumption (ii), 0.5+ ε �3 0.5+ ε̄ �3 0.3.

Hence (3, 5) blocks with (0.5 + ε, 0.5− ε). 2

1.5.3 Coalitions of arbitrary size

The example below shows that stable allocations may not exist if coalitions of arbitrary size

are permitted. Agents in a coalition have to make an aggregate contribution of 1.

Example 10. Let N = {1, 2, 3, 4}. Agents’ preferences are symmetric. Table 1.14 summa-

rizes the peaks of the agents.

p1 p2 p3 p4

0.55 0.55 0.55 1

Table 1.14: Peaks of agents in Example 10.

In any stable allocation, agent 4 must have a contribution of 1. Suppose agent 4 belongs

to a coalition C with some other agents. All these agents will have a contribution of 0. If

|C| = 4 or |C| = 3, then any two agents from C \ {4} will block with the contribution vector

(0.5, 0.5). Assume w.l.o.g. C = {1, 4}. One of the agents in the set {2, 3} (say 2) does

not get her peak. The pair (1, 2) blocks with (0.45, 0.55). Finally, consider the case where

C = {4}. If 1, 2 and 3 belong to the same coalition, there exists an agent i ∈ {1, 2, 3} with

ti ≤
1
3
. Also, there is at most one agent who receives her peak, i.e there exists j 6= i with

tj 6= 0.55. The pair (i, j) blocks with (0.45, 0.55). In all other remaining cases, there exists

an agent i who is on her own (her contribution is 1) and another agent j who does not get

her peak. Then (i, j) can block with (0.45, 0.55). 2
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Our negative result in the case of arbitrary coalitions bears a resemblance to some earlier

results on stability in division problems. Gensemer et al. (1996) consider the problem of

allocating agents with single-peaked preferences across a set of islands. Each island has a

unit amount of resource and operates with a fixed division rule. It can also accommodate

an arbitrary number of agents. The paper formulates a notion of migration equilibrium

according to which no agent can benefit by migrating to another island. No island has

the right to refuse an entrant. The paper provides a number of negative results about the

existence of migration equilibria.

Bergantiños et al. (2015) consider a related model where all islands use the same divi-

sion rule. They also weaken the equilibrium condition to a stability notion - in order for

successful blocking to take place, the migrant’s well-being must strictly improve while no

member of the receiving island is made strictly worse-off by the move. The paper shows that

stable allocations exist for some special division rules such as the proportional rule and the

sequential dictatorship rule, provided agents’ preferences are symmetric.

1.5.4 Strategy-proofness

An allocation rule is strategy-proof if no agent can strictly improve by misrepresenting her

preferences. This property ensures that the mechanism designer can achieve the allocation

specified at a preference profile by relying on the reports of the agents themselves.

We show by an example that the SAM algorithm is not strategy-proof.14

Example 11. Let N = {1, 2, 3, 4}. Agents’ preferences %i are symmetric and Table 1.15

summarizes their peaks. The ordering of the agents is 1 �N 2 �N 3 �N 4.

p1 p2 p3 p4

0.41 0.42 0.43 0.6

Table 1.15: Peaks of agents in Example 11.

In Step 0, agents 2 and 3 are removed from L and paired together. This is because

e3(0.5) > e2(0.5) > e1(0.5). The triple (2, 3, 0.5) is added to the allocation. The set D1 =

(0.34, 0.5) and U1 = ∅. Since 1 − p4 = 0.4 > infD1 = 0.34, Substep 1.1 applies. The pair

(1, 4) is formed and t1 = min{1 − p4, inf U1} = 0.4. The triple (1, 4, 0.4) belongs to the

allocation. The allocation generated by the SAM algorithm is (2, 3, 0.5), (1, 4, 0.4).

Suppose agent 2 reports a peak of 0.4 and symmetric preferences %′
2. Now in Step 0, the

triple (1, 3, 0.5) is formed and D1 = (0.32, 0.5). Substep 1.1 applies as 1 − p4 > infD1 =

14According to the definition, the algorithm specifies an allocation at a preference profile. We are slightly

abusing terms here by regarding the algorithm as an allocation rule.
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0.32. The triple (2, 4, 0.4) is formed. Agent 2 strictly improves at %2 by misreporting since

0.4 �2 0.5. 2

The existence of a strategy-proof, stable and Pareto efficient rule in our model remains an

open question. However, in Chapter we will prove the non-existence of a strategy-proof rule

that maximizes the sum of agents’ utilitarian welfare in the case of symmetric preferences.

1.5.5 Non-convexity of the set of stable allocations

The next example shows that a convex combination of two stable allocations with the same

set of matched pairs may not be stable.

Example 12. Let N = {1, 2, 3, 4}. The peaks of the agents are summarized in Table 1.16.

All agents have symmetric preferences.

p1 p2 p3 p4

0.3 0.3 0.8 0.9

Table 1.16: Peaks of agents in Example 12.

It is easy to verify that the allocations σ1 = {(1, 4, 0.3), (2, 3, 0.3)} and σ2 = {(1, 4, 0.2), (2, 3, 0.1)}

are both stable. However the allocation σ3 = {(1, 4, 0.25), (2, 3, 0.2)} is not stable because

the pair (2, 4) can block with (0.21, 0.79). Note that σ3 has the same matched pairs as σ1

and σ2 but the contribution vector of each pair is a convex combination of the respective

contributions in σ1 and σ2 with weights (0.5, 0.5). 2

1.6 Appendix

In this section, we provide a proof of Theorem 1. The proof is divided into two parts -

Subsection 1.6.1 contains the proof of stability and Subsection 1.6.2 contains the proof of

Pareto efficiency.

1.6.1 Stability

We show that the SAM algorithm generates a stable allocation. We begin with a few key

observations.

Recall that Dq+1 = Dq ∪ Ilq ,tlq and Uq+1 = Uq ∪ Ihq ,thq
for q ∈ {0, 1, . . . , K}. For every

step q of the algorithm where q ∈ {1, . . . , K}, we have Dq = ∪r<qIlr,tlr and Uq = ∪r<qIhr,thr
.

Since the improvement sets are open (see Observation 1), it follows that Dq and Uq are also

open in [0, 0.5].
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The sets Dq and Uq can be written as the disjoint union of their connected components.

Since Dq and Uq are open sets, none of their connected components are singletons - thus

each connected component of Dq and Uq is an interval in [0, 0.5]. Moreover the connected

components of Dq and Uq can be ordered from “left” to “right”. Let D1
q and U1

q denote the

“leftmost” connected components of Dq and Uq respectively. By definition, infDq = infD1
q

and supD1
q ≤ infDr

q for any component Dr
q other than D1

q . Similar inequalities hold for U1
q .

Incase Dq or Uq is empty (then D1
q or U1

q do not exist), we adopt the convention that the

infimum and supremum of D1
q and U1

q is +∞.

Observation 2. Consider step q where q ∈ {1, . . . , K}. Recall that the triple formed in

this step is (lq, hq, tlq). If plq ≥ infD1
q then supD1

q ≤ supD1
q+1. Similarly, if 1− phq

≥ inf U1
q

then supU1
q ≤ supU1

q+1. This is an immediate consequence of the definition of improvement

sets.

We now establish a series of results that are loop invariants of the algorithm.

Lemma 1. Fix q ∈ {1, . . . , K} and assume Dq ∩ Uq = ∅. Then for all q ∈ {1, . . . , K}, we

have

[∀h ∈ Hq, 1− ph < supU1
q ] and [∀l ∈ Lq, pl < supD1

q ].

Proof : We will prove the lemma by induction on q.

• Base Case (q = 1): There are two cases to consider - U1 = ∅ and U1 6= ∅. If the

former holds, then [∀h ∈ H1, 1 − ph < supU1
1 ] is true since supU1

1 = +∞. Suppose

U1 6= ∅. All agents allocated in Step 0 have a contribution of 0.5. Hence supU1
1 = 0.5

and 1 − ph ≤ 0.5 = supU1
1 for all h ∈ H. Suppose there exists an agent h′ ∈ H1 and

1− ph′ = 0.5, i.e. e(ph′) = 0.5. Since U1 6= ∅, there exists an agent h̄ allocated in Step

0 for whom ph̄ > 0.5, i.e. eh̄(0.5) < 0.5. But then h′ has higher priority than h̄ in H

and should have been allocated in Step 0. Therefore [∀h ∈ H1, 1− ph < supU1
1 ] holds.

The argument for L1 is identical and omitted.

• Inductive step: Consider q ∈ {1, . . . , K}. Assume Dq ∩Uq = ∅, [∀h ∈ Hq, 1− ph <

supU1
q ] and [∀l ∈ Lq, pl < supD1

q ]. We have to show

[∀h ∈ Hq+1, 1− ph < supU1
q+1] and [∀l ∈ Lq+1, pl < supD1

q+1].

We refer to [∀h ∈ Hq+1, 1 − ph < supU1
q+1] and [∀l ∈ Lq+1, pl < supD1

q+1] as State-

ments A and B respectively. There are two cases to consider depending on whether

D1
q lies to the left or to the right of U1

q .
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Figure 1.3: Case I in the proof of Lemma 1.

Case I: supD1
q ≤ inf U1

q (see Figure 1.3). There are two sub-cases to consider depending

on the selection of the primary agent.

Case I.a: The primary agent is hq. If 1 − phq
> inf U1

q , Substep q.1 applies and the

contribution of hq is 1 − inf U1
q . By Observation 2, supU1

q ≤ supU1
q+1. Statement

A follows from the induction hypothesis and Hq+1 ⊂ Hq. If 1 − phq
≤ inf U1

q , then

the contribution of hq is phq
. Consequently the improvement set of hq is empty and

supU1
q = supU1

q+1. Statement A once again follows from the induction hypothesis and

Hq+1 ⊂ Hq.

We now prove Statement B for the secondary agent lq. By the induction hypothesis,

plq < supD1
q . If plq ≥ infD1

q , then plq ∈ D1
q . Observation 2 implies supD1

q ≤ supD1
q+1

and Statement B holds following the earlier argument. Suppose plq < infDq. There

are two possibilities depending on the location of the peak of hq.

(i) If 1 − phq
> infD1

q , then Substep q.1 is applicable. Here tlq ≥ infD1
q as tlq =

min{1 − phq
, inf Uq}. This implies supD1

q ≤ supD1
q+1 and Statement B follows from

the induction hypothesis.

(ii) The remaining case is when 1 − phq
≤ infD1

q . This can happen only if Substep

q.3.1 occurs. In particular, we have pl ≤ 1 − phq
for all l ∈ Lq. So plq ≤ 1 − phq

. The

contribution of agent lq is tlq = 1 − phq
. If plq = 1 − phq

, then the improvement set of

lq is empty and Statement B follows from the induction hypothesis and the fact that

D1
q+1 = D1

q . Suppose plq < 1 − phq
= tlq . Then supD1

q+1 = tlq and pl ≤ supD1
q+1 for

all l ∈ Lq. Suppose there exists l̄ ∈ Lq with pl̄ = supD1
q+1 = tlq . Then el̄(tlq) = tlq .

However elq(tlq) < tlq as plq < tlq . Then l̄ should have been matched with hq in Step q

instead of lq. This establishes Statement B in this case.

Case I.b: The primary agent is lq. This case is symmetric to the case when hq is

the primary agent. If plq ≥ infD1
q , then the result follows from Observation 2. If

plq < infD1
q , then lq receives her peak and the improvement set is empty. Statement

B again follows immediately.

Here hq is the secondary agent. This can happen only if Step q.3.2 occurs. In particular,

1− ph < plq and 1− ph ≤ infDq for all h ∈ Hq. Note that tlq = min{plq , infDq}. Thus
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1 − ph ≤ tlq for all h ∈ Hq and supU1
q+1 = tlq . Using arguments like those in Case

I.a.(ii) above, we can show 1− ph < tlq for all h ∈ Hq. This establishes Statement A.

Case II: supU1
q ≤ infD1

q (see Figure 1.4). Once again there are two cases, depending

upon the selection of the primary agent.

0

1 0.5

0.5

D1
qU1

q

Figure 1.4: Case II in the proof of Lemma 1.

The arguments for the primary agent are symmetric to those for the primary agent in

Case I. This is also true for the secondary agent. For instance, consider the case where lq
is the secondary agent. This occurs only if Step q.3.1 occurs. In particular, pl ≤ 1−phq

and pl ≤ inf Uq for all l ∈ Lq. So pl ≤ tlq for all l ∈ Lq. Hence supD1
q+1 = tlq . Using

arguments similar to those in Case I.b.(ii), we can verify Statement B.

We omit the other arguments.

�

Lemma 2. Consider Step q where q ∈ {1, . . . , K}. Assume Dq ∩ Uq = ∅. Then the triple

formed in Step q satisfies the following:

1. if it is formed in Substep q.1, then either plq ≤ tlq ≤ 1− phq
or tlq = 1− phq

< plq .

2. if it is formed in Substep q.2, then either 1− phq
≤ tlq ≤ plq or tlq = plq < 1− phq

.

3. if it is formed in Substep q.3.1, then plq ≤ tlq ≤ 1− phq
.

4. if it is formed in Substep q.3.2, then 1− phq
≤ tlq ≤ plq .

Proof : Since Dq ∩ Uq = ∅, it must be the case that D1
q either lies entirely to the “left” of

U1
q or entirely to the “right” of U1

q . We now consider each of the four cases in turn.

1. Suppose the triple (lq, hq, tlq) is formed in Substep q.1. Lemma 1 rules out the case where

D1
q lies entirely to the right of U1

q .

There are now two possibilities. The first is 1 − phq
< plq . By Lemma 1, we know

plq < supD1
q . Since tlq = min{1 − phq

, inf Uq} and supD1
q ≤ inf Uq, we have tlq = 1 − phq

.

Thus tlq = 1− phq
< plq .

The second possibility is 1 − phq
≥ plq . If 1 − phq

≥ inf Uq, we have tlq = inf Uq. By

Lemma 1, plq < supD1
q . Thus plq ≤ tlq ≤ 1− phq

. If 1− phq
< inf Uq, we have tlq = 1− phq

and once again plq ≤ tlq = 1− phq
.
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2. Suppose the triple (lq, hq, tlq) is formed in Substep q.2. In this case, Lemma 1 implies D1
q

must lie to the right of U1
q . We can use the symmetric counterparts of the arguments in Case

1 to derive the necessary conclusion.

3. Suppose the triple (lq, hq, tlq) is formed in Substep q.3.1. Here tlq = min{inf Uq, 1−phq
}. By

the hypothesis of Substep q.3.1, we know pl ≤ inf Uq for all l ∈ Lq. Also pl ≤ 1−ph̃q
= 1−phq

for all l ∈ Lq.
15 In particular, plq ≤ inf Uq and plq ≤ 1−phq

. Thus plq ≤ min{inf Uq, 1−phq
} =

tlq ≤ 1− phq
.

4. Suppose the triple (lq, hq, tlq) is formed in Substep q.3.2. Here tlq = min{infDq, plq}.

We can use the symmetric counterparts of the arguments in Case 3 to derive the necessary

conclusion. �

Lemma 2 immediately leads to the following corollary.

Corollary 1. Consider Step q where q ∈ {1, . . . , K}. Assume Dq ∩ Uq = ∅. Then the

contribution of agent lq, tlq lies in the closed interval with the end points plq and 1− phq
.

Lemma 3. Consider Step q where q ∈ {1, . . . , K}. Assume Dq ∩ Uq = ∅.

1. If tlq ≤ plq , then Ilq ,tlq ⊆ Dq.

2. If tlq ≤ 1− phq
, then Ihq ,thq

⊆ Uq.

Proof : We only consider Part 1 - a symmetric argument applies for Part 2. Consider Step

q where the triple (lq, hq, tlq) is formed.

If plq = tlq , the improvement set of lq is empty and the result follows immediately. Assume

therefore that tlq < plq . By Corollary 1, we have 1− phq
≤ tlq < plq .

We will argue that Dq is non-empty when tlq < plq . By Lemma 2, we know Substep q.3.1

cannot occur as tlq < plq . We establish the claim for Substeps q.1, q.2 and q.3.2. If Step q.1

occurs, we know 1− phq
> infDq. Thus infDq is not +∞ and Dq is non-empty. If Step q.2

or Step q.3.2 occurs, we know tlq = min{plq , infDq}. Since tlq < plq , we have tlq = infDq

and thus Dq is non-empty.

Claim 1: If tlq < plq , then tlq ≥ infDq.

Proof : Lemma 2 implies that the triple cannot be formed in Substep q.3.1. We establish

the claim for Substeps q.1, q.2 and q.3.2.

Suppose the triple is formed in Substep q.1. Since Dq ∩ Uq = ∅ by assumption, Lemma

1 implies D1
q lies entirely to the left of U1

q and supD1
q ≤ inf U1

q . In Step q.1, we know

1− phq
> infDq and tlq = min{1− phq

, inf Uq}. Thus tlq > infDq.

Suppose the triple is formed in Substep q.2. Here tlq = min{plq , infDq}. Since tlq < plq by

assumption, it must be the case that tlq = infDq.

15Recall h̃q is the high type agent with the lowest peak in hq and hq = h̃q in Substep q.3.1.
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Suppose the triple is formed in Substep q.3.2. Here tlq = min{plq , infDq}. Since tlq < plq by

assumption, it follows that tlq = infDq. This completes the proof of the claim.

�

Since Dq is a finite union of intervals, infDq is the infimum of at least one of these

intervals. Thus infDq is attained in a step before q. Let i be the smallest integer such that

inf Ili,tli = infDq where li is a low type agent matched in Step i.16 Note that infDj > infDq

for j ∈ {1, . . . , i} and infDi+1 = infDq when i ≥ 1. If i = 0, then infD1 = infDq.

Consider Step i where agent li is matched and her contribution is tli . We claim that tli > pli .

Suppose not. If tli = pli , the improvement set of li is empty, contradicting the assumption

that inf Ili,tli = infDq. Suppose tli < pli . Here inf Ili,tli = tli . Arguing as we did to establish

Claim 1, it follows tli ≥ infDi in Step i. Therefore tli = infDq ≥ infDi. This leads to a

contradiction since infDi > infDq.

Since tli > pli , we have eli(tli) ≤ inf Ili,tli = infDq.
17

Claim 2: For agents li and lq, we have (i) elq(tli) ≤ eli(tli) ≤ infDq and (ii) plq < tli .

Proof : Recall that agent li is matched in Step i.

Suppose i = 0. Then it must be the case that |L| > |H| and D1 6= ∅. Every agent matched

in this step has a contribution of 0.5. There exists l0 ∈ L̄ such that inf Il0,0.5 = infD1. Since

the improvement set of l0 is non-empty, pl0 < 0.5 and el0(0.5) < 0.5. As lq is not matched

in Step 0, we have elq(0.5) ≤ el0(0.5) < 0.5. Hence plq < 0.5. This establishes Claim 2 for

i = 0.

Suppose i ≥ 1. Recall that tli > pli . By Lemma 2, we know that li is matched in Substep

i.1 or Substep i.3.1. In both cases, li is the secondary agent. Also lq ∈ Li as i < q. Thus

elq(tli) ≤ eli(tli). This establishes Part (i).

Now consider Part (ii). If plq = tli , then elq(tli) = tli . Since pli < tli , then eli(tli) < tli
and li should not have been chosen as the secondary agent in Step i. If plq > tli , we know

elq(tli) > tli . Once again li should not have been chosen as the secondary agent in Step i.

This establishes Part (ii). �

We now return to the proof of the lemma. Claims 1, 2 and the assumption tlq < plq imply

elq(tli) ≤ eli(tli) ≤ infDq ≤ tlq < plq < tli .

Since %lq is single-peaked, we have tlq %lq max{0, elq(tli)}. Also max{0, elq(tli)} %lq tli .
18

Thus tlq %lq tli and tli /∈ Ilq ,tlq . Consequently sup Ilq ,tlq ≤ tli = sup Ili,tli . We have already

shown inf Ili,tli = infDq ≤ tlq = inf Ilq ,tlq . Therefore Ilq ,tlq ⊆ Ili,tli ⊆ Dq.

16If i = 0, note that li may not be unique. If i ≥ 1, then li is unique.
17Note that eli(tli) < inf Ili,tli if and only if eli(tli) = −ε. Here Ili,tli = [0, tli).
18If max{0, elq (tli)} = 0, then elq (tli) = −ε and Ili,tli = [0, tli). Here 0 �lq tli .
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We complete the proof of the theorem by showing that the SAM algorithm generates an

allocation which satisfies Condition S (Proposition 3).

Proof : Recall that the algorithm terminates in K steps, generating the sets DK+1 and

UK+1. We will show that DK+1 ∩ UK+1 = ∅ and 0.5 /∈ DK+1 ∪ UK+1. This guarantees that

Condition S is satisfied by the allocation generated.19

In fact, we will show that Dq ∩ Uq = ∅ and 0.5 /∈ Dq ∪ Uq holds for all q ∈ {1, . . . , K + 1}.

We will use induction on q for this purpose.

We claim that D1 ∩ U1 = ∅ and 0.5 /∈ D1 ∪ U1. By construction, at least one of the sets

D1 and U1 is empty. Also the contribution of any agent matched in Step 0 is 0.5. Thus the

improvement sets of agents matched in this step do not contain 0.5.

Induction Hypothesis (IH): Fix q ∈ {1, . . . , K} and assume (i) Dq ∩ Uq = ∅ and (ii) 0.5 /∈

Dq ∪ Uq.

The IH implies that the antecedents of Lemmas 1, 2, 3 and Corollary 1 are satisfied. We

show that Dq+1 ∩ Uq+1 = ∅ and 0.5 /∈ Dq+1 ∪ Uq+1. We have

Dq+1 ∩ Uq+1 = (Dq ∪ Ilq ,tlq ) ∩ (Uq ∪ Ihq ,thq
)

= (Dq ∩ Uq) ∪ (Dq ∩ Ihq ,thq
) ∪ (Ilq ,tlq ∩ Uq) ∪ (Ilq ,tlq ∩ Ihq ,thq

)

From IH, it follows Dq ∩Uq = ∅. By Corollary 1 and the fact that the improvement sets are

open intervals, we have Ilq ,tlq ∩ Ihq ,thq
= ∅. We will show (A) Ilq ,tlq ∩ Uq = ∅, 0.5 /∈ Ilq ,tlq and

(B) Ihq ,thq
∩Dq = ∅, 0.5 /∈ Ihq ,thq

.

We first prove (A). There are two cases to consider depending on the contribution of agent lq.

The first case is when tlq ≤ plq . Part 1 of Lemma 3 implies Ilq ,tlq ⊆ Dq. Thus Ilq ,tlq ∩ Uq = ∅

and 0.5 /∈ Ilq ,tlq since Dq ∩ Uq = ∅ and 0.5 /∈ Dq by IH.

In the second case, plq < tlq . Here tlq = sup Ilq ,tlq . Lemma 2 implies only Substeps q.1 and

q.3.1 can occur. In both steps, we have tlq = min{1 − phq
, inf Uq}. Since 1 − phq

≤ 0.5, it

follows that tlq ≤ min{inf Uq, 0.5}. Furthermore, tlq = sup Ilq ,tlq and Ilq ,tlq is an open set.

Therefore x < tlq ≤ min{inf Uq, 0.5} for all x ∈ Ilq ,tlq . Thus Ilq ,tlq ∩ Uq = ∅ and 0.5 /∈ Ilq ,tlq .

The proof of (B) is virtually identical to the arguments for (A), but uses Part 2 of Lemma

2. We omit the details. This completes the proof of the theorem. �

We have shown above that the sets Dq and Uq do not intersect for any q ∈ {1, . . . , K}. Thus

the antecedents of Lemmas 1, 2, 3 and Corollary 1 are true. We will use these facts in the

proof of Pareto efficiency in the next subsection.

19Recall DK+1 and UK+1 are the unions of the improvement sets of all L and H type agents respectively.
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1.6.2 Pareto Efficiency

We define some notation which will be used in the proof of Pareto efficiency. For any al-

location σ and agent i ∈ N , we shall denote the contribution of agent i in σ by tσi . The

improvement set for agent i at tσi is Ii,tσi and it’s closure is Ii,tσi . Note that Ii,tσi = {x ∈

[0, 0.5] : x %i t
σ
i } when i ∈ L and Ii,tσi = {x ∈ [0, 0.5] : 1 − x %i t

σ
i } when i ∈ H. For the

allocation σ, we define sets Dσ = ∪i∈LIl,tσ
l
and Uσ = ∪i∈HIl,tσ

h
.

We first establish several key observations and lemmas.

Observation 3. In any stable allocation, agents who are paired together must be given

contributions on the same side of the peak. We refer to this property as internal stability

for the pair of agents who are matched together in the allocation. Internal stability is a

necessary condition for both stability and Pareto efficiency.

Our next step is to establish a monotonicity lemma.

Lemma 4. For any Step q where q ∈ {1, . . . , K − 1}, we have (i) tlq+1
≤ tlq ≤ 0.5 and (ii)

0.5 ≤ thq
≤ thq+1

.

Proof : We first prove Part (i). Suppose q = 1. The allocation to agent l1 in Step 1 is either

min{infD1, pl1} or min{inf U1, 1− ph1
}. Both these values are smaller or equal to 0.5.

Suppose q ≥ 1. The triple (lq, hq, tlq) is formed in Step q. Next we show that tlq+1 ≤ tlq . We

have to consider four cases based on which substep occurs in Step q.

Case 1: Suppose the allocation is made in Substep q.1.

Here tlq = min{inf Uq, 1 − phq
} ≤ 1 − phq

. By Lemma 3, we know Uq+1 = Uq and

inf Uq+1 = inf Uq.

Lemma 1 and the hypothesis of Substep q.1 imply infDq < 1 − phq
< supU1

q . Since Dq ∩

Uq = ∅, it must be the case that D1
q lies to the left of U1

q , i.e. infDq < inf Uq. Thus

infDq < min{inf Uq, 1− phq
} = tlq .

Now we consider the triple (lq+1, hq+1, tlq+1
) formed in Step q+1. There are four possibilities

to consider.

1. The allocation is made in Substep q + 1.1. By hypothesis of the substep, we have

infDq+1 < 1 − phq+1
. If 1 − phq+1

≤ infDq, then 1 − phq
< inf Uq = inf Uq+1 and

tlq+1
= 1− phq+1

. Thus tlq+1
= 1− phq+1

≤ infDq < tlq .

If 1 − phq+1
> infDq, then hq+1 ∈ {h ∈ Hq : 1 − ph > infDq}. Since hq is matched in

Step q, it must be the case that 1 − phq+1
≤ 1 − phq

. Recall inf Uq+1 = inf Uq. Thus

tlq+1
= min{inf Uq+1, 1− phq+1

} ≤ min{inf Uq, 1− phq
} = tlq .
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2. The allocation is made in Substep q + 1.2. Note than in Step q, D1
q lies to the left of

U1
q . Since Dq ∩ Uq = ∅, we have supD1

q ≤ inf U1
q . Thus pl < supD1

q ≤ inf U1
q for all

l ∈ Lq (Lemma 1). Since Uq+1 = Uq and Lq+1 ⊂ Lq, there does not exist l ∈ Lq+1 such

that pl > inf Uq+1. So Substep q + 1.2 is not possible.

3. The allocation is made in Substep q+1.3.1. By the hypothesis of the substep, we know

1− phq+1
≤ infDq+1. Note that infDq+1 ≤ infDq.

20 Thus

tlq+1 = min{inf Uq+1, 1− phq+1
} ≤ infDq+1 ≤ infDq < tlq .

4. The allocation is made in Substep q + 1.3.2. Here tlq+1
= min{infDq+1, plq+1

}. Also

infDq+1 ≤ infDq. Thus

tlq+1
≤ infDq+1 ≤ infDq < tlq .

Case 2: The allocation is made in Substep q.3.1.

Here tlq = min{inf Uq, 1− phq
} ≤ 1− phq

. By Lemma 3, we have Uq+1 = Uq and inf Uq+1 =

inf Uq.

Consider the allocation is made in Step q + 1. There are four possibilities.

1. The allocation is done in Substep q + 1.1. Here tlq+1
= min{inf Uq+1, 1 − phq+1

} ≤

1− phq+1
. Since agent hq is matched in Step q and hq+1 ∈ Hq, it must be the case that

1− phq+1
≤ 1− phq

. Thus

tlq+1
= min{inf Uq+1, 1− phq+1

} ≤ {inf Uq, 1− phq
} = tlq .

2. The allocation is made in Subtep q+1.2. We will show that this is not possible. Since

the first allocation is done in Substep q.3.1, we know pl ≤ inf Uq for all l ∈ Lq. Note

that inf Uq+1 = inf Uq and Lq+1 ⊂ Lq. Thus there does not exist l ∈ Lq+1 such that

pl > inf Uq+1.

3. The allocation is made in Substep q+1.3.1. Here tlq+1
= min{inf Uq+1, 1−phq+1

}. Since

hq+1 ∈ Hq and agent hq is matched in Substep q.3.1, we have 1− phq+1
≤ 1− phq

. Thus

tlq+1
= min{inf Uq+1, 1− phq+1

} ≤ {inf Uq, 1− phq
} = tlq .

4. The allocation is made in Substep q+1.3.2. Here tlq+1
= min{infDq+1, plq+1

}. Since the

first allocation was done in Substep q.3.1 and lq+1 ∈ Lq, we know plq+1
≤ pl̃q ≤ 1− phq

and plq+1
≤ inf Uq.

21 Thus

tlq+1
= min{infDq+1, plq+1

} ≤ plq+1
≤ min{inf Uq, 1− phq

} = tlq .
20Recall Dq ⊆ Dq+1. Thus infDq+1 ≤ Dq.
21If plq+1

> inf Uq, then the allocation is Step q would be done in Substep q.2.
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Case 3 occurs when the allocation is made in Substep q.2. Case 4 occurs when the allocation

is made in Substep q.3.2. These cases can be argued similarly by making the appropriate

changes. We omit the details. This completes the proof of Part (i) of the lemma.

Note that thq
= 1− tlq for any q ∈ {1, . . . , K − 1}. Thus Part (i) of the lemma implies Part

(ii). �

Observation 4. Consider an allocation σ and an x ∈ [0, 1]. Suppose there exists i ∈ N

with tσi = x. Then agent i’s partner in σ, say agent j has contribution tσj = 1 − x. Thus

|{i ∈ N : tσi = x}| = |{j ∈ N : tσj = 1− x}|.

Lemma 5. Consider any preference profile %. Let σ and τ be stable allocations at the

preference profile %. For all x ∈ [0, 0.5] such that σ and τ satisfy

(1) tσi %i x and tσi %i 1− x for all i ∈ N and

(2) tτi %i x and tτi %i 1− x for all i ∈ N

we have,

(a) |{i ∈ N : tσi = x}| = |{i ∈ N : tτi = x}|.

(b) Consider agents i, j ∈ N such that pi < 0.5 and pj > 0.5. If 0.5 satisfies (1) and (2),

then tσi = tτj = 0.5 is not possible.

Proof : Consider an arbitrary preference profile %. Let σ and τ be stable allocations at %.

Also consider an x ∈ [0, 0.5] such that σ satisfies Condition (1) and τ satisfies Condition (2)

in the antecedent of the lemma.

We partition the agents in N into three groups depending on where their peaks lie with

respect to the points x and 1− x.22 Define

1. S1
x = {i ∈ N |pi < x},

2. S2
x = {i ∈ N |x ≤ pi ≤ 1− x},

3. S3
x = {i ∈ N |pi > 1− x}.

We will prove several claims about the allocation σ.

Claim 1: For the allocation σ, we have

1. tσi ≤ x for all i ∈ S1
x,

22Note that it is possible that x = 1− x = 0.5. Then S2
x is the set of agents whose peaks are exactly 0.5.
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2. x ≤ tσi ≤ 1− x for all i ∈ S2
x,

3. 1− x ≤ tσi for all i ∈ S3
x.

Proof : We will prove the claim by contradiction. We first prove Part 1. Consider an agent

i ∈ S1
x such that tσi > x. Here pi < x < tσi and single-peakedness implies x �i t

σ
i . This

contradicts the fact that σ satisfies Condition (1) in the antecedent of the lemma.

For Part 2, consider i ∈ S2
x such that tσi < x or tσi > 1 − x. If tσi < x, we have tσi < x ≤ pi.

Thus x �i tσi by single-peakedness and we have a contradiction. If tσi > 1 − x, we have

pi ≤ 1− x < tσi and 1− x �i t
σ
i . Once again we have a contradiction.

Part 3 can be proved using similar arguments. �

Claim 2: For the allocation σ, we have

(a) Consider i ∈ S1
x. Let (i, j, tσi ) be the triple that agent i belongs to in σ. If tσi 6= x, then

j ∈ S3
x.

(b) Consider agents i ∈ S1
x, j ∈ S3

x such that (i, j, tσi ) ∈ σ. Then tσi < x.

Proof : (a) Consider i ∈ S1
x. By assumption, tσi 6= x. By Part 1 of Claim 1, we have tσi < x.

Thus tσj = 1− tσi > 1−x. From Claim 1, we know that all agents in S1
x receive a contribution

of contribution of at most x in σ (Part 1). Similarly, all agents in S2
x have a contribution of

at most 1 − x (Part 2). Finally all agents in S3
x have a contribution of at least 1 − x in σ

(Part 3). Thus j ∈ S3
x.

(b) Consider a triple (i, j, tσi ) ∈ σ where i ∈ S1
x and j ∈ S3

x. By internal stability for the pair

(i, j), we have

min{pi, 1− pj} ≤ tσi ≤ max{pi, 1− pj}.

Since max{pi, 1− pj} < x (follows from the definition of S1
x and S3

x), we have tσi < x.

�

Claim 3: For the allocation σ, we have

(a) Consider i ∈ S3
x. Let (i, j, tσi ) be the triple that agent i belongs to in σ. If tσi 6= 1 − x,

then j ∈ S1
x.

(b) Consider agents i ∈ S3
x, j ∈ S1

x such that (i, j, tσi ) ∈ σ. Then tσi > 1− x.

Proof : (a) Consider i ∈ S3
x. By assumption, tσi 6= 1 − x. By Part 3 of Claim 1, we have

tσi > 1− x. Thus tσj = 1− tσi < x. From Claim 1, all agents in S2
x must have a contribution

of at least x in σ (Part 2). Also all agents in S3
x have a contribution of at least 1 − x in σ

(Part3). Finally all agents in S1
x have a contribution of at most x in σ (Part 1). Thus j ∈ S1

x.

(b) This follows from Part (b) of Claim 2. �
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Claim 4: For the allocation σ, there does not exist a pair of agents i ∈ S1
x, j ∈ S3

x such that

tσi = x and tσj = 1− x.

Proof : Suppose not. Then there exist i ∈ S1
x, j ∈ S3

x such that tσi = x and tσj = 1 − x.

By the definition of S1
x and S3

x, we know max{pi, 1− pj} < x. Thus there exists ε > 0 such

that x > x − ε ≥ max{pi, 1 − pj}. The pair (i, j) blocks σ with the contribution vector

(x− ε, 1− x+ ε). This results in a contradiction as σ is stable by assumption. �

Claim 5: For the allocation σ,

1. For any i ∈ S1
x and j ∈ N \ S3

x such that (i, j, tσi ) ∈ σ, we have tσi = x.

2. For any i ∈ N \ S1
x and j ∈ S3

x such that (i, j, tσi ) ∈ σ, we have tσi = x and tσj = 1− x.

Proof : (1) Consider agents i ∈ S1
x and j ∈ N \ S3

x such that (i, j, tσi ) ∈ σ. By Claim 1

and i ∈ S1
x, we know tσi ≤ x. Agent j belongs to S1

x or S2
x. If j ∈ S2

x, Claim 1 implies

x ≤ tσj ≤ 1 − x. These together imply tσi = x. If j ∈ S1
x, we have tσj ≤ x. By feasibility, it

must be the case that x = 0.5 and tσi = x.

(2) Consider agents i ∈ N \ S1
x and j ∈ S3

x such that (i, j, tσi ) ∈ σ. By Claim 1 and j ∈ S3
x,

we know tσj ≥ 1 − x. Agent i either belongs to S3
x or S2

x. If i ∈ S3
x, then tσi ≥ 1 − x (by

Claim 1). Also since j ∈ S3
x, t

σ
j ≥ 1− x. Feasibility implies 1− x = 0.5. Thus tσi = 0.5 = x

and tσj = 1− x. If i ∈ S2
x, Claim 1 implies x ≤ tσi ≤ 1− x. We know tσj ≥ 1− x. Feasibility

implies tσi = x and tσj = 1− x. �

Claim 6: Consider the allocation σ. If x 6= 0.5, we have

1. There does not exist a triple (i, j, tσi ) ∈ σ such that i, j ∈ S1
x.

2. There does not exist a triple (i, j, tσi ) ∈ σ such that i, j ∈ S3
x.

Proof : Part 1 follows immediately from Claim 1 and the definition of S1
x. Similarly Part 2

follows from Claim 1 and the definition of S3
x. �

Claim 7: Consider agents i, j ∈ S2
x such that pi, pj ∈ (x, 1− x). Then in the allocation σ, we

have ¬[tσi = x and tσj = 1− x].

Proof : We assume for contradiction that there exist i, j ∈ S2
x such that pi, pj ∈ (x, 1− x),

tσi = x and tσj = 1 − x. Here x < min{pi, 1 − pj}. Thus there exists ε > 0 such that

x+ ε �i t
σ
i and 1−x− ε �j t

σ
j . The pair (i, j) blocks σ. This is a contradiction as σ is stable

by assumption. �

We will first prove Part (a) of the lemma. Our aim is to calculate the cardinality of the

set {i ∈ N : tσi = x}. In order to do this, we will first deduce how agents are matched across
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the three groups. There are two cases to consider depending on the cardinalities of the sets

S1
x and S3

x: (I) |S
1
x| ≥ |S3

x| and (II) |S1
x| < |S3

x|.

(I) Consider the first case where |S1
x| ≥ |S3

x|. We claim that in this case, all agents in S3
x

are matched to agents in S1
x in σ. We assume for contradiction that there exists i ∈ S3

x who

is not matched to an agent in S1
x in σ. By Claim 5 (Part 2), we know tσi = 1− x. Also there

exists j ∈ S1
x such that j is not matched to an agent in S3

x. This is because |S1
x| ≥ |S3

x| and

the assumption that an agent in S3
x is not matched to an agent in S1

x. By Claim 5 (Part 1),

we know tσj = x. We have shown that there exists i ∈ S3
x with tσi = 1 − x and j ∈ S1

x with

tσj = x. This is not possible by Claim 4.

Also for any i ∈ S3
x, we have t

σ
i 6= 1− x. Suppose not, i.e. tσi = 1− x. We have shown above

that agent i is matched with some agent j ∈ S1
x. Thus t

σ
j = x. This is not possible by Claim 4.

Now we will calculate the cardinality of the set {i ∈ N : tσi = x}. There are two possibilities

to consider.

1. If x = 0.5, then

|{i ∈ N : tσi = x}| = |S1
x|+ |S2

x| − |S3
x|.

We have shown that all agents in S3
x are matched to agents in S1

x. Thus |S
3
x| agents in

S1
x are matched to agents in S3

x. Also for all i ∈ S3
x, we have t

σ
i 6= 1−x. Thus the agents

in S1
x matched to agents in S3

x do not get a contribution of x. The remaining agents in

S1
x (the cardinality of this set is |S1

x|− |S3
x|) are matched to agents in N \S3

x. By Claim

5 (Part 1), we know all such agents get a contribution of x. Thus |S1
x| − |S3

x| agents in

S1
x have a contribution of x in σ. Since x = 0.5, we know pi = 0.5 for all i ∈ S2

x. By

Claim 1, we have tσi = 0.5 for all i ∈ S2
x. So all agents in S2

x get a contribution of x in

σ. Thus |S1
x| − |S3

x| agents in S1
x, all agents in S2

x and none of the agents in S3
x receive

x in σ.

2. If x 6= 0.5, then

|{i ∈ N |tσi = x}| = max{|S1
x| − |S3

x|+ |{i ∈ S2
x : pi = x}|, |{j ∈ S2

x : pj = 1− x}|}.

Note that |S1
x| − |S3

x| agents in S1
x receive x in σ. Consider the set S2

x. For all i ∈ S2
x

with pi = x, we have tσi = x. This is because tσi %i x (recall σ satisfies Condition (1)

in the antecedent of the lemma). Similarly for all i ∈ S2
x with pi = 1 − x, we have

tσi = 1−x. This is because tσi %i 1−x by Condition (1) of the lemma. Note that their

partners in σ get x (recall Observation 4). Also none of the agents in S3
x receive x in

σ. This follows from Claim 1 (all agents in S3
x get at least 1 − x) and the fact that

x < 0.5. Thus max{|S1
x| − |S3

x| + |{i ∈ S2
x : pi = x}|, |{j ∈ S2

x : pj = 1 − x}|} is the

minimum number of agents in σ who receive x. We have,

|{i ∈ N : tσi = x}| ≥ max{|S1
x| − |S3

x|+ |{i ∈ S2
x : pi = x}|, |{j ∈ S2

x : pj = 1− x}|}.
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Suppose the above condition holds with strict inequality. We know that none of the

agents in S3
x get x. Also exactly |S1

x| − |S3
x| in S1

x receive x. Thus in the case of strict

inequality, there exists an agent i ∈ S2
x with pi ∈ (x, 1− x) and tσi = x.

Note that |{i ∈ N : tσi = x}| = {j ∈ N : tσj = 1 − x}. Since the condition holds with

strict inequality, we have

|{j ∈ N : tσi = 1− x}| > |{j ∈ S2
x : pj = 1− x}|.

Thus there exists j ∈ N such that pj 6= 1 − x and tσj = 1 − x. Note that j cannot

belong to S3
x (recall we have shown that all agents in S3

x do not receive 1−x). Also all

agents in S1
x get at most x. So j ∈ S2

x.
23

So there exists i, j ∈ S2
x such that pi, pj ∈ (x, 1 − x), tσi = x and tσj = 1 − x. This is

not possible by Claim 7.

Thus,

|{i ∈ N : tσi = x}| = max{|S1
x| − |S3

x|+ |{i ∈ S2
x : pi = x}|, |{j ∈ S2

x : pj = 1− x}|}.

(II) The second case is |S1
x| < |S3

x|. We claim that all agents in S1
x are matched to agents

in S3
x in σ. Also for all i ∈ S1

x, we have tσi 6= x.

In order to compute the cardinality of the set {i ∈ N |tσi = x}, we compute the minimum

number of agents that must receive 1− x in σ.24 There are two possibilities.

1. If x = 0.5, then

{i ∈ N : tσi = x} = |S3
x| − |S1

x|+ |S2
x|.

All agents in S1
x are matched to agents in S3

x. Also none of the agents in S1
x get 1− x

in σ.25 So |S1
x| agents in S3

x do not receive x in σ. By Claim 5 (Part 2), the remaining

agents in S3
x (who are matched to agents in N \S1

x) must get 1−x in σ. Thus |S3
x|−|S1

x|

agents in S3
x have a contribution of 1− x in σ.

Since x = 0.5, we have pi = 0.5 for all i ∈ S2
x. By Claim 2, we know that all agents in

S2
x have a contribution of x = 1− x = 0.5 in σ.

Thus |S3
x| − |S1

x| agents in S1
x, all agents in S2

x and none of the agents in S1
x receive

1− x in σ.

23Note that pj 6= x. We have shown above that if j ∈ S2
x and pj = x, then tσj = x.

24This number is useful as for each agent who gets 1− x in σ, her partner gets x in σ (Observation 4).
25This is because none of the agents in S1

x get x = 0.5.
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2. If x 6= 0.5, then

|{i ∈ N |tσi = x}| = max{|S3
x| − |S1

x|+ |{i ∈ S2
x : pi = 1− x}|, |{i ∈ S2

x : pi = x}|}.

We can prove this case using similar arguments to Part 2 in Case I.

We have shown that |{i ∈ N |tσi = x}| only depends on the preference profile � and x. In

particular, it does not depend on the allocation σ.

Note that the cardinality of the set {i ∈ N : tτi = x} can be computed in exactly the same

manner as we did for the allocation σ.26 Thus we conclude |{i ∈ N : tσi = x}| = |{i ∈ N :

tτi = x}|.

We now prove Part (b) of the lemma. Consider agents i, j ∈ N such that pi < 0.5 and

pj > 0.5. There are two possibilities based on the cardinalities of S1
0.5| and S3

0.5.

In Case I where |S1
0.5| ≥ |S3

0.5|, we have shown above that all agents in S3
0.5 are matched to

agents in S1
0.5. Also each agent in S3

0.5 has a contribution strictly greater than 0.5 (by Claim

2 (b)) in both σ and τ . Since pj > 0.5, we know j ∈ S3
0.5. Thus t

τ
j = 0.5 is not possible.

In Case II where |S1
0.5| < |S3

0.5|, all agents in S1
0.5 are matched to agents in S3

0.5. Each agent

in S1
0.5 has a contribution strictly smaller than 0.5 (by Claim 2 (b)) in both σ and τ . Since

pi < 0.5, we know i ∈ S1
0.5. Thus it is not possible that tσi = 0.5. �

Observation 5. Consider a preference profile % and allocations σ and τ . If τ Pareto

dominates σ at %, then Ii,tτi ⊆ Ii,tσi for all i ∈ N . This implies Dτ ⊆ Dσ and U τ ⊆ Dσ.

Lemma 6. Consider a preference profile % and allocations σ and τ . If σ satisfies Condition

S and τ Pareto dominates σ, then τ satisfies Condition S.

Proof : We assume for contradiction that τ does not satisfy Condition S. There are two

cases. The first case is when τ violates Part 1 of Condition S, i.e. there exists l ∈ L, h ∈ H

such that Ih,tτ
h
∩ Il,tτ

l
6= ∅. Since Il,tτ

l
⊆ Il,tσ

l
and Ih,tτ

h
⊆ Ih,tσ

h
(by Observation 5), we have

Il,tσ
l
∩ Ih,tσ

h
6= ∅. Thus σ violates Condition S. The second case is when τ violates Part 2 of

Condition S, i.e. there exists i ∈ N such that 0.5 ∈ Ii,tτi . By Observation 5, 0.5 ∈ Ii,tσi . Thus

σ violates Condition S. �

Observation 6. Consider an allocation σ which satisfies Condition S. For any x ∈ [0, 0.5],

if x /∈ Dσ ∪ Uσ, then [tσi %i x and tσi %i 1− x] for all i ∈ N .

Lemma 7. Consider a preference profile %. If σ satisfies Condition S and τ Pareto dominates

σ at %, then for all x ∈ [0, 1],

|{i ∈ N |tτi = x}| = |{i ∈ N |tσi = x}|.
26All the claims proved are true for the allocation τ as well. The only change required in the arguments

is to replace Condition (1) of the lemma by Condition (2).
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Proof : Consider a preference profile % and allocations σ and τ . Assume σ satisfies Condi-

tion S and τ Pareto dominates σ at %. Consider an x ∈ [0, 1]. There are two possibilities.

(A) Let x ∈ [0, 0.5]. We consider three subcases.

1. x ∈ [0, 0.5] \ [Uσ ∪Dσ].

Since τ Pareto dominates σ, we have U τ ⊆ Uσ and Dτ ⊆ Dσ (Observation 5). Thus

x ∈ [0, 0.5] \ [U τ ∪ Dτ ]. We know x /∈ Dσ ∪ Uσ. Observation 6 implies tσi %i x and

tσi %i 1−x for all i ∈ N . Similarly for the allocation τ , we have tτi %i x and tτi %i 1−x

for all i ∈ N .

Applying Lemma 5, we have

|{i ∈ N : tσi = x}| = |{i ∈ N : tτi = x}|.

2. x ∈ Uσ. Then there exists h ∈ H such that x ∈ Ih,tσ
h
and 1− x �h tσh. Since σ satisfies

Condition S, we have 0.5 /∈ Uσ. Thus x < 0.5.

For any i ∈ N with pi = x, it must be the case that tσi = x. If not, then (i, h) will

block σ with (x, 1− x).

Also for any i ∈ N with tσi = x, it must be the case that pi = x. If not, the pair (i, h)

will block σ.27 This implies

|{i ∈ N : tσi = x}| = |{i ∈ N : pi = x}|.

Note that all these agents must receive their peaks in τ as τ Pareto dominates σ. Thus,

|{i ∈ N : tτi = x}| ≥ |{i ∈ N : pi = x}| = |{i ∈ N : tσi = x}|.

3. x ∈ Dσ. Then there exists l ∈ L such that x ∈ Il,tσ
l
.

We will look at the agents who receive 1− x in σ. For all i ∈ N such that pσi = 1− x,

we have tσi = 1 − x. Also for all i ∈ N with tσi = 1 − x, it must be the case that

pi = 1− x. Thus,

|{i ∈ N : tσi = 1− x}| = |{i ∈ N : pi = 1− x}|.

Since τ Pareto dominates σ, we have

|{i ∈ N : tτi = 1− x}| ≥ |{i ∈ N : pi = 1− x}| = |{i ∈ N : tσi = 1− x}|.

27Suppose pi < x. Then there exists ε > 0 such that pi < x − ε < x and x − ε ∈ Ih,tσ
h
. The pair (i, h)

blocks σ with (x− ε, 1− x+ ε). We can give a similar argument for the case pi > x.
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Note that |{i ∈ N : tτi = 1 − x}| = |{i ∈ N : tτi = x}| and |{i ∈ N : tσi = 1 − x}| =

|{i ∈ N : tσi = x}| (Observation 4).

Therefore,

|{i ∈ N : tτi = x}| ≥ |{i ∈ N |pi = 1− x}| = |{i ∈ N |tσi = 1− x}| = |{i ∈ N |tσi = x}|.

We have shown that for every x ∈ [0, 0.5],

|{i ∈ N : tτi = x}| ≥ |{i ∈ N : tσi = x}|.

(B) x ∈ (0.5, 1].

Note that |{i ∈ N : tτi = x}| = |{i ∈ N : tτi = 1 − x}| and |{i ∈ N : tσi = x}| =

|{i ∈ N : tσi = x}| (by Observation 4). Since 1 − x ∈ [0, 0.5], Case (A) is applicable. So

|{i ∈ N : tτi = 1 − x}| ≥ |{i ∈ N : tσi = 1 − x}|. Combining the facts above, we have

|{i ∈ N : tτi = x}| ≥ |{i ∈ N |tσi = x}|.

From (A) and (B), we know

|{i ∈ N : tτi = x}| ≥ |{i ∈ N |tσi = x}| for all x ∈ [0, 1] (1.1)

The sum of both the LHS and RHS of Equation 1.1 over all x ∈ [0, 1] is |N |. Suppose

there exists some x for which Equation 1.1 holds with strict inequality. Then there must

exist another x for which the LHS of Equation 1.1 will be strictly less than the RHS. This

contradicts 1.1. Thus Equation 1.1 holds with equality.

This completes the proof of the lemma. �

Observation 7. Consider an allocation σ that satisfies Condition S. For any agent i ∈ N ,

we have (a) if tσi < 0.5 then pi < 0.5 and (b) if tσi > 0.5 then pi > 0.5. To prove (a), assume

tσi < 0.5 and pi ≥ 0.5 for some agent i. Then 0.5 belongs to Ii,tσi and σ violates Condition S.

Similarly we can prove (b). Also if pi = 0.5 then tσi = 0.5.

Definition 8. Consider a preference profile % and two allocations σ, τ ∈ Σ. Assume τ

Pareto dominates σ at %. We say τ is minimal if for all γ ∈ Σ such that γ Pareto dominates

σ at %, we have

|{i ∈ N : tτi 6= tσi }| ≤ |{i ∈ N : tγi 6= tσi }|.

Observation 8. Consider a preference profile % and allocations σ, γ ∈ Σ such that γ Pareto

dominates σ at %. Since |N | is finite, there exists an allocation τ ∈ Σ such that τ Pareto

dominates σ at % and is minimal. This allocation may not be unique.
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We now complete the proof of Pareto efficiency.

Proof : Let σ be the allocation generated by the algorithm. We will prove the theorem by

contradiction. Suppose there exists an allocation γ ∈ Σ such that γ Pareto dominates σ. By

Observation 8, we know there exists τ ∈ Σ such that τ Pareto dominates σ and is minimal.

We will now work with the allocation τ and use it to show a contradiction.

Note that σ satisfies Condition S as it is generated by the algorithm. Since τ Pareto

dominates σ, we know τ also satisfies Condition S (Lemma 6).

There are two cases to consider: (I) there exists an agent l ∈ L such that tτl 6= tσl and

(II) tτl = tσl for all l ∈ L.

Case I: There exists an agent l ∈ L such that tτl 6= tσl .

The SAM algorithm generates σ in K steps.28 There are two possibilities. The first

possibility is that there exists a low type agent l who is matched in Step 0 and tσl 6= tτl .
29 We

denote agent l as l̄i where ī = 0. The second possibility is that all low type agents matched

in Step 0 (if any) have the same contribution values in both σ and τ . Then there exists a

low type agent who is matched in some Step q ≥ 1 and has different contribution values in

σ and τ . Let ī ∈ {1, . . . , K} be the smallest integer such that (i) tσl̄i 6= tτl̄i and (ii) tσli = tτli for

all i < ī. Note that l̄i is the agent matched in Step ī of the algorithm.

There are three cases based on the contribution value of agent l̄i in σ.

1. tσl̄i = pl̄i .

Since τ Pareto dominates σ, we have tτl̄i = pl̄i . This is a contradiction as by assumption

the contribution values of agent l̄i are different in σ and τ .

2. tσl̄i < pl̄i .

Here tσl̄i is the infimum of the improvement set of l̄i in σ. Since τ Pareto dominates σ

and tσl̄i 6= tτl̄i , we have tτl̄i ∈ Il̄i,tσl̄
i

\ {tσl̄i}. Note that tσl̄i < tτl̄i ≤ 0.5.30

Let tτl̄i = m∗. Since σ satisfies Condition S and τ Pareto dominates it, applying Lemma

7 at x = m∗, we have

|{i ∈ N : tσi = m∗}| = |{i ∈ N |tτi = m∗}|.

By assumption, l̄i does not belong to the former set but belongs to the latter. Thus

there exists an agent j who belongs to the former set and not to the latter. Note that

tσj = m∗ 6= tτj .

28Recall in each step q (where 1 ≤ q ≤ K), a low type agent lq is matched. In Step 0, low type agents are

matched if |L| > |H|.
29If there are several such agents, we choose an agent arbitrarily from this set.
30We know τ satisfies Condition S. By Observation 7 and plī < 0.5, we have tτlī ≤ 0.5.
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We claim that j ∈ L. To show this, we consider two cases. The first case is when

m∗ < 0.5. Suppose j /∈ L. Then pj ≥ 0.5 and 0.5 ∈ Ij,tσj . This results in a contradiction

as σ satisfies Condition S. Thus when m∗ < 0.5, it must be the case that pj < 0.5 and

j ∈ L. The remaining case is when m∗ = 0.5. We know tτl̄i = m∗ = 0.5, pl̄i < 0.5 and

tσj = m∗ = 0.5. Applying Lemma 5 (Part (b)), we have pj ≤ 0.5. We will show that

pj 6= 0.5 if τ satisfies Condition S. Suppose pj = 0.5. We know tτj 6= tσj = m∗ = 0.5.

Then pj = 0.5 ∈ Ij,tτj and τ violates Condition S. Thus pj < 0.5 and j ∈ L.

We know l̄i, j ∈ L. Agent j has different contribution values in σ and τ . By assumption,

l̄i is the first low type agent who has different contribution values in σ and τ . We first

argue that ī 6= 0. If ī = 0, we have tσl̄i = 0.5. Since pl̄i < 0.5, we have a contradiction

to the assumption tσl̄i < pl̄i . Thus ī ≥ 1 and agent j is matched in a step strictly

greater than Step ī in the algorithm. By Lemma 4, we have tσj = m∗ ≤ tσl̄i . We have a

contradiction as tσl̄i < tτj = m∗ = tσj .

3. tσl̄i > pl̄i .

Let tσl̄i = s∗. So pl̄i < tσl̄i = s∗ ≤ 0.5 (by Observation 7 and the fact that σ satisfies

Condition S).

Since σ satisfies Condition S and τ Pareto dominates it, applying Lemma 7 at x = s∗,

we have

|{i ∈ N : tσi = s∗}| = |{i ∈ N : tτi = s∗}|.

Agent l̄i belongs to the first set and not to the latter. Thus there exists an agent j who

belongs to the latter set and not to the first. Note that tτj = s∗ = tσl̄i 6= tσj .

We claim that j ∈ L. To show this, we consider two cases. The first case is when

s∗ < 0.5. Suppose j /∈ L and pj ≥ 0.5. Then 0.5 ∈ Ij,tτj and τ violates Condition S

(Observation 7). Hence pj < 0.5 and j ∈ L. The second case is when s∗ = 0.5. We

know tσl̄i = s∗ = 0.5, pl̄i < 0.5 and tτj = s∗ = 0.5. Applying Lemma 5 (Part (b)), we

have pj ≤ 0.5. We will show that pj 6= 0.5 if σ satisfies Condition S. Suppose pj = 0.5.

We know tσj 6= s∗ = 0.5. Then pj = 0.5 ∈ Ij,tσj and σ violates Condition S. Thus

pj < 0.5 and j ∈ L. This establishes the claim that j ∈ L.

We now show that ej(s
∗) ≤ el̄i(s

∗). To prove this claim, we consider two cases.

The first case is when ī ≥ 1. Recall that both agents l̄i and j have different contribution

values in σ and τ . Since ī ≥ 1 and agent l̄i is the first low type agent to have different

contribution values in σ and τ , agent j is matched in a step strictly greater than Step

ī. Thus j ∈ Lī.

Since pl̄i < tσl̄i , we know this is only possible in Substep ī.1 or Substep ī.3.1 of the

algorithm (by Lemma 2). In both cases, l̄i is the secondary agent. Thus el(s
∗) ≤ el̄i(s

∗)

for all l ∈ Lī \ {l̄i}. Since j ∈ Lī, we have ej(s
∗) ≤ el̄i(s

∗).
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The second case is when ī = 0. Note that tσl̄i = s∗ = 0.5 6= tσj . This means that j is

not matched in Step 0, when l̄i is matched. Thus ej(0.5) ≤ el̄i(0.5). This completes

the proof of the claim.

Thus,

Il̄i,tσl̄
i

= [el̄i(s
∗), s∗] ∩ [0, 0.5] ⊆ [ej(s

∗), s∗] ∩ [0, 0.5] = Ij,tτj , (1.2)

Il̄i,tσl̄
i

= (el̄i(s
∗), s∗) ∩ [0, 0.5] ⊆ (ej(s

∗), s∗) ∩ [0, 0.5] = Ij,tτj . (1.3)

Since τ Pareto dominates σ, we have tτl̄i ∈ Il̄i,tσl̄
i

. This together with Fact 1.2 implies

tτl̄i ∈ Ij,tτj . So tτl̄i %j t
τ
j . As τ Pareto dominates σ, we know tτj %j t

σ
j . Hence for agent j,

tτl̄i %j t
τ
j %j t

σ
j . (1.4)

Note that if tτl̄i ∈ Il̄i,tσl̄
i

, then tτl̄i ∈ Ij,tτj (by Fact 1.3). Thus tτl̄i �j t
τ
j %j t

σ
j (as τ Pareto

dominates σ). This implies tτl̄i �j t
σ
j . Thus

If tτl̄i �l̄i t
σ
l̄i
then tτl̄i �j t

σ
j . (1.5)

We will now construct an allocation δ ∈ Σ such that

(a) δ Pareto dominates σ, and

(b) |{i ∈ N : tδi 6= tσi }| < |{i ∈ N : tτi 6= tσi }|.

This will contradict the assumption that τ Pareto dominates σ and is minimal.

We construct δ as follows. The pairs in δ are defined as follows,

• the partner of l̄i in δ is the partner of j in τ ;

• the partner of j in δ is the partner of l̄i in τ ;

• for any agent s (different from l̄i, j and their partners’ in τ), the partner of s in δ

is the same as her partner in τ .

To obtain the pairs in δ, we interchange the partners of agents l̄i and j in τ and the

partners of all other agents remain unchanged.

The contributions of the agents in δ are defined as,

• tδs = tτs for all s ∈ N \ {l̄i, j}. The contribution of all such agents in δ is equal to

their contribution in τ .
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• tδl̄i = tσl̄i = s∗. The contribution of l̄i in δ is equal to her contribution in σ.

• tδj = tτl̄i . The contribution of agent j in δ is equal to the contribution of agent l̄i
in τ .

Note that for all s ∈ N \ {l̄i, j}, we have tδs = tτs %s t
σ
s as τ Pareto dominates σ. The

contribution of agent l̄i is the same in δ and σ. For agent j, we have tδj = tτl̄i %j t
σ
j (Fact

1.4). Thus all agents in N weakly prefer their contributions in δ to their contributions

in σ.

In order to show that δ Pareto dominates σ, we need to show that there exists an agent

who strictly improves in δ with respect to σ.31 We consider three cases based on the

agent who strictly prefers her contribution in τ to that in σ. Let k ∈ N be the agent

who strictly improves from σ to τ .

(a) k ∈ N \ {l̄i, j}. Here tδk = tτk �k tσk . Thus k also strictly improves in δ in

comparison to σ.

(b) k = l̄i. Here tτl̄i �l̄i tσl̄i . Then Fact 1.5 implies tδj = tτl̄i �j tσj . Thus j strictly

improves in δ in comparison to σ.

(c) k = j. Here tτj �j tσj . By Fact 1.4, tδj = tτl̄i %j tτj . Thus tδj �j tσj and j strictly

improves in δ in comparison to σ.

We have established that there exists an agent who strictly improves in δ with respect

to σ.

We now show that τ is not minimal. Let K be the number of agents in N \ {l̄i, j} who

have different contribution values in σ and τ . By construction, K is also the number

of agents in N \ {l̄i, j} who have different contribution values in σ and δ.

Note that |{i ∈ N : tτi 6= tσi }| = K + 2 and |{i ∈ N : tδi 6= tσi }| ≤ K + 1. So τ is not

minimal and we have a contradiction.

Case II: For all l ∈ L, tτl = tσl Then there exists h ∈ H such that tτh 6= tσh.

The proof of Case II is virtually identical to that of Case I. We omit the details.

This completes the proof of the theorem. �

31Note that this will also establish that σ and δ are distinct.
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2 Welfare Maximisation

in Stable Sharing
Based on work by P. Salmaso.

In this chapter we want to elaborate further on the model proposed in Chapter 1. Here

we focus on the study of welfare implications of the SAM algorithm.

In Chapter 1 we introduced the notion of allocation, that is a specification of matching

agents in pairs (or, simply, matching) and the individual contributions. To have a mean-

ingful discussion about the welfare of an allocation we will restrict the preference domain to

Euclidean single-peaked utility functions1 with a cardinal interpretation. This allows us to

define the utilitarian welfare of an allocation as the sum of agents’ utilities at that allocation.

As a first preliminary result we show that the welfare of a stable allocation depends only

on how the agents are matched and not on the individual contributions. More precisely, we

prove that any two internally stable allocations in which agents are matched with the same

partners provide the same utilitarian welfare.

In the setting of Euclidean single-peaked preferences, we will find that the SAM algorithm

introduced in Chapter 1 can be recast in a more concise way. Our main result in this chapter

is that the outcome of the SAM algorithm, in addition to being stable, also maximises the

utilitarian welfare when agents have Euclidean single-peaked utility functions.

We will then explore the relation between strategy-proofness and welfare maximisation,

showing a negative result about the possibility to have a social choice function that fulfills

both.

Finally we discuss about two more egalitarian welfare functions, the Max-min and the

weighted utilitarian welfare functions. We will show that an allocation based on the same

matching as the outcome of the SAM algorithm and with agents splitting equally the utility

among each pair maximises these welfare functions. However, we also show that the max-

imisation of those welfare functions is not necessarily compatible with stability.

1A special case of Euclidean preferences, which were introduced in Chapter 1.
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In Section 1 and Section 2 we will present the model, together with a simplified description

of the improvement sets defined in Chapter 1. In Section 3 we will discuss about matchings

and prove the invariance of the Utilitarian Welfare among internally stable allocations that

share the same matching. In Section 4 we will present the simplified version of the SAM

algorithm, called Simple-SAM, and prove its equivalence with the SAM algorithm together

with the main result of the chapter. Finally in Section 5 we will argue about strategy

proofness and in Section 6 we will discuss about different welfare functions.

2.1 The model

The set of agents is N = {1, . . . , n} where n is even. Agents have to be assigned in pairs and

each pair has to complete a task of unit value. No agent can remain unmatched and each

agent has only one partner.

An allocation σ is a collection of triples, (i, j, ti) where i, j ∈ N and ti ∈ [0, 1]. We

interpret ti as the contribution of agent i. The contribution of agent i’s partner j is tj = 1−ti.

We refer to (ti, tj) as the contribution vector associated with the matched pair (i, j). We say

(i, j, ti) ∈ σ if the pair (i, j) has the contribution vector (ti, tj) in σ. Let Σ denote the set of

all feasible allocations.

Each agent i has a preference ordering %i over her contribution.2 We assume %i is

Euclidean single-peaked. The ordering %i is Euclidean single-peaked if there exists a unique

contribution pi ∈ [0, 1] such that %i can be represented by a utility function of the following

form,

ui(x) = 1− |pi − x|. (2.1)

pi will be referred to as the peak of agent i in %i.

For the rest of the chapter we consider the order in N = {1, ..., n} to be increasing in the

peaks, i.e. pi < pj ⇒ i < j.3 A preference profile % is an n-tuple of preferences (%1, . . . ,%n).

We call tσi the contribution of agent i in the allocation σ.

Notice that, contrary to the model with continuous single-peaked preferences presented in

Chapter 1, in the current model the peak of an agent determines univocally that agent’s

preferences. Moreover, if we interpret the utility functions of the agents in a cardinal way,

we can define an utilitarian welfare function as

W (σ) =
∑

i∈N

ui(t
σ
i ).

We say that an allocation σ is welfare maximising if it maximises the utilitarian welfare. I.e.

2The asymmetric and symmetric components of %i are denoted by �i and ∼i respectively.
3We will loose this convention in Section 6, where we will discuss about incentive compatibility and

deviations.
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σ ∈ argmaxτ∈Σ(W (τ)).

We say, moreover, that two allocations τ and σ are welfare equivalent if W (τ) = W (σ).

2.1.1 The Improvement Sets

We now recall the notion of improvement set as first introduced in Chapter 1. This notion

plays a key role in SAM algorithm.

As in Chapter 1, we partition agents into “high” type (H) and “low” type (L) agents

depending upon whether their peaks are greater than or less than 0.5. Formally, H = {i ∈

N : pi ≥ 0.5} and L = {i ∈ N : pi < 0.5}. Since the agents in N are ordered increasingly

according to their peaks, every low type agent will appear before every high type agent in

N . Thus agents {1, ..., |L|} ⊆ N are low type agents and agents {|L|+1, ..., n} ⊆ N are high

type agents.

We represent the peaks and the contributions of agents in the interval [0, 0.5]. The peak of

a low type agent will be measured from left to right starting at 0, while the peak of a high

type agent will be measured from right to left starting at 0.5.4

Consider an agent i ∈ L with preference %i (with peak pi) and contribution ti. We define

the improvement set for i at ti as follows,

Ii,ti =







(2pi − ti, ti) ∩ [0, 0.5] if ti > pi,

(ti, 2pi − ti) ∩ [0, 0.5] if ti < pi,

∅ if ti = pi.

Consider agent i ∈ H with preference %i (with peak pi) and contribution ti. We define

the improvement set for i at ti as follows,
5

Ii,ti =







(1− 2pi + ti, 1− ti) ∩ [0, 0.5] if ti < pi,

(1− ti, 1− 2pi + ti) ∩ [0, 0.5] if ti > pi.

∅ if ti = pi

The assumption of Euclidean single-peakedness on %i imposes structure on the improve-

ment sets which we record below as an observation.

Observation 9. The improvement set of an agent is a connected open subset of [0, 0.5]

or equivalently an open interval in [0, 0.5]. Moreover, if neither 0 or 0.5 belong to the

4The interval [0, 0.5] can be thought of as a truncated one-dimensional Edgeworth box. For a low type

agent, we are not interested in representing contributions greater than 0.5. Similarly we do not need to

represent contributions smaller than 0.5 for a high type agent.
5This definition is equivalent to Definition 5 given in Chapter 1.
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improvement set, and the improvement set is not empty, then the peak pi is the midpoint

of the improvement set if i ∈ L, and 1− pi is the midpoint of the improvement set if i ∈ H

instead. In fact the improvement set is an open ball in the topology of [0, 0.5] with radius

|pi − ti| and center either pi if i ∈ L, or 1− pi, if i ∈ H.

2.1.2 Matchings and Welfare Maximisation

We call a matching a set of unordered pairs of agents such that every agent in N belongs to

exactly one pair, i.e. it is a partition of N in sets of two elements.

Consider an allocation σ, i.e. a collection of triples {(i1, j1, ti1), (i2, j2, ti2), (i3, j3, ti3), ...}.

Every triple consists of two agents, i and j, and a contribution, ti. If we remove the con-

tribution ti from every triple in σ, what remains is a collection µ of disjoint pairs that is a

partition of N too. Thus µ is a matching and it is univocally determined by σ. We say that

the allocation σ is based on the matching µ.

We say that the agents i and j are matched in σ if they belong to the same triple in σ, or

equivalently they belong to the same pair in µ, if σ is based on µ.

We are interested in welfare maximising allocations. In order to study them we start by

recalling the definition of internal stability of an allocation.

Definition 9. A triple (i, j, ti) is internally stable if there is no contribution t′i such that

t′i �i ti and 1− t′i �j 1− ti.

An allocation σ is internally stable if it is composed by internally stable triples.

As remarked in Chapter 1, in any internally stable allocation agents who are matched

must receive contributions falling on the same side of the respective peak. That is, for any

internally stable allocation σ,

• if pi + pj > 1, then tσi ≥ pi and tσj ≥ pj;

• if pi + pj < 1, then tσi ≤ pi and tσj ≤ pj;

• if pi + pj = 1, then tσi = pi and tσj = pj.

Internally stable allocations enjoy the following lemma.

Lemma 8. Let i and j be two agents allocated together in a triple (i, j, ti) that is internally

stable. Then ui(ti) + uj(tj) follows the following rule:

ui(ti) + uj(tj) =







3− pi − pj if pi + pj > 1,

1 + pi + pj if pi + pj < 1,

2 if pi + pj = 1.
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Proof : Let pi + pj > 1. In this case, at least one agent receives a contribution lower

than her optimum. By internal stability, none of the agents receives a contribution higher

than her peak. Thus ti ≤ pi and tj ≤ pj; so ui(ti) = 1 − |pi − ti| = 1 − pi + ti and

uj(tj) = 1− |pj − tj| = 1− pj + tj. Thus

ui(ti) + uj(tj) = 1− pi + ti + 1− pj + tj = 3− pi − pj.
6

Let now pi + pj < 1. In this case, at least one agent receives a contribution higher than her

optimum. By internal stability, none of the agents receives a contribution lower than her

peak. Thus ti ≥ pi and tj ≥ pj, so ui(ti) = 1−|pi−ti| = 1+pi−ti and uj(tj) = 1−|pj−tj| =

1 + pj − tj. Thus

ui(ti) + uj(tj) = 1 + pi − ti + 1 + pj − tj = 1 + pi + pj.
6

If pi + pj = 1, then the only internally stable outcome is ti = pi and tj = pj. ui(pi) = 1 and

uj(pj) = 1, thus

ui(ti) + uj(tj) = 1 + 1 = 2.

�

This lemma has one interesting implication: for any given triple (i, j, ti) the sum of the

utilities of agents i and j does not depend on their contributions, as long as (i, j, ti) is

internally stable.

We can thus define the welfare of the pair (i, j) as w(i, j) = ui(ti)+uj(1− ti) for any internal

stable triple (i, j, ti).

It follows immediately from Lemma 8 that 1 ≤ w(i, j) ≤ 2. Therefore our model is equivalent

to a transferable utility matching model with value functions given by w(i, j) as long ad

agents’ utility does not exceed 1.

Moreover the lemma has the following important corollary.

Corollary 2. Let σ and τ be two internally stable allocations based on the same matching

µ. Then,

W (σ) = W (τ). (2.2)

Proof : The welfare of σ is W (σ) =
∑

i∈N ui(t
σ
i ). Since µ is a partition of N , this sum can

be decomposed as
∑

(i,j)∈µ ui(t
σ
i ) + uj(t

σ
j ).

In the same way, the welfare of τ is W (τ) =
∑

i∈N ui(t
τ
i ), and this sum can be decomposed

as
∑

(i,j)∈µ ui(t
τ
i ) + uj(t

τ
j ).

By Lemma 8 however we have that ui(t
τ
i ) + uj(t

τ
j ) = ui(t

σ
i ) + uj(t

σ
j ) for every pair in µ, thus

∑

(i,j)∈µ ui(t
σ
i ) + uj(t

σ
j ) =

∑

(i,j)∈µ ui(t
τ
i ) + uj(t

τ
j ) and W (σ) = W (τ).

6Recall that i and j are matched, thus ti + tj = 1.
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�

From now on we can then restrict to consider only internally stable allocations. In

this way we can get rid of the specification of the allocation and focus on the matching.

This is not a restricting hypothesis in looking for welfare maximising allocations since every

welfare maximising allocation has to be internally stable. We can define the welfare of a

matching W (µ) as the welfare of any internally stable allocation based on that matching.

As a consequence we may refer to a matching to be welfare maximising when it has the

maximal welfare among all matchings. Two matchings are welfare equivalent if they have

the same welfare value. Notice that an allocation is welfare maximising if and only if

• it is internally stable, and

• it is based on a welfare maximising matching.

Notice also that two internally stable allocations are welfare equivalent if and only if they

are based on welfare equivalent matchings.

Before proceeding we introduce the notion of swap.

Given an allocation µ and two agents i and j not matched in µ, let i′ and j′ be their respective

partners. To swap i and j in µ means to build a matching µ′ in which i and j are exchanged,

i.e. the pairs (i, i′), (j, j′) are replaced by the pairs (j, i′), (i, j′).

We now want to introduce the concept of top-bottom matchings.7

Definition 10. Given a preference profile %, a top-bottom matching is a matching µ where,

for every two pairs of agents (i, j), (h, k) ∈ µ,

• either pi ≤ ph and pj ≥ pk,

• or pi ≥ ph and pj ≤ pk.

Notice that the top-bottom matching is unique if all the peaks of the agents in N are

distinct. The matching {(1, n), (2, n− 1), ..., (n
2
), n

2
+ 1)} that associates the first agent with

the last, the second agent with the second last, etc. is a top-bottom matching.

Moreover, every top-bottom matching can be obtained by swapping agents with the same

peak, and thus the same preference profile.

Theorem 2. Every top-bottom matching is welfare maximising.

7We refer to this matching as a “top peak-bottom peak” matching in Chapter 1. We show, moreover,

in Example 2 that there might be no stable allocation based on this matching in case of non-symmetric

single-peaked preferences.
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Proof : We will prove this result by induction on the cardinality of N . Recall that the

cardinality of N is even. Moreover when |N | = 2 there is only one possible matching and

that matching is top-bottom, thus the theorem is trivially true. Thus we treat |N | = 4 as

the base case, and the inductive step is to prove that, if the statement holds for every set N

such that |N | = n, then it also holds for every set N ′ such that |N ′| = n+ 2.

• Base Case. Let N = {1, 2, 3, 4}, recall that p1 ≤ p2 ≤ p3 ≤ p4. We want to prove

that {(1, 4), (2, 3)} is a welfare maximising allocation.

To do this we need to consider different cases:

– If p1 + p2 ≥ 1 then pi + pj ≥ 1 for every pair i, j, thus w(i, j) = 3 − pi − pj. So

whichever matching we choose W (µ) = 6−
∑4

i=1 pi. All the matchings are welfare

equivalent, so every matching is welfare maximising.

– Conversely if p3+p4 ≤ 1 then pi+pj ≤ 1 for every pair i, j, thus w(i, j) = 1+pi+pj.

So whichever matching we choose W (µ) = 2 +
∑4

i=1 pi. All the matchings are

welfare equivalent, so every matching is welfare maximising.

– If p1+p2 < 1 and p1+p3 ≥ 1 then for every pair (i, j) 6= (1, 2) w(i, j) = 3−pi−pj
while w(1, 2) = 1 + p1 + p2.

In this caseW ((1, 3)(2, 4)) = W ((1, 4)(2, 3)) = 6−
∑4

i=1 pi, whereasW ((1, 2)(3, 4)) =

4 + p1 + p2 − p3 − p4. So W ((1, 4)(2, 3)) − W ((1, 2)(3, 4)) = 2 − 2(p3 + p4) ≤ 0

since p3 + p4 ≥ 1. Thus W ((1, 4)(2, 3)) ≥ W ((1, 2)(3, 4)).

– If p1+p3 < 1 and both p1+p4 ≥ 1 and p2+p3 ≥ 1 we haveW ((1, 2)(3, 4)) = 4+p1+

p2−p3−p4, W ((1, 3)(2, 4)) = 4+p1+p3−p2−p4 andW ((1, 4)(2, 3)) = 6−
∑4

i=1 pi.

We can conclude as in the previous point thatW ((1, 4)(2, 3))−W ((1, 2)(3, 4)) ≤ 0.

Moreover W ((1, 4)(2, 3))−W ((1, 3)(2, 4)) = 2− 2(p2 + p4) ≤ 0 since p2 + p4 ≥ 1

– If p1+ p4 < 1 and p2+ p3 > 1 we have that W ((1, 2)(3, 4)) = 4+ p1+ p2− p3− p4,

W ((1, 3)(2, 4)) = 4+ p1+ p3− p2− p4, and W ((1, 4)(2, 3)) = 4+ p1+ p4− p3− p2.

Since p1 + p4 ≥ p1 + p3 ≥ p1 + p2 and p2 + p3 ≤ p2 + p4 ≤ p3 + p4 we have that

W ((1, 4)(2, 3)) ≥ W ((1, 3)(2, 4)) ≥ W ((1, 2)(3, 4)).

The remaining cases are similar to the ones already considered.

• Inductive Step. Let µ be a matching that involves n+ 2 agents. We want to prove

that there exists a top-bottom matching µ̄ such that W (µ̄) ≥ W (µ).

First, consider the agents 1 and n + 2. If they are not matched in µ, we call i and j

their partners, respectively. Thus (1, i) and (j, n+2) belong to µ. Define the allocation

µ′ where i and n + 2 are swapped, so that (1, n + 2) and (j, i) belong to µ′. Let

S = {(1, i), (j, n+ 2)}. Then

W (µ′) = w(1, n+ 2) + w(j, i) +
∑

p∈µ\S

w(p),
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W (µ) = w(1, i) + w(j, n+ 2) +
∑

p∈µ\S

w(p).

In the base case we proved that w(1, n + 2) + w(j, i) ≥ w(1, i) + w(j, n + 2), thus

W (µ′) ≥ W (µ).

If the agents 1 and n+ 2 are matched in µ, then we simply let µ′ = µ.

Let us now consider µ′\{(1, n+2)}, that is a matching within n agents, {2, ..., n+1} . By

the inductive hypothesis there exists a top-bottom matching ν on the set {2, ...., n+1}

such that W (ν) ≥ W (µ′ \ {(1, n + 2)}). Thus, let µ̄ = ν ∪ {(1, n + 2)}. Therefore,

W (µ̄) ≥ W (µ′) ≥ W (µ). Moreover, µ̄ is by construction a top-bottom matching.

Since for every matching there exists a top-bottom matching with greater or equal welfare,

and all top-bottom matchings are welfare equivalent, it follows that top-bottom matchings

are welfare maximising.

�

2.2 The Simple-SAM Algorithm

In this section, we provide a formal description of an algorithm that allocates agents in a

stable and Pareto efficient way. We will show that this algorithm, which we call Simple-SAM

algorithm, is equivalent to the SAM algorithm presented in Chapter 1 in the case of agents

with Euclidean single-peaked preferences. In particular, this section can be seen as an ex-

ample of how the more complicated SAM algorithm works.

In the rest of the section, we adopt the following convention: whenever we write a triple

(i, j, ti) in the description of an allocation, we assume i < j.8

The Simple-SAM algorithm has K + 1 steps, including Step 0.

In Step 0, we match the agents around the median of N in such a way that we remain with

the same number of high type and low type agents. We define also the sets D1 and U1,

which are the union of the improvement sets of low type agents and of high type agents,

respectively, matched in this step.

Let K = min{|H|, |L|}. If K 6= n
2
we call M the set of agents {K + 1, ..., n−K}.

We have to distinguish three cases:

1. |H| = |L|, i.e. M = ∅. In this case K = n
2
and we do not match any agent. Therefore

U1 = ∅ and D1 = ∅.

8Suppose agents 1 and 2 are paired in an allocation. Let p1 = 0.4, p2 = 0.7 and their contributions in the

allocation be t1 = 0.1, t2 = 0.9. We shall write the triple as (1, 2, 0.1).
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2. |H| > |L|, i.e. M ⊆ H. We match agents in M using a top-bottom matching. Then

we assign to each pair a contribution of 0.5. Here U1 = ∪i∈MIi,0.5 and D1 = ∅.

3. |L| > |H|, i.e. M ⊆ L. We match agents in M using a top-bottom matching. Then

we assign to each pair a contribution of 0.5. Here D1 = ∪i∈MIi,0.5 and U1 = ∅. 9

At each Step q, 1 ≤ q ≤ K, we form a pair consisting of a low type agent and a high

type agent, agent K + 1− q and agent n−K + q, respectively. We denote these agents by

lq and hq, respectively. The algorithm is provided three inputs:

• peaks of agents hq and lq,

• the union Uq ⊆ [0, 0.5] of the improvement sets of H-type agents matched until Step q,

• the union Dq ⊆ [0, 0.5] of the improvement sets of L-type agents matched until Step q.

Then, we have to consider five cases:

1. if plq < 1− phq
and plq ∈ Uq, then we define tlq := plq ;

2. if plq < 1− phq
and plq /∈ Uq, then we define tlq := min{1− phq

, inf Uq};

3. if plq > 1− phq
and 1− phq

∈ Dq, then we define tlq := 1− phq
;

4. if plq > 1− phq
and 1− phq

/∈ Dq, then we define tlq := min{plq , infDq};

5. if plq = 1− phq
, then we define tlq := plq .

At this point, we add to the allocation the triple (lq, hq, tlq). Note that thq
= 1− tlq .

Finally we define the new union sets of improvement sets for the following step,

• the new Dq+1 set is Dq ∪ Ilq ,tlq ,

• the new Uq+1 set is Uq ∪ Ihq ,thq
.

Theorem 3. The Simple-SAM Algorithm produces the same outcome as the SAM algorithm

in this setup. That is, when the SAM algorithm is applied to an allocation of agents with

Euclidean single-peaked preferences, together with the appropriate specifications on the tie-

breaking rule �N and on the matching in Step 0 (see below), it reduces to the Simple-SAM

algorithm.

We will use the following specifications to prove Theorem 3.

9Recall that the definition of Ii,t is not the same if i ∈ H or i ∈ L.
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• �N is the order induced by the distance from the median n+1
2
, from lower distance to

higher. In case of a tie we can specify �N both to prefer the lowest agent or the highest

agent.10

For example, if n = 10, agent 7 will be preferred to agent 9 but not to agent 5, since

the latter is nearer to n+1
2

= 5.5.

• At step 0 we allocate the required agents starting from the ones with the higher priority

according to �N , thus creating a top-bottom matching.

For example, if the agents in L̄ are {n
2
−1, n

2
, n
2
+1, n

2
+2} we form the triples (n

2
, n
2
+1, 0.5)

and (n
2
− 1, n

2
+ 2, 0.5).11

Before proceeding to the proof of the theorem, we need the following lemma, related to

the notion of equivalent contribution ei(t) stated in Chapter 1.

Lemma 9. a) Let i, j ∈ L and suppose i < j. Then for every t ∈ [0, 1] ei(t) ≤ ej(t).

b) Let i, j ∈ H and suppose i > j. Then for every t ∈ [0, 1] ei(t) ≤ ej(t).

Proof : a) First notice that for every k ∈ N, t ∈ [0, 1], |2pk − t − pk| = |t − pk| and

2pk − t = t ⇔ pk = t. Thus, if 2pk − t ∈ [0, 0.5], 2pk − t = ek(t). If 2pk − t /∈ [0, 0.5] then we

have two possible cases,

• if 2pk − t < 0, then ek(t) = −ε;

• if 2pk − t > 0.5, then ei(t) = 0.5 + ε;

where ε is any small positive number, as in the definition of ei(t).

Since i < j, pi ≤ pj, thus 2pi − t ≤ 2pj − t. Let us consider the following cases.

• If 2pi − t < 0, then ei(t) = −ε.12 But ej(t) is greater or equal to −ε for every t, hence

we conclude.

• If 2pj − t > 0.5 then ej(t) = +ε.13 But ei(t) is lower or equal to 0.5 + ε for every t,

hence we conclude.

• If 0 ≤ 2pi − t ≤ 2pj − t ≤ 0.5 then trivially 2pi − t = ei(t) and 2pj − t = ej(t).

10It is not important to specify the preference between two agents with the same distance from n+1

2
because

this case can never happen along the SAM algorithm.
11Later in this chapter we will show that the agents to be allocated in step 0 of the SAM algorithm, if any,

are always a set of agents that is ”central” in N , i.e. the set of all the agents ranging from n
2
− a to n

2
+ a+1

for some 0 < a < n
2
.

12This is always the case when 2pj − t < 0 since 2pi − t ≤ 2pj − t.
13This is always the case when 2pi − t > 0.5 since 2pi − t ≤ 2pj − t.
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Proof of Point (b) is identical.

�

Proof : We prove Theorem 3 by induction on the step q.

We want to prove that at the end of each step q the outcomes of the two algorithms are the

same, i.e. the agents matched at step q are the same and are matched in the same way by the

two algorithms, each agent matched at step q receives the same contribution value in both

algorithm, and the sets Uq+1 and Dq+1 are also the same in both algorithms. Additionally,

the sets Lq+1 and Hq+1 defined at each step of the SAM algorithm will be shown to be the

sets {1, ..., q − k + 1} and {n− k + q, ..., n}, respectively.

Along the proof we will sometimes recall the SAM algorithm, using italics.

• Base Case. We will prove first that the SAM algorithm and the Simple-SAM algo-

rithm produce the same allocation at Step 0.

There are three possibilities to consider.

1. |H| = |L|. In this case both the SAM algorithm and the Simple-SAM algorithm

do not match any agent.

2. |H| > |L|. Compute ei(0.5) for all i ∈ H. Pick the |H| − |L| agents whose

equivalents ei(0.5) are closest to 0.5. Ties are broken using the ordering �N .

In this case K = |L|, so agents from 1 to K are low type agents, while agents

from K + 1 to n are high type agents. By Lemma 9 the high type agents with

the highest ei(0.5) are the agents with the lowest peak. Since the order on N is

increasing in the peaks, H̄ consists of agents from K+1 to n−K. Ties are solved

using �N . Agents within K + 1 and n − K are the agents in N nearest to the

median.

3. |H| < |L|. Compute ei(0.5) for all i ∈ L. Pick the |L| − |H| agents whose

equivalents ei(0.5) are closest to 0.5. Ties are broken using the ordering �N .

In this case K = |H|, so agents from 1 to n−K are low type agents, while agents

from n−K +1 to n are high type agents. By Lemma 9 the low type agents with

the highest ei(0.5) are the agents with the highest peak. Since the order on N is

increasing in the peaks, L̄ consists of agents from K + 1 to n−K.14

Recall that we imposed that the matching at this step in the SAM algorithm should

follow a top-bottom matching, just as in the Simple-SAM algorithm.

Finally notice that in both algorithms D1 and U1 are defined as the union of the

improvement sets of the low type agents and high type agents, respectively, matched

at step 0.

14Agents within K + 1 and n−K are the agents in N nearest to the median.
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• Inductive Step.

– First we prove that the primary agent of SAM algorithm is always the agent of

his type with peak nearest to 0.5 among the unassigned agents, i.e. either the low

type agent with the highest peak or the high type agent with the lowest peak. 15

If the primary agent is chosen at step q.1, then she is the agent with lowest peak

among the high type agents with peak lower than 1 − infDq, i.e. the high type

agent with the lowest peak.

If the primary agent is chosen at step q.2, then she is the agent with highest peak

among the low type agents with peak higher than inf Uq, i.e. the low type agent

with the lowest peak.

If the primary agent is chosen at step q.3, then she is the agent with peak nearest

to 0.5 by construction.

– Secondly, we show that the secondary agent of the SAM algorithm is the agent of

her type with the peak nearest to 0.5. Notice that at every substep the secondary

agent is chosen as the still available agent with the highest equivalent ei(t), for

some t that depends on the substep where she is chosen.

In Lemma 9 we proved that this agent is the agent with the highest peak if she is

an low type agent or the agent with the lowest peak if she is an hihg type agent.

In both cases she is the available agent of her kind with the peak nearest to 0.5.

Since agents in N are ordered according to their peak and ties are resolved in

favour of the agent nearest to the median, lq is the higher agent in Lq (that is,

K − q+ 1), and hq is the lower agent in Hq (that is, n−K + q). Thus the agents

matched at any step are the same in both algorithms.

– We remove the agents K − q + 1 and n − K + q from Lq and Hq, respectively,

remaining with Lq+1 = {1, ..., K − q} and Hq+1 = {n−K + q + 1, ..., n}.

– We now need to prove that the agents receive the same contribution values ac-

cording to the two algorithms.

Notice that if plq ≥ 1 − phq
and lq is the primary agent in the SAM algorithm,

or if plq ≤ 1 − phq
and hq is the primary agent in the SAM algorithm, then the

contributions of the two algorithm coincide.

Let us now consider the case where plq < 1 − phq
and lq is the primary agent.

This is possible only if the matching is added to the allocation at step q.2. In

this case tlq = min{plq , infDq}. We want then to prove that plq ≤ infDq, with

plq ∈ Uq, which would imply tlq = plq , as is stated in case 1 of the Simple-SAM

algorithm. Lemma 1 shows that 1 − phq
< supU1

q and plq < supD1
q ,

16; thus one

15Thus the one nearest to the median since ties are broken this way.
16Recall that Uq

1 is the lowest connected component of Uq and Dq
1 is the lowest connected component of
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has inf U1
q = inf Uq < plq < 1− phq

< supU q
1 , and plq belongs to U1

q ⊆ Uq. There-

fore, either plq < infDq. or plq ∈ Dq ∩ Uq, but in Chapter 1 we proved that the

two sets are disjoint, hence plq < infDq.

The case where plq > 1− phq
and 1− phq

∈ Dq is analogous.

– Finally, notice that in both algorithms Dq+1 and Uq+1 are defined as the union of

the improvement sets of the low type agents and high type agents, respectively,

matched until step q.

�

2.3 Discussion

2.3.1 Incentive Compatibility

In the definition of the algorithm we assumed that the preferences of the agents are known

to the Social Planner or, equivalently, that the agents report truthfully their preferences.

However one can wonder what happens if we drop this hypothesis and consider agents that

strategically report their preferences.

Unfortunately in this case there is a trade-off between strategy-proofness and welfare max-

imisation, as we will show in this section.

Since we need to compare different preference profiles for the same set of agents, we will

drop the convention that the agents in N are ordered increasingly in their peaks.

Let P be the set of all possible preference profiles. A social choice function is a function

f : P → Σ that associates an allocation f(%) to any preference profile %.

We say that a social choice function is strategy-proof if no agent can improve by misreporting

her preferences. That is, a social choice function is not strategy-proof if there exists two

preference profiles %= (%1, ...,%i, ...,%n) and %′= (%1, ...,%
′
i, ...,%n) that differ only for

agent i such that f(%′) �i f(%). Otherwise, f is strategy-proof.

Theorem 4. If |N | ≥ 4, then any utilitarian welfare maximising social choice function is

not strategy-proof.

Proof : Let N = {1, 2, 3, 4} and let f be a welfare maximising social choice function.

Let us now consider the preference profiles % and %′ induced by the following peaks shown

in table 2.1,

We can compute the values shown in Table 2.2 for each pair of agents.

Dq.
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p1 p2 p3 p4

% 0.43 0.42 0.43 0.6

%′ 0.41 0.42 0.43 0.6

Table 2.1: Peaks of agents.

w(1, 2) w(1, 3) w(2, 3) w(1, 4) w(2, 4) w(3, 4)

% 1.85 1.86 1.85 1.97 1.98 1.97

%′ 1.83 1.84 1.85 1.99 1.98 1.97

Table 2.2: Value functions for each pair of agents.

Notice that for preference profile%′, the only welfare maximising matching is {(1, 4)(2, 3)}.

In fact W ({(1, 4)(2, 3)}) = 3.84 which is greater than W ({(1, 3)(2, 4)}) = 3.82 and

W ({(1, 2)(3, 4)}) = 3.80. Thus, f(%′) is based on {(1, 4)(2, 3)} and is internally stable.

Instead, according to %, the only welfare maximising matching is {(1, 3), (2, 4)}. In fact,

W ({(1, 3)(2, 4)}) = 3.84 which is greater thanW ({(1, 4)(2, 3)}) = 3.82 andW ({(1, 2)(3, 4)}) =

3.82. Thus f(%) is based on {(1, 3)(2, 4)} and is internally stable. In this case, since t1 + t3
is equal to 1, at least one agent between 1 and 3 receives a contribution greater than 0.5

in f(%). We can consider this agent, without loss of generality, to be agent 1. Then

u1(t1) ≤ u1(0.5) = 0.93. If agent 1 were matched with agent 4, though, in an internally

stable way, as it happens in f(%′), u1(t1) would be at least u1(1 − p4) = 1.97. Thus, there

would be a profitable deviation for agent 1 to declare that her preferences are %′
1.

If |N | > 4, we can suppose that the other agents have perfectly complementary peaks, thus

they have to be matched within themselves in any welfare maximising allocation.

�

2.3.2 Different Social Welfare Functions

In section 1 we have introduced the utilitarian welfare function. This welfare function was

first theorized by Bentham (1789) and is still widely used. However, utilitarian welfare is

only one possible choice among many different ways to compute the welfare of an allocation.

In this section we discuss what changes in the analysis of our Euclidean single-peaked pref-

erences model for some other common choices of welfare function.

A different class of welfare functions is the class of weighted utilitarian welfare functions.
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The weighted utilitarian welfare functions can be expressed in the following form,

W (σ) =
∑

i∈N

f(ui(t
σ
i )),

where f : [0, 1] → R is an increasing and concave function.

These welfare functions can be seen as more egalitarian than the utilitarian welfare function,

since an increase in utility for an agent with low starting utility would increase the welfare

function more than the same increase in utility for an agent with higher starting utility.

The most extremely egalitarian welfare function is the max-min welfare utility function.

Given an allocation σ, the Max-min welfare function is defined as

W (u1, ..., un) = min(u1, ..., un).

Thus the max-min welfare function increases only if the utility of the lowest-utility agents

increases.

Theorem 5. Let % be a preference profile. Let the welfare function be the Max-min welfare

function. Then, there always exists a welfare maximising allocation based on a top-bottom

matching.

The intuition is as follows. Let us fix a matching µ. Let σµ be an allocation based on

µ that splits equally the utility among the matched agents. Then σµ is trivially welfare-

maximal within the set of allocations based on µ. We can define the welfare of any matching

µ as the welfare of σµ, that is we define the Max-min welfare of µ as min{wp

2
}p∈µ. Thus a

welfare maximising matching is a matching that maximises min{wp}p∈µ.

Proof : We will prove this theorem by induction, in a similar way as we proved Theorem 2.

The first non-trivial case is |N | = 4 and the inductive step takes as hypothesis the statement

for |N | = n and proves it for |N | = n+ 2.

• Base Case. Let N = {1, 2, 3, 4} such that p1 ≤ p2 ≤ p3 ≤ p4. We want to prove that

(1, 4), (2, 3) is a welfare maximising matching.

Let us start by noting that

p1 + p2 ≤ p1 + p3 ≤ p1 + p4 ≤ p2 + p4 ≤ p3 + p4, (2.3)

p1 + p2 ≤ p1 + p3 ≤ p2 + p3 ≤ p2 + p4 ≤ p3 + p4. (2.4)

Without loss of generality we can assume that min{w(1, 4), w(2, 3)} = w(1, 4). Let us

distinguish three cases.
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– If p1 + p4 < 1, then

w(1, 4) = 1 + p1 + p4 ≥ 1 + p1 + p3 = w(1, 3) ≥ min{w(1, 3), w(2, 4)},

w(1, 4) = 1 + p1 + p4 ≥ 1 + p1 + p2 = w(1, 2) ≥ min{w(1, 2), w(3, 4)}.

Thus {(1, 4), (2, 3)} is welfare maximal.

– If p1 + p4 > 1, then

w(1, 4) = 3− p1 − p4 ≥ 3− p2 − p4 = w(2, 4) ≥ min{w(1, 3), w(2, 4)}.

w(1, 4) = 3− p3 − p4 ≥ 3− p3 − p4 = w(3, 4) ≥ min{w(1, 2), w(3, 4)}.

Thus {(1, 4), (2, 3)} is welfare maximal.

– If p1 + p4 = 1, then w(1, 4) is maximal and {(1, 4), (2, 3)} is welfare maximal.

• Inductive Step. Let µ be a matching that involves n+ 2 agents. We want to prove

that there exists a top-bottom matching µ̄ such that W (µ̄) ≥ W (µ).

First, consider the agents 1 and n + 2. If they are not matched we call i and j their

partners, respectively. So (1, i) and (j, n+ 2) belong to µ.

Let us consider the allocation µ′ where we swap i and n + 2, so that (1, n + 2) and

(j, i)17 belong to µ′. Let S = {(1, i), (j, n+ 2)}.

In the base case we proved that

min{w(1, n+ 2)w(j, i)} ≥ min{w(1, i), w(j, n+ 2)},

min{p}p∈{(1,n+2),(i,j)}∪µ\S ≥ min{p}p∈µ.

Thus W (µ′) ≥ W (µ).

If the agents 1 and n+ 2 are matched in µ, then we simply let µ′ = µ.

Let us now consider µ′\{(1, n+2)}, that is a matching within the n agents {2, ..., n+1}.

By the inductive hypothesis there exists a top-bottom matching ν on the set {2, ...., n+

1} such that W (ν) ≥ W (µ′ \ {(1, n + 2)}). Thus, let µ̄ = ν ∪ {(1, n + 2)}. Therefore,

W (µ̄) ≥ W (µ′) ≥ W (µ). Moreover, µ̄ is by construction a top-bottom matching.

�

We can prove a similar result for symmetric concave separable welfare functions.

Theorem 6. Let % be a preference profile. Let W (σ) be a weighted utilitarian welfare func-

tion. There always exists a welfare maximising allocation based on a top-bottom matching.

17Since these are unordered pairs, this is the same pair as (i, j) in the case pi < pj .
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Before proceeding to the proof of Theorem 6 we need to prove the following lemma

regarding concave functions.

Lemma 10. Let I be an in interval in R and let f : I → R be an increasing concave

function.

Let x1, x2, x3, x4 ∈ I such that x1 ≤ x2 ≤ x4 and such that x1 + x4 ≤ x2 + x3, then

f(x1) + f(x4) ≤ f(x2) + f(x3).

Proof : Let us start with the case x1 + x4 = x2 + x3. Thus x3 = x4 + x1 − x2.

If x1 = x4, then x1 = x2 = x3 = x4 and the thesis is trivially true.

If x1 6= x4, we define α = x2−x1

x4−x1
. Thus 1−α = x4−x1−x2+x1

x4−x1
= x4−x2

x4−x1
. By definition of concave

function,

f(αx1 + (1− α)x4) ≥ αf(x1) + (1− α)(x4),

f((1− α)x1 + αx4) ≥ (1− α)f(x1) + αf(x4).

Thus

f(αx1+(1−α)x4)+f((1−α)x1+αx4) ≥ αf(x1)+(1−α)f(x4)+(1−α)f(x1)+αf(x4). (2.5)

Obviously,

αf(x1) + (1− α)f(x4) + (1− α)f(x1) + αf(x4) = f(x1) + f(x4).

Let us now concentrate on the first term of Equation (2.5),

(1− α)x1 + αx4 =
(x4 − x2)x1 + (x2 − x1)x4

x4 − x1

=
x2x4 − x2x1

x4 − x1

= x2,

(1− α)x4 + αx1 =
(x4 − x2)x4 + (x2 − x1)x1 + x4x1 − x4x1

x4 − x1

= x4 + x1 − x2 = x3.

Thus

f(αx1 + (1− α)x4) + f((1− α)x1 + αx4) = f(x3) + f(x2).

If x3 > x4 + x1 − x2 then, since f is increasing,

f(x2) + f(x3) ≥ f(x2) + f(x4 + x1 − x2) ≥ f(x1) + f(x4).

�

This lemma has as corollary the well known results on concave functions that

f(x1) + f(x2)

2
≤ f

(

x1 + x2

2

)

. (2.6)

for every concave function f and every x1, x2 in the domain of f .

61



We can now prove Theorem 6.

Proof : First notice that, by Equation 2.6, given a matching µ, one allocation that max-

imises the welfare based on µ is again the allocation σµ that split the values of the pairs

equally.

The welfare of µ is W (σµ) =
∑

p∈σ 2f(
w(p)
2
). Thus for the remainder of the proof we will

assume that this allocation is chosen.

We will prove this theorem by induction, in a similar way as we proved Theorem 2.

As in that case the first non-trivial case is |N | = 4 and the inductive step takes as hypothesis

the statement for |N | = n and proves it for |N | = n+ 2.

• Base Case. Let N = {1, 2, 3, 4} such that p1 ≤ p2 ≤ p3 ≤ p4, we want to prove that

µ = (1, 4), (2, 3) is a welfare maximising matching.

Let µ′ = {p1, p2} be a different matching on N . By Theorem 2 we know that

w(1, 4)+w(2, 3) ≥ w(p1)+w(p2), by Theorem 5 we know that min{w(1, 4), w(2, 3)} ≥

min{w(p1), w(p2)}. Thus by Lemma 10 W (µ) ≥ W (µ′).

• Inductive Step. Let µ be a matching that involves n+ 2 agents. We want to prove

that there exists a top-bottom matching µ̄ such that W (µ̄) ≥ W (µ).

First, consider the agents 1 and n + 2. If they are not matched in µ, we call i and j

their partners, respectively. Thus (1, i) and (j, n+2) belong to µ. Define the allocation

µ′ where i and n + 2 are swapped, so that (1, n + 2) and (j, i) belong to µ′. Let

S = {(1, i), (j, n+ 2)}. Then

W (µ′) = 2f

(

w(1, n+ 2)

2

)

+ 2f

(

w(j, i)

2

)

+
∑

p∈µ\S

2f

(

w(p)

2

)

,

W (µ) = 2f

(

w(1, i)

2

)

+ 2f

(

w(j, n+ 2)

2

)

+
∑

p∈µ\S

2f

(

w(p)

2

)

.

In the base case we proved that 2f(w(1,n+2)
2

) + 2f(w(j,i)
2

) ≥ 2f(w(1,i)
2

) + 2f(w(j,n+2)
2

),

thus W (µ′) ≥ W (µ).

If the agents 1 and n+ 2 are matched in µ, then we simply let µ′ = µ.

Let us now consider µ′\{(1, n+2)}, that is a matching within the n agents {2, ..., n+1}.

By the inductive hypothesis there exists a top-bottom matching ν on the set {2, ...., n+

1} such that W (ν) ≥ W (µ′ \ {(1, n + 2)}). Thus, let µ̄ = ν ∪ {(1, n + 2)}. Therefore,

W (µ̄) ≥ W (µ′) ≥ W (µ). Moreover, µ̄ is by construction a top-bottom matching.

Since for every matching there exists a top-bottom matching with greater or equal welfare,

and all top-bottom matchings are welfare equivalent, it follows that top-bottom matchings

are welfare maximising.
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Unfortunately the maximisation of these other welfare functions is not compatible with

stability as the following example will show.

Let us first recall the definition of stability from Chapter 1.

Definition 11. Let σ be an allocation and i, j ∈ N be agents with contributions ti and tj
respectively in σ. Then the pair (i, j) weakly blocks σ if there exists a contribution vector

(t′i, t
′
j) with t′i + t′j = 1, t′i %i ti and t′j %j tj with either t′i �i ti or t′j �j tj. An allocation is

strongly stable if it cannot be weakly blocked by any pair of agents.

Example 1. Let N = {1, 2, 3, 4}. Agents’ peaks are summarized in Table 2.3

p1 p2 p3 p4

0.1 0.4 0.4 0.4

Table 2.3: Peaks of agents in Example 1.

We conjecture that, according to this preference profile, in every stable allocations σ the

contribution ti for every agent i ∈ N should be 0.5.

Every allocation is formed of two pairs, thus the contribution values of two non matched

agents: tσi and tσj are greater or equal to 0.5.

Suppose by contradiction that tσj > 0.5, then there exists 0 < ε ≤ 0.1 such that 0.5 <

0.5 + ε < tσj . In this case agents i and j can block the allocation with (i, j, 0.5 − ε). Thus,

tσi = tσj = 0.5 and the contributions of agents’ i and j partners must be 0.5 too. In particular,

the utilities of the agents in any stable allocation are the same, summarized in table 2.4.

Let us now consider the allocation τ = {(1, 2, 0.35), (3, 4, 0.5)}. The utilities of agents in

τ are summarized in Table 2.4 too.

p1 p2 p3 p4

σ 0.6 0.9 0.9 0.9

τ 0.75 0.75 0.9 0.9

Table 2.4: Utilities of agents in τ and σ.

The max-min welfare of τ is 0.75, while the max-min welfare of σ is 0.6. Thus σ does

not maximise the max-min welfare function.

Let us consider now a concave separable symmetric welfare function like

W (γ) =
∑

i∈N

f(ui(t
γ
i )),
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where f : [0, 1] → R is a increasing strictly concave function.

Recall that Equation 2.6 holds as an equality only if x1 = x2. Thus f(0.6) + f(0.9) <

f(0.75) + f(0.75) and W (σ) < W (τ).

Notice that τ and σ have, however, the same utilitarian welfare: 3.3. 2

Example 1 shows an important limitation of more egalitarian welfare functions in our

model. To maximise these kind of functions in many cases we are required to split equally

the utility within the pairs, but this may harm stability: in fact, in our model some agents, in

particular those whose peaks are nearest to the median 0.5, have more opportunities to block

an allocation. Thus, to ensure the stability it is necessary to grant them a more favourable

treatment.
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3 Stable and Efficient

Task Assignment to Pairs

Based on work by A. Nicolò, P. Salmaso, A. Sen, S. Yadav.

In many situations, agents are matched in teams in order to perform a task. Agents have

preferences over the task that they are asked to complete, as well as over the partners that

they are assigned to work with. Forming stable teams is often important - it ensures that

agents do not decide to abandon their assignments and do better for themselves.

We study a model in which a centralised authority matches agents in pairs and assigns

them a task. We are interested in mechanisms that satisfy stability, efficiency, and provide

incentives to agents to truthfully reveal their preferences.

This problem shares some features with two-sided matching models, like the roommate prob-

lem, since agents have preferences over their potential partners. It also has common features

with one-sided matching models like the house allocation model and the object assignment

model, because a task has to be assigned to each pair of agents. In this sense, this problem is

a hybrid of the two classical models. In this general setting it is very likely to have instances

in which no stable allocations exist due to the presence of cycles in agents’ preferences. For

this reason we turn our attention to a setting which is still general and describes interesting

real problems, and such that stable allocations always exist.

Individual preferences can be described by a graph in which each agent is a node. If

two nodes (agents) have a link they are ”friends”. In this case they may have a set of tasks,

possibly empty, that these agents like to perform together. Preferences over tasks are di-

chotomous but not separable, because the tasks that agent i likes to complete with agent

j can be different from the tasks that agent i would like to complete with another partner

k 6= j. The preferences over tasks are assumed to be pairwise symmetric among agents, i.e.

the set of tasks that agent i would like to complete with j coincides with the set of tasks that

j would like to do with i. Thus, for any pair of agents, there exists a set of common good

tasks (possibly empty). If agents are not linked, the set of common good tasks is empty.

Agent i’s preferences are defined over all partner-object tuples and the tuple in which agent

i remains alone. Partner-object tuples belong to three equivalence classes. The first equiva-

lence class consists of tuples where the agent is paired with a friend and this pair is assigned

an object from their common set. The second class contains the tuples in which the agent is
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matched with a friend, but the task they have to perform does not belong to the common set.

The third equivalence class consists of tuples where the agent is matched with someone she

is not friends with. We assume that each agent prefers to remain alone than being matched

with someone with whom she is not linked.

This setting describes many interesting situations. Consider for instance a police depart-

ment that assigns officers to different geographical areas (precincts) and neighborhood-based

enforcement personnel in each precinct assume responsibility for public safety management

within their geographic area. Officers have preferences over the precincts they are assigned

and patrol an area either alone or with a partner. Officers prefer to have a partner as long

as they trust on her and we assume that this feeling of confidence is reciprocal. A different

example is the case of partnerships among institutions, firms, or research centers that are

promoted by some national or international agency. In case of agencies in the EU, for in-

stance, only partnerships between institutions in two different countries can apply for funding

(i.e. can be linked, in our terminology); institutions like research centres have preferences

over both the projects and the potential partners, and apply to a call only with partners

with whom they may successfully carry out a project, even if they may decide to propose

projects that are less compelling to them but have higher probability to be funded. Our

setting applies to those cases in which only bilateral partnerships can be created and each

institution can only belong to at most one funded partnership.

To solve this centralised matching problem we propose an algorithm, the Object Constrained

Maximal Matching Algorithm (OCMMA), that generates a Pareto efficient and weak core

assignment. We also characterise the social choice function that associates the OCMMA

assignment at every preference profile by means of four axioms: OCMMA is the unique

assignment rule that satisfies Pareto efficiency, a restricted version of Maskin Monotonicity,

an invariance property with respect to deleted links and such that the outcome belongs to

the weak core.

3.1 Relationship to Existing Literature

In this chapter we consider a variant of the model proposed in Nicolò et al. (2019). Both

works analyse a model where agents have to be matched in pairs, and each pair must be

assigned an object. The agents have preferences over (partner, project) tuples. Both models

have dichotomous preferences over partners and objects. The set of possible partners is

partitioned into good and bad partners, and the set of projects is partitioned into good and

bad projects. However, while the preference domain in Nicolò et al. (2019) is separable over

partners and projects, i.e. the marginal component preferences over partners and projects

are independent, in the present work we assume that agents care more about partners than

objects, and that the partition in good and bad objects can depend on the partner.
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Finally, in the two works different set of properties are considered. In particular, efficiency

may not be reached in the algorithm presented in Nicolò et al. (2019), contrary to the

algorithm presented here.

These models relate to the classical roommate problem first introduced by Gale and

Shapley (1962) (see Roth and Sotomayor (1992) for a discussion) but they allow agents

to have preferences over both the roommate and the room. In this they reflect classical

assignment problems (Shapley and Scarf (1974)), with the crucial difference that agents are

replaced by couples of agents endogenously formed in our model.

A model more closely related to ours is Sethuraman and Smilgins (2015). In this unpub-

lished paper the authors extend the classical two sided marriage problem by including a set

of objects. Their model divides the agents in two sets, men and women, and each agent has a

preference over pairs formed by an object and an agent of the opposite gender. Men, women

and objects are considered to be in equal number and a matching is a collection of triples

(man, woman, object). The authors show that if there are no well specified property rights

on the object assigned to a pair and each agent can join a new pair with an object previously

assigned to her, then stability may be absent. The authors then assume that either only men

or women have ownership on the assigned object and can block an allocation by proposing

to share the owned object with a different partner of the opposite gender. In this case the

authors show that there always exists at least one stable matching.

Our model is different from the above one in four ways: first we consider a roommate prob-

lem, second we provide the possibility for agents to remain unmatched, third there are more

objects than the maximal number of pairs, and fourth we impose stronger restrictions on

admissible preference profiles while relaxing the conditions on admissible blockings.

An approach similar to Sethuraman and Smilgins (2015) has been followed by Combe (2017).

In this work, the author shows that a stable matching might fail to exist in a two-sided model

unless ownership on the objects is introduced. Moreover, efficiency is not always reached in

his model, as opposed to what we find in our model.

A more similar approach to the one presented in this chapter is followed by Burkett et al.

(2018). The authors propose a model of room assignment to pairs and investigate different

two-stage mechanisms that first match agents in pairs and then assign to each pair a room

according to a priority order. The preferences of the agents are similar to the one presented

in our model: the authors assume that the agents involved in a pair give identical value to

the pair, similarly to what we call pairwise alignment. Moreover, they assume that all the

agents assign equal value to the same room, whereas in our model preferences on objects

may depend on the pairing. The notion of stability is defined at the first stage, since agents

can block a matching only before receiving a room. The authors show that, if priority order

is determined at the first stage, stability may fail to exist, while a symmetric random priority

order determined after the first stage is ex-post stable. Notice, however, that their notion

of stability is different from ours. Moreover, it should be noted that we investigate many
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different properties such as efficiency, restricted Maskin monotonicity, etc.

Another related model is a variation of the stable roommate model called “stable activi-

ties”, proposed by Cechlárová and Fleiner (2005). In this model agents, once matched, can

choose between different activities to perform as a pair, and their preferences are defined

over partner-activity pairs. In the same paper, equivalence to the original roommate prob-

lem by Gale and Shapley (1962) has been proved. While in their model each activity can

be allocated an arbitrary number of times, in our model they can be allocated at most once.

For our model we do not expect equivalence with the original roommate problem to hold,

since our model takes many features and restrictions from assignment models, which would

be trivial without the assumption that an object can be allocated a maximum number of

times.

Pycia (2012) showed a very general result on the existence of stable coalitions. From his

work we take the concept of pairwise alignment, that is fundamental in our setting as well.

However, the presence of objects in our model make it not completely embeddable in his

model. In fact, the notion of stability in Pycia (2012) considers a blocking coalition only

a coalition where every agent involved strictly improves. If we consider objects as agents

in our setting, however, they clearly cannot strictly improve. Moreover, we do not restrict

ourselves to prove only results about coalition stability and we show a full characterization

that involves many more axioms.

Another stream of papers that is loosely linked to our model concerns threesome match-

ings. In these models agents are divided in three groups and a matching is a collection

of triples of agents belonging to different groups. Alkan (1988) considered a model where

agents have preferences over pairs of agents of the other two groups and showed that a stable

matching may not exists even when agents’ preferences are separable. Biró and McDermid

(2010) consider a similar model where preferences are cyclic, thus agents in the first group

only care about the agent in the second group they are matched with, etc. However, these

models are different from ours, as the absence of objects make them more similar to Pycia

(2012) model than to our model.

Finally Raghavan (2018) considers an allocation problem where objects are assigned to

pairs of agents but only have preferences over objects and not on their partner.

3.2 The Model

Let there be a finite set of agents N = {1, 2, . . . , i, j, . . . , n} and a finite set of objects denoted

by A. We assume that there is a“sufficiently large number”of objects; in particular |A| ≥ |N |
2
.

In our model, each agent is either assigned a partner and object or remains alone. Re-

maining alone is interpreted as being assigned the special object a∗, which is the outside

option for all agents. A triple consists either of two distinct agents and an object or an

agent, the null set and the object a∗. Formally, a triple t is either (i, j, a) where i, j ∈ N ,
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i 6= j and a ∈ A or (i, ∅, a∗). The former signifies that i and j have been paired together

with the alternative a; the latter indicates that i is unmatched. We shall write i ∈ t if t is

either of the form (i, j, a) or (i, ∅, a∗). Abusing notation slightly, we shall also write a ∈ t

if t = (i, j, a) and a∗ ∈ t if t = (i, ∅, a∗). Let T denote the set of all triples. For any i, Ti

denotes the triples to which i belongs, i.e. Ti = {t ∈ T |i ∈ t}.

Let S ⊆ N with S 6= ∅. The collection of triples α ⊂ T is an assignment for S (or a

partial assignment) if the following conditions hold: (i) for all i ∈ S, there exists a unique

t ∈ α such that i ∈ t (ii) for every i /∈ S, there does not exist t ∈ α such that i ∈ t and (iii)

for all a 6= a∗, |{t ∈ α|a ∈ t}| ≤ 1. According to the definition, no agent outside S is part of

any triple in α. Every agent in S either remains alone or is matched to another unique agent

in S. Finally, every object that is not the outside option is assigned to at most one triple

in α, i.e. such an object cannot be assigned to two pairs in S. If α is an assignment for S,

we shall write S = N(α). Suppose S = N(α). Then A(α) = {a ∈ t|t ∈ α}, i.e. A(α) is the

set of objects assigned to the members of N(α). Note that a∗ ∈ A(α) in case some members

of S(α) are unmatched in α. Let uα = A \ A(α); it is the set of objects not assigned in

α. The partial assignments σ, τ are said to be mutually consistent if N(σ) ∩ N(τ) = ∅ and

A(σ) ∩ A(τ) = ∅.

Let Σ denote the set of all partial assignments. A particular class of partial assignments

is of special interest. A partial assignment is complete if N(α) = N .1 A complete assignment

will be referred to simply as an assignment. Let Σc denote the set of (complete) assignments.

Clearly Σc ⊂ Σ.

3.2.1 Preferences

Each agent has a preference ordering over all triples that she belongs to. In the standard

model, it is customary to start with agent preferences and define a preference profile as a

collection of agent preferences. In our model, we shall find it convenient to do the reverse -

to start with the notion of a preference profile and deduce preferences from it.

A preference profile % is a weighted undirected graph consisting of the following elements:

1. A set of nodes which is the set of agents N .

2. A set of edges or links denoted by L%. If agents i, j ∈ N are linked, we say (i, j) ∈ L%.

These links are undirected in the sense that no distinction is made between (i, j) and

(j, i).

3. A “weight” associated for each link (i, j) ∈ L%, which is a set of objects denoted by

A%(i, j). We allow for the possibility that A%(i, j) = ∅. In this case, we refer to the

link (i, j) as an empty link. We denote the set of empty links by E%.

1Note that in this case, requirement (ii) is satisfied vacuously.
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A pair of agents (i, j) are “friends” (or are linked) if (i, j) ∈ L%. By assumption, the

notion of friendship/linkedness is symmetric - if i is a friend of j, then j is a friend of i. The

set A%(i, j) is the set of tasks/objects that the linked pair (i, j) would like to perform/own

together. Our assumption regarding the symmetry of friendship makes it natural to assume

that the tasks that i likes to perform with j are “exactly” the same as the ones that j

likes to perform with i. An important feature of our model is that an agent may like to

perform different tasks with different agents she is linked to. For instance, University i likes

to collaborate on projects in Physics and Chemistry with University j, but with University

k on projects in Economics and Management.2 We also allow for the possibility that i and

j are linked but have no tasks that they would like to perform together.

A preference profile % induces a preference ordering %i for all i ∈ N . The ordering %i

is defined over Ti. The asymmetric component of %i is denoted by �i. For this purpose, we

define the sets H1(%, i), H2(%, i) and H3(%, i) below.

1. H1(%, i) = {(i, j, a) ∈ Ti : (i, j) ∈ L% and a ∈ A%(i, j)}.

2. H2(%, i) = {(i, j, a) ∈ Ti : (i, j) ∈ L% and a /∈ A%(i, j)}.

3. H3(%, i) = {(i, j, a) ∈ Ti : (i, j) /∈ L%}.

Here H1(%, i) is the set of triples where i is matched to a friend and is given an object

that both like. The set H2(%, i) is the set of triples where i is matched to a friend but is

not given an object that they both like. A triple where i is matched to a friend with whom

she has an empty link is also included in this set. Finally, H3(%, i) consists of triples where

i is matched to an agent with whom she has no link. Observe that the only triple in Ti that

does not belong to any of the sets Hk(%, i), k ∈ {1, 2, 3} is the triple (i, ∅, a∗) where i is

unmatched.

The preference ordering %i is constructed as follows: the sets Hk(%, i), k ∈ {1, 2, 3} form

equivalence classes with H1(%, i) ranked strictly above H2(%, i), which in turn is ranked

strictly above H3(%, i). In addition, the triple (i, ∅, a∗) is ranked strictly above triples in

H3(%, i) and strictly below triples in H2(%, i). More formally,

H1(%, i) �i H2(%, i) �i (i, ∅, a
∗) �i H3(%, i).

Observation 10. The preferences of agents satisfy a property of pairwise alignment, similar

to the one defined in Pycia (2012).3 In particular, for any agent pair (i, j), x ∈ A and

k ∈ {1, 2, 3}, we have [(i, j, x) ∈ Hk(%, i)] ⇔ [(i, j, x) ∈ Hk(%, j)].

2This means A%(i, j) may be different from A%(i, k) when (i, j), (i, k) ∈ L%.
3Note that original Pycia property is defined in a context where coalition of more than two agents have

to be admissible, and is silent in matching models.
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Figure 3.1: Preference Profile % in Example 2.

For any preference profile % and k ∈ {1, 2, 3}, we let Hk(%) denote the set of all triples

that are ranked in equivalence class k by some agent, i.e. Hk(%) := ∪i∈NHk(%, i). We also

denote the set of all preference profiles % by R. We illustrate these notions by means of an

example.

Example 2. Suppose that N = {1, 2, 3, 4, 5, 6} and A = {a, b, c} The graph in Figure 3.1

represents the preference profile %.

Note that L% = {(1, 2), (3, 4), (3, 5)}, A%(1, 2) = {a}, A%(3, 4) = {a, b}, while A%(3, 5) =

∅ (i.e. (3, 5) is an empty link). The graph specifies the preferences of all agents. For example,

the first indifference class for agents 1 and 3 are H1(%, 1) = {(1, 2, a)} and H1(%, 3) =

{(3, 4, a), (3, 4, b)}, respectively. The second indifference class for agents 1 and 3 are H2(%, 1)

= {(1, 2, b), (1, 2, c)} and H2(%, 3) = {(3, 4, c), (3, 5, a), (3, 5, b), (3, 5, c)}, respectively. The

third indifference class for agent 1 consists of triples where she is matched with agents 3, 4,

5 or 6 with any object. Similarly, the third indifference class for agent 3 consists of triples

where he is matched with agents 1, 2 or 6 with any object. Both agents prefer being alone to

any triple in their third indifference class. Thus (1, ∅, a∗) �1 (1, 6, a), for instance. Note that

H1(%) = {(1, 2, a), (3, 4, a), (3, 4, b)} andH2(%) = {(1, 2, b), (1, 2, c), (3, 4, c), (3, 5, a), (3, 5, b),

(3, 5, c)}. 2

3.3 Axioms

In this section, we introduce various axioms pertaining to a problem. A social choice function

(SCF) associates an assignment with every preference profile. Formally, it is a function

f : R → Σc. For any preference profile %∈ R and i ∈ N , let fi(%) denote the triple to which

agent i belongs to in the assignment f(%).
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3.3.1 Blocking, Stability and Efficiency

The notion of stability is a familiar one in the matching literature.4 An assignment is in the

(weak) core if it cannot be (strongly) blocked by any coalition.5 A coalition can block an

assignment if there exists a “feasible” partial assignment for the coalition which makes every

member of the coalition strictly better off. The notion of feasibility depends critically on the

objects that are assumed to be available to the coalition. For our purpose, we will assume

that the objects available to the coalition for blocking an assignment are of two kinds - all

unassigned objects and objects that are assigned to pairs where the agents in the pair are not

in the first indifference class. For instance, consider the assignment (1, 2, a), (3, 5, c), (4, 6, b)

in Example 2. The set of objects available to the coalition S = {3, 5} for blocking this

assignment is {b, c}. Although b is assigned to the pair (4, 6), we allow it to be stolen by

S since neither 4 nor 6 “like” b. We therefore have a permissive notion of blocking which is

appropriate since we will prove a possibility result. We describe this formally below.

Let σ and % be an assignment and a preference profile respectively. Define the set

Aσ,% = A \ {a ∈ A : ∃i, j ∈ N such that (i, j, a) ∈ σ and (i, j, a) ∈ H1(%)}. We shall assume

that Aσ,% is the set of objects available to any coalition S for blocking the assignment σ.

Definition 12. A coalition S strongly blocks the assignment σ at preference profile % if

there exists a partial assignment σ such that (i) N(σ′) = S, (ii) A(σ′) ⊆ Aσ,% and (iii) every

agent in i ∈ S is strictly better-off in σ than in σ according to %i. An assignment is in the

weak core if it is not strongly blocked by any coalition.

According to our definition of the weak core, any agent i who is placed in the indifference

class H1(%, i) will never be part of any blocking coalition. Also agents who are placed in

H3(%, i) will block by breaking the pair ane remaining on their own.

A related notion is Pareto efficiency.

Definition 13. An assignment σ Pareto dominates an allocation τ at % if for all i ∈ N , i is

at least as well-off in τ than in σ and there exists at least an agent k who is strictly better-off

in τ than in σ. An assignment is Pareto efficient if there does not exist an assignment that

Pareto dominates it.

Stability and Pareto efficiency are independent in our model. Consider the assignment σ

with the triples (1, 2, a), (3, 5, b), (4, ∅, a∗), (6, ∅, a∗) in Example 2. Observe that the coalition

{3, 4} can block with the partial assignment (3, 4, b). However, this assignment is Pareto

efficient. Suppose τ Pareto dominates σ. Then, there must exist an agent who is strictly

better-off in τ than in σ. Since agents 1 and 2 are in the first class in σ, they should remain

4See Roth and Sotomayor (1992).
5All over the chapter the weak core is the only notion of core we consider, thus we will call it simply

“core” and the strong blocking simply “blocking”.
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Figure 3.2: Preference Profile %′ in Example 3.

in the first class in τ as well. Thus (1, 2, a) must belong to τ . Since agent 5 is in the second

indifference class in σ, she must remain in the second class, i.e. she is with agent 3 in τ .

The two remaining agents, 4 and 6, are unmatched in σ and must remain so in τ in order

to be as well-off as before. Therefore, no agent strictly improves in τ and τ does not Pareto

dominate σ.

The next example shows that an assignment can be in the weak core but not Pareto-

efficient.

Example 3. Suppose that N = {1, 2, 3, 4} and A = {a, b}. The graph in Figure 3.2

represents the preference profile %′.

Consider the assignment σ with the triples (1, 2, a), (3, ∅, a∗), (4, ∅, a∗). Observe σ is in the

weak core because agents 1 and 2 are in their top indifference class and 3, 4 cannot improve.

On the other hand, τ := {(1, 3, a), (2, 4, b)} Pareto dominates σ. 2

We will say that a SCF is stable if its value at any preference profile belongs to the weak

core. Similarly a SCF is Pareto efficient if its value at every preference profile is Pareto

efficient.

3.3.2 Maskin Monotonicity

Maskin monotonicity (MM) is a well-known axiom in allocation theory. It was introduced

in Maskin (1999) as a necessary condition for the Nash implementability of social choice

correspondences. It can also be justified as an axiom in its own right. It has been used in in

Kojima and Manea (2010) to characterise the Deferred Acceptance Algorithm.

Before defining the axiom formally, we introduce another piece of notation. The ordering

%i is defined over triples to which i belongs. This can be extended to assignments in an

obvious way: for any pair of assignments σ, τ ∈ Σc, we say σ %i τ if t % t′, where t and t′

are the (unique) triples to which i belongs in σ and τ , respectively.

Definition 14. The SCF f satisfies Maskin Monotonicity (MM) if, for all %,%′∈ R,

[f(%) %i σ ⇒ f(%) %′
i σ for all σ ∈ Σc and i ∈ N ] =⇒ [f(%) = f(%′)].
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Let % be a preference profile and let f(%) = τ . Suppose %′ is another preference profile

with the property that all assignments that are less preferred to τ under % for all agents are

also less preferred to τ under %′ for all agents. If f satisfies Maskin Monotonicity, then f

must also choose τ under %′.

The MM condition has an important implication that distinguishes it from strategic

properties such as strategy-proofness and group strategy-proofness. Suppose %,%′ are two

preference profiles which differ only in the preferences of a strict subset of agents S ⊂ N .

Let f be an SCF which satisfies Maskin Monotonicity. Assume further that the assignment

f(%) “improves” in %′ for all agents in S. Maskin Monotonicity implies that the assignments

of all agents in N \ S also do not change. This implication cannot be deduced if f satisfies

only group strategy-proofness. Our characterization result depends heavily on this feature

of Maskin Monotonicity.

The MM condition is a very strong condition in our model, as the following proposition

shows. A similar result appears in Saijo (1987) for the unrestricted preference domain.

Proposition 6. Let f be a social choice function that satisfies Maskin monotonicity. Then

f is constant.

Proof : Let %,%′∈ R. Suppose f(%)(%′). Let %′′∈ R be the preference profile where all

agents are linked and each pair likes all objects, i.e. for any agent i ∈ N , all triples except

staying alone belong to H1(%
′′, i). Observe that f(%) %i σ =⇒ f(%) %′′

i σ for all σ ∈ Σc

and i ∈ N . Since f satisfies Maskin Monotonicity, we have f(%) = f(%′′). By an identical

argument, we conclude f(%′) = f(%′′). Thus f(%) = f(%′′) = f(%′) - a contradiction. �

We define a weaker version of the MM condition below.

Definition 15. Let %,%′∈ R be such that (i) for all t ∈ f(%), t is in the same equivalence

class in %′
i as in %i for all i ∈ N and (ii) for all t /∈ f(%), t is in the same or lower

equivalence class in %′
i as in %i for all i ∈ N . If the SCF f satisfies Resticted Maskin

Monotonicity (RMM), then f(%′) = f(%).

The RMM condition can be restated as follows. Suppose agents i, j are linked and get an

object a that they like in f(%). In %′, they must continue to be linked and to like a while

they may no longer like other previously liked objects. Agents i, j who are linked but not

assigned a commonly liked object, must continue to remain linked in %′. Other links which

are not used in the assignment f(%) may be broken. New links cannot be added nor can

linked agents add new objects to their set of commonly liked objects. The RMM condition

requires the same assignment to be chosen in %′. It is clear that the RMM condition is

weaker than MM since the antecedent of the former is weaker.
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3.3.3 Invariance with respect to deleted links

This axiom imposes restrictions on the SCF when a pair of agents who have an empty

link snap that link if they are assigned together by the SCF. The axiom requires that such a

change should not affect the assignments of agents who are already in the highest indifference

class. Changing the assignments of agents who were in their highest indifference class will

not serve any purpose in improving the well-being of the agents who are no longer friends. In

fact, the breaking of this link frees an extra object for possible assignment to other agents.

Definition 16. The preference profiles %,%′∈ R are (i, j)-empty link variants if (i) (i, j) ∈

E%, (ii) L%′ = L% \ {(i, j)} and (iii) A%′(k, l) = A%(k, l) for all (k, l) ∈ L%′. A SCF f

satisfies Invariance with respect to Deleted Links (IDL) if for all %,%′∈ R that are (i, j)-

empty link variants and (i, j, a) ∈ f(%) for some a ∈ A, then fk(%) = fk(%
′) for all

k ∈ N(f(%) ∩H1(%)).

The IDL axiom is independent of the MM axiom. Suppose that (i, j, a) ∈ f(%), where

the link between i and j is empty. If the link between i and j snaps, then the triple (i, j, a)

declines in both %′
i and %′

j. Under these circumstances, the antecedent of MM does not

apply.

3.4 Object Constrained Maximal Matching Algorithm

In this section, we describe the Object Constrained Maximal Matching Algorithm (OCMMA).

The algorithm is a simple sequential procedure which selects a weak core assignment. In the

next section, we will show that the OCMMA assignment is the unique assignment satisfying

the axioms elucidated in the previous section.

A partial assignment is (fully) contained in H1(%) if all agents in the partial assignment

are in the first indifference class according to %. The set of all partial assignments with this

property is denoted by F1(%), i.e. F1(%) = {σ ∈ Σ : σ ⊆ H1(%)}. The set F2(%) is defined

similarly, i.e. F2(%) = {σ ∈ Σ : σ ⊆ H2(%)}. Every assignment in F1(%) is composed

entirely of triples in H1(%) and every assignment in F2(%) is composed entirely of triples in

H2(%).

Returning to Example 2, the set F1(%) consists of the following sets - {(1, 2, a)}, {(3, 4, a)},

{(3, 4, b)} and {(1, 2, a), (3, 4, b)}. The set F2(%) contains many elements such as {(3, 5, a)},

{(3, 5, b)}, {(1, 2, c), (3, 5, b)}, {(1, 2, b), (3, 4, c)} etc.

Let %,%′ be such that F1(%) ⊆ F1(%
′). Every allocation composed of only one triple {t}

that belongs to F1(%) also belongs to F1(%
′). Thus all triples in H1(%) also belong to H1(%

′)

and H1(%) ⊆ H1(%
′). If H1(%) ⊆ H1(%

′), every partial assignment σ entirely composed of

triples in H1(%) is composed of triples in H1(%
′). Thus F1(%) ⊆ F1(%

′). Similarly we can

show F2(%) ⊆ F2(%
′) ⇔ H2(%) ⊆ H2(%

′). We record these facts below.
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Observation 11. We have [F1(%) ⊆ F1(%
′) ⇔ H1(%) ⊆ H1(%

′)] and [F2(%) ⊆ F2(%
′) ⇔

H2(%) ⊆ H2(%
′)].

We have [F1(%) = F1(%
′) ⇔ H1(%) = H1(%

′)] and [F2(%) = F2(%
′) ⇔ H2(%) = H2(%

′)].

We define the sets Fk, k ∈ {1, 2}, as follows,

Fk = {F ⊆ Σ : ∃ %∈ R such that F = Fk(%)}.

An important observation is that F1 = F2. In order to see this, pick an arbitrary

preference profile %. Let %c be the preference profile such that (i) L%c = L% and (ii)

A%c(i, j) = A \ A%(i, j) for all (i, j) ∈ L%. As a consequence, H1(%
c) = H2(%), H2(%

c) =

H1(%) and H3(%
c) = H3(%). These imply F1(%

c) = F2(%) and F2(%
c) = F1(%), thanks to

Observation 11. Let F := F1 = F2.

The OCMMA algorithm is defined by an admissible collection 〈C1, {C
σ
2 }σ∈Σ〉 where

1. C1 : F → Σ is a Stage 1 choice function and

2. Cσ
2 : F → Σ is a Stage 2 choice function parameterised by the partial assignment

σ ∈ Σ.

Definition 17. The collection 〈C1, {C
σ
2 }σ∈Σ〉 is admissible if it satisfies the following con-

ditions.

1. Feasibility: For all F ∈ F and σ ∈ Σ, the partial assignments σ and Cσ
2 (F ) are

mutually consistent.

2. Stage 1 maximality: For all F ∈ F , there does not exist σ ∈ F such that N(C1(F )) ⊂

N(σ).

3. Stage 2 maximality: For all F ∈ F , σ ∈ Σ, τ ∈ F , If N(τ) ⊃ N(Cσ
2 (F )) then τ and σ

are not mutually consistent.

4. Contraction consistency 6: For all σ ∈ Σ and for all F, F ′ ∈ F such that F ′ ⊆ F , we

have

(a) [C1(F ) ∈ F ′] ⇒ [C1(F ) = C1(F
′)] and

(b) [Cσ
2 (F ) ∈ F ′] ⇒ [Cσ

2 (F ) = Cσ
2 (F

′)].

6This property is referred to as Sen’s Property α in the literature on the rationalizability of choice functions

(see Rubinstein (2012)).
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We now describe the OCMMA algorithm. Let 〈C1, {C
σ
2 }σ∈Σ〉 be an admissible collection.

Fix an arbitrary preference profile %. The assignment induced by the OCMMA algorithm

is described below.

Step I: Apply C1 to F1(%) to generate the partial assignment σ1 = C1(F1(%)).

Step II: Apply apply Cσ1

2 to F2(%) to generate σ2 = Cσ1

2 (F2(%)).

Step III: Match the remaining agents to the outside option, i.e. σ3 = {(i, ∅, a∗)}i/∈N(σ1∪σ2).

The outcome of the algorithm is σ1 ∪ σ2 ∪ σ3.

The feasibility condition in Definition 17 ensures that the partial assignments generated

in Steps I and II are mutually consistent and the algorithm is well-defined. The Stage 1

maximality condition in Definition 17 requires that a “largest possible” partial assignment

(in terms of set inclusion) is chosen in Step I. The Stage 2 maximality condition is very similar

to its Stage 1 counterpart, except that it is the largest possible but amongst those that are

feasible in Stage 2. The contraction consistency condition is well known in choice theory. If

the choice from a set belongs to a particular subset, then the choice from the subset must

coincide with that from the larger set. In our setting the contraction consistency property,

moreover, implies an even stronger property, as the following lemma shows.

Lemma 11. Let 〈C1, {C
σ
2 }σ∈Σ〉 be an admissible collection. Then for all σ ∈ Σ and for all

F, F ′ ∈ F ,

1. [C1(F ) ∈ F ′] ∧ [C1(F
′) ∈ F ] ⇒ C1(F ) = C1(F

′) and

2. [Cσ
2 (F ) ∈ F ′] ∧ [Cσ

2 (F
′) ∈ F ] ⇒ Cσ

2 (F ) = Cσ
2 (F

′).

Proof : Let us first prove part 1 of the lemma. We claim that there exists F ′′ ∈ F such

that [C1(F ) ∈ F ′′]∧ [C1(F
′) ∈ F ′′] and F ′′ ⊆ F ∩F ′. In fact, let % and %′ be two preference

profiles such that F1(%) = F and F1(%
′) = F ′, and let %′′ be a preference profile such that

H1(%
′′) = C1(F ) ∪ C1(F

′). Notice that

• C1(F ) belongs to F1(%) and to F1(%
′), thus it is contained in both H1(%) and H1(%

′),

• C1(F
′) belongs to F1(%) and to F1(%

′), thus it is contained in both H1(%) and H1(%
′)

Thus H1(%
′′) = C1(F ) ∪ C1(F

′) ⊆ H1(%) ∩ H1(%
′). By Observation 11 this implies that

F ′′ = F1(%
′′) ⊆ F1(%) ∩ F1(%

′) = F ∩ F ′ and this proves the claim. By Contraction

consistency then C1(F ) = C1(F
′′) = C1(F

′).

The proof of part 2 of the lemma is analogous. �

We illustrate OCMMA with an example.
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Figure 3.3: Preference Profile % in Example 4.

Example 4. Let N = {1, 2, . . . , 8} and A = {a, b, c, d}. Consider the preference profile

whose graph is in figure 3.3.

We define the sets H1(%), H2(%) and H3(%) using the preference profile %. Observe that

H1(%) = {(1, 2, a), (3, 4, b), (3, 5, a), (7, 8, a)}. The other sets can be defined similarly.

Consider a complete order�Σ defined on the set of partial assignment Σ with the following

property: for all σ, τ ∈ Σ such that N(σ) ⊃ N(τ) → σ �Σ τ .

The OCMMA algorithm chooses assignments in three steps as follows. In Step I, it

chooses a maximal partial assignment (σ1) using the order from the set F1(%). In Step II,

it removes the agents and objects who have been assigned in Step I; then, it defines the

set F2(%) appropriately over the unassigned agents and objects and it chooses the maximal

partial assignment (σ2) from the set F2(%). Finally, in Step III, all remaining agents remain

in their own.

The set F1(%) contains partial assignments, like {(1, 2, a), (3, 4, b)}, {(3, 5, a)} etc. Note

that both these assignments are maximal with respect to set inclusion. Assume (3, 5, a) �Σ

{(1, 2, a), (3, 4, b)}. Then σ1 = {(3, 5, a)}.

In Step II, the partial assignment {(1, 2, b), (7, 8, c)} may be chosen by �Σ from the set

F2(%). Finally in Step III, the OCMMA forms the triples (4, ∅, a∗) and (6, ∅, a∗). 2

A feature of this example is that the Stage 1 and Stage 2 choice functions are induced

by a complete order on the set of all partial assignments Σ. It is well known from standard

decision theory that if all possible subsets of partial assignments could be generated as F1(%)

then contraction consistency would imply the existence of such an ordering.7 However this

is not the case in our model as shown in the example below.

Example 5. Let N = {1, 2, 3, 4, 5, 6} and A = {a, b, c}. Consider the preference profiles %1,

%2 and %3 in Figure 3.4.

Suppose C1(F1(%
1)) = {(1, 2, a)(3, 5, b)} = α, C1(F1(%

2)) = {(3, 4, b)(2, 6, c)} = β and

C1(F1(%
3)) = {(5, 6, c)(2, 3, a)} = γ. Observe that β ∈ F1(%

1), γ ∈ F1(%
2) and α ∈ F1(%

3).

However there does exist a preference profile %∈ R such that F1(%) = {α, β, γ}. Any

preference profile % with the property that α, β, γ ∈ F1(%) would look like the profile %4

in Figure 3.5. But then δ belongs to F1(%
4) where δ = {(1, 2, a), (3, 4, b), (5, 6, c)}. We can

have C1(F1(%
4)) = δ without contradicting contraction consistency. 2

7See Rubinstein (2012).
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Figure 3.4: Preference profiles %1, %2, %3 in Example 5.
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Figure 3.5: Preference profile %4 in Example 5.

3.5 The Result

We can now state our main result.

Theorem 7. A SCF f is Pareto efficient, satisfies RMM, IDL and belongs to the weak core

if and only if there exists an admissible collection 〈C1, {C
σ
2 }σ∈Σ〉 such that the outcome of

the OCMMA algorithm induced by this collection at the preference profile % is f(%).

Proof : We begin by showing that the assignment generated by OCMMA from the admissi-

ble collection satisfies the axioms mentioned above. Let % be an arbitrary preference profile

and σ = σ1∪σ2∪σ3 be the assignment generated by the algorithm at % as described earlier.

Pareto efficiency: We assume for contradiction that σ is not Pareto efficient, i.e. there exists

τ ∈ Σc such that τ Pareto dominates σ. We will show that N(τ ∩ H1(%)) = N(σ1) and

N(τ ∩H2(%)) = N(σ2).

Since τ Pareto dominates σ, we have N(σ1) ⊆ N(τ ∩H1(%)). It is clear that τ ∩H1(%

) ∈ F (%). By Stage 1 maximality, we know N(σ1) 6⊂ N(τ ∩ H1(%)). Therefore N(σ1) =

N(τ ∩H1(%)).

We will now show N(τ ∩ H2(%)) = N(σ2). Pareto efficiency of τ implies that N(σ2) ⊆

N(τ ∩ H2(%)). Suppose τ ∩ H2(%) ∈ F2(%). Then, by Stage 2 maximality, N(σ2) 6⊂

N(τ ∩ H2(%)). Thus N(σ2) = N(τ ∩ H2(%)). Suppose τ ∩ H2(%) /∈ F2(%). Construct a

partial assignment α as follows: N(α) = N(τ∩H2(%)) and the agents in α are paired exactly

as in τ ; however, they are assigned objects in A \ A(σ1). By construction, α ∈ F2(%). By

Stage 2 maximality, we have N(σ2) 6⊂ N(α). Since N(α) = N(τ ∩ H2(%)), it follows that

N(σ2) 6⊂ N(τ ∩H2(%)). Therefore, N(σ2) = N(τ ∩H2(%)).
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Since N(σ1) ⊆ N(τ ∩ H1(%)) and N(σ2) = N(τ ∩ H2(%)), the remaining agents in

N(σ3) cannot strictly improve in τ compared to σ. Therefore, τ does Pareto dominate σ

contradicting our hypothesis.

Weak core: Consider a coalition S which blocks σ. Since agents must strictly improve by

blocking, none of the agents k ∈ S belong to any triple in σ1. Pick an arbitrary agent i ∈ S.

Let (i, j, a) be the triple in the partial assignment used to block σ. Suppose i improves to

H1(%, i). By pairwise alignment, her partner j must also improve to H1(%, j). Furthermore

a /∈ A(σ1). But then (i, j, a) should have been assigned in Step 1 by virtue of Stage 1

maximality.

Suppose i improves to H2(%, i). By pairwise alignment, her partner j also improves to

H2(%, j). This implies that agents i and j belong to triples in σ3. Since both agents strictly

improve by blocking, (i, j) ∈ L%. This in turn implies that i and j should have been paired

together with some object in A \ A(σ1) by OCMMA in Step 2 in order to satisfy Stage 2

maximality.

IDL: Consider %,%′∈ R such that %,%′ are (i, j)-empty link variants and (i, j, a) ∈ f(%)

for some a ∈ A. By the definition of (i, j)-variants, we know H1(%) = H1(%
′). This implies

F1(%) = F1(%
′). The OCMMA procedure implies σ1 = C1(F1(%)) = F1(%

′). Therefore

fk(%) = fk(%
′) for all k ∈ N(f(%) ∩H1(%)).

RMM: Let %,%′∈ R be such that (i) for all t ∈ f(%), t is in the same equivalence class in

%′
i as in %i for all i ∈ N and (ii) for all t /∈ f(%), t is in the same or lower equivalence class

in %′
i as in %i for all i ∈ N . Recall f(%) = σ = σ1 ∪ σ2 ∪ σ3. Let f(%

′) = σ′ = σ′
1 ∪ σ′

2 ∪ σ′
3.

By the construction of %′, H1(%
′, i) ⊆ H1(%, i) for all i ∈ N . This implies H1(%

′) ⊆

H1(%). By Observation 11, we have F1(%
′) ⊆ F1(%). Also σ1 ∈ F1(%

′) by the construction

of %′. Since σ1 = C1(F1(%)) and C1(%) ∈ F1(%
′) ⊆ F1(%), contraction consistency implies

σ1 = C1(F1(%
′)) = σ′

1.

Note that some triples in H1(%) can decline to H2(%
′) and some in H2(%) can decline

further in %′. The latter can occur only if some triples not in σ2 break their links in %.

Construct an intermediate preference profile %̂ such that (i) L% = L%̂ and (ii) A%′(i, j) =

A%̂(i, j) for all (i, j) ∈ L%′ ∩ L%̂. This implies H1(%̂) = H1(%
′) and H2(%) ⊆ H2(%̂). Let

σ̂ = σ̂1∪ σ̂2∪ σ̂3 be the assignment chosen by OCMMA at %̂. The arguments in the previous

paragraph imply that σ1 = σ̂1. Once again the choice function used in Stage 2 is the same

in both % and %̂. By definition, σ̂2 and σ̂1 = σ1 are mutually consistent. Since L% = L%̂, we

have σ̂2 ∈ H2(%). These facts imply σ̂2 ∈ F2(%). Also F2(%) ⊆ F2(%̂) by Observation 11.

By contraction consistency, it must be the case that σ2 = σ̂2.

Returning to %̂,%′, we note that σ′
1 = σ̂1. In addition, H2(%

′) ⊆ H2(%̂). However a link

that is present in %̂ and not in % does not belong to σ̂2. Thus σ̂2 ∈ H2(%
′). We already

know that σ̂2 is mutually consistent with σ̂1 = σ′
1. These facts imply that σ̂2 ∈ F2(%

′).
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By Observation 11, F2(%
′) ⊆ F2(%̂). Contraction consistency implies that σ̂2 = σ′

2; hence,

σ′
2 = σ2. We have already established σ′

1 = σ1. Thus σ′
3 = σ3, as all agents in Step III of

OCMMA remain on their own.

Let f be a stable and efficient social choice function that satisfies RMM and IDL. We

will show that there exists an admissible collection 〈C1, {C
σ
2 }σ∈Σ〉 such that the outcome of

the OCMMA algorithm induced by this collection at the preference profile % is f(%).

For the remainder of the proof we will call a link l such that A%(l) = A a full link in %. The

set of full links in % are denoted as F%(l).

Observation 12. Let % and %′ be two preference profiles.

• If H1(%) ⊆ H1(%
′), then

– every link l in L% that is not an empty link belongs to L%′ too;

– for every link l ∈ L% ∩ L%′ one has A%(l) ⊆ A%′(l).

• If H1(%) = H1(%
′), then

– every link l in L% that is not an empty link belongs to L%′ too; conversely, every

link l in L%′ that is not an empty link belongs to L% too;

– for every link l ∈ L% ∩ L%′ one has A%(l) = A%′(l).

• If H2(%) ⊆ H2(%
′), then

– every link l in L% that is not a full link belongs to L%′ too;

– for every link l ∈ L% ∩ L%′ one has A%(l) ⊇ A%′(l).

• If H2(%) = H2(%
′), then

– every link l in L% that is not a full link belongs to L%′ too; conversely, every link

l in L%′ that is not a full link belongs to L% too;

– for every link l ∈ L% ∩ L%′ one has A%(l) = A%′(l).

Along this proof we will need to compare different preference profiles several times. For

later convenience, we introduce the following definitions.

• Given an allocation σ and a link (i, j), we say that (i, j) is active in σ if agents i and

j are matched in σ. Otherwise, we say that the link (i, j) is inactive in σ.

• Given a preference profile % and a set of links S ⊆ L%, we say that we obtain the

preference profile %′ by removing the set L from % when L%′ = L% \ L and A%′(l) =

A%(l) for every link l ∈ L%′ .
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• Given a preference profile % and a set of triples T ⊆ H1(%) we say that we obtain the

preference profile %′ by downgrading the set T in % when H1(%
′) = H1(%) \ T and

H2(%
′) = H2(%) ∪ T .

Observation 13. Note that RMM can be reformulated as follows:

”If we obtain %′ from % by downgrading a set T of triples in H1(%) \ f(%) and removing a

set L ⊂ L% of inactive links from %, then f(%′) = f(%).”

First, we prove the following lemma.

Lemma 12. Let % and %′ be two preference profiles such that F1(%) = F1(%
′), then

f(%) ∩H1(%) = f(%′) ∩H1(%
′).

Proof : If %=%′ there is nothing to prove, thus let us suppose that the two preference

profiles are different.

Notice that, by Observation 11, F1(%) = F1(%
′) ⇒ H1(%) = H1(%

′). From now on we will

call the latter set H1(%). By Observation 12, for every non-empty link l in L%, l belongs to

L%′ too, and A%(l) = A%′(l), the opposite holds too. Therefore, % and %′ differ at most by

their set of empty links, E% and E%′ , respectively.

Let us consider first the case where we obtain %′ by removing the empty link (i, j) ∈ E%

from %. We now have two options.

• If i and j are not matched in f(%), then, by Restricted Maskin Monotonicity, f(%) =

f(%′). In particular f(%) ∩H1(%) = f(%′) ∩H1(%
′).

• Otherwise, there exists a ∈ A such that (i, j, a) ∈ f(%). In this case, by IDL, f |H1(%)(%

) = f |H1(%)(%
′). This means that f(%) ∩H1(%) ⊆ f(%′) ∩H1(%).

Actually, one has f(%) ∩H1(%) = f(%′) ∩H1(%). In fact, let us suppose, by contra-

diction, that f(%)∩H1(%) ⊂ f(%′)∩H1(%). Then, there exists a triple t = (k, h, b) ∈

(f(%′)∩H1(%)) \ (f(%)∩H1(%)). Since f(%′) is an allocation, the agents h and k do

not belong to N(f(%)∩H1(%)), thus they are not in the first class in f(%); moreover,

one has a /∈ A(f(%) ∩H1(%)), thus the object a is available for any coalition to block

the assignment f(%). In particular, the coalition {h, k} can block the assignment f(%)

using (h, k, a). Contradiction, because f is stable.

Let us consider now the general case where H1(%) = H1(%
′), while E% 6= E%′ .

In this case we can build a sequence of preference profiles %0,%1,%2, ...,%k such that

• the preference profile %0 is equal to %,

• the preference profile %k is equal to %′,

• for every n ∈ {0, ..., k− 1} either %n+1 is obtained from %n by removing an empty link

(in, jn), or %n is obtained from %n+1 by removing an empty link (in, jn).
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By the previous case, for every n ∈ {0, ..., k − 1} one has f(%n) ∩H1(%n) =

f(�n+1) ∩H1(%n+1). Thus, f(%) ∩H1(%) = f(%′) ∩H1(%
′).

�

As a consequence of this lemma we can define a choice function C1(F1(%)) as

f(%) ∩H1(%).

Lemma 13. C1(F1(%)) satisfies contraction consistency.

Proof : Let us suppose that F1(%) ⊃ F1(%
′) and f(%)∩H1(%) ∈ F1(%

′). We want to prove

that f(%) ∩H1(%) = f(%′) ∩H1(%
′).

Notice that, by Remark 11, F1(%) ⊃ F1(%
′) ⇒ H1(%) ⊃ H1(%

′).

Since C1(F1(%)) and C1(F1(%
′)) do not depend on the particular choice of % and %′, but

only on the specific sets F1(%) and F1(%
′), we can restrict ourselves to consider the case

where %′ and % have the same set of links L%.
8 Thus, %′ is obtained from % by removing

a set S ⊆ H1(%) of triples. Notice that every triple t ∈ f(%) ∩ H1(%) belongs to H1(%
′),

hence t does not belong to S.

Thus, by Restricted Maskin Monotonicity, f(%) = f(%′). Since f(%) ∩ H1(%) ∈ F1(%
′),

f(%) ∩H1(%) = f(%′) ∩H1(%
′).

�

Lemma 14. C1(F1(%)) respects stage 1 maximality.

Proof : Let A ∈ F and σ, τ ∈ A be partial allocations such that N(σ) ⊂ N(τ). We want

to prove that C1(A) 6= σ. Let us consider a preference profile % such that H1(%) = τ ∪ σ

and such that % does not have empty links, so that the only links in % are within agents in

N(τ). Notice that F1(%) ⊆ A.

Let us suppose by contradiction that C1(A) = σ. Thus, by contraction consistency,

C1(F1(%)) = σ, i.e. f(%) ∩ H1(%) = σ. Let us consider τ̄ as an allocation that coincides

with τ on N(τ) and that completes it giving the outside option to every agent not in N(τ),

i.e. τ̄ = τ ∪ {(i, ∅, a∗)}i∈N\N(τ). τ̄ Pareto dominates f(%) since:

• agents in N(σ) are in the first indifference class according to both f(%) and τ̄ ,

• agents in N(τ) \N(σ)9 are in the first indifference class according to τ̄ and not in the

first indifference class according to f(%),

• agents in N \N(τ) have no links in %, so their best option is the outside option, which

is provided by τ̄ .

8Note that some of the links in L% may be empty links in % or in %′.
9This set is not empty, as by assumption N(σ) ⊂ N(τ).

83



We have thus a contradiction since the outcomes of f are Pareto efficient, thus

f(%) ∩H1(%) 6= σ and C1(A) 6= σ.

�

Lemma 15. Let % and %′ be two preference profiles such that

• C1(F1(%)) = C1(F1(%
′)),

• F2(%) = F2(%
′).

Then f(%) ∩H2(%) = f(%′) ∩H2(%
′).

Proof : If %=%′ there is nothing to prove, thus let us suppose that the two preference

profiles are different.

Notice that, by Remark 11, F2(%) = F2(%
′) ⇒ H2(%) = H2(%

′). From now on we will

also call the latter set H2(%). Thus for every non-full link l in L%, l belongs to L%′ too and

A%(l) = A%′(l); the converse holds, too. Therefore, % and %′ differ at most by their set of

full links, F% and F%′ , respectively.

Let σ = C1(F1(%)) = C1(F1(%
′)). Notice that for every full link (i, j) that is present in %

and not in %′,

• i and j are not matched in σ, since σ ∈ F1(%) ∩ F1(%
′), and

• either i or j are in N(σ), since otherwise they could block f(%) with any object.

Therefore i and j are not matched in f(%), and (i, j) is inactive in f(%). An analogous

reasoning holds for every full link (i, j) that is present in %′ and not in %.

Thus, if we call %′′ the preference profile that has none of these links, i.e. such that

• L%′′ = L% ∩ L%′ , and

• for every link l ∈ L%′′ , A%′′(l) = A%(l) = A%′(l),

then, by RMM, f(%) = f(%′′) = f(%′).

�

We can then define Cσ
2 (A) = C

C1(F1(%))
2 (F2(%)) for every σ ∈ Σ and A ∈ F such that

there exists a preference profile % such that f(%) ∩H1(%) = σ and F2(%) = A.

All the other cases are never reached by f , thus, once proved that Cσ
2 (A) respects stage 2

maximality and contraction consistency, we can complete Cσ
2 in a way that respects these

property even on sets where the OCMMA Algorithm never applies it.

The feasibility property follows directly from the fact that f(%) is an allocation.
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Lemma 16. Cσ
2 satisfies contraction consistency.

Proof : Let % and %′ be two preference profiles such that

(C1(F1(%)) = C1(F1(%
′))) ∧ (F2(%) ⊆ F2(%

′)) ∧ (C2(F2(%
′) ∈ F2(%))

Let σ = C1(F1(%)) = C1(F1(%
′)) and suppose that the only full links in both % and %′ are

the ones that involve agents matched in σ. By Observation 11, F2(%) ⊆ F2(%
′) ⇒ H2(%) ⊆

H2(%
′). Thus,

• L% ⊆ L%′ , and

• for every link (i, j) ∈ L%, S%(i, j) ⊇ S%′(i, j) .

Let us now consider the preference profile %′′ such that

• L%′′ = L% ⊆ L%′ , and

• for every link (i, j) ∈ L%′′ , S%′′(i, j) = S%′(i, j) ⊆ S%(i, j).

Notice that F1(%
′′) ⊆ F1(%

′) and that σ ∈ F1(%
′′). Thus, by contraction consistency of C1,

C1(F1(%
′′)) = σ.

We can obtain %′′ by removing the set of links L := L%′ \ L% from %′′. Now, one has that

• σ ∈ F1(%), thus no link in L is active in σ,

• Cσ
2 (F2(%

′)) ∈ F2(%), thus no link in L is active in Cσ
2 (F2(%

′)) = f(%′) ∩H2(%
′),

• f(%′) is Pareto efficient, so there are no active links in f(%′) that are not in the first

or second indifference class, i.e. that are not active either in σ or in Cσ
2 (F2(%

′)).

Thus no link in L is active in f(%′) and, by RMM, f(%′′) = f(%′).

We can obtain %′′ by downgrading the triples in the set T := H1(%) \ H1(%
′). Since

f(%) ∩ H1(%) = σ ∈ F1(%
′), none of the triple in T belongs to f(%); thus, by RMM,

f(%) = f(%′). In particular, f(%) ∩H2(%) = f(%′) ∩H2(%
′). �

Lemma 17. Cσ
2 (F2(%)) satisfies the stage 2 maximality.

Proof : Suppose, by contradiction, that there exists an allocation τ ⊆ H2(%), feasible with

σ := C1(F1(%)), such that N(τ) ⊃ N(Cσ
2 (F2(%))).

We claim that, in this case, τ̃ := σ ∪ τ ∪ {(i, ∅, a∗)}i∈N\N(τ∪σ) Pareto dominates f(%). In

fact,

• agents in N(C1(F1(%))) are in the first class both in f(%) and in τ̃ ,
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• agents in N(C2(F2(%))) are in the second indifference class both in f(%) and in τ̃ ,

• agents in N(τ) \N(C2(F2(%))) are in the second indifference class in τ̃ and either get

the outside option or are in the third class in f(%), and

• all the remaining agents get the outside option in τ and either get the outside option

or are in the third class in f(%).

Contradiction, since f is Pareto efficient. �

�

3.6 Strategic Properties of the OCMMA

In this section we investigate the strategic properties of the OCMMA, in particular we dis-

cuss group strategy proofness.

We assume that the preferences of an agent are private information, and can be misre-

ported by an agent if she believes this could be advantageous. However, the assumption of

pairwise alignment of preferences introduces some complications in the standard model as

it imposes a restriction on preference profiles: individual announcements of preferences may

lead to profile announcements that are inconsistent with pairwise alignment. In particular,

an agent’s preferences are completely determined by preferences of other agents, thus she

cannot misreport without creating a preference profile that is not admissible. However, a

pair or even a group can coalize and misreport. Thus in this context it is more natural to

think about the strategic properties of the algorithm in term of group strategy proofness.

In the following, we show that the OCMMA satisfies group strategy proofness. Let %

denote a preference profile where %= (%1, . . . ,%n). Consider a non-empty coalition of agents

C ⊆ N .

Definition 18. An SCF f is manipulable at % by a non-empty coalition C ⊆ N if there

exists %̃ such that %̃i =%i for all i /∈ C and f(%′) �i f(%) for all i ∈ C. A SCF f is group

strategy-proof if it is not manipulable by any non-empty coalition C ⊆ N at any preference

profile %.

Theorem 8. The SCF induced by the OCMMA algorithm is group strategy-proof.

Proof : Let f be the SCF induced by the OCMMA algorithm. Consider an arbritrary non-

empty coalition C ⊆ N . Let % be a preference profile. We assume by contradiction that

there exists %̃ such that %̃i =%i for all i /∈ C and such that f(%̃) �i f(�) for all i ∈ C.
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Let σ = (σ1, σ2, σ3) be the assignment generated by the OCMMA at the preference profile

%. Let N1 be the set of agents who are allocated in Step 1 of the mechanism at %, i.e. N1

is the set of agents in N(σ1). Let A1 denote the set of objects allocated in Step 1 of the

mechanism at %, so A1 is A(σ1).

Let σ̃ = (σ̃1, σ̃2, σ̃3) be the assignment generated by the OCMMA at the preference profile

%̃. Let Ñ1 be the set of agents in σ̃1. Let Ñ1 and Ã1 denote the set of agents and the set of

objects allocated in Step 1 of the mechanism at %̃.

First notice that no agent is in the third indifference class in σ, thus no agent can improve

by getting the outside option in σ̃, and every agent in C has to be matched in σ̃.

Claim 1: C ∩N1 = ∅.

Proof : This is a trivial observation: since all agents in C must strictly improve when they

misreport and the agents in N1 are in the first indifference class, they cannot improve. �

Claim 2: For any pair of agents i, j ∈ C such that (i, j, a) ∈ σ̃, we have (i, j, a) ∈ H1(%).

Proof : Since agents i, j strictly improve by misreporting, (i, j, a) /∈ H3(%), thus (i, j) ∈ L%.

Since the outcome of the OCMMA is stable, we know that either agent i or agent j is

in the second indifference class in f(%),10 otherwise they could block with any object11.

Suppose w.l.o.g. that agent i ∈ H2(%) in f(%); in σ̃ agent i should be better off, thus

(i, j, a) ∈ H1(�i). By pairwise alignment, we have (i, j, a) ∈ H1(�j). Thus (i, j, a) ∈ H1(�).

�

Claim 3: σ1 = σ̃1. Thus N1 = Ñ1

Proof : We know by definition that σ̃1 ∈ F1(%̃). Let us suppose by contradiction that

σ̃1 ∈ F1(%̃) \ F1(%), this implies that σ̃1 is contained in H1(%̃) but it is not contained in

H1(%). In particular there exists a triple (i, j, a) in σ̃1 that is in H1(%̃) \ H1(%). Agents i

and j are thus misreporting since their preferences on (i, j, a) are different from %̃ to %, so

i, j ∈ C and by claim 2 (i, j, a) ∈ H1(%). Contradiction. Thus both σ̃1 ∈ F1(%̃)∩F1(%) and

σ1 ∈ F1(%̃) ∩ F1(%). By Proposition 11 σ̃1 = σ1. �

Since f(%) is stable, however, it is not possible that (i, j, a) ∈ H1(%) and i, j /∈ N1, a /∈ A1.

Thus, C ⊆ H1(%) ∩ f(%̃) ⊆ N1, but by claim 1, C ∩N1 = ∅. �

10Recall that they cannot be in the first indifference class in f(%) by claim 1.
11Recall that |A| ≥ |N |

2
, thus there always exists an object x /∈ A1 if N1 6= N .
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Nicolò, A., A. Sen, and S. Yadav (2019): “Matching with partners and projects,”

Journal of Economic Theory, 184, 104942.

Petersen, J. (1891): “Die Theorie der regulären graphs,”Acta Mathematica, 15, 193.
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