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Abstract. We study an atomic Josephson junction (AJJ) in presence of two

interacting Bose-Einstein condensates (BECs) confined in a double well trap. We

assume that bosons of different species interact with each other. The macroscopic

wave functions of the two components obey to a system of two 3D coupled Gross-

Pitaevskii equations (GPE). We write the Lagrangian of the system, and from this we

derive a system of coupled ordinary differential equations (ODE), for which the coupled

pendula represent the mechanic analogous. These differential equations control the

dynamical behavior of the fractional imbalance and of the relative phase of each bosonic

component. We perform the stability analysis around the points which preserve the

symmetry and get an analytical formula for the oscillation frequency around the stable

points. Such a formula could be used as an indirect measure of the inter-species s-wave

scattering length. We also study the oscillations of each fractional imbalance around

zero and non zero - the macroscopic quantum self-trapping (MQST) - time averaged

values. For different values of the inter-species interaction amplitude, we carry out this

study both by directly solving the two GPE and by solving the corresponding coupled

pendula equations. We show that, under certain conditions, the predictions of these

two approaches are in good agreement. Moreover, we calculate the crossover value of

the inter-species interaction amplitude which signs the onset of MQST.
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1. Introduction

The prediction [1] of Bose-Einstein condensation and the realization in the laboratory of

BECs [2] paved the way to a lot of important theoretical and experimental developments.

One of these is the study of the atomic counterpart [3, 4, 5, 6] of the Josephson effect

which occurs in superconductor-oxide-superconductor junctions [7]. In [3, 4, 5, 6],

realization of AJJ are taken into account from a theoretical point of view. Few years

ago, Albiez et al. [8] provided an experimental realization of the AJJ. In 2007 Gati et

al. [9] reviewed the experimental realization of the AJJ focusing on the data obtained

experimentally with the predictions of a many-body two-mode model [10] and a mean-

field description. Under certain conditions, a coherent transfer of matter consisting of

condensate bosons flows across the junction. In the above references the AJJ physics is

explored in presence of a single bosonic species. The possibility to manage via magnetic

and optical Feshbach resonances the intra- and inter-species interactions [11, 12] makes

BECs mixtures very promising candidates to successfully investigate quantum coherence

and nonlinear phenomena such as the existence of self-trapped modes and intrinsically

localized states. Localized states induced by the nonlinearity were shown to be quite

generic for multicomponent systems in external trapping potentials. In particular,

the emergence of coupled bright solitons from the modulational instability of binary

mixtures of BECs in optical lattices was found numerically in [13]. More sophisticated

coupled localized states of two-component condensates both in optical lattices and in

parabolic traps were reported in [14]. The existence of dark-bright states of binary BECs

mixtures was demonstrated in [15]. On the other hand, the existence of localized states

of different symmetry type (mixed symmetry states) was numerically and analytically

demonstrated in [16]. Properties of coupled gap solitons in binary BECs mixtures with

repulsive interactions were also analyzed in the multidimensional case [17] as well as

for combined linear and nonlinear optical lattices [18]. Although gap-soliton breathers

of multicomponent GPE involving periodic oscillations of the two components densities

localized on adjacent sites of an optical lattice have been found [16] (in analogy to what

was done for single component case in [6], such states can also be seen as matter wave

realizations of Josephson junctions), no much numerical and theoretical study has been

done until now on AJJ of binary mixtures.

Recently, this has been considered in [19, 20] for the case of a bosonic binary

mixtures trapped in a double well potential, for which a coupled pendula system of

ODE for the temporal evolution of the relative population and relative phase of each

component, was derived. Using this reduced system, the authors of [20] have predicted

the analogous of the macroscopic quantum self-trapping phenomenon for a single bosonic

component [4]. No comparison between the reduced ODE system and the full GPE

dynamics has been performed, so that the question of the validity of such prediction

remains open. For single component condensates, Salasnich et al. [5] have shown that

a good agreement exists between the results obtained from the GPE and those of the

ODE. Similar agreement was obtained in [6] for AJJ realized with weakly interacting
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solitons localized in two adjacent wells of an optical lattice. However, the situation may

be quite different for multicomponent condensates, due to the interplay of intra- and

inter-species interactions which enlarge the number of achievable states (for istance,

mixed symmetry states can exist only in presence of the inter-species interaction) as

well as their stability, making the system much more complicated.

The aim of the present paper is just to perform a systematic investigation of possible

Josephson oscillations which can arise in binary BECs mixtures trapped in a double

well potential, as a function of the system parameters. To this regard, we derive the

reduced coupled pendula system proceeding from a Lagrangian formulation and from

the canonical equations of motion. We show that for certain conditions and range of

parameters there exists a good agreement between the solutions of the two GPE and

the predictions provided by the coupled pendula equations. We look for the stationary

points that preserve the symmetry and study their stability; we get an analytical formula

for the oscillation frequencies around the equilibrium points. This formula shows the

possibility to determine the inter-species s-wave scattering length from the frequency.

We analyze the influence of the inter-species interaction on the temporal evolution

of each relative population. In particular, by employing the coupled pendula equations

we show the existence of MQST when the inter-species interaction amplitude is greater

than a certain value, for which we are able to provide an analytical formula. As done

by Satjia et al. [20], we calculate the values of the relative populations associated

to the degenerate GPE states that break the symmetry of the fractional imbalances.

In addition, we perform the stability analysis by explicitly calculating the associated

oscillation frequencies. We, moreover, show that the MQST-like evolution obtained by

solving the coupled pendula equations is close to that one obtained by integrating the

two coupled GPE.

Proceeding from the works of Albiez et al. [8] and of Gati et al. [9], we correlate

our theoretical work with experiments. Finally, we draw our conclusions.

2. AJJ with two bosonic species: quasi-analytical approach

We consider two Bose-Einstein condensates of repulsively interacting Bosons with

different atomic species denoted below by 1 and 2. We suppose that the two BECs

are confined in a double-well trap produced, for example, by a far off-resonance laser

barrier that separates each trapped condensate in two parts, L (left) and R (right). We

assume, moreover, that the two condensates interact with each other. In the mean field

approximation, the macroscopic wave functions Ψi(r, t), (i = 1, 2), of the interacting

Bose-Einstein condensates in a trapping potential Vtrap(r) at zero-temperature satisfy

the two coupled Gross-Pitaevskii equations

i~
∂Ψi

∂t
= − ~

2

2mi

∇2Ψi + [Vtrap(r) + gi|Ψi|2 + gij |Ψj|2]Ψi. (1)
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Here ∇2 denotes the 3D Laplacian, and Ψi(r, t) is subject to the normalization condition
∫ ∫ ∫

dxdydz |Ψi(x, y, z)|2 = Ni , (2)

with Ni the number of bosons of the ith species. Similarly, mi , ai and gi = 4π~2ai/mi

denotes the atomic mass, the s-wave scattering length and the intra-species coupling

constant of the ith species; gij = 2π~2aij/mr (i 6= j) is the inter-species coupling

constant, with mr = mimj/(mi +mj) the reduced mass, and aij the associated s-wave

scattering length. In the following, we shall consider both gi and gij as free parameters,
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Figure 1. The double well potential (4) as a function of z. Lengths are measured in

units of a⊥,1 = a⊥,2 ≡ a⊥, and energies in units of ~ω1 = ~ω2 ≡ ~ω.

due to the possibility to change the scattering lengths ai and aij at will by using the

technique of Feshbach resonances. Here we take into account the case in which the two

BECs interact attractively, see [11] and [21].

The trapping potential for both components is taken to be the superposition of

a strong harmonic confinement in the radial (x-y) plane and of a double well (DW)

potential in the axial (z) direction. For the ith component, we model this trapping

potential in the form

Vtrap(r) =
miω

2
i

2
(x2 + y2) + VDW (z) , (3)

where, for symmetric configurations in the z direction, we model the DW potential as

VDW (z) = VL(z) + VR(z), VL(z) = −V0
[

Sech2(
z + z0
a

)
]

,

VR(z) = −V0
[

Sech2(
z − z0
a

)
]

, V0 = ~ωi[1 + Sech2(
2z0
a

)]−1,

(4)

i.e. the combination of two Pöschl-Teller (PT) potentials, VL(z) and VR(z), separated

by a potential barrier, the height of which can be changed by varying a, centered around

the points −z0 and z0 (see Fig. 1). Note that the usage of PT potentials is only for
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the benefit of improving accuracy in our numerical GPE calculations (see below), taking

advantage of the integrability of the underlying linear system. We remark, however, that

the obtained results are of generic validity also for more confining (e.g. not saturating

to zero at large distances) double well potentials.

We are interested to study the dynamical oscillations of the populations of each

condensate between the left (L) and right (R) wells when the the barrier is large enough

so that the link is weak. To exploit the strong harmonic confinement in the (x-y) plane

and get the effective 1D equations describing the dynamics in the z direction, we write

the Lagrangian associated to the GPE equations in (1)

L =

∫

d3r
([

∑

i=1,2

Ψ̄i(i~
∂

∂t
+

~
2

2mi
∇2)Ψi

− Vtrap(r)|Ψi|2 −
gi
2
|Ψi|4

]

− gij |Ψi|2|Ψj |2
)

, (5)

where Ψ̄i denotes the complex conjugate of Ψi, and i 6= j and adopt the ansatz [22]

Ψi(x, y, z, t) =
1√
πa⊥,i

exp
[

− x2 + y2

2a2
⊥,i

]

fi(z, t) , (6)

where a⊥,i =

√

~

miωi
and the fi(z, t) obey

∫ +∞

−∞
dz|fi(z)|2 = Ni, so that the

normalization condition Eq. (2) is satisfied. By inserting this ansatz (6) in (5) and

performing the integration in the radial plane, we obtain the effective 1D Lagrangian

for the fields fi(z, t)

L̃ =

∫

dz
([

∑

i=1,2

f̄i(i~
∂

∂t
+

~
2

2mi

∂2

∂z2
)fi

− (ǫi + VDW (z))|fi|2 −
g̃i
2
|fi|4

]

− g̃ij |fi|2|fj|2
)

,

(7)

where the effective parameters for the 1D dynamics are given in terms of the original

ones by: ǫi =
~
2

2mia2i,⊥
+
miω

2
i a

2
i,⊥

2
, g̃i =

gi
2πa2

⊥,i

, and g̃ij =
gij

π(a2
⊥,i + a2

⊥,j)
. By varying L̃

with respect to f̄i, we obtain the 1D GPE for the field fi

i~
∂fi
∂t

= − ~
2

2mi

∂2fi
∂z2

+ [ǫi + VDW (z) + g̃i|fi|2 + g̃ij |fj|2]fi . (8)

It is possible to study the AJJ dynamics described by Eq. (8) by using the two-

mode approximation discussed by Milburn et al. in [10]. In particular, we assume, for

each fi, the following time-dependent wave function decomposition

fi(z, t) = ψL
i (t)φ

L
i (z) + ψR

i (t)φ
R
i (z) , (9)

where

ψα
i (t) =

√

Nα
i e

iθα
i
(t) , (10)
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with α=L,R, and a constant total number of particles given by NL
i +NR

i = |ψL
i (t)|2 +

|ψR
i (t)|2 ≡ Ni, with

∫ +∞

−∞
dz|φα

i (z)|2 = 1 and
∫ +∞

−∞
dzφL

i (z)φ
R
i (z) = 0. Neglecting terms

of order greater than two in the overlaps of the φ’s, we can write the Lagrangian (7) in

terms of Nα
i and θαi as

L̄ =
∑

i=1,2

[

− ~θ̇Li N
L
i − ~θ̇Ri N

R
i − EL

i N
L
i −ER

i N
R
i

+ 2Ki

√

NL
i N

R
i cos(θLi − θRi )− (

UL
i

2
(NL

i )
2 +

UR
i

2
(NR

i )
2)
]

− UL
12N

L
1 N

L
2 − UR

12N
R
1 N

R
2 , (11)

where

Eα
i =

∫

dz
[

~
2

2mi

(
dφα

i

dz
)2 + (VDW +

~
2

2mia
2
⊥,i

+
miω

2
i a

2
⊥,i

2
)(φα

i )
2
]

,

Uα
i = g̃i

∫

dz (φα
i )

4, Uα
12 = g̃12

∫

dz (φα
1 )

2(φα
2 )

2,

Ki = −
∫

dz
[

~
2

2mi

dφL
i

dz

dφR
i

dz
+ VDWφ

L
i φ

R
i

]

.

(12)

One may get a good approximation for the functions φL
i (z) and φR

i (z) when the

double well potential VDW (z) is such that the two lowest energy eigenvalues of the

corresponding Schrödinger equation constitute a closely spaced doublet well separated

from the higher excited levels, and the g̃’s are not too large (see, for example, [10]). If

the real symmetric function φS
i (z) and the real antisymmetric function φA

i (z) are the

wave functions of the ground state and of the first excited state, respectively, then φL
i (z)

and φR
i (z) may be chosen as

φL
i (z) =

φS
i (z) + φA

i (z)√
2

, φR
i (z) =

φS
i (z)− φA

i (z)√
2

. (13)

Remember that φS
i (z) and φA

i (z) satisfy the relations:
∫ +∞

−∞
dz|φS

i (z)|2 =
∫ +∞

−∞
dz|φA

i (z)|2 = 1 and
∫ +∞

−∞
dzφA

i (z)φ
S
i (z) = 0. Having chosen VDW (z) as the sum

of two of two Pöschl-Teller (PT) wells (see Eq. (4)), the functions φL
i (z) and φR

i (z)

may be analytically calculated following a perturbative approach. Let us consider the

eigenvalues problem corresponding to Eq. (8) with g̃i = g̃ij = 0. We know exactly the

wave functions for this eigenvalues problem when the potential is given by a single Vα(z)

(α = L,R), for example VL(z). The wave function of the ground state is [23]

φ
(L,PT )
i (z) = A[1− Tanh2(

z + z0
a

)]Bi/2

Bi = −1

2
+

√

2miV0a2

~2
+

1

4
. (14)

In Eq. (14) A, equal for both sides, ensures the normalization of the wave function.

Since we are assuming that the two lowest energetic levels are well separated from the
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higher ones, when the potential is perturbed by the presence of VR(z), we look for

the eigenstates in the form of a linear superposition of φ
(L,PT )
i and φ

(R,PT )
i . For each

component, to the first order of such a perturbative theory, the ground state wave

function φS
i (z) and the first excited state wave function φA

i (z) read

φS
i (z) =MS(φ

(L,PT )
i (z) + φ

(R,PT )
i (z))

φA
i (z) =MA(φ

(L,PT )
i (z)− φ

(R,PT )
i (z)) . (15)

Here MS and MA ensure the normalization of φS
i (z) and φ

A
i (z), respectively. Note that

Ki is equal to (E
A
i −ES

i )/2, with E
S
i and EA

i , also perturbatively calculated, the energies

associated to φS
i (z) and φ

A
i (z), respectively. The quantity

ω =
(EA

i − ES
i )

~
(16)

is the Rabi frequency. This frequency characterizes the oscillations of a particle between

the states φL
i and φR

i . By using Eq. (15) in the decomposition (13), we are able to write

the functions φL
i (z) and φ

R
i (z) in terms of φ

(L,PT )
i (z) and φ

(R,PT )
i (z) in the following way

φL
i =

[

(MS +MA)φ
(L,PT )
i + (MS −MA)φ

(R,PT )
i

]

√
2

φR
i =

[

(MS −MA)φ
(L,PT )
i + (MS +MA)φ

(R,PT )
i

]

√
2

.

(17)

Note that φS
i (z) and φA

i (z), and the associated energies, may be numerically found as

the wave functions of the two lowest states of the eigenvalues problem corresponding

to Eq. (8) in absence of interactions. Then, by using the decomposition (13), one cal-

culates the functions φL
i (z) and φR

i (z). We have verified that the perturbative theory

provides practically the same results as the numerical approach .

Let us, now, focus on the Lagrangian (11). The conjugate moments of the

generalized coordinates Nα
i and ~θαi are given by

pNα

i
=

∂L̄

∂Ṅα
i

= 0 , pθα
i
=

1

~

∂L̄

∂θ̇αi
= −Nα

i . (18)

The Hamiltonian of the system is

H = −
∑

i=1,2

[pθL
i

EL
i + pθR

i

ER
i ]−

∑

i=1,2

2Ki
√

pθL
i

pθR
i

cos(θLi − θRi ) +

+
∑

i=1,2

[
Ui

2

L

p2θL
i

+
UR
i

2
p2θR

i

] + UL
12pθL

1

pθL
2

+ UR
12pθR

1

pθR
2

. (19)

The evolution equations for the fractional imbalance zi = (NL
i −NR

i )/Ni and for the

relative phase θi = θRi −θLi for each component are derived from the canonical equations
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associated to the Hamiltonian (19)

ṗθα
i
= −1

~

∂H

∂θαi
, θ̇αi =

1

~

∂H

∂pθα
i

. (20)

By subtracting the equation for ṗθi
L

from the one for ṗθi
R

, we obtain the equation for

the temporal evolution of zi. Similar arguments leads to the equation for θi(t). In the

following, we shall assume two wells to be symmetric, i.e. EL
i = ER

i , U
L
i = UR

i ≡ Ui,

UL
12 = UR

12 ≡ U12. The fractional imbalance and the relative phase for each component

vary in time according to the following (coupled pendula) equations:

żi = −2

~
Ki sin θi

√

1− z2i

θ̇i =
UiNizi

~
+

2Kizi

~
√

1− z2i
cos θi +

U12Njzj
~

.

(21)

Note that when U12 = 0, equations (21) reduce to the usual equations for a single

component obtained in [4]. At this point, we observe that it is possible to obtain Eq.

(21) proceeding from the following equations

Niżi = −1

~

∂H̃

∂θi
, Niθ̇i =

1

~

∂H̃

∂zi
, (22)

where H̃ is

H̃ = −
∑

i=1,2

2KiNi[
√

(1− z2i ) cos θi] +
∑

i=1,2

Ui

2
N2

i z
2
i + U12N1N2z1z2. (23)

To fix ideas, let us consider, as done in [12], a mixture of two bosonic isotopes of the same

atom, so that one may have different intra-species and inter-species interactions. For

simplicity, for the time being we will neglect the mass difference between the two species.

We compare the temporal behavior of the fractional imbalances obtained integrating Eq.

(8) with the zi(t) obtained by solving the coupled differential equations (21). To this

end, in the wave functions (14) we assume that the quantities Bi are the same for both

species, and in the double well potential (4) we set a = 1.2 and z0 = 2.5, as illustrated by

the continuous line of Fig. 1. We calculate the parameters Ui, U12, and K1 = K2 ≡ K

by using Eqs. (12). Note that the value of K (equal, for the above values of a and

z0, to 0.0148), provided by the last formula of Eqs. (12) coincides with
~π

τ0
. Here τ0

is the oscillation period of zi(t) obtained by numerically solving the 1D GPE (8) when

Ui = U12 = 0. This period is just equal to 2π/ω with ω given by Eq. (16). In Fig. 2,

the first panel of each zi(t) graph shows the perfect agreement between the two coupled

1D GPE and the coupled pendula equations when the bosons do not interact at all. In

the second panel of each zi(t) of Fig. 2, Ui is finite and U12 = 0. Finally, in the last

panel, Ui and U12 are both finite. From the second and the third panels of Fig. 2, we see

that the solutions of the ODE system (21) with K = 0.0148 (dot-dashed lines) shows

a certain displacement with respect to the ones (dashed lines) predicted by solving the

two 1D GPE (8). The continuous lines, in the second and in the third panels of Fig. 2,
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represent the solutions of the ODE system (21) with K obtained via a fitting procedure.

The best-fit K’s that we found are equal to 0.0155 and 0.0151 when only Ui 6= 0 and

when Ui and U12 are both finite, respectively. Notice that these values are very close to

the above theoretical estimate of K, so the coupled pendula equations may be used to

consistently describe the AJJ physics.

To gain physical insight in the behavior of the system, we carry out the stability

analysis. We study the oscillations around the points for which the time derivatives of

zi and of θi are zero, i.e. around the stationary points. We diagonalize the Jacobian

matrix associated to Eqs. (21). The eigenvalues λ allows us to determine the frequencies

of oscillation around the points of equilibrium. If the λ’s are of the form iω (with ω a

pure real number), ω will be the oscillation frequency around stable equilibrium points.

By performing the above analysis, we obtain the following classes of stationary points:

(i) z1 = 0 , z2 = 0 , θ1 = 0 , θ2 = 0

(ii) z1 = 0 , z2 = 0 , θ1 = 0, θ2 = ∓π
(iii) z1 = 0, z2 = 0, θ1 = ∓π, θ2 = 0

(iv) z1 = 0, z2 = 0, θ1 = ∓π, θ2 = ∓π,
z1 = 0, z2 = 0, θ1 = ∓π, θ2 = ±π .

We observe that the points of a given class are characterized by the same λ. The

stationary solution (i) represents a stable equilibrium if U12 satisfies the condition

− Λ(1) < U12 < Λ(1)

Λ(1) =

√

(2K1 +N1U1)(2K2 +N2U2)√
N1N2

(24)

provided

Ui > −2Ki

Ni

. (25)

The small amplitude oscillations frequency, say ω(1), around the point (i) is

ω
(1)
± =

1

~
(K1(2K1 + U1N1) +K2(2K2 + U2N2)±∆)1/2 ,

∆ =
[

− 4K1K2(4K1K2 + 2K1U2N2 + 2K2U1N1 − U2
12N1N2

+ U1U2N1N2) + (K1(2K1 + U1N1) +K2(2K2 + U2N2))
2
]1/2

(26)

with + and − corresponding to the normal modes of the linearized system associated to

Eq. (21). When z1(0) = ∓z2(0) ≪ 1, U1 = U2, K1 = K2, and N1 = N2, the fractional

imbalances zi oscillate around the point (i) according to the law

zi(t) = zi(0) cosω
(1)
± t . (27)

Let us operate in Eqs. (24), (25), and (26) the replacement Ui → −Ui. Then, we

obtain the stability conditions and the oscillation frequency associated to the class (iv).
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Figure 2. Fractional imbalance of the two bosonic species vs. time. Here N1 = 100

and N2 = 150. In each plot of zi(t), from top to bottom: U1 = U2 = U12 = 0;

U1 = U2 = 0.001, U12 = 0; U1 = U2 ≡ U = 0.001, U12 = −U/2. The dashed line

represents data from integration of Eq. (8), the dot-dashed line represents solution

of Eq. (21) with K1 = K2 ≡ K = 0.0148, and the continuous line, in the second

and third panels, represents solution of Eq. (21) with the best-fit K’s, say Kbf .

For each zi(t), Kbf = 0.0155 (U1 = U2 = 0.001, U12 = 0) and Kbf = 0.0151

(U1 = U2 ≡ U = 0.001, U12 = −U/2). We used the initial conditions z1(0) = 0.1,

z2(0) = 0.15, and θi(0) = 0. Time is measured in units of (ω1)
−1 = (ω2)

−1 ≡ ω−1,

lengths are measured in units of a⊥,1 = a⊥,2 ≡ a⊥, and energies in units of ~ω.

We have verified that for the stationary points of type (ii), under certain conditions

(analytically achievable but very complicated), the eigenvalues of Jacobian matrix are

all of the form iω. The small amplitude oscillations frequency, say ω(2), around the point



Atomic Josephson junction with two bosonic species 11

(ii) is

ω
(2)
± =

1

~
(K1(2K1 + U1N1) +K2(2K2 − U2N2)±∆)1/2 ,

∆ =
[

− 4K1K2(4K1K2 − 2K1U2N2 + 2K2U1N1 + U2
12N1N2

− U1U2N1N2) + (K1(2K1 + U1N1) +K2(2K2 − U2N2))
2
]1/2

. (28)

For the oscillations of zi around the point (ii), one may use arguments analogous to the

ones employed for the class (i). If we start, now, from the points of the class (ii), and

replace Ui with −Ui, we get the stability regions and the oscillation frequency for the

point of type (iii). Let us focus, to fix the ideas, on the frequency (26), and on the

formula of Eq. (12) which gives the inter-species interaction amplitude U12. We note

that g̃12 is directly related to the inter-species s-wave scattering length. This quantity,

then, can be determined from the oscillation frequency (26) once one keeps fixed Ki, Ui,

and Ni. We will discuss this point with more details in the following.

At this point, it is worth observing that, because of the non linearity associated to

the inter- and intra-species interactions, there is a class of degenerate GPE eigenstates

that breaks the zi symmetry. Let assume that U1 = U2 ≡ U , K1 = K2 ≡ K, and

N1 = N2 ≡ N . In correspondence of θi = π, we have looked for non zero stationary

solutions of the system (21). We have found four classes of fractional imbalances

corresponding to the zi broken symmetry; we have verified that two of these classes

do not correspond to a stable equilibrium. Let us consider the two classes describing

stable equilibrium, say I and II. For the class I, we have

z
(I)
1,sb = ±

√

1−
( 2K

N(U + U12)

)2

z
(I)
2,sb = z

(I)
1,sb , (29)

provided |(U +U12)| > 2K/N . When 0 < U < 2K/N , the solution (29) is always stable,

and the corresponding oscillation frequency is

ω
(I)
A =

1

~

√

(

N(U + U12)
)2

− 4K2 . (30)

For U > 2K/N , the solution (29) is stable when

U12 > Ũ
(I)
12 =

2K

N

(

− UN/2K

+
31/3 − (9UN/2K +

√

3 + 81(UN/2K)2)2/3

32/3(9UN/2K +
√

3 + 81(UN/2K)2)1/3

)

.

(31)

The corresponding oscillation frequency is

ω
(I)
B =

1

~

√

(

N(U + U12)
)2

+ 4K2
(U12 − U

U + U12

)

. (32)

It is possible determine the crossover value, say U
(I,cr)
12 , of the inter-species

interaction strength signing the onset of the self-trapping. We start evaluating the
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Hamiltonian (23) in zi = z
(I)
i,sb and θi = π. Let us denote the energy obtained in this way

by E(I). This energy reads

E(I) =
4K2

U + U12

+N2(U + U12) . (33)

Then, we evaluate the Hamiltonian (23) at t = 0, i.e. H̃(zi(0), θi(0)). We require that

H̃(zi(0), θi(0)) > 4KN (34)

with 4KN the value got by E(I) when z
(I)
i,sb = 0, i.e. when 2K = N(U + U12). Then, we

get

U
(I,cr)
12 =

K

Nz1(0)z2(0)

[

4− UN

2K

∑

i=1,2

zi(0)
2

+ 2
∑

i=1,2

√

1− zi(0)2 cos θi(0)
]

. (35)

When the condition U12 > U
(I,cr)
12 is satisfied, the system will be self-trapped. For the

solution of the type II, we have

z
(II)
1,sb = ±

√

1−
( 2K

N(U − U12)

)2

z
(II)
2,sb = −z(II)1,sb , (36)

provided that |(U−U12)| > 2K/N . When 0 < U < 2K/N , this solution is always stable

and is characterized by the oscillation frequency

ω
(II)
A =

1

~

√

(

N(U − U12)
)2

− 4K2 . (37)

When U > 2K/N , the solution (36) is stable if

U12 < Ũ
(II)
12 =

2K

N

(

UN/2K

− 31/3 − (−9UN/2K +
√

3 + 81(UN/2K)2)2/3

32/3(−9UN/2K +
√

3 + 81(UN/2K)2)1/3

)

,

(38)

and the corresponding oscillation frequency reads

ω
(II)
B =

1

~

√

(

N(U − U12)
)2

+ 4K2
(U + U12

U12 − U

)

. (39)

Also for the solution II, it is possible to determine the inter-species interaction

amplitude which signs the self-trapping onset, say U
(II,cr)
12 , by using the same argument

employed for the class I. Also in this case, we proceed by evaluating the Hamiltonian

(23) in zi = z
(II)
i,sb and θi = π. Let us denote the energy obtained in this way by E(II).

This energy reads

E(II) =
4K2

U − U12
+N2(U − U12) . (40)
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Figure 3. Fractional imbalances of the first and second bosonic species as functions vs.

time. Here N1 = 100 and N2 = 150, K1 = K2 = 0.0148, and U1 = U2 ≡ U = 0.1K1.

Plots are for different values of U12. U12 = −U/20 and U12 = −U/2 (the two upper

panels of each zi(t), from left to right); U12 = −U and U12 = −1.2U (the two lower

panels of each zi(t), from left to right). We used the initial conditions z1(0) = 0.1,

z2(0) = 0.15, and θi(0) = 0. Here, we report the profiles |f1|2 and |f2|2 as functions of

z and for different values of time, as displayed in the figure. The quantities |fi|2 are

obtained by integrating Eq. (8) when U12 = −1.2U . Units are as in Fig. 1 and Fig.

2.
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Figure 4. Fractional imbalance of the first and second bosonic vs. time. The dashed

line represents data from integration of Eq. (8), the dot-dashed line represents solution

of Eq. (21) with K1 = K2 ≡ K = 0.0148, and the continuous line represents solution of

Eq. (21) with the best-fit K equal to 0.0151. Here is U1 = U2 = 0.1K, U12 = −0.14K,

N1 = N2 = 100. We used the initial conditions zi(0) = 0.4 and θi(0) = 0. The units

are as in Fig. 1 and in Fig. 2.

The condition to find U
(II,cr)
12 is the Eq. (34), and we obtain that U

(II,cr)
12 coincides with

U
(I,cr)
12 .

An interesting task, now, is to analyze the influence of the interaction between the

two BECs on the temporal evolution of the fractional imbalances. We have fixed U1

and U2, and analyzed z1(t) and z2(t) for different values of the inter-species interaction

amplitude U12. The greater is the absolute value of U12, the greater is the deformation

of the oscillations around 〈z(t)〉 = 0, as shown in the two upper panels (from left to

right) and in the first lower panel (from the left) of each zi(t) represented in Fig. 3.

Note that as long as the oscillations are harmonic (see the first panel of each zi(t)), the

time evolution of the fractional imbalances may be described in terms of a carrier wave

of frequency ωc, given by Eq. (26) with U12 = 0, modulated by a wave of frequency

ωm. The frequency ωc is much greater than ωm. We found that there exists a value of

the inter-species interaction amplitude for which the relative population in each trap

oscillates around a non zero time averaged value, 〈z(t)〉 6= 0, which corresponds to the

macroscopic quantum self-trapping (MQST) as discussed in [4] for a single component.

To support this interpretation, we have studied the behavior of the density profiles of

the two species as function of z and for different values of time. In particular, to find

|fi(z, t)|2, we have numerically solved the two coupled GPE (8) for those values of the

interaction amplitudes for which the self-trapped is predicted to occur by the coupled

pendula equations. We have summarized the results of this analysis in the last two pan-

els of Fig. 3. Finally, it is interesting to observe that there is a good agreement between

MQST predicted by the coupled pendula equations (21) and the one got by numerically

solving the two 1D GPE (8). This comparison is displayed in Fig. 4, where we can

observe oscillation around a non zero time averaged value of fractional imbalances. We
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followed the same fitting procedure adopted in obtaining Fig. 2.

At this point, we observe that the question of the AJJ with two bosonic species could

be addressed also from the experimental point of view. This could be done considering,

for example, BECs binary mixtures of two bosonic isotopes of the same alkali atom

[12]. The works referenced in [8] and [9] provide the ideal guide lines for this kind of

experiments. By engineering a double well potential as suggested, for istance, by Gati

et al. [9], the measured fractional imbalances zi(t) could be compared with the ones

obtained both by solving the Eq. (8) (see [8] and [9]) and the ODE system (21). It

could be possible to measure, moreover, the inter-species s-wave scattering length a12
by using, to fix the ideas, the frequency (26). The mixture could be prepared in such

a way that both all the conditions z1(0) = z2(0), K1 = K2, U1 = U2, N1 = N2 - see

the discussion about the four classes (i)-(iv) of stationary points - are verified and to

have small amplitude oscillations around the stationary point (i). Each zi oscillates

according to the law zi(0) cos(ω
(1)
− t) (see Eq. (27)). Let us suppose to fix both the

characteristic quantities (in our case, they are ωi, a, z0) of the trapping potential - the

group of Heidelberg displayed how this is possible for a given class of double well traps

[8], [9] - and the intra-species s-wave scattering length ai. Then, the functions φα
i are

known. Then, the Eqs. (12) provide the parameters Ki and Uα
i . The measure of the

period of zi(0) cos(ω
(1)
− t) leads to the corresponding frequency ω

(1)
− , i.e. the left-hand

side of Eq. (26). The solution of this equation gives the parameter U12. By the mean

of the second line of Eq. (12) one gets g̃12, and, then a12.

3. Conclusions

We have analyzed the atomic Josephson effect in presence of a binary mixture of BECs.

We have written the Lagrangian of the system, from which we have derived a system

of coupled differential equations which governs the dynamical behavior of the fractional

imbalance and of the relative phase of each component. We have analyzed the stable

points that preserve the symmetry, and we have obtained an analytical formula for the

frequency oscillations around these equlibrium points. To this regard, one of the most

interesting features is the possibility to know the inter-species s-wave scattering length

from these frequencies. We have shown that in correspondence of precise values of the

inter-species interaction amplitude, the relative populations oscillate around a non zero

time averaged value. This behavior corresponds to MQST, a well-known phenomenon

when only one component is taken into account. We have compared the predictions of

GPE with the ones of the coupled pendula equations. We have performed this compari-

son in the case of total absence of interaction, in the case in which only the intra-species

interaction is present, and in the case in which also the inter-species interaction is in-

volved. We have found that, under certain conditions, the predictions of GPE agree

with those ones of the coupled pendula equations. We have shown that, under certain

hypothesis, it is possible to obtain analytical expressions for the inter-species interac-
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tion amplitudes which signs the onset of the self-trapping. Finally, we have commented

about the possibility to correlate our theoretical work with the experiments proceeding

from the works of the group of Heidelberg, see [8] and [9] .
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