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Abstract

Cyber-Physical Systems (CPSs) refer to those systems characterized by the interconnection of
information technology and the physical process domains. These systems are nowadays em-
ployed in a wide range of applications, such as health monitoring, industrial control systems,
and transportation. The recent digitalization and smartification of the processes required to
integrate the Internet connection into CPSs, enabling functions like remote connection and
cloud computing, but at the same opening new dangerous vulnerabilities surfaces. Indeed, re-
cent events in history have shown many cyber-attacks and vulnerabilities discovered on CPSs.
For this reason, there is still a need to contribute to securing such systems, both from the de-
sign and implementation points of view. In this thesis, we analyze the cybersecurity of modern
CPSs, identifying and highlighting the current vulnerabilities, the research gaps in terms of se-
curity, and the threats affecting them. Then, we propose novel securitymechanisms to prevent
potential cyber-attacks. This thesis is composed of three parts as follows.

In the first part of the thesis, we will focus on the security of Industrial Control Systems
(ICSs). These systems are used to control and monitor critical infrastructures and industrial
processes. As a first step, we gather all the knowledge in this field from the literature, and we
provide a systematic analysis of the testing platform and the detection systems solutions operat-
ing on them. Tomotivate the necessity of improving the security of current industrial systems,
we performed ameasurement study highlighting the dramatic exposure of the communication
protocols and services ofmore than 50 industrial endpoints. Then, we developed and deployed
an innovative ICS honeypot. While measuring the honeypot exposure, we noted that indus-
trial systems are still highly targeted and interacted with by malicious actors over the internet
on specific vulnerable industrial services.

In the second part of the thesis, we will look at the security of vehicular systems. Like ICSs,
modern vehicles present vulnerabilities due to the adoption of legacy components, enabling
the possibility of malicious exploits. To this end, we will focus on the internal communication
bus of cars, we examine its vulnerabilities, the current solutions in the literature, and their lim-
itations, and propose an innovative cryptographic key distribution system among the network
nodes. We will then focus on the emerging electric vehicle paradigm. We identified two pos-
sible cyber-attacks on this ecosystem. The first is based on a relay attack vulnerability, which
implies charging illegitimate vehicle recharging fees. Instead, the second one consists of a pri-
vacy leakage from the current absorbed during the vehicle’s recharging process.

In the third part of the thesis, we leverage the knowledge of our studies to investigate the
security of CPS cross-domain applications. In particular, we first present a survey on Power
Side-Channel (PSC) exploits in the literature, focusing on existing attacks and countermea-
sures. Indeed, PSCs have been proven effective in reversing and profiling the functioning of
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many embedded devices (e.g., smart cards, vehicles, and laptops). Then, we develop a novel
framework to fingerprint Universal Serial Bus devices from their power consumption. This
funding can be used, for instance, to securely authenticate a personal device and avoidmalware
delivery injection in critical applications (e.g., Stuxnet). Finally, we present the first security
analysis of the emerging Hyperloop transportation technology. Hyperloop merges the con-
cepts of ICS since it consists of a critical, distributed, and sensing infrastructure, and the con-
cept of vehicle, due to the pod communication management. As a result, Hyperloop inherits
all the vulnerabilities and risks of the two systems.
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1
Introduction

Cyber-Physical Systems (CPSs) are characterized by the deep intertwining between the digital
and physical worlds. These systems generally implement a control loop that perceives informa-
tion from the physical processes through sensors and compute the control actions necessary
to adjust the underlying process through actuators [1]. CPS systems are nowadays pervading
our society withmany applications [2]. Some examples of CPS are Industrial Control Systems
(ICSs), vehicles, andmedical devices. These applications are often considered critical since dam-
aging them may cause terrible consequences to the surrounding people and environment and
the business of the organizations involved. For this reason, monitoring and maintaining the
security of CPSs is of central importance for both companies and government institutions.
MostmodernCPSs are composed of long-term and legacy devices designed in the late 1900s.

At that time, these systems were supposed to operate in an air-gapped environment without
Internet access and remote connection capabilities. However, the increasing digitalization of
the devices required the adaptationofCPSs to smart processes and, therefore, the integrationof
the connection of cyber-physical devices with the Internet. This increased their vulnerability
surfaces and the possibility of cyber-attacks. In the remainder of the thesis, we always refer
to an attack as a cyber-attack, unless noted otherwise. Generally, the software and hardware
integrated into CPS components are basic since it only aims to run programs to complete a
control process. For this reason and also due to the real-time availability constraints, and the
production costs, CPS rarely implement security measures in their software, communications,
and hardware. The security of CPSs is therefore at risk due to the complexity necessary to keep
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the components updated with modern security measures. In fact, the update of the devices is
considered critical, both in terms of data availability and compatibility with the entire system.
Despite the continuous effort of the research community, government, and companies, the

trend of attacks in CPS is continuously growing. Many historical events have highlighted the
exposure of CPSs to attacks. One of the most famous attacks in the industrial sector is the
Stuxnet [3] malware. Stuxnet was developed to specifically target the turbines of an Iranian
nuclear plant, causing serious damage to its functioning. However, this malware has been suc-
ceeded by many others over the years, such as TRITON [4] and BlackEnergy [5]. More re-
cently, other attacks have been documented, such as the colonial pipelines ransomware [6] in
2021 and the Florida water systemmalfuction [7] in 2022. Both of them halted normal infras-
tructure operations and caused serious damage to the companies involved in terms of business
and reputation. However, other applications of CPSs have also been shown to be dangerously
vulnerable to attacks. For instance, in 2015, Miller et al. [8] demonstrated how it was possible
to take remote control of a machine, commanding its functions.

For these reasons, the research in the security of CPSs still needs contributions from a differ-
ent perspective.

Contribution

This thesis explores and proposes cutting-edge directions for the security of CPSs. Despite
many research in recent years highlighted vulnerabilities of these systems and proposed solu-
tions, malicious actors continue to exploit such systems, putting the security of users, busi-
nesses, and the environment at risk (e.g., Stuxnet [3], car remote exploit [8]). Therefore, there
is necessary to analyze these systems’ security and propose innovative mechanisms to prevent
the compromission of these critical assets and provide secure design guidelines for the current
and the next generation of CPSs.

Current researches focus on a single CPS application domain, e.g., vehicle network only,
without considering common element with other CPSs which has been highlighted as vulner-
able (e.g., side-channel leakages and protocols vulnerabilities). Furthermore, most proposed
solutions do not meet companies’ business constraints, are not transferable to similar applica-
tions, or are not backward compatible, limiting the overall solution’s applicability [9].

To solve these issues and enforce the security of CPSs, this project aims to study different
CPSs applications to find commondesign patterns and propose common innovation solutions
by considering the companies’ requirements and real-world design constraints. In particular,
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this research project investigates the following Research Questions (RQs):

• RQ1: What is the state-of-the-art security of the modern CPSs and what are the most
common threats affecting them?

• RQ2: What are the limitations of the common security solutions applied on CPSs, and
how can we overcome these limits and improve their protection effectiveness?

• RQ3: Is it possible to transfer the knowledge of specific domains ofCPSs to othersCPSs
applications and identify similar security patterns and threats?

To answer the previously stated RQs, the project includes the following phases:

1. Background acquisition. Analysis and study of the current implementation ofmodern
CPSs security.

2. Vulnerability Identification. Based on the background analysis, we identify potential
threats and attacks that may pose a dangerous threat impacting the user, the company,
and environmental safety. The analysis focuses on the following aspects:

• Privacy exposure. This analysis investigates if the current system implementation
may expose sensitive information of the end user.

• Infrastructure vulnerabilities. This analysis investigates vulnerabilities in the cur-
rent CPS implementations (e.g., communication protocols and hardware vulner-
abilities).

3. Solution Proposal. Once identified the security concerns in the previous analysis, we
propose countermeasures and guidelines to support the development of future secure
CPSs.

4. Cross-domain security analysis. The heterogeneous and distributed nature of theCPS
imposes security challenges from different angles and cross-domain applications. In
this phase, the knowledge acquired from the previous analysis will be leveraged to study
cutting-edge directions to protect cross-domain applications of CPSs.
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Thesis Organization and Papers References

The thesis is organized as follows. Chapter 2 focuses on the security ofmodern ICSs, surveying
the related literature andpresenting twomeasurementswe performedon their exposure. These
findings are based on the results of the following papers:

• M.Conti, D.Donadel, andF.Turrin, “A survey on industrial control system testbed and
datasets for security research,” IEEE Communications Surveys & Tutorials (COMST),
pp. 2248–2294, 2021.

• G. Barbieri, M. Conti, N.O. Tippenhauer, and F. Turrin, “Assessing the use of insecure
ICS protocols via IXP network traffic analysis,” in 2021 International Conference on
Computer Communications and Networks (ICCCN), 2021, pp. 1–9.

• M. Conti, F. Trolese, and F. Turrin, “Icspot: A high-interaction honeypot for indus-
trial control systems,” in 2022 International Symposium on Networks, Computers and
Communications (ISNCC). IEEE, 2022, pp. 1–4.

Then, Chapter 3 analyzes the security of vehicular systems, focusing on their internal com-
munication network and the Electric Vehicle (EV) environment. These findings are based on
the results of the following papers:

• S. Soderi, R.Colelli, F. Turrin, F. Pascucci, andM.Conti, “Senecan: Secure key distribu-
tion over can through watermarking and jamming,” IEEE Transactions on Dependable
and Secure Computing (TDSC), 2022.

• M. Conti, D. Donadel, R. Poovendran, and F. Turrin, “Evexchange: A relay attack on
electric vehicle charging system,” in European Symposium on Research in Computer Se-
curity (ESORICS). Springer, 2022.

• A. Brighente,M. Conti, D. Donadel, and F. Turrin, “Evscout2.0: Electric vehicle profil-
ing through charging profile,”ACMTransactions Cyber-Physical Systems (TCPS), 2022.

Chapter 4 presents two case studies of cross-domain CPS security where we applied the
knowledge acquired from the studies in the previous chapters: Universal Serial Bus (USB)
Power Side-Channel (PSC) analysis and Hyperloop. Finally, Chapter 5 concludes the thesis
by summarizing the findings achieved and identifying future work directions. These findings
are based on the results of the following papers:
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• H. Liu, R. Spolaor, F. Turrin, R. Bonafede, and M. Conti, “USB powered devices: A
survey of side-channel threats and countermeasures,” High-Confidence Computing, p.
100007, 2021.

• R. Spolaor, H. Liu, F. Turrin, M. Conti, and X. Cheng, “Plug and power: Fingerprint-
ingUSB powered peripherals via power side-channel,” in Proceedings of the IEEE Inter-
national Conference on Computer Communications (INFOCOM). IEEE, 2023.

• A. Brighente, M. Conti, D. Donadel, and F. Turrin, “Hyperloop: A cybersecurity per-
spective,” 2022. Currently under review.

Other papers published during the Ph.D.

Aside from the paper previously mentioned, I also produced the following papers during my
Ph.D.

• G. Bernieri, M. Conti, M. Sovilla, and F. Turrin, “ALISI: a lightweight identification
system based on Iroha,” in Proceedings of the 35th Annual ACM Symposium on Applied
Computing (SAC ’20), 271–273, 2020.

• M. Conti, and F. Turrin, “Cyber Forensics for CPS”, Encyclopedia of Cryptography, Se-
curity and Privacy, pp. 1-3, 2019.

• S. Soderi, A. Brighente, F. Turrin, andM.Conti, “VLCPhysical Layer Security through
RIS-aided JammingReceiver for 6GWirelessNetworks,” inProceedings of the 2022 19th
Annual IEEE International Conference on Sensing, Communication, and Networking
(SECON), 2022.

• F. Turrin, A. Erba, N. O Tippenhauer, andM. Conti, “A statistical analysis framework
for ICSprocess datasets”, inProceedings of the 2020 JointWorkshop onCPS&IoTSecurity
and Privacy (CPSIoTSec), pp. 25-30, 2020.

• L. Attanasio, M. Conti, D. Donadel, and F. Turrin, “MiniV2G: An Electric Vehicle
Charging Emulator,”, in Proceedings of the 7th ACM on Cyber-Physical System Security
Workshop (CPSS), pp. 65-73, 2021.
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2
Industrial Control System Security

In the first part of the thesis, we will focus on one of the most studied CPS applications, the
ICS security. These systems gained special attention from the security community due to the
increasing attack spectrum targeting and cyber incidents targeting them, from Stuxnet [3] to
the most recent colonial pipeline attack [6] and Florida water system [7] attacks. These events
highlighted the insecurity of such infrastructures, posing severe problems to the population,
the surrounding environment, and the company business.

This chapter gathers the results obtained from different papers. Section 2.1 is dedicated to
introducing the ICS environment based on the finding of our survey [1]. In particular, will
be introduced the ICS infrastructure, the different devices composing the network and the
most used protocols, the worldwide testing platform for security research (i.e., datasets and
testbeds), and the Intrusion Detection System (IDS) applied on them. Then, in Section 2.2 to
motivate the need for security research in this field, we present our measurement study on ICS
infrastructure protocol usage [10], showing the dramatic usage of insecure protocols over the
internet (i.e., no encryption and authenticationmechanisms). Lastly, in Section 2.3 we present
a novelHoneypot conceived for ICS that we designed and deployed [11], andwe show the data
collected from the interaction with external sources.
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2.1 An ICS Overview

Critical infrastructures and the emerging Industry 4.0 are increasingly using more advanced
technologies such as computers, and electrical andmechanical devices tomonitor physical pro-
cesses. The networks resulting from smart computing integration for the processesmonitoring
are called ICSs or, sometimes, Supervisory Control And Data Acquisition (SCADA) systems.
ICSs are composed of two macro areas. The Operational Technology (OT) network in-

cludes hardware and software used to monitor and manage industrial equipment, assets, pro-
cesses, and events, e.g., Programmable Logic Controllers (PLCs), sensors, and actuators. In-
stead, the traditional Information Technology (IT) network includes workstations, databases,
and other classical machines used to manipulate information. IT andOT networks were origi-
nally disconnected. However, due to the so-called IT/OTConvergence [12], the two networks
have been interconnected to facilitate the digitization of processes, opening new vulnerability
surfaces.

ForCPSs, which also contains ICSs, the classical CIA triad (Confidentiality, Integrity, Avail-
ability) is considered reversed, in order of importance, as Availability, Integrity, and Confiden-
tiality [13, 14]. In this context, reliability becomes the most critical request since, differently
from IT systems where the main concerns are about the confidentiality of the data, for an
ICS instead, the availability is fundamental since it can guarantee human safety and fault toler-
ance [15]. For instance, in a nuclear plant environment, data availability (e.g., the temperature
of the core) is more important than its confidentiality [16].

Since these systems control physical and sometimes dangerous processes, security is a fun-
damental need. However, in recent years several viruses targeting ICSs were identified. One
of the first attacks targeting SCADAs systems dates back to 1982 [17] when a trojan targeting
the Trans-Siberian pipeline causes a massive explosion. In successive years, many incidents ex-
posed the security weaknesses of ICSs. Stuxnet [3, 18] is probably the most famous malware
discovered in this field. Stuxnet was a worm discovered in 2010 targeting PLCs used in gas
pipelines and power plants. It was able to cause the self-destruction of 984 centrifuges in a
uranium-enrichment plant in Iran. In 2014, the third version of a known trojan family, Black-
Energy [5], was developed to target ICSs. In the following years, this trojan was spread mainly
inside a Microsoft Word document that, once open, request to activate macros that hide the
virus. Victims of these attacks are media and energy companies, mining industries, railways,
and airports in Ukraine. On December 23, 2015, an attack employing BlackEnergy3 caused a
three-hour disconnection of 30 substations in the Kyiv Power Distribution company, leading
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to several hours of blackouts in the area. More recently, in 2017, another important malware,
TRITON[4], was identified after an unscheduled shutdownof a SaudiArabian petrochemical
processing plant. TRITON reprograms some special PLCs used for safety purposes, causing
them to enter a failed state.

According to a report of Kaspersky Lab [19], in the second half of 2016 the 39.2% of the in-
dustrial machines secured by Kaspersky’s products have been attacked, a clear sign that threats
to ICS are a growing problem nowadays. The vulnerabilities affecting these systems are also re-
ported in recent studies on real ICS traffic over the Internet [10, 20], showing a dramatic lack
of security features on the communication.

A successful attack on ICS implies a huge economic impact on the organization. These
consequences include operational shutdowns, damage to the equipment, business waste, intel-
lectual property fraud, and significant health and safety risks. Nozomi Network reports that
known shutdown events of an ICS [21] due to an attack cost from 225K$ up to 600M$. An
increasing attack trend against ICS isRansomware, which aims to obtain economic rescue [22].
According to Coveware [23], in Q4 of 2019, the average ransom payment increased by 104%
to 84,116$, up from 41,198$ in Q3 of 2019. One of the most recent Ransomware is EKANS,
which was discovered targeting 64 ICS [24].

Toprevent such catastrophic events, it is fundamental to implementnovel security-by-design
approaches, and where it is impossible to apply them, prevention or mitigation techniques
must be integrated. However, developing a new security-by-design concept, it is required a
complete testing infrastructure. Generally, researchers rely on scaled-down versions of a real
ICS, created ad-hoc to reproduce real-world systems but in a controlled environment, called
testbed. Testbeds could be based on physical devices to provide reliable data at the cost of be-
ing more expensive or virtual if the application does not require exact measures. However,
the development of a new testbed is not straightforward, instead, it is challenging from differ-
ent points of view, ranging from implementation costs, sharing capability, and fidelity (Sec-
tion 2.1.4).
To develop prevention and mitigation techniques, nowadays, researchers involve machine

learning techniques that exploit big amounts of data to train classification algorithms to de-
tect misbehavior or potential attacks. The straightforward approach to collecting data is to
record and provide to researchers with data from real ICSs. However, since these systems are
generally critical and fundamental for society, this strategy can be challenging in many aspects.
For instance, it is difficult, if not impossible, to deploy attacks in a real environment because
they can damage the physical process or some devices. Moreover, privacy is a problem: pri-
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vate companies could be reluctant to share system data from their ICSs. In fact, disclosing
this data can cause intellectual property theft or reveal the infrastructure’s vulnerabilities, at-
tracting malicious attackers’ attention. From a testbed, it is possible to generate data and share
them with other researchers to compare and improve different detection algorithms’ results.
These captures are called datasets and can be composed of physical measures (i.e., data from
OT sensors) and/or network traffic (i.e., data from network communications). Datasets are an
excellent testing solution due to their simplicity and availability. However, they are also chal-
lenging frommany points of view, for instance, in the generation process, and lack modularity
(Section 2.1.5).

In this section, we present a comprehensive survey specifically targeting the security research
platform in the ICS field. This work aims to collect all the information related to the testbed
and dataset to support future research and studies on this sector. Furthermore, for each dataset
identified, we report the best score achieved by an IDS in terms of F1-Score (F1), Accuracy
(Acc), and Precision (Pr), which are the most common metrics. We have accurately analyzed
all the testbeds, datasets, and IDSs to provide the readers with an exhaustive overview of the
current ICS state of the art. The study aims to assist interested readers: (i) to discover the
different testbeds and datasets which can be used for security research in ICSwith a description
of the design key points, (ii) to have a clear baseline when developing an IDS on a particular
dataset, and (iii) to understand the challenges and the good practices to keep in mind when
designing an ICS testbed or dataset.

2.1.1 Related ICS Surveys

Literature includes different surveys comparing testbeds anddatasets created for applications in
the ICS field. However, to the best of our knowledge, no detailed analysis gathers and describes
both the ICS datasets and testbeds, but also the main IDSs implemented on them. For every
dataset, we also report the algorithm with the best performances and the most interesting and
innovative detection approaches. We believe that this could be useful for future research in this
field and set a baseline to compare the different detection results.

In 2015, Holm et al. [25] proposed a complete revision of several papers related to ICS
testbeds. The authors then focused on the objective and the component’s implementation
of 30 different testbeds. Furthermore, the authors provided an analysis of each testbed’s main
requirements (i.e., fidelity, repeatability, measurement accuracy, and safe executions). The pa-
per’s main scope was to provide an overview of the actual state of such systems’ development
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without detailing each single testbed composition. In fact, except for a table that indicates each
testbed’s location, all the others show only aggregated information. Moreover, since the paper
is not recent, some of the presented testbeds are quite old and not widely used nowadays, while
others that were only designed have never been made (e.g., [26]).

McLaughlin et al. [27], in 2016, presented a complete survey on the state-of-the-art in ICS
security. The paper briefly introduces the ICS operation’s key principles and the history of
attacks targeting ICSs. The authors then addressed the vulnerability assessment process, out-
lining the cybersecurity assessment strategy advised for ICS and providing a list of steps to
study the security and vulnerabilities of an industrial system. In the end, the authors focused
on new attacks and mitigation techniques. Moreover, the paper briefly presents a small list of
some testbeds which can be used for security research in this field. Differently, our work is less
focused on providing a complete landscape on ICS security, while it offers a more in-depth
analysis and review of all the most used testbeds and datasets for ICS security research.

In2017,Cintuglu et al. [28]presented a comprehensive survey focusedon smart grid testbeds,
providing a systematic study with a particular focus on their domains, research goals, test plat-
forms, and communications infrastructures. There are some intersections between smart grid
and ICS fields, such as some used components and protocols. Nevertheless, some different
concepts require a separate ICS analysis, like the specific applications and sensors used, com-
bined with the complexity of smart grids. To classify smart grid testbeds, the authors provide
different possible taxonomy. Some of them can be applied to the entire ICS field (e.g., platform
type). Instead, some others are specific to SmartGrid (e.g., National Institute of Standards and
Technology (NIST) grid domain). The employed testbed classification in [28] is mainly based
on the research area, which motivates the development of each system. In this work, instead,
we classify testbeds mainly based on the platform type, providing the reader an overview of the
most suited ICS testbeds and datasets for his research.

Recently in 2019, Geng et al. [29] presented a survey on ICS testbeds based on the same four
requirements of [25]. Besides analyzing different ICS datasets, the authors also present the dif-
ferent techniques that can be employed to build a testbed, including application scenarios, the
main challenges, and future development directions. However, the authors’ only introduced
an analysis of each testbed’s structure without going into details or providing comparison ta-
bles.

In the same year, Choi et al. [30] gathered and analyzed datasets for ICS security research,
providing different comparison tables to understand the most suitable dataset depending on
the case study. The authors based the comparison on the attack vector strategy. The paper
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includes 11 commonly used datasets. Some existing datasets not widely used or without attack
data are intentionally not considered. However, even if not suited for anomaly detection tasks,
the latter could be useful to study the ICS environment’s behavior. Also, one of the presented
datasets (i.e., DEFCON23) is no longer available. Gosh and Sampalli [31] in 2019 presented a
survey that classifies the security threats and the existing security schemes in industrial systems.
Particular interest was given to the threats and the corresponding security measures related to
QuantumComputing. However, differently from ourwork, the survey [31] does not focus on
the testbeds and datasets available in the literature.

In 2020, in [32] the authors present an exhaustive survey with guidelines and good practices
to help the building of an ICS testbed, highlighting the main challenges and the results of a
focus group involving security experts to identify relevant design factors and guidelines. In
the same years, Green et al. published another survey in this direction [33] with interesting
guidelines for each ICS layer and a set of characteristics to consider when outlining testbed
objectives, architecture, and evaluation process. While these works are interesting and give
a comprehensive insight into the process of designing and evaluating a testbed, they do not
consider datasets and IDSs, their requirements, and relationships.

Another interesting survey presented in 2020 by [34] discusses the transition of ICS stand-
alone systems to cloud-based environments. The authors presented in detail the benefits, the
main security challenges, and different case studies related to cloud-based ICSs. However, dif-
ferently from our work, the authors mainly focused on reviewing the current ICS cloud tran-
sition state. Instead, we are interested in providing an overview of the testbed and datasets
designed for security research. Pliatsios et al. [35] in 2020 present an exhaustive survey on
SCADAs systems with a particular focus on the threats and vulnerabilities rising from the in-
secure design of the industrial protocols. The authors presented in detail the security issues
of the protocols in terms of CIA Triad and how an attacker can exploit such vulnerabilities.
Recently, Alcaraz and Lopez present a survey on how the new IT devices are being adopted
to improve automation and control processes, allowing the convergence of IT with OT [36]
However, few spaces on the surveywere dedicated to the testbed, while the dataset and themost
recent Intrusion Detection techniques were not discussed.

Differently from previous works, our survey aims to collect all the platforms (i.e., testbeds
and datasets) useful for ICS security research. We base the existing literature to provide a de-
tailed analysis of the current research issues, challenges, and future directions characterizing
this field. We also report the best performance of the IDS on every dataset, which can be help-
ful for future IDS research baseline.
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2.1.2 Industrial Control Systems

In this section, we offer a background on ICSs, useful when start approaching this field and to
understand the remainder of this work. Firstly, in Section 2.1.2, we focus on the architecture
of such systems compared to the classical systems architecture. Then we present a summary of
the widely used ICS components in Section 2.1.2.

ICS Architecture

ICSs are composed of the interconnection of different computers, and electrical and mechan-
ical devices used to manage physical processes. These systems are usually very complex and
include heterogeneous hardware and software components such as sensors, actuators, physical
systems and processes being controlled or monitored, computational nodes, communication
protocols, SCADA systems, and controllers [37]. Control can be fully automated or may in-
clude a human in the loop that interacts via a Human Machine Interface (HMI). ICSs are
widespread in modern industries (e.g., gas pipelines, water treatments) and critical infrastruc-
tures (e.g., power plants and railways).

Unlike classical IT systems, ICSs are composed of standard network traffic over Transmis-
sion Control Protocol (TCP)/IP stack and data from physical processes and low-level compo-
nents. This interconnected and intertwined nature can open a wide space for new generation
attacks exploiting new vulnerability surfaces. Several protocols are used in ICS, based on the
specific purpose of each system. Industrial protocols are specifically designed to deal with real-
time constraints and legacy devices in an air-gap environment. Many protocols do not imple-
ment any encryption or authentication mechanism due to these constraints, opening several
vulnerabilities surfaces. Moreover, sometimes, the industrial protocols are customized from
the company opening, again, many documentation and vulnerability issues.

The reference architecture of the ICS is the Purdue Model [29, 38]. As depicted in Fig-
ure 2.1, the Purdue module divides an ICS network into logical segments with similar func-
tions or similar requirements:

1. Enterprise Zone, or IT network, includes the traditional IT devices and systems such
as the logistic business systems and the enterprise network.

2. Demilitarized Zone (DMZ), controls the exchange of data between the Control Zone
and the Enterprise Zone, managing the connection between the IT and the OT net-
works in a secure way;
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Figure 2.1: ICS Purdue Model architecture and corresponding level of the different industrial devices.

3. Control Zone, sometimes also referred to as OT network, includes systems and equip-
ment for monitoring, controlling, and maintaining the automated operation of the lo-
gistic and physical processes. It is divided into four sub-levels:

• Level 0 includes sensors and actuators that act directly on the physical process;

• Level 1 includes intelligentdevices such asPLC, IntelligentElectronicDevice (IED),
and Remote Terminal Unit (RTU);

• Level 2 includes control systems such as HMI, alarms, and control room worksta-
tions;

• Level 3 includes manufacturing operation systems that are often responsible for
managing control plant operations to produce the desired end product;

Level 2 and Level 3 devices can communicate with the Enterprise Zone through the
DMZ.

4. Safety Zone includes devices and systems for managing ICS security by monitoring for
anomalies and avoiding dangerous failures;

The role of the DMZ is to filter the internal communication of the network. In fact, accord-
ing to the Purdue model, all the traffic Exchanged between OT and IT networks must pass
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through the DMZ.However, this is rarely respected in the real-world, mainly due to the imple-
mentation difficulty or, more generally, the companies’ insufficient attention to the industry-
building phase’s security aspects. This condition exposes the critical part of the system (i.e., OT
network) to potential attacks.
Compared with the classical IT environment, ICSs need a different risk-handling strategy.

The reliability is fundamental, and outages are not tolerated due to the critical nature of the
processes monitored, unlike IT, where occasional failures are acceptable. The risk impact is
also different: in the IT environment, the principal risk is the compromising of privacy and
confidentiality (e.g., loss or unauthorized alteration of data). Instead, in the OT environment,
a data compromise can cause a loss of production, equipment, and, in the worst case, a loss of
lives or environmental damage.

Another difference with respecting traditional IT systems relies on information handling
performance: in an IT environment, the throughput must be high enough, while delays and
jitter are accepted. On the other hand, in the industrial field, communication is defined with
regular polling time. Generally, this polling time is in second or millisecond orders, but delays
are serious concerns. Finally, in IT systems, recovery can be made by rebooting. In contrast, in
the OT system, fault tolerance is essential since a reboot would imply shutting down the entire
industry and can lead to enormous economic losses [26].

For all these reasons, and considering that nowadaysmost of the ICS are connected with the
Enterprise zone, it is essential to protect them using new and precise technologies.

ICS Components

Industrial Control Systems are composed of awide range of heterogeneous devices and compo-
nents with a specific role in the system. In this section, we briefly introduce the most common
devices in the ICS fields. These devices are generally installed or simulated in the testbed to
replicate the ICS environment. We reported in Figure 2.1 the level of the Purdue Model on
which each device is installed.
PLC. PLC is a microprocessor-controlled electronic device that reads input signals from sen-
sors, executes programmed instructions using these inputs and orders from supervisory con-
trollers, and creates output signals that may change switch settings or move actuators. PLC is
generally the boundary between the OT network and the physical process. It is often rugged
to operate in critical environmental conditions such as very high or low temperatures, vibra-
tion, or in the presence of big electromagnetic fields. As withmost ICS components, PLCs are
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designed to last more than 10-15 years in continuous operations. The Real-Time Operations
System installed in each PLCmakes it suited for critical operations. The time to read all inputs,
execute logic, and write outputs is generally very short.
RTU. An RTU is a microprocessor-controlled electronic device. Like PLC, it is designed for
harsh environments and is generally located far from the control center, for instance, in voltage
switch-gear. There are two types of RTUs: station and field RTUs. Field RTU receives input
signals from field devices and sensors and then executes programmed logic with these inputs.
It gathers data by polling the field devices/sensors at a predefined interval. It is an interface
between field devices/sensors and the station RTU, which receives data from field RTUs and
orders from supervisory controllers.
IED. An IED is a device containing one or more processors that can receive or send data from
an external source. Examples of IEDs are electronic multi-function meters, digital relays, and
controllers. Thanks to the higher complexity compared to a PLC and RTU, IED can perform
more operations. An IED can be used for protection functions like detecting faults at a substa-
tion or for control functions such as local and remote control of switching objects and provide
a visual display and operator controls on the device front panel. Other functions can be related
to monitoring (for instance, a circuit breaker condition), metering (e.g., tracking three-phase
currents), and communications with supervisory components.
EngineeringWorkstation. The EngineeringWorkstation is generally a desktop computer or
server running a standard operating system hosting various software for controllers and appli-
cations. Engineers use this platform to manage the controllers.
HMI. The HMI is software installed on desktop computers, tablets, smartphones, or dedi-
cated flat panel screens that permit operators to check and monitor the automation processes.
As illustrated in Figure 2.2, theHMI shows the state of a plant operator, such as process values,
alarms, and data trends. An HMI can monitor multiple process networks and several devices.
An operator can use theHMI to sendmanual commands to controllers, for instance, to change
some values in the production chain. Generally, the HMI shows a diagram or plant process
model with status information to facilitate such a job.
Data Historian. A Data Historian is a software application used to collect real-time data
from processes and aggregate them into a database for analysis. Data Historian mainly collects
the same information shown in an HMI. The database and the hardware, generally a desktop
workstation or a server, is designed for a very fast ingest of data without dropping data and uses
industrial interface protocols.
Front End Processor (FEP). The FEP is a dedicated communications processor used to poll
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Figure 2.2: An example of HMI interface generated with Promotic Open‐Source Tool [39].

status information from multiple devices to give operators the possibility to monitor the sys-
tem’s overall status.
Communications Gateways. ACommunications Gateway is essential to make communica-
tions possible between devices from differentmanufacturers that use different protocols. Gate-
ways can translate packets from a sending system to the receiver protocol.
Master Terminal Unit (MTU). MTUs manage the communication with the RTU or the
PLC, gathers data from the PLCs, and process them. The communication between theMTU
and the PLCs is bidirectional, but only the MTU can initiate the communication. Therefore,
the MTU uses a master-slave communication where the MTU is the Master and PLCs are the
slaves. Messages from theMTUto thePLCs canbe triggeredby anoperator or be automatically
triggered. These messages can either read memory parts representing current values or either
write values in the memory and modify the configuration.
SCADA. SCADAs devices are placed on the higher level of the ICS hierarchy and are used
to monitor and control centralized data acquired from different field sites. Furthermore, they
manage the communication between the various devices and represent the remote connection
point for the remote operators with the OT network. Over the year, SCADAs systems pro-
tocols moved from proprietary standards towards open international standards, resulting in
attackers knowing precisely the protocols. That is why there is a gain of interest in reinforcing
industrial control systems security.
ICS FieldDevices. Field devices include all the components that are in direct contactwith the
physical process. The controllers can use them to get information regarding the physical pro-
cess (e.g., the measure of temperature or pressure using sensors). Instead, actuators can inter-
actwith a physical process following commands from a controller (e.g., controlmotors, pumps,
valves, turbines, and agitators). Communicationwith the controllers is generally performed via
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I/O modules. Field Devices are implemented in the so-called CPS closed-loop to perform the
three CPS main functions: monitoring using sensors, making decisions using PLCs, and ap-
plying actions using actuators. These three functions operate within a feedback loop covering,
as shown in Figure 2.3.

Industrial Protocols Security

With the growth of the ICSs, several new protocols have been developed to support the specific
requirements of theOT environment, like fault tolerance and reliability. Themajority of these
protocols were designed to operate in an air-gapped environment. Therefore originally, less
importance was given to the security aspects with respect to the real-time constraint. Some of
them have no security features at all (e.g., Authentication, Encryption). However, after the IT
and OT convergence, they have still been used in practice [10].
This section reports the main industrial protocols focusing on the security properties ini-

tially and currently implemented. Standards likePowerLinkEthernet, EtherCAT,Constrained
Application Protocol (CoAP),MessageQueuingTelemetryTransport (MQTT), ZigBee PRO,
WirelessHART, or ISA100.11.a are not used in the datasets and testbeds identified in this study.
Therefore we decided not to report them. However, some of these protocols are widely used
in different fields, for instance, in Industrial Internet of Things (IIoT) scenarios.

Table 2.1 summarized themain information related to theprotocols presented in this section.
It includes:

• Name of theManufacturer;

• Standard Ports according to Internet Assigned Numbers Authority (IANA) [40];

• Information related to theOriginal protocol:
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Original Enhancement
Manufacturer Ports Name Year E I A Version Year E I A
Schneider Electric 502/802 Modbus 1979 Modbus/TCP Security 2008 3 3 3

GEHarris 20000 DNP3 1990 3 DNP3-SA 2020 3 3 3

Siemens 102 S7Comm 1994 S7CommPlus 2014 3 3

PROFINET Int. - PROFINET 2003 PROFINET Security Classes 2019 3 3 3

ODVA 44818 EtherNet/IP 2000 CIP Security 2015 3 3 3

OPC Foundation 4841 OPC 1996 OPC-UA 2006 3 3 3

IEC 2404 IEC 104 2000 IEC 62351 2007 3 3 3

IEC 102 IEC 61850 2003 IEC 62351 2007 3 3 3

Table 2.1: Summary of the main protocol’s characteristics and them security measures implemented in the enhancement
extensions. In particular, the table shows E: Encryption; I: Integrity; and A: Authentication. The Enhancement part refers to
the version proposed by the manufacturer.

– Name of the protocol;

– Year of release;

– A tick if Encryption, Integrity, orAuthentication are available;

• Information related to the Enhancement version with security measures offered by the
manufacturer:

– Name of the newVersion of the protocol;

– Year of release;

– A tick if Encryption, Integrity, orAuthentication are available.

Table 2.2: Protocol used in the presented testbeds and datasets. • indicates that the protocol is supported/available. In
some work, it is not indicated the version of Modbus (TCP, RTU, or ASCII) is adopted. In such cases, a • is used to indicate
a general version of the protocol.

Name Modbus S7Comm EtherNet/IP DNP3 Logs Phy. Others
4SICS TCP • • •
Aghamolki et al. • • IEEE-C37.118
Ahmed et al. • • Profinet
Alves et al. TCP
BATADAL •
Blazek et al. IEC61850
BU-Testbed •
CockpitCI TCP
CyberCity Dataset TCP • NetBIOS
CyberCity Testbed TCP • NetBIOS
D1: Power System • •
D2: Gas Pipeline TCP
D3b: Water Storage Tank •
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Table 2.2 – continued from previous page
Name Modbus S7Comm EtherNet/IP DNP3 Logs Phy. Others
D4: New Gas Pipeline •
D5: Energy M. S. D. •
Davis et al. TCP Custom TCP
DVCP • Profinet
Electra Modbus •
Electra S7Comm •
EPIC (IPSC) TCP
EPIC (iTrust) TCP IEC61850
EPIC Dataset TCP •
EPS-ICS Unknown
Farooqui et al. Unknown
Gas Pipeline testbed TCP
Genge et al. • • Profinet
Giani et al. • •
Gillen et al. • CIP
GRFICS •
HAI Dataset •
HAI Testbed Fieldbus
Hui Nuclear • Profinet, Custom TCP
HVAC_Traces • DCE/RPC, NetBIOS
HYDRA •
Jarmakiewicz et al. IEC61850, IEC104
Jin et al. •
Kaouk et al. tcp
Kim et al. Variable
Koganti et al. •
Koutsandria et al. •
KYPO4INDUSTRY • •
Lancaster’s testbed Converted to IP
Lee et al. • IEC61850
LegoSCADA • •
Lemay Covert •
Lemay SCADA •
LICSTER TCP T
Maynard SCADA IEC104, OPC
Microgrid Unknown
MiniCPS TCP •
Mississipi Ethernet Ethernet
Mississipi Serial RTU, ASCII •
Modbus SCADA #1 TCP, RTU
MSICST TCP • •
NIST TCP • DeviceNet, OPC
PNNL Not specified
PowerCyber • IEC61850
Queiroz et al. TCP
QUT_DNP3 • •
QUT_S7 (Myers) • •
QUT_S7Comm •
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Table 2.2 – continued from previous page
Name Modbus S7Comm EtherNet/IP DNP3 Logs Phy. Others
Reavers & Morris TCP, RTU
RICS-el IEC104
S4x15 ICS TCP BACnet
Sayegh et al. FINS
SCADA-SST •
SCADASim TCP •
SCADAVT TCP Custom TCP
SGTB Unknown
Singhet et al. • IEC104
SNL Testbed TCP • IEC104 (partially)
SWaT Dataset • • CIP
SWaT • CIP
T-GPP TCP •
TASSCS TCP
Teixeira et. al •
TETRIS
Turbo-Gas Power Plant TCP •
VPST •
VTET • • OPC
WADI Dataset •
WADI TCP
Wang et al. TCP •
WUSTL-IIOT-2018 •
Yang et al. IEC104
Zhang et al. Unknown

Industrial Protocols

Modbus. Modbus is a serial communication protocol initially published by Modicon (now
Schneider Electric) in 1979 for use with its PLCs. TodayModbus [41] is one of the most used
and famous protocols in the ICSs. Over the years, various versions of Modbus have been re-
leased. The first version was thought for serial communications, allowing to establish of asyn-
chronous serial communications onRS-232 andRS-485 interfaces. Modbus is also adapted to
transmission means other than copper, such as optical fiber and radio links. A typical commu-
nication viaModbus consists essentially of three stages: the formulation of a request from one
device to another, the execution of the actions necessary to satisfy the request, and the resulting
information’s return to the initial device.
Security. Modbus was designed to be used in environments isolated from the Internet regard-
ing the application layer’s security. Therefore it does not include any security mechanism on
this layer. These deficiencies are magnified by the fact that Modbus is a protocol designed for
legacy programming control elements like RTUs or PLCs making the injection of malicious
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code into these elements easier. Modbus Security [42] offers aModbus/TCP version enhance-
ment focused on using port 802. This new version enables Transport Layer Security (TLS) to
provide confidentiality, integrity, and authentication using x.509v3 certificates. Moreover, it
specified certificate-based authorization using role information transferred via certificate expan-
sions. Researchers have also proposed differentmodifications to introduce confidentiality [43]
or authentication [44] via covert-channel onModbus.
DNP3. DNP3 is an open, intelligent, robust, and efficient SCADAs protocol organized into
four layers: physical, data link, pseudo-transport, and application. In serial implementations,
commands are issued broadcast. DNP3 contains significant features that make it more robust,
efficient, and interoperable than older protocols such as Modbus, at the cost of higher com-
plexity. The protocol’s primary goal is to maximize system availability by putting less care into
confidentiality and data integrity factors. DNP3 organizes data into data types such as binary
inputs/outputs, analog inputs/outputs, counters, time and date, and file transfer objects.
Security. As previously mentioned, DNP3 is a protocol designed to maximize system avail-
ability by putting less care into confidentiality and data integrity factors. At the application
level, some efforts have been made to provide a safe authentication standard in DNP3. While
in the beginning, pre-shared keyswere used to authenticate, according to the standard Institute
of Electrical and Electronics Engineers (IEEE) 1815-2010 (deprecated), the latest versions im-
plement PublicKey Infrastructure (PKI)with remote key changes (standard IEEE 1815-2012).
Recently, in 2020, GEHarris presentsDNP3 version 6, introducingDNP3-SA [45], a separate
protocol layer that supports Message Authentication Code to provide secure communication
sessions, including authentication and integrity. Moreover, this version supports encryption
to offer data confidentiality by using the AES-256 algorithm. Some other solutions have been
proposed in the literature to implement cryptography protections, such as end-to-end encryp-
tion [46] and Virtual Private Network (VPN) for IP networks [47].
S7Comm. Introduced in 1995, S7comm (S7 Communication) [48] is a Siemens proprietary
protocol that runs between standard PLCs of the Siemens S7-200/300/400 family and new
generation PLCs like S7-1200/1500. It is a proprietary and closed standardwithout significant
literature related to it. Siemens has a proprietaryHMI software for the SIMATICproducts and
an Ethernet driver that provides connectivity to devices via the Siemens TCP/IP Ethernet pro-
tocol. In addition to this driver, there are also 3rd-party communication suites for interfacing
and exchanging data with Siemens S7 PLCs.
Security. S7Comm is a closed protocol, so there is no related documentation. However, as var-
ious works underline, the base version of S7Comm does not include security features, and it is
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vulnerable to replay attacks [49]. However, in 2010 Stuxnet exploited the security vulnerabili-
ties of S7Comm to compromise a Nuclear Plant in Iran. As a result of this incident, Siemens
has developed a new version of the protocol, called S7CommPlus, with replay-attack protec-
tion. It has been proven that this version is also vulnerable to reverse debugging attacks [49].
PROFINET. DevelopedbyPROFIBUS&PROFINET International (PI), PROFINET [50]
is anopen standard for Industrial Ethernet standardized in InternationalElectrotechnicalCom-
mission (IEC) 61158 and IEC61784. Introduced in 2003, it is an evolution of the PROFIBUS
standard, whose lines can be integrated into the PROFINET system via an IO-Proxy. This pro-
tocol follows the provider-consumer model for data exchange in a cascading real-time concept.
Security. PROFINET is a protocol operating in the application, link, and physical layers. The
link layer in this protocol uses Fieldbus Data Link (FDL) to manage access to the medium.
FDL operates with a hybrid access method that combines master-slave technology with the
passing of a token, indicating who can initiate communication and occupy the bus. These
measures ensure that devices do not communicate simultaneously. However, FDL constitutes
any safety mechanism andmay be susceptible to attacks involving traffic injection or Denial of
Service (DoS). In 2019, PI introduced three Security Classes to offer a way to select security
measures based on consumer needs [51]. Class 1 improves robustness through a digital signing
of General Station Description files using a PKI infrastructure, an extended Simple Network
Management Protocol (SNMP) configuration, and aDCP in read-onlymode. Class 2 expands
the previous class by offering integrity and authenticity via cryptographic functions and confi-
dentiality only of the configuration data. Instead, Class 3 offers all the previous characteristics
and the confidentiality of all the data.
ODVA’s networks. Founded in 1995, ODVA [52] is a global association whose members
comprise the world’s leading automation companies with the mission of developing advanced
open and interoperable communication technologies for industrial automation. The primary
interest is developing the Common Industrial Protocol (CIP), supporting the various network
adoptions such asDeviceNet,CompoNet,ControlNet, and thewidely usedEtherNet/IP.CIP
encompasses a comprehensive suite of messages and services to collect industrial automation
applications such as control, safety, energy, synchronization, motion, information, and net-
work management. EtherNet/IP is an adaption of CIP to the Ethernet TCP/IP stack, while
DeviceNet provides a way to use CIP over the CAN technology. ControlNet uses CIP over a
Concurrent Time Division Multiple Access data link layer, and CompoNet implements CIP
on a Time DivisionMultiple Access data link layer.
Security. Recently, in 2015, ODVA introduced the CIP Security framework [53] to provide
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security measures to CIP protocol. Since different systems might need different security levels,
CIP Security provides different security specifications profiles to help users configure inter-
operable devices. On EtherNet/IP, it enables TLS and DTLS to secure the TCP and User
Datagram Protocol (UDP) transport layer protocols. TLS and DTLS provide authentication
of the endpoints using X.509 certificates or pre-shared keys, message integrity and authentica-
tion employing TLS message authentication code, and optional message encryption.
Open Platform Communications (OPC). The classic OPC [54], developed in 1996, was
designed to provide a communication protocol for personal computer-based software appli-
cations and automation hardware. In 2006 a new version, Open Platform Communications
Unified Architecture (OPC-UA), was released as an operational framework for communica-
tions in process control systems. The general layout of the communication is simple: the hard-
ware devices (e.g., PLC, Controller) act as data sources, and the software applications (e.g.,
SCADAs, HMI) play the role of data consumers, whereas the OPC interface acts as connec-
tivity middleware, enabling the data flow. Using the OPC, the client applications access and
manage the field informationwithout knowing the physical nature of data sources. WithOPC-
UA improvements, the protocol is widely used in critical and industrial fields such as energy
automation, virtualized environment, and building automation.
Security. OPC-UA implements a securitymodel and five security classes, bringing greater secu-
rity to the architecture at the cost of slightly higher complexity [55]. It is also possible to imple-
ment only a fraction of the security measures by using one of the five security classes provided.
The securitymodel allows for generating a secure channel that provides encryption, signatures,
and certificates at the communication layer. Furthermore, a session in the application layer is
used to manage user authentication and user authorization.
IEC 60870-5-104 (IEC104). Released in 2000, IEC104 protocol [56] is an extension of the
IEC101protocolwith the changes in transport, network, link, andphysical layer services to suit
the complete network access. There are two different methods of transporting messages. The
first provides bit-serial communications over low-bandwidth communications channels. In
the second, introducedwith IEC104, the protocol’s lower levels have been completely replaced
by the TCP/IP transport and network protocols.
Security. IEC104, has been proven to be vulnerable to different types of attacks, such as man-
in-the-middle and replay attacks [57]. A more recent and secure standard of the IEC family is
IEC 62351. This version implements end-to-end encryption to prevent attacks such as replay,
man-in-the-middle, and packet injection. However, due to the higher complexity, industries
rarely upgrade IEC104 to IEC 62351.
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IEC 61850. Like IEC104, IEC 61850 [58] was originally designed to enable communica-
tions inside substations automation systems. In recent versions, an extension of IEC 61850
allows substation-to-substation communication and provides tools for translation with other
protocols such as IEC 60870-5, DNP3, andModbus. The protocol is devised using an object-
oriented design suited for communication between devices of different vendors.
Security. IEC 62351 standard provides various security measures, offering guidelines and de-
veloping a secure operation framework. Since time-critical application encryption is not suit-
able due to the 3ms delivery overhead, the standard recommends using digital signature gener-
ated by SHA256 andRSApublic key algorithms. Furthermore, the employment of IEC61850
in heterogeneous networks exposes the system to protocol mapping vulnerabilities. It is possi-
ble to prevent these vulnerabilities by developing ad-hoc security by design architectures [59].
Other protocols. In addition to previously presented protocols, some datasets contain few
packets related to other generic protocols used in a wide range of applications. Published in
1995, BACnet is a data communication protocol for building automation and control net-
works supported by some HVAC components but not widely used [60]. Distributed Com-
puting Environment/Remote Procedure Calls (DCE/RPC) is a remote procedure call system
that allows programmers to write distributed software as if it were on the same computer. One
of the datasets presented in this study includesDCE/RPC, togetherwithNetBIOS, a network-
ing protocol allowing applications on separate computers to communicate over a Local Area
Network (LAN). Other generic packets are visible in some datasets like Address Resolution
Protocol (ARP) and Domain Name System (DNS) requests but are generally not related to
the industrial field.

Industrial Protocols Employment

In Table 2.2, we provide the complete list of the datasets and testbeds analyzed in this work,
together with the protocol used in the specific platform. In detail, the table associates to each
testbed the protocols supported and to each dataset the protocols available. Moreover, it indi-
cates if data logs and physical measures are provided in the datasets. As previously described,
there are several different protocols employed in the ICS field. In Figure 2.4, we reported the
percentage of usage of each protocol in the testbeds and datasets investigated in this survey.
Modbus, and its different versions (i.e., TCP,RTU,ASCII), are themost used protocols, while
EtherNet/IP, DNP3, and S7Comm follow with a lower but significant employments.

Since the testbed and dataset employed should represent an approximation of real-world
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scenarios, it is interesting to compare if the distribution of the protocols implemented in the
different datasets is similar to the protocol’s distribution in the real industrial system. Verifying
this claim is a challenging task due to the various privacy concerns of companies in disclosing
information. Various works tried to deal with this problem by measuring the industrial traf-
fic present on the Internet. Although with limitations, the traffic measurement can represent
a reasonable estimate of the most popular industrial protocols currently used. By leveraging
Censys search engine, Xu et al. [61] scanned the Internet for about two years (from 2015 to
2017), examining for industrial devices exposed. In particular, they focused on five protocols:
Modbus, S7Comm, DNP3, BACnet, and Tridium Fox. Results show a significant prevalence
of Modbus and Tridium Fox devices (with more than 20K devices found), a middle spread of
BACnet (about 11K devices) and S7Comm (about 4.5K devices), and a lower number of de-
vices using DNP3 (less than 1K). Furthermore, the authors noticed an increasing number of
Modbus and S7Comm devices during the two years of recording, while the number of DNP3
devices decreased. A similar study, presented by Barbieri et al. [10], leveraged Shodan and an
Internet Exchange Point (IXP) in Italy to measure ICS host exposure. They discover many
devices using Modbus, MQTT, and Niagara Fox. Furthermore, the authors also identified
EtherNet/IP, S7Comm, and BACNet devices but with significantly lower samples.

In addition to measurement works, we can also rely on market analysis. According to an
HMS report [62], the overall market share of Industrial Ethernet protocols increased in 2020.
Inparticular, EtherNet/IP andProfinet obtainedfirst placewith 17%of themarket share, while
in third place there is EtherCat with a share of 7%. On the other side, Fieldbus protocols such
as Profibus andDeviceNet showed a decrease of 5% in themarket share with respect to the pre-
vious year. Interestingly theModbus protocol (TCP and RTU variants), despite being heavily
employed in testing, results in a 10% of market share (5% RTU, 5% TCP).

These findings show thatModbus/TCP is themost employed protocol in testbeds, datasets,
and Internet measurements. Nevertheless, it obtained a low market share in the last year (i.e.,
2020), outranked by EtherNet/IP, which is also employed in a significant part of the testbeds
and datasets presented in this survey, and Profinet, which instead is used in only the 3.2% of
the testing system analyzed in this work. Therefore, Profinet can be an interesting protocol to
introduce in future testbeds and datasets to follow themarket trend. Other protocols that have
an increasing market share are BACnet, TridiumFox, and NiagaraFox, which are not present
in the testing platforms, except for one dataset that contains BACnet packets. Finally, another
protocol that could be interesting to include in testing platforms is EtherCAT, which has a 7%
of market share. However, no testing system currently supported it.
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Figure 2.4: Percentage distribution of different protocols in the datasets and testbeds analyzed.
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2.1.3 ICS AdversaryModels

In this section, we offer an overview of the various attacks and defense mechanisms in ICSs.
In particular, in Section 2.1.3 we present an overview of the typical attacks which can target
ICSs and are implemented in the different testbeds and datasets. Instead, in Section 2.1.3 we
proposed a brief overview of the techniques employed to detect and mitigate attacks in this
field.

Typical Attacks

ICSs are extremely complex systems, which connect IT components with sensors, actuators,
and other OT devices. Such an interconnected scenario with a wide variety of various compo-
nentsmay hide attack surfaces caused, for instance, by device-specific vulnerabilities ormiscon-
figurations. Recently, [36]
Having a clear idea of the different attack typologies is essential in building and testing

defenses. Based on that, testbeds should be capable of simulating verisimilar attacks, while
datasets should include not only normal operation data but also attack data. Reproducing
attacks is a challenging task because the simulation should precisely emulate a realistic abnor-
mal operating condition. However, it is impossible to replicate every type of attack due to the
devices’ potential damage. Some attacks could also shift the testbed’s operating behavior in a
dangerous state and seriously damage the machines. Furthermore, the limited class of attacks
implemented could raise a generalization problem of the detection strategy, not transferable to
novel and unknown attacks.
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In a CPS scenario, by definition, there are two possible attack vector surfaces on the system.
Network-based attacks, targeting the networking part of the network such as packets, protocols
or routing policies, and Physical-based attacks, aimed at corrupting the physical process of the
devices. Sometimes, these two attack categories’ goals may also converge or combine to reach a
specific target.
Network Attacks. The most common attack models include the Control Zone network ac-
cess by the attacker to compromise an ICS.An attacker canobtain the network control through
a phishing attack to the site operators [4] or by exploiting the security lack of the legacy devices
connected to the Internet [10]. There are different actions that malicious actors can perform,
but it is possible to categorize themain ones into five different classes [63, 64] of network attack.
These attacks are also implemented in the testbeds to generate abnormal operating conditions.

• Reconnaissance Attack aims to identify potential victims within a network. Usually,
this class of attack is used to plan other moves, such as identifying other vulnerable de-
vices. These attacks can be passive (e.g., port mirror) or active (e.g., nmap). Reconnais-
sance Attack can be performed to understand the topology of the ICS with the conse-
quently vulnerable devices or to identify the physical process involved.

• Man-in-the-Middles (MiTMs) Attack allows an attacker to sit in the middle of com-
municating parties. The attacker is then able to read or modify the communications,
inject commands, or drop packets. As introduced in Section 2.1.2, most industrial pro-
tocols suffer from insecurity by design and, therefore, an attacker can perform mali-
cious protocol exploitation. In [35] the authors reported a detailed taxonomy of attacks
againstModbus andDNP3protocols. The final aims of this type of attack can vary from
the control of some devices to the disruption of the ICS’s normal state to damage the
system’s owner or the system itself. MiTM attacks on ICS can intercept wired commu-
nication, which requires the installation of network tap or wireless by using antennas.

• Injection Attack aims at supplying untrusted and malicious inputs to a system. Typ-
ically, in an ICS, an attacker can inject data such as false measures from sensors or ac-
tuators (Data Injection Attack) or command (Command Injection Attack). Often a
compromised node launch this type of attack, but, in some cases, the injected data can
originate fromother sources (e.g., a newentrypoint for thenetwork). This typeof attack
also includes the injection ofMalware (e.g., Worm [3], Ransomware [24]) or Backdoors
in the devices, which allow the attacker to drive the system to an unsafe state.

28



• ReplayAttack is based on retransmitting a validmessage previously seen in the network.
This attack is difficult to be detected, and it can lead to malfunctions in the system. For
example, in a nuclear plant context, the attacker could retransmit a message with a low
temperature of the reactor instead of rising, inhibiting the activation of safety measures.

• DoS Attack makes devices unavailable by overloading the system resources to disrupt
the communicationbetweenmachines. Usually, a common technique is packet flooding
and, if packets are generated frommany different sources, it is called Distributed Denial
of Service (DDoS). This attack can stop some devices, making them unavailable and
leading to unpredicted behaviors in the ICS. As previously explained, industrial devices
are generally legacy and have low computational power, therefore even a low amount of
packets can stop their normal functioning.

Physical Process Attacks. This class of attacks aims to alter the system’s physical process
and complex relations to manage it. Cyber-Physical Systems enable such attack surfaces due
to the field device (i.e., sensors and actuators), sometimes in remote places. To achieve these
attacks, the attacker could have previously obtained access to the system with one or more of
the network attacks previously described. Generally, physical process attacks represent the final
attack chain goal, which starts with the network as an entry point.

• Stealth Attack generates small perturbations in the system process to create long-term
damages (e.g., loss in production terms or the devices’ degradation). The stealth attack
can use a static perturbation by introducing a constant error in the physical measure
(e.g., increasing or decreasing the production) or dynamic by rapidly oscillating between
upper and lowermeasurement bounds (e.g., causing turbulence in the flows). This class
of attacks is generally difficult to detect since it maintains the process within its limits.
Generally, if the stealth attacks compose a sequence, then the corresponding threat is
generally indicated as Advanced Persistent Threat (APT), as in the case of Stuxnet or
BlackEnergy [36].

• Internal Logic Modification: as introduced in Section 2.1.2, the control logic of the
PLC is generally programmed in ladder logic, structured text (IEC 61131-3) or func-
tional blocks. An unauthorizedmodification of the internal logic aims at modifying the
physical conditionmonitored by the device. According to [65] there can be two types of
modification: logic modification and function modification. Logic modification aims
tomodify the internal boolean logic of the device to bypass the control condition, while
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function modification attempts to change the internal parameters updates. Although
this attack requires high access to the target device, it can cause dangerous consequences
to the system by driving it to unstable conditions or damaging the equipment.

• Device Manumission is achieved by physically tampering with the field device to com-
promise the data recorded. This attack aims to induce wrong measurements in the sys-
tem by exploiting the distributed and, therefore, less monitored nature of these systems.

• DirectDamageAttacks aims todisrupt anddamage the entire process or physical equip-
ment by introducing significant process variations that bring the system into an unsafe
state. This attackmay also severely affect the population or the environment around the
site.

ICS Defence Techniques

Enforcing ICS security by implementing security-by-design architectures is possible [66, 2].
For instance, it is possible to useDMZ as specified in the PurdueModel (Figure 2.1), enforcing
network separation and segregation. Furthermore, boundary protections and firewalls with
ICS-specific rules help protect an ICS from external attacks. The NIST proposed a complete
guide explaining how to set up a secure network to protect an ICS [13]. Furthermore, secu-
rity designers can rely on public databases, such as MITRE ATT&CK [67], ICS-CERT [68],
andNIST’s national vulnerability database [69], that collect themost common attacks, threats,
and vulnerabilities. Another good practice is to implement a secure version of the industrial
protocols. However, security-by-design can be challenging to consider in ICSs due to imple-
mentation constraints. Sometimes, it could also happen that companies consider the security
aspects after the construction phase, which can raise problems in integrating measures into
the infrastructure. Detection mechanisms can solve this limitation and be integrated into the
system after construction, for instance, in central nodes or with network tap.

One of the most widely adopted techniques to secure an ICS is represented by IDSs. IDSs
are algorithms designed to detect attacks by passively or actively monitoring the system. If the
IDS is passive, it will only raise passive alerts in case of an anomaly. Instead, if the IDS is active,
it will also take active response action in case of an anomaly (e.g., shutting down part of the
system). IDSs represent a cost-effective solution since they can be installed without changing
the system topology or substituting all network devices. In the following, we briefly report
the two main categories of IDS, which employ two different approaches to detect attacks or
domain drifts.
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Knowledge-based intrusion detection (also calledmisuse-based) focuses on looking for run-
time features that match a specific pattern of misbehavior. This method aims to exploit the
stationary of ICSs, which, unlike IT systems, are characterized by control loop operation reg-
ulated by a constant polling time communication. The most famous misuse-based solutions
include Snort [70] and Suricata [71], which has also been extended to include industrial pro-
tocol rules. The knowledge-based approach requires low computational power and has a low
false-positive ratio since the system reacts only to known threats. However, it has the disad-
vantage of offering no protection against zero-day vulnerabilities. For this reason, the research
community is focusing on developing a dynamic mechanism that can identify domain shifts
without the need for signatures [72].

The current research trend focuses on the anomaly-based intrusion detection, which looks
for runtime features that differ from normal behavior. The normal behavior pattern can be
defined using unsupervised approaches training the model with live data or semi-supervised
utilizing a set of truth data. This approach is called behavior specification-based intrusion detec-
tion. It represents a suitable ICS solution since it aims to dynamically learn the regular behavior
model of network traffic and physical models. Again, ICS systems are generally characterized
by constant time communication, thus helping the definition of a more robust model.

This last method is promising thanks to modern machine learning and deep learning tech-
niques that can be used to automatize the anomaly detection classification process. A common
requirement of these algorithms is the need for a considerable quantity of data: generally, the
more data you provide to the training phase, the more precise your detection will be.

IDSare also classified according to thedata source. Network-based IDSusesnetwork adapters
to collect and analyze packets in real-time. On the contrary, host-based IDS monitors the doc-
uments, processes, and other information specific to a particular device to identify. The dis-
advantage is that monitoring regard only one node in the network, while with the former ap-
proach, the network is under control. On the other hand, host-based can also detect threats
coming from sources other than the network (e.g., USB sticks) [73].

The basic idea behind IDS is to exploit the massive amount of data collected from the sen-
sors and predict an ICS’s operations. Many features can be extracted from network traffic (e.g.,
timings of packets, bytes transmitted) and the physical process (e.g., sensor measurements, ac-
tuator statuses). This information can be employed to detect abnormal behaviors and attacks
in an ICS.

A novel detection design concept that exploits the correlation of multiple ICS points was
proposed by Bernieri et al. [74]. In this work, the authors proposed a distributed detection
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approach to consider the different information characterizing ICSs to identify more complex
vulnerabilities. Similarly, Ghaeini and Tippenhauer [75] proposed a hierarchical IDS which
can combinedata fromdifferent levels to detect attacks having adistributed effect on the system.
Another novel approach has been proposed by Caselli et al. [76], who designed a sequence-
aware IDS based on monitoring sequences of events instead of single ones.

Other common defense techniques adopted to protect ICSs include Honeypots and Intru-
sion Preventions Systems (IPSs). Honeypots mimic a real system to deceive an attacker and
collect information about the attackers’ typical actions [11, 77]. Instead, IPSs refer to systems
aimed at detecting anomalies and attacks, but differently from IDSs, IPS are by design reactive,
and they take actions to reduce the malicious impact [78]. Other solutions instead propose
real-time attack traceability systems through consensus []

2.1.4 ICS Testbeds

In this section, we present a comprehensive analysis of the various ICS testbeds available in the
literature. Firstly, in Section 2.1.4 we introduce the classification method we employ in this
work. Instead, in Section 2.1.4 and Section 2.1.4 we recall, respectively, the requirements for
an effective testbed and the main challenges in developing an ICS testbed. Then, we propose
a detailed description of a set of interesting testbeds we choose, dividing them into the three
categories that we design. In particular, Section 2.1.4 contains physical testbeds, Section 2.1.4
presents virtualized testbeds, and Section 2.1.4 describes hybrid testbeds which are a conjunc-
tion point of the other two categories.

Testbeds Classification

There are different possible classifications of a testbed, basedon its sector, constructionmethod-
ology, or the process involved. In this survey, and particularly in this section, we consider the
functional elements involved in the testbed, classifying them as Physical, Virtual, or Hybrid
testbed. The different testbed categories are illustrated in Figure 2.5, even if sometimes the dif-
ference between them can beminimal. For instance, many of the virtual testbeds presented can
be interconnected with physical devices or wholly virtualized. Instead, Hybrid systems were
designed with some real components and, without them, they could not work correctly.

Physical testbeds use real hardware and software to configure both the network and phys-
ical layers. They are a suitable approach when researchers need a solution to collect realistic
measurement variation and latencies. Furthermore, it is possible to exploit the vulnerabilities
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of a specific device. On the other hand, physical testbeds are expensive both in construction
and maintenance. They generally have a long building time, and they may not provide a safe
execution of dangerous physical processes (e.g., the nuclear sector).
On the contrary, virtual testbeds leverage software simulations and emulationswith single or

multiple programs to reproduce the entire network and all the different components. A virtual
testbed represents a low-cost solution, but it is not easy to simulate high-fidelity physical pro-
cesses due to the virtualized environment. Despite this lack of precision, dangerous and risky
processes (e.g., the nuclear sector) can be, in this way, simulated in a laboratory. Matlab, Mod-
elica, Ptolemy, and PowerWorld are software used in the process simulation phase. Other tools
are used to model control center communication networks (e.g., DETER, Emulab, CORE,
ns3) and other devices used in the system such as PLCs (e.g., STEP7, RSEmulate, Modbus
Rsim, Soft-PLC). Despite not generating data with perfect fidelity, these approaches are easy
to update and upgrade, which gives them good flexibility and extendibility.

A widely diffused approach is developing testbeds composed of both physical devices and
software simulations. This approach represents a good trade-off between physical and virtual
solutions and is called a hybrid testbed. The main difference between the complete physical
testbeds is that part of the components is simulated using specialized software. This solution
can reduce the system’s fidelity, but on the other hand, it permits containing the cost and devel-
opment time. However, as stated before, the separations between Virtual and Hybrid testbed
is not always well defined. Sometimes virtual testbeds can be modified to work as a hybrid
testbeds by supporting physical devices. For example, VTET [79] can be deployed using physi-
cal PLCs to replace the simulatedones. In thiswork,we consider asHybrid a virtualized testbed
composed of at least one real industrial device (e.g., PLC, IED, actuator, sensor).
In Figure 2.6, we reported the geographic distribution of the Physical and Hybrid around

theworld. We think that this representation couldhelp the reader see the current research trend
in this sector of the world. In particular, Figure 2.6a provides a high-level view of where the
testbeds are placed in the world, while Figures 2.6e, 2.6d, and 2.6c show close-up of the coun-
tries with more than one testbed. In these figures, the marker size represents the estimated cost
of the testbed. Simultaneously, the color indicates the Citations of the associated reference ac-
cording to Google Scholar at the writing time. Furthermore, we developed a website with an
interactivemap to collect and also provide information about future ICS testbeds anddatasets1.
Our goal is to continue to update this collection in the future. Moreover, in Table 2.3 we re-
ported a brief comparison between the testbed presented in this survey, highlighting theirmain

1https://spritz.math.unipd.it/projects/ics_survey/
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Figure 2.5: A summary of differences between testbed types.

information and features. In particular, for every testbed, we reported the following informa-
tion.

• Name of the testbed (or of the authors if a name is not provided);

• Institution in which the testbed has been developed;

• CountryThe country onwhich is based the testbed or the institution of the first author;

• Sector indicates the field of the represented process;

• Category of the testbed. It can be Physical,Virtual, orHybrid;

• Physical Process indicates how is implemented at the physical level. It can be Simulated
with software orReal if consists of a physical implementation;

• License of the testbed. It can be:

– Open-source if the source code is freely available;

– Open description if despite the source code is not provided, the description is suffi-
ciently detailed to allow a reader to develop a similar copy;

– Education if it is maintained by a university and open to collaborators;

– Collaborations if it is maintained by an institution that can accept collaborations;

– Not available if it is owed by a private company and so not accessible or not avail-
able online.

• Scope indicates the applications of the testbed. It can be:

– Security if the main scope is related to cybersecurity research;
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– Forensic if the target scope is to provide a way to perform forensics research;

– Pedagogy if the main scope is to provide education to students;

– General if a precise scope is not specified.

• Cost estimated for the testbed implementation. When available, the cost estimation is
basedonour analysis of thedocumentationof the testbed. Furthermore,we consider the
testbed’s size, and the number and type of devices employed (e.g., a single professional
PLC cost at least 300$).

It can be:

– Low for a cost estimated< 500$. These testbeds are generally composed of a single
PLC or different low-cost devices (e.g., Raspberry or Arduino).

– Medium for a cost estimated between 500$ and 10K$. These testbeds are com-
posed of a discrete number of devices and hardware not extremely expensive, but
at the same time, they have a reasonable degree of complexity.

– High for a cost estimated > 10K$. This category is conceived for testbeds with a
high degree of complexity and a large number of devices employed.

• Reference includes a reference to a description of the testbed.

• Resource, if available, indicates a resource for the download.

This information was not always available or easy to retrieve; therefore, the degree of detail
may vary according to the specific dataset.

Testbeds Requirements

When researchers need to work with a real-world ICS environment, the proper solution is to
build a testbed for conducting rigorous, transparent, and replicable testing of new technolo-
gies. The different testbeds vary in dimension, complexity, or sector. According to [29], an
effective testbed needs to satisfy four main requirements: i) Fidelity, ii)Repeatability, iii)Mea-
surement Accuracy, and iv) Safe execution. Sometimes, it could be challenging to satisfy all these
requirements together; therefore, it is important to determine anoptimal trade-offbased on the
research needs during the design phase.

A testbed should be developed to achieve good fidelity by accurately replicate the devices
and processes from a real-world ICS. This is an expensive and space-consuming task, making
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it difficult for other researchers without much funding to replicate the same environment to
verify the results. In these cases, mathematical models can be employed to virtualize physical
processes in a cheap but less accurate way.
Repeatability is an essential property for a testbed: it allows other researchers to reproduce

the findings and compare other solutions on the same system. This property can be easily
achievable for completely simulated testbeds, while it can be extremely challenging for ICSs
that employ physical components or processes.
A testbed should monitor a physical process and take accurate measurements without inter-

fering with it. Sensors must be placed smartly, and if different points of measures are available,
they must be carefully synchronized to provide accurate and reliable data.

Often ICSs are used to manage critical physical processes (e.g., chemical reactions, nuclear
plants). If under attack, these kinds of processes can be dangerous and can cause physical damage
to the system itself. Since researchers need to study countermeasures’ effect and effectiveness to
attacks, testbeds must be provided with safe execute risky processes. This design challenge can
bemitigated by employing simulations at the cost of a loss of accuracy. In other cases, processes
are instead less critical. However, they can have an expensive or time-consuming recovery after
an attack (e.g., after an attack completely empties a container into a water treatment system,
it will take time to refill it again). In these scenarios, a virtual approach can be an excellent
alternative to the physical replication [79].

Challenges in Developing a Testbed

The development of an industrial testbed is challenging from several points of view. Different
works analyze the challenges in developing a well-designed ICS testbed [80, 81]. Based on the
existing literature, in the following, we present the main problems related to the development
of such a testbed.

• Design Guidelines: When a research group decides to venture into building a testbed,
it is fundamental to have a clear idea of the architecture. A clear and defined architecture
can be useful in the development phases and to project further expansions. Moreover, it
can guide other groups in building their own testbeds and therefore enabling the exper-
iment repeatability. However, it is difficult to identify clear guidelines that help design
a testbed from the engineering perspective.
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(a) Physical and hybrid with physical process testbeds distribution around the World.

(b) Legend
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Figure 2.6: Physical and hybrid with physical process testbeds distribution on the continents with more than one testbed:
North America, Europe, and Asia. If there is more than one dataset in a place (e.g., SUTD), we aggregated the information.
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Table 2.3: Summary of testbeds presented in the literature. We denote Category as H: Hybrid, P: Physical, and V: Virtual.
To specify the ICS process Physics we use S: Simulated, R: Real, M: Mixed, and No: if there is not a physical process. To
denote the License, we use OD: Open Description, E: Education, OS: Open‐Source, C: Collaboration, and NA: Not Available.
To denote the Scope, we use S: Security, G: General, P: Pedagogy, and F: Forensic. To denote the Cost we use L: Low, M:
Medium, and H: High. The entries in Yellow indicate that the testbed is hybrid, the entries in blue mean that the testbed is
physical, while entries in green correspond to virtual testbeds.
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Aghamolki et al. H USF Florida, US Power Grid S OD S M [82] -
Alves et al. H UAH Alabama, US Gas Pipeline S OD S L [83] -
CockpitCI H University of Coimbra Portugal Power Grid S OD S M [84] -
CyberCity H SANS Institute - City M E S, P H [85] -
EPIC (IPSC) H JRC Ispra Italy General CPS S OS S L [86] [87]
EPS-ICS H BIT China Generic ICS R NA G L [88] -
Gillen et al. H ORNL Tennessee, US Cooling System S OD S M [89] -
Hui Nuclear H Queen’s University UK Nuclear Plant S OD S M [90] -
HYDRA H University of Roma Tre Italy Water Distribution R OS S L [91] [92]
Jarmakiewicz et al. H MUT Poland Power Grid S OD G M [93] -
Kaouk et al. H University of Grenoble France Generic ICS S OD S L [94] -
Kim et al. H NSRI South Korea 6 Different ICS R E S, P H [95] -
Koutsandria et al. H Sapienza University Italy Power Grid S OD S, F M [96] -
KYPO4INDUSTRY H Masaryk University Czech Republic Linear Motor R OD P M [97] -
LegoSCADA H Universite Paris-Saclay France Vehicular R OS S L [98] [99]
Microgrid H OSU Ohio, US Power Grid M OD G, P M [100] -
MSICST H - China 4 Different ICS S OD S H [101] -
NIST H USDOC US 4 Different ICS M C S M [102] -
PNNL H PNNL Washington, US Generic CPS S OD S L [103] -
Queiroz et al. H RMITUniversity Australia Water Distribution R OD S L [104] -
SNL Testbed H SNL NewMexico, US Generic ICS No OD S L [105] -
VPST H University of Illinois Illinois, US Power Grid S OD S, G L [106] -
Ahmed et al. P UNO Louisiana, US 3 Different ICS R OD S, F, P M [107] -
Blazek et al. P BUT Czech Republic Power Grid R OD S M [108] -
BU-Testbed P Binghamton University New York, US Power Plant R OD S M [109] -
EPIX (iTrust) P SUTD Singapore Electric Power R E S H [110] [111]
HAI Testbed P ETRI South Korea Power Plant R OD S H [112] -
Lancaster’s P Lancaster University UK Generic ICS R C G, P H [113] -
LICSTER P HS-Augsburg Germany Generic ICS R OS S, P L [114] [115]
Mississipi Ethernet P MSU Mississippi, US 2 different ICS R E S, P M [116] -
Mississipi Serial P MSU Mississippi, US Industrial op.s R E S, P M [116] -
PowerCyber P Iowa State University Iowa, US Power Grid R OD S, P L [117] -
Sayegh et al. P AUB Lebanon Generic ICS No OD S M [118] -
SGTB P INL Idaho, US Power Grid R NA S H [119] -
SWAT P SUTD Singapore Water Treatment R C S H [120] [121]
Teixeira et. al P IFET Brazil Water Distribution R OD S M [122] -
T-GPP P JRC Ispra Italy Power Plant R OD S H [123] -
WADI P SUTD Singapore Water Distribution R C S, P H [124] [125]
Yang et al. P QUB Irland Power Grid R OD S M [126] -
Zhang et al. P University of Tennessee Tennessee, US Nuclear Plant R OD S M [127] -
Davis et al. V University of Illinois Illinois, US Power Grid S OD S L [128] -
DVCP V TUHH Germany Chemical Process S OS S, F L [129] [130]
Farooqui et al. V NUST Pakistan Generic CPS S OD S L [131] -
Gas Pipeline V MSU Mississippi, US Gas Pipeline S NA S L [132] -
Genge et al. V JRC Ispra Italy Generic ICS S OD S L [133] -
Giani et al. V UC Berkeley - Generic ICS S OD S L [134] -
GRFICS V Georgia Tech Georgia, US Chemical Process S OS S, P L [135] [136]
Jin et al. V UIUC Illinois, US Generic ICS S OD S L [137] -
Koganti et al. V University of Idaho Idaho, US Power Grid S OD S L [138] -
Lee et al. V Ajou University Korea Power Plant S OD S L [139] -
Maynard SCADA V Queen’s University UK Generic ICS S OS S L [140] [141]
MiniCPS V SUTD Singapore Generic CPS S OS S L [142] [143]
Reavers & Morris V Georgia Tech Georgia, US Generic ICS S OD S L [144] -
RICS-el V FOI Sweden Power Grid S OD S L [145] -
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Table 2.3 – continued from previous page
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SCADA-SST V KFUPM Saudi Arabia 2 different ICS S OS S L [146] [147]
SCADASim V RMITUniversity Australia Generic ICS S OS S L [148] [149]
SCADAVT V RMITUniversity Australia Water Distribution S OD S L [150] -
Singhet et al. V C-DAC India Power Grid S OD S L [151] -
TASSCS V University of Arizona Arizona, US Power Grid S OD S L [152] -
VTET V SKL-MEAC China Chemical Process S OD S L [79] -
Wang et al. V Tsinghua University China Generic ICS S OD S L [153] -

• Real Word Representation: An industrial system must represent a real-world indus-
trial scenario, including all the physical processes related to the environment. Further-
more, the Industrial testbedmust include the most common industrial devices installed
in the real world ICSs and supporting the most used protocols. Also, it is crucial to con-
sider different versions of devices, knowing their different security features [103, 154].
The testbed should also include the different vulnerabilities that could, however, lead to
a bias in the attack strategy vector.

• Replication in Safety: The physical processes controlled by ICSs are wide different,
ranging frommanufacturing processes to critical nuclear plants. The most delicate pro-
cesses cannot always be replicated in a scaled-down version inside a laboratory. Further-
more, during attacks targeting the process’s stability, even the less critical operation can
express important safety issues [154].

• Complexity: Industrial systems devices can be hard to configure and maintain due to
their specificity and because they are designed to perform a precise and unique task. It is
also challenging to find IT experts who have the needed knowledge tomanage andmain-
tain a complex ICS containing severalOTdevices. Themaintenance requirementsmust
be considered from the early design stages since the increasing complexity can become
even more expensive and difficult to manage [154].

• Cost: To build physical industrial testbeds, research groups have to deal with building
and maintenance costs. Expenses are one of the main reasons why there are not many
testbeds available for research, and the ones that exist are generally not easily accessible
by everyone. To overcome this problem, virtualized and emulated solutions are relatively
diffuse in the field, even if they cannot provide the same fidelity and replication accuracy.
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• Lack of Documentation: Another challenge in ICS research is the lack of documen-
tation of the existing systems. Companies do not share internal information related
to their system’s architecture, the devices implemented, or the devices’ software ver-
sion. This is primarily due to the companies’ privacy concerns, protection of intellec-
tual proprieties, and security reasons. In fact, if a company discloses the presence of
legacy devices with well-known vulnerabilities, it can attract several malicious actors’
attention. This absence of documentation made the implementation of effective real-
word testbeds difficult. Furthermore, the lack of documentation can be problematic
for the in-laboratory testbed. If poor documentation is provided, new researchers who
start to work on a testbed might spend much time understanding the system’s behavior
and components and have a concrete idea. To provide exhaustive documentation, it is
essential to write it step-by-step during the testbed building process, avoiding writing it
after the testbed is entirely built, which can be difficult and not cost-effective [113].

• Reproducibility: Due to the complexity of an ICS, it could be challenging to reproduce
the experimental conditions of another research to replicate the results or test other so-
lutions. The differences between the original conditions and the reproduced one can
be minimal but, in some cases, can be sufficient to lead to different results. To facilitate
the deployment, experiment-management systems can help researchers with the setup
and the management of a testbed (e.g., [155]) by using a template or code generation.
Moreover, scripts for auto-configuration of an emulated testbed can be offered by de-
velopers (e.g., [142]) to simplify the sharing process. However, suppose the testbed is
composed of physical processes and components. In that case, it could be difficult to
perfectly replicate them since many external variables can influence the system behavior
(e.g., the temperature, the pressure) [156].

• Scalability: If expanding a simulated or emulated testbed is generally straightforward,
doing it with a physical testbed can be challenging. Real devices are expensive, and re-
searchers are not always able to afford them. Alternatives to expand physical processes
areHardware-In-the-Loop (HIL), i.e.,mathematical representationsofphysical processes
inserted in the chain. HILs offer great scalability of the system even if generally they are
not advisable due to the lack of accurate mathematical models. A cheap way to add new
devices is to employ software simulations. Software simulations are cost-effective solu-
tions with the drawback of less precise and reliable physical representation. To provide
system scalability and intelligent reconfiguration of all the physical devices implemented,
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virtualization and Virtual Local Area Networks (VLANs) can be an excellent solution
to be implemented in ICS without any substantial disadvantages [154].

• Data Collection: A not trivial aspect of building a testbed is the data access and record-
ing. It is generally a manual process, but it is vital to develop strategies to automate the
collection precisely, providing reliability and synchronization between the different data
collection points, for example, by introducing a central historian server.

Physical Testbeds

Ahmed et al. [107] presented a physical testbed built at the University of NewOrleans, which
models three industrial processes on a small scale but by employing real-world equipment such
as transformers and PLCs. A small gas pipeline that transports compressed air was built using
a pipe fed with an air compressor. A valve regulates the other end of the pipe. Instead, the
second system is a power transmission and distribution that carries electricity from power gen-
eration sources to individual consumers. This system is composed of a power station and four
substations. Finally, the third system developed is a wastewater treatment system composed
of sedimentation, aeration, and clarification processes. Each system is controlled by one PLC
connected through a switch to a historian and anHMI. This last device makes it possible to vi-
sualize and control the systems. The industrial protocols employed are Modbus, EtherNet/IP,
and PROFINET.
Electrical Power and Intelligent Control (EPIC) [110, 111] is a high-cost 72kVA electric

power testbed that mimics a real-world power system in small scale smart-grid, and it is avail-
able for rent. The testbed is shown in Figure 2.7b and it is composed of four stages, namely:
Generation,Transmission,Micro-grid, andSmartHome. Each stage is controlledbyPLCs con-
nected to a master PLC using switches and then to a SCADAs gateway. The physical process
is entrusted to two motor-driven generators, photovoltaic panels, and a battery. Communica-
tions occur using the IEC61850 standardprotocol for the electrical substation and automation
system that runs over TCP/IP stack. The authors also present false data injection attacks, mal-
ware attacks, power supply interruption attacks, and physical damage attacks, together with
possible mitigation techniques. The testbed resides at the Singapore University of Technology
and Design (SUTD), and it is used to supply power to two other testbeds inside the same in-
stitution (i.e., Secure Water Treatment System (SWaT) [120], and Water DIstribution System
(WADI) [124]) to create also the possibility for research related to a cascade-connected ICSs.
The authors also shared a related dataset, which will be analyzed in Section 2.1.5.

41



HAI Tesbted (HIL-based Augmented ICS) [112, 157] is an extensive and expensive inter-
connection of three independent real ICSs coordinated by a real-time HIL developed at The
Affiliated Institute of ETRI,Republic ofKorea. Emerson’s boiler control system,GE’s turbine
control system, and FESTO’s water treatment control system are built-in small-sized by em-
ploying components used in industrial environments. The HIL is used to simulate the power
plant to combine the three control systems and form an integrated power generation system.
In [112] the authors present various physical attacks targeting the pump and the pressure of
the boiler system. An expansion of the testbed [157] was built to make it possible to launch
also network attacks using tools like Nessus or Acunetix.
BU-Testbed [109] is a physical reproduction of two power generation systems developed

at Binghamton University. The first one is composed of an Alternate Current (AC) motor
directly coupled to a permanent magnet Direct Current (DC) motor, generating up to 400V.
The other one instead contains an AC motor used to drive a 12-volt DC blower motor used
to generate electricity. The communication uses the EtherNet/IP protocol. Furthermore, the
authors explain some cyber-physical attackswhich are practicable on the testbed. These attacks
regard different categories: 1) attacks on networks (i.e., MiTM, DNS poisoning); 2) network
congestions and delay (i.e., DoS); 3) attacks on controllers, sensors, and drivers (i.e., malicious
software injection and firmware modification); and 4) attacks onHMI and programmable sta-
tions (malware injection).
Lancaster’s testbed by Green et al. [113] at the Lancaster University is a big physical scaled-

version of a generic industrial ICS (the testbed does not explicitly the physical processes in-
volved). It is composed of six Manufacturing Zones, a DMZ, and an Enterprise Zone. Each
core zone is split at the network level using VLANs. The legacy serial-based communications
have been upgraded to IP to reduce the complexity and allow communicationswith a vast num-
ber of ICS devices. The connections are almost all physical, apart from two manufacturing
zones connected using 3G, 4G, and satellite communications. The authors are continuously
improving the testbed to make it more usable andmore complete. Students and researchers of
the university use the testbed, but the authors also plan to make it more available for external
researchers.

Morris et al. [116] at the Mississippi State University built seven different small physical
testbeds for security research andpedagogypurposes. Five of themhave communications based
onModbus/ASCII, Modbus/RTU, and DNP3 (henceforth calledMississipi Serial) and rep-
resent respectively: 1) a gas pipeline used to move petroleum products to market; 2) a storage
tank used in the petrochemical industry; 3) a raised water tower used to provide pressure in the
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water distribution system; 4) a factory conveyor belt control system, and 5) an industrial blower
used to force air through an exhaust system. These five systems are controlled by the sameHMI
but on different screens. It enables the control of all the systems from the same point and sim-
ulates a more extensive system by making them operate simultaneously. The remaining two
testbeds are connected through an Ethernet network (and then are calledMississipi Ethernet)
and include: 1) a steel rolling operation; and 2) a smart grid transmission system. The authors
also use the testbeds to generate datasets that are freely available online [158].
Smart Grid Test Bed (SGTB) [159, 119] deployed by Idaho National Laboratory is the

world’s first full-scale replication of a smart grid, and it is part of the United States National
SCADATest Bed Program. Portions of the power loop can be isolated and reconfigured for in-
dependent, specialized testing. As planned in 2017, the authors obtain more funds to expand
SBTB with a SCADAs testbed to be installed in the command and control shelter to allow
operators to observe, manage, and manipulate test line configurations and record testbed op-
erating parameters. However, to the best of our knowledge, the authors never release updates
about the project. This testbed is not an ordinary scaled-down version of real systems. Instead,
SGTB is a full-size plant. Even if it represents an impressive and valuable work, unfortunately,
students and researchers have limited access to such a facility [117].
SWaT [120, 160] is a six-stage water treatment plant developed by the SUTD represented

in Figure 2.7a. One PLC (plus one for backup) controls each stage, and the overall testbed
leverages a distributed control approach. Furthermore, through a HMI, an operator can man-
ually control all the system components. In the paper, the authors implemented various at-
tacks to manipulate plant operations. The different attacks leverage different assumptions on
the attack model. The testbed is accessible only for collaborations or by renting it. Recently, a
python-based software simulation of the testbed was developed and released with open-source
code [161, 162]. Also, datasets based on different data collection are openly available upon re-
quest. These datasets contain both network and physical packets in normal behavior and with
the system under attacks [163]. We present the dataset in Section 2.1.5.
Teixeira et al. [122] implemented an ICS testbed to model a simple water storage tank’s

control system. The storage tank is equipped with two-level sensors to control the water level.
When it reaches the maximum level, the upper sensor sends a signal to the PLC, which turns
off the water pump used to fill the tank. At the same time, another pump is activated to draw
water from the tank. When the water reaches the lower sensors, a signal is sent to the PLC,
whichwill reverse the two pumps’ state to fill up the tank again. The SCADAs system gets data
from the PLC using the Modbus protocol and displays them to the system operator through
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(a) SWaT Testbed by iTrust of Singapore. (b) EPIC Testbed by iTrust in Singapore.

Figure 2.7: Two of the Singapore Testbeds.

the HMI interface. To complete the study, the authors tested some attacks such as scanning,
device identification, and not authorized read of actuators. By recording SCADAs network
traffic for 25 hours, a dataset has been released [164] and will be presented in Section 2.1.5.
In 2019, minor improvements of the testbed had been presented [165], such as embedding a
turbidity sensor and a turbidity alarm to add analog input to the system.

Turbo-Gas Power Plant (T-GPP) testbed [123] is an experimental platform presented by
Fovino et al. at the Joint Research Centre of Ispra (Italy) to perform security research on a
SCADAs system. It is a physical testbed that replicates a power plant’s dynamics process and
its control systems providing additional mechanisms for running and analyzing the system.
The testbed is composed of seven different functional elements: 1) Field Network, used to
link PLCs with the SCADAs servers, actuators, and sensors; 2) Process Network, which inter-
connects the different physical subsystems; 3) Intranet, the internal private network connect-
ing PCs and server of the company; 4) Demilitarized Zone, used to separate IT area from OT
components; 5) External Network, such as the Internet; 6) Observer Network, a network of
meshed sensors to gather a massive quantity of raw data useful for the analysis; and 7) Hori-
zontal Services Network, used for the management of the laboratory. The paper profoundly
analyzes such systems’ vulnerabilities, highlighting those related to the protocols implemented
(i.e., Modbus/TCP and DNP3), and describes various attacks deployed on the testbed: DoS,
worm, and malware infection on the process network, phishing attack, and local DNS poison-
ing. Finally, the authors propose different countermeasures to the attacks.

WADI [124, 166] is a scaled versionof awater distribution testbedbuildby the SUTDtoper-
form security researches. It consists of five stages controlled by three PLC and twoRTU,which

44



can supply 10 US gallons/min of water. The communication happens using Modbus/TCP
protocol at Layer 0, while at Level 1 network between PLCs uses TCP over Ethernet instead
of RTUs that exploit High-Speed Packet Access using GPRSmodem to generate a precise real-
world scenario. The authors also implemented different attacks against the testbed by manip-
ulating data from sensors to cut off the consumer tank’s water supply. Furthermore, WADI is
available to organizations for joint research programs and usage, but a dataset generated upon
request is available. We will analyze the dataset in Section 2.1.5.

In 2014, Yang et al. [126] proposed a physical SCADAs power grid testbed specifically de-
signed to test their detection approach. At the control network level, the testbed is composed
of an HMI, a database to log events and data, a host used to perform the attacks, and different
networking components (e.g., protocol gateway, switch, firewall, router). Instead, the physical
network is composed of various IED simulated, connected to a real photovoltaic system. The
IDS proposed by the authors was installed between the HMI and the Protocol Gateway. It
monitors all the incoming connections to the substation and the LAN network through port
mirroring.
Zhang et al. [127] presented a security research on a physical process ICS testbed which

simulates a two-loop nuclear power system. The primary loop includes a 9kW heater repre-
senting the reactor core, controlled by the SCADAs master through an open-loop controller.
It also contains a variable speed coolant pump, upper and lower delay tanks, and other instru-
mentation such as a flowmeter and temperature detectors. The secondary loop is composed of
valves, a magnetic flow meter, and two temperature detectors. In the same paper, the authors
proposed some attacks to the testbed (e.g., MiTM, DoS).

Virtual Testbeds

Davis et al. [128] present a power grid simulated testbedbasedon a client-server paradigm. The
network is emulated usingRINSE [167] which allows clients to launch different commands to
simulate attacks (e.g., DoS attacks), defense techniques (e.g., filtering), diagnostic tools, device
controls, and simulator data. The authors present various attacks, such as DDoS and network
overload, comparing the results with andwithout securitymeasures. To the best of the authors’
knowledge, the testbed is not available online.

In [129] the authors presentDamnVulnerableChemical Process (DVCP), anopen-source
frameworkdeveloped for cyber-physical security experimentationbasedon twomodels of chem-
ical processes. In particular, the framework includes DVCP-Tennessee Eastman (TE) and

45



DVCP-VAC, two simulated ICS testbed based respectively on Tennesse-Estman [168] and
Vacuum-assisted closure (VAC) [169] chemical processes simulated with Matlab. However,
for this implementation, the authors did not share any code or further implementation infor-
mation.
Genge et al. [133] proposed a framework based on Emulab [170] for the emulation of the

components and to Simulink [171] for the physical processes simulation. The architecture
comprises three layers: the cyber layer containing the regular emulated ICT components used
in SCADAs systems, the physical layer providing the simulation of physical processes, and the
link-layer to connect the cyber and physical layers through the use of a shared memory region.
There are many supported protocols such as Modbus, Profinet, and DNP3. The testbed, im-
plemented in C#, is not available online to the best of the authors’ knowledge.
Giani et al. [134] developed a virtual SCADAs testbed for security-related researches pur-

poses. However, this work represents a preliminary study presenting the testbed at a high-level,
but without a practical implementation description. At the center of the architecture, there is
the SCADAsmaster station containing the SCADAs server and the HMI. The authors depict
various possible attacks (e.g., DoS, integrity attacks, phishing attacks) and suggestions about se-
curity mechanisms. To the best of our knowledge, the testbed is not publicly available online.
GRFICS [135] is a graphical and open-source [136] ICS simulation tool based on the Ten-

nessee Eastman process (Figure 2.8). Currently, the testbed is designed for educational pur-
poses and allows only the use of pre-defined functions. The testbed allows running many pre-
defined attacks such as MiTM, Command Injection, False Data Injection, Reprogramming
of PLCs (i.e., Stuxnet), Loading Malicious Binary Payload (i.e., TRITON), and Common IT
attacks (i.e., password cracking, buffer overflow). Once the attacks are launched, the interface
allows monitoring the testbed attacks’ consequences, log the process information, and how
much cost is wasted through the purge. Finally, the testbed allows the installation of the Snort
detector [70] and to customize itwith new rules. The communications on the testbed are based
onModbus protocols.

Maynard et al. [140] proposedMaynard SCADA, an open-source, scalable framework for
deploying a replication of a SCADAs network. The testbed is composed of a collection of
scripts used to build and configure virtual machines that, by default, are emulated using Or-
acle VirtualBox [172]. Furthermore, the paper [140] shows a common metering application
using seven virtualized nodes with detailed instructions to replicate it. The instructions also
include an accurate description system’s requirements and a comparison between some other
testbeds in the same document. The framework is entirely open-source, and it is accessible on
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Figure 2.8: Example of GRFICS simulator rendering.

GitHub [141], where are also available some datasets.
MiniCPS [142]byAntonioli andTippenhauer is a toolkit used to create an extensible and re-

producible research environment for network communications, control systems, and physical
layer interactions inCPS.MiniCPS is an extensionofMininet [173], awidespreadnetwork sim-
ulator built around the Software-Defined Networking paradigm that exploits lightweight sys-
tem virtualization using Linux containers. The authors present an attack scenario of a MiTM
attack on a replicated model of the SWaT testbed [120], also providing different countermea-
sures based on a custom SDN controller. The testbed and its documentation are open-source
and available on Github [143].

Morris et al. [132] presented a virtual gas pipeline system (calledGas Pipeline testbed) that
is a simulation of a testbed previously built. The testbed consists of four components running
in different virtual machines: a virtual physical process, a Python-based PLC simulation, a net-
work simulation, and anHMI.The various components communicate throughModbus/TCP
over a virtual network and may be connected to real devices. The virtual system allows mod-
eling a pump, a valve, a pipeline, a fluid, and a fluid flow. The models are based on a previ-
ous physical testbed [116], allowing to compare measures from the two testbeds. The virtual
testbed mimics the physical device’s behavior but with some difference in pressure change fre-
quency. Also, the startup process is similar but not identical. The authors present a command
injection attack to the virtual testbed, but the resulting behavior is not comparedwith the phys-
ical testbed. To the best of our knowledge, this virtual simulator is not publicly available online.
Reavers&Morris [144]develop anopen andcompleteplatformfor creating virtual testbeds.

The resulting system is highly scalable, and it is possible to install plenty of different virtual de-
vices. The testbed’s main components are process simulators, data loggers, and configuration
files used to configure virtual devices and connections among them. All the simulations are im-
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plemented with Pythonwithout adopting off-the-shelf network simulation tools. The process
simulator includes four components: 1) a simulator module, 2) a communication interface, 3)
an update queue, and 4) configuration files. The simulator communicates directly with the
virtual test devices via a “backchannel” to transmit measurements and inputs. Starting from
this work, Thornton and Morris in 2015 [174], deployed a similar platform that permits the
usage of Simulink [171] instead of Python to simulate the physical processes.
RICS-el testbed [145] is a virtual testbed representing a power system built on top of the

CyberRangeAndTraining Environment (CRATE) infrastructure at the SwedishDefenceRe-
searchAgency (FOI) [175]. All the hosts of the testbed are run on virtualmachines usingVirtu-
alBox [172]. Ongoing work is focusing on adding realistic traffic to each segment by emulating
users and different scenarios.
SCADASim [148] is a simulator for SCADAs systems created on top ofOMNET++ [176].

The testbed is developed to satisfy specific requirements: 1) it allows plug-n-play to create sim-
ulations to allow system experts to set up the software; 2) allows connectivity tomultiple exter-
nal hardware or software that can be used to expand the simulator; and 3) supports multiple
industry-standard protocols such asModbus/TCP, DNP3, and the integration of proprietary
protocols. For the evaluation, the authors present two simulations: a smart meter and a wind
power plant. ADoS attack and a spoofing attack are also deployed on the systems and analyzed
in the paper. SCADASim is an open-source project available on Github [149].
SCADAVT [150] is a framework to build a virtual SCADAs model-based testbed designed

for research in security field purposes. Two attack scenarios are also presented: a DoS and ma-
nipulation of command messages. The framework, which supports real devices’ connection,
is described in detail, but the source code is not publicly available.
TASSCS (Testbed for Analyzing Security of SCADAs Control Systems) [152] was devel-

oped by theUniversity ofArizonamainly to test a novel technique to protect SCADAs systems
from attacks, which the authors called Autonomic Software Protection System (ASPS). The
authors present various attacks, including spoofing, MiTM, DoS, and data injection. Two of
these attacks scenario are also implemented: a DoS attack and a compromised HMI scenario
to force a complete network blackout. The protection system under testing was able to detect
the two launched attacks.
Virtual Tennessee-EastmanTestbed (VTET) [79] is a simple virtual testbed that simulates

a chemical ICS withMatlab. The architecture is based on four components: a physical PLC, a
PC used for network communication, and two other PCs simulating the physical process and
a PLC.Unfortunately, the testbed is not available online to our knowledge, but the description
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Figure 2.9: A figure representing CyberCity testbed.

is quite complete on the paper.

Hybrid Testbeds

CyberCity Testbed [85, 177] is a physical representation of an entire city (Figure 2.9) devel-
oped by the SANS Institute to test security measures on the ICS field. It includes a bank simu-
lation, a hospital, a power plant, a train station, a water town, and many other available infras-
tructures. Nowadays, the testbed is mainly used to teach cybersecurity on ICS as part of the
SANS Institute courses and federal agencies to perform security research.
Experimentation Platform for Internet Contingencies (EPIC) by Siaterlis et al. [86] is an

innovative hybrid testbed to simulate CPSs based on Emulab [170]. The testbed architecture
comprises two control servers, a pool of physical resources used as experimental nodes (e.g.,
PCs, routers), and a set of switches employed to interconnect the nodes. Physical processes
are simulated using Simulink Coder [178] and managed by a software simulation unit. The
software part is open-source and freely available online [87] with complete documentation.
EPS-ICS [88] is a framework to implement a hybrid testbed, principally developed by the

Technical Assessment Research Lab (CNITSEC) in Beijing, China. The testbed implements a
multi-level design approachwhere Level 3, the corporate network, and Level 2, the supervisory
control LAN, are emulated. Instead, Level 1 devices, including Distributed Control Systems
(DCS) controllers, PLCs, and RTUs, are real physical devices. Finally, a mathematical model
is used to simulate the physical process at Level 0, and it is implemented with Simulink [171].
This approach allows replicating the interactions between the ICS components.

Gillen et al. [89] presented a hybrid replication of the cooling system for Oak Ridge Na-
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tional Laboratory’s 200-petaflop Summit supercomputer, currently declared the fastest open-
science computer in the world [179, 180]. Summit consists of over 4600 nodes and has a peak
power draw of 13MW. The cooling system cycles through over 4000 gallons of water each
minute. The authors collected 30 days of data from the real Summit cooling system historian
to correctly emulate sensors and actuators. Then they used emulation scripts to generate data
from the devices. To validate the testbed, the authors compared its behavior with the real Sum-
mit supercomputer cooling system. Considering the alerts, logs, and historian data, all the data
are replicated accurately.

Hui et al. [90] introduce Hui Nuclear, a hybrid testbed modeling a nuclear reactor built
at the Center for Secure Information Technologies at the Queen’s Univerity of Belfast. The
testbed’s scope is to generate a realistic network interaction and a simple way to collect network
data to be used in the CPS security field. The network architecture is exhaustive and contains
all the Purdue model areas, together with firewalls, IDS, and logging services.
HYDRA [91] is a low-cost and open-source physical emulator for critical infrastructures

developed at the Università Roma Tre in Italy. It can be used for investigating fault diagnosis,
cybersecurity strategies, and testing control algorithms. The testbed is designed to emulate a
simple water distribution system’s behavior. The authors also present an attack scenario of a
data modification attack. The code and all the testbed technical details are open-source and
available on Github [92].
Kimet al. [95] proposed aplatform toperformcybersecurity exercises for national critical in-

frastructure protection. The testbed was designed to replicate a realistic ICS environment that
matches the characteristics of the Cyber Conflict Excercise (CCE). The paper [95] describes
an implementation of the proposed platform, which includes six different critical infrastruc-
tures: a power grid, a nuclear plant, a water purification plant, railroad control, airport control,
and traffic light control. The system contains two PLCs of different vendors that control some
typical actuators (e.g., mechanical relay, magnetic switch, motor).

In [96],Koutsandria et al. presented a hybrid testbed for testing a real-time Network IDS.
To simulate the ICS environment, the authors employ a combination of simulated and real
devices. The testbed is based onMatlab Simulink to simulate the physical and control networks.
In particular, the authors model the physical system with Simulink by simulating IED and
field devices controlled by a PLC via Modbus in a master/slave communication model. To
validate this architecture and its capabilities, the authors also present three attacks (i.e., two
network communication alterations and a physical behavior violation) scenario showing the
effectiveness of the detection rules.
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KYPO4INDUSTRY [97] is a training facility for students based on open-source hardware
and software, built at Masaryk University in the Czech Republic. This testbed consists of a
laboratory room designed to help computer science students to learn cybersecurity in a simu-
lated industrial environment. Finally, the paper introduces the university’s course syllabus that
employs the facility, showing the arguments addressed on each of the 13 weeks of the course.
LegoSCADA [98, 99] is a cost-effective hybrid testbed developed at the Universite Paris-

Saclay in France. The testbed’s conceptual architecture is based on three block elements: the
controller, the system, and the sensors. To test the architecture, the authors have developed a
test scenario based on Lego Mindstorms EV3 brick [181] which emulates a PLC on a car, a
Raspberry Pi [182] to emulate an RTU connected to the vehicle, and a personal computer as
a controller. MiTM attacks are deployed on the developed testbed, in particular replay attacks
and injection attacks. Moreover, a watermark authentication technique has been tested to stop
the attacks with interesting results.
LICSTER [114, 115] is an open-source andopen-hardware testbed andwas presented at the

HochschuleAugsburg inGermany. Itsmain target is to give students and researchers an afford-
able system to perform security research with an expense of about 500 euros. Modbus/TCP is
the protocol used to enable communication between components. Different attack scenarios
onLICSTERare presented and tested. The authors coverwidely used threats to levels 0, 1, and
2, such as passive/active sniffing, Dos, MiTM, and manipulation over the network. For each
attack, an evaluation is presented containing useful information (e.g., impact, skill level, detec-
tion difficulty). Scripts and instructions on the implementation are available on the Github
repository [115].
Microgrid [100] is a flexible and adaptable testbed developed by The Ohio State Univer-

sity, composed of a hybrid setup of physical hardware and real-time simulations. The testbed
contains Power Hardware-In-the-Loop (PHIL) able to emulate power hardware not installed
in the testbed, along with a real-time SCADAs system with an OPNET [183] based real-time
System-In-the-Loop communication network simulation system. The testbed is designed to
study topics related to smart grids and provide hands-on experience to students.
MSICST (Multiple-Scenario Industrial Control SystemTestbed) [101] is a hybrid represen-

tation of four different ICS scenarios: a thermal power plant, a rail transit, a smart grid, and
intelligent manufacturing. Physical processes are always simulated while the control systems
are built using commercial hardware and software. Furthermore, in some scenarios, a combi-
nationof software simulation and actual physical equipment is used tobuild amore realistic sce-
nario. MSICSTalso contains an attackermodel and amonitoring network. Some vulnerability
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discovery experiments have been done on MSICST, ranging from discovering vulnerabilities
on a specific type of PLC to some attacks to known vulnerabilities of S7Comm and Modbus
provided by the lack of encryption and identity authentication. Some security measures are
presented as well, like a whitelist-based host protection software and a new IDS solution that
combines traditional IT system IDS with behavior-based ICS-specific IDS.
NIST developed a cybersecurity testbed for ICS presented in detail in [102]. The testbed

is designed to emulate three real-world industrial systems without replicating the entire plant
or assembling a complete system. The testbed is available upon request to academia, govern-
ment, and industry to analyze new technologies. Based on the research on these testbeds,NIST
published a long and complete guide to ICS security in 2015 [13].
PNNL [103] by Edgar et al. at Pacific Northwest National Laboratory is a remotely config-

urable and community-accessible hybrid testbed to support research on cyber-physical equip-
ment. This testbed combines physical, simulated, and virtual components giving considerable
implementation flexibility. Furthermore, users can control different areas of the architecture,
including the environment (used to simulate the physical process), devices (e.g., PLCs, RTUs),
network communication (representing the backbone communication), simulation, and device
integration. The testbed is accessible following the indications provided in the PNNL web-
site [184] and using Arion [185] as modeling software.
SNL Testbed [105] is a complex hybrid testbed built by Sandia National Labs in Albu-

querque,USA. It contains simulated components (representedusing amodel inOPNET[183]),
emulated nodes (i.e., using real software running on an emulated machine), and physical (i.e.,
real software running in real hardware) devices. The testbed is presented as a case study used
to model a complex scenario, containing: the corporate network (connected to the Internet),
a DMZ, a control system network (containing HMI, the SCADAs Server, Engineering Work-
station, and Front End Processor), and the field layer (containing sensors, RTUs, and IEDs).
The protocols implemented are Modbus/TCP, DNP3, and IEC 60870. Finally, the authors
present a security assessment of the testbed considering different threats and attacks such as
reconnaissance, resistance to standard penetration tools (e.g., Metasploit [186]), andMiTM.
VPST (Virtual Power System Testbed) [106] of the University of Illinois is designed to be

integrated with other testbeds across the country to explore SCADAs protocols and equip-
ment’s performance and security. Thanks to its easy integration with real devices and testbeds,
VPST has the advantage of having actual HIL and a faithful communication system. The ar-
chitecture is divided into three main subsystems: the first handles electrical simulation using
PowerWorld [187], the second simulates the communication systems using RINSE [167], and
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the third includes all the actual devices. The paper presents some example use cases: attack
robustness analysis, incremental deployment analysis, and Human-in-the-loop event analysis.
However, thanks to its flexibility, the testbed is suited for many different types of research.

2.1.5 ICS Datasets

In this section, we provide a description of the ICS dataset available in the literature, highlight-
ing the key design point and the most interesting and performant IDS applied to them. In
Section 2.1.5 we outline the classification method that we use in the following sections, while
in Section 2.1.5 we introduce themain requirements and challenges in developing a dataset. In
Section 2.1.5webriefly recall the common evaluationmetric for IDS.Then, in Section 2.1.5we
present the datasets offeringonlyphysical-level data, while in Section2.1.5wedescribenetwork-
level datasets. Finally, in Section 2.1.5 we highlight datasets containing both the information.

Datasets Classification

Datasets are a collection of data recorded from a testbed or synthetically produces, which can
be used to train and test an IDS. Unlike datasets concerning IT systems, which are composed
only of network traffic, to characterize an ICS, a dataset must contain both network traffic,
representing the communications between the various devices, and the physical processes’ mea-
surements.

Datasets are generally shared as csv, arff, or pcap format files, depending on the typology of
data collected. An interesting solution introduced by Morris et al. [188] consists of providing
also some datasets containing only a subset of the data. They can be used, for instance, to
quickly look at the data without downloading huge files or training a preliminary algorithm
during the early stages of development.

There are many ways to categorize datasets. For example, Choi et al. in [30] groups datasets
based on attack path. In this survey, we decided to divide datasets based on the typology of the
collected data. The capturing can contain data at physical level i.e., field data such as measures
from sensors, actuator, and other physical level devices, ornetwork level data, i.e., packet or flow
sent in the channel under control. However, datasets can contain both the typology of data,
and so they are considered both physical and network level. Sometimes, it is possible to find
other types of data, like device logs, to better understand the ICS’s behavior. To perform our
study and provide reliable statistics, we downloaded every dataset and analyzed it reporting the
main interesting properties.
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Table 2.4 summarizes the main features and statistics of the presented datasets. We reported
the following features.

• Name of the dataset (or of the authors if a name is not provided);

• Sector indicates the field of the source ICS;

• Data type provided. Can be

– Logs if logging information of the system during the process are available;

– Network if network traffic data are provided;

– Physical if measurements of sensors and actuator states are available;

• Time provide an approximation of the duration of the recording;

• Entries indicates an approximate number of entries contained in the dataset. In the case
of datasets containing different versions, the most used or the most recent is considered;

• Reference includes a reference to a description of the dataset;

• Resource indicates awebpage inwhich thedataset is downloadable or information about
how to retrieve it are available;

• Attacks specified the categories of attacks contained in the dataset, if any. CanbeRecon-
naissance, Replay,MiTM,DoS, Injection, orOthers which contains less used categories.
More information about the attacks are presented in Section 2.1.3.

• % indicates the percentage of data under attack on the total entries, if any;

• Format indicates the format of the files containing the capture. Can be:

– pcap is a widely used format containing network packets;

– csv is an extension for files containing Comma Separated Values;

– log contains textual logging of events;

– xslx is a format for spreadsheet files;

– arff is a format used to save data for databases in a textual format. It is generally
used withWeka [189];
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– inp contains data of emulations. Generally, it is used with Epanet [190].

• IDS contains a reference to the best IDS available in literature applied on the testbed at
the best of authors knowledge;

• F1,Acc, and Pr represent the evaluation metrics of the IDS specified, according to Sec-
tion 2.1.5.

The detection algorithms selected are implemented on the whole dataset and not on a frac-
tion of it. Furthermore, the selection does not take into consideration the rank of the publica-
tion venue of the paper. For some datasets and IDSs was not possible to obtain all the infor-
mation since the related paper does not provide exhaustive information. Thus, the degree of
depth of analysis may not be the same for all work.

Datasets Challenges & Requirements

There are several challenges in generating a valuable dataset. Therefore it is fundamental to
create it by following a suitable methodology and keeping in mind the design requirements.
Gomez et al. [63] described a framework useful to generate reliable anomaly ICS datasets to
be employed in anomaly detection tasks. Firstly, it is important to select a priori, one or more
attacks that will be implemented. To do so, researchers must know the main protocols used
in the field of interest, discover the related threat, and design attacks according to the related
vulnerabilities. Then, attacks can be deployed, carefully choosing the nodes affected, each at-
tack’s duration, and its starting time. Finally, it is possible to capture network packets and/or
data from sensors and actuators: it is essential to define the data capture duration, and the
sampling frequency and smartly choose the collecting point. Generally, the latter should be a
central node of the system. The last step is the final dataset generation. To generate the dataset
to release, it is important to carefully choose the features useful to describe the system under
consideration. The behavior of the system can be represented at packet-level, flow-level, or
physical-level data.

The deployment of attacks in datasets is probably the most challenging phase. In fact, if
not accurately performed, the attacks generated can lead to an inaccurate system representa-
tion or bias in the detection methodology. There are principally two ways to generate attacks.
The first and most accurate one is to attack the testbed in real-time, recording the correspond-
ing network traffic or the ICS’s physical state. Another strategy is to insert synthetic malicious
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data, a posterior, in a dataset with regular operation. However, this strategy could lead to in-
accuracies and may not accurately represent the real system behavior response. In fact, if we
want to inject packets on a dataset with normal operations, we must consider all the complex
cascade relations of the systems. By breaking these relations, wewould leave a trace that an IDS
can exploit to detect anomalies, creating detection bias. Since this property is not present in real
systems, the IDSwill miss most of the attacks in physical environments, reducing the detection
generalization in other systems. It is one of the main problems of Lemay et al. dataset [191],
which uses tools such as Metasploit [186] to inject malicious traffic.

Another critical concern causing the lack of available datasets from real environments (i.e.,
ICS of companies) is related to the collected data’s privacy. In fact, companies may be re-
luctant to share their internal configurations, intellectual property, or proprietary protocols.
Moreover, giving the public access to industrial site data may allow malicious users to identify
vulnerabilities and exploit them to attack the company. As a result, many datasets are generally
generated from scale-down testbeds and a few real ICS environments.

Since many intrusion detection techniques are supervised, a complete dataset must provide
labels indicatingnormal or abnormal data. Furthermore, labels are essential as ground truth for
evaluating detection performances during the test phase. However, the labeling process is not
always straightforward. For example, some attacks can move the system in abnormal behavior
after a long time the malicious packets have been sent. In this scenario, the data labeled as
malicious should start when the actual attack starts or when the system’s behavior starts to be
compromised? An analysis of this problem can be found in [192] and [191]. In both cases,
the solution could raise a problem in the ground truth. Therefore, there is no right or wrong
answer to this question. It depends on the context and the attack type, but it must be specified
in the dataset’s documentation to allow researchers to act accordingly.

EvaluationMetrics

In this section, we briefly recall the metrics used to evaluate the performances of the detection
algorithms. According to the literature, the most common metrics are Acc and F1. They are
defined as follows.

• Acc: represents the fraction of correct predictions of themodel under consideration. In
the binary classification case, the accuracy is defined in terms of positives and negatives
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samples classified as follows:

Accuracy = TP + TN
TP + TN + FP + FN , (2.1)

where TP = True Positives, TN = True Negatives, FP = False Positives, and FN = False
Negatives.

• F1: is a metric used to evaluate a classification, defined as the harmonic mean between
precision and recall as follows:

F1 − score = 2 ⋅
precision ⋅ recall
precision + recall , (2.2)

where the true negative rate, or precision is:

precision = TP
TP + FP , (2.3)

while the positive and negative predictive values, or Recall (Re), is:

recall = TP
TP + FN . (2.4)

Physical Level

BATADAL (BATtle of theAttackDetectionALgorithms) [193, 194, 195]was a design chal-
lenge aimed at the creation of an attack detection algorithm. Every participant was provided
with three datasets containing observations of a simulatedC-Townnetwork [196], a real-world,
medium-sizedwater distribution systemoperated through PLCs and SCADAs systems, which
allows modeling the hydraulic response of a water distribution network under attack. The
dataset is free and available in csv format. There is also available an inp file that can be used
with EPANET2 to simulate the system. A new dataset version is also available at [197], con-
tains sensor readings without concealment, and is discussed in [198].

57



Table 2.4: Summary of datasets presented in the literature. TheData type indicated as L: Logs, N: Network; P: Physical. Times of recording are estimations and measure units
are h: hours, d: days, m: months. Entries numbers are estimations, too. We denote the Attacks launched during the recording as RC: Reconnaissance; RP: Replay; M: MiTM;
I: Injection; D: DoS; O: Others. The % column indicates the percentage of data under attack with respect to the whole dataset. File Formats are indicated as P: pcap; C: csv;
L: log; A: arff; I: inp; and X: xlsx. *: the version of WADI dataset considered is the one dated November 2019; the one of SWaT dataset is instead A1 dated 2015, the most
used one as the best of the authors’ knowledge.

Name Sector Data Time Entries Ref. Res. Attacks % Formats IDS F1 Acc. Prec.
D5: Energy M.S.D. Energy Manag. L 30d 6M - [158] - - C - - - -
QUT_DNP3 Power Grid N, L 40d 31M [64] [199] RC, RP, M, I, O ∼0.01 P, L - - - -
QUT_S7Comm Mining Refinery N, L 17.5h 2M [200] [201] M ∼10 C, L, P - - - -
4SICS Generic ICS N 46h 3M - [202] unk unk P [203] ∼1 ∼1 -
CyberCity Dataset City N 16d 170K [85] [204] I, M, D, RC, O 16.58 P - - - -
D2: Gas Pipeline Gas Pipeline N - 400K [205] [158] I 0.97 C [205] 0.75 - 0.75
D3b: Water S. T. Water Storage N - 230K [188] [158] RC, I, D 27 A [206] 0.981 0.981 0.981
D4: New Gas P. Gas Pipeline N - 270K [132] [158] M, I, O 21.86 A [206] 0.988 0.988 0.988
Electra Modbus Power System N >12h 16M [63] [207] RC, I, RP 5.2 C [63] 0.987 - 0.988
Electra S7Comm Power System N >12h 387M [63] [207] RC, I, RP 1.42 C [63] 0.996 - 1.000
HVAC_Traces HVAC N 7d 40M [208] [209] - - P - - - -
Lemay Covert Breakers N 6.55h 1.6M [191] [210] Covert Channel 100 P, C - - - -
Lemay SCADA Breakers N ∼6h 900K [191] [210] RC, I, O 3.29 P, C [211] 1.000 1.000 -
Modbus SCADA #1 Liquid Pump N ∼24d 41M [212] [213] M, D 4.81 P [214] 0.775 0.812 0.964
S4x15 ICS Generic ICS N <1h 310K - [215] unk unk P [203] ∼1 ∼1 -
WUSTL-IIOT-2018 Water Control N 25h 7M [122] [164] O 6.07 C [122] 1.000 1.000 1.000
D1: Power System Power System P, L - 78K - [158] I, O 71.02 C, A [216] 0.955 0.950 0.980
EPIC Dataset Generic ICS P, N 4h 5K [110] [217] - - P, C - -
QUT_S7 (Myers) Generic ICS P, N 8.5h 15M [218] [219] I, M <0.001 P, L, X [218] 0.744 - 0.727
SWaT Dataset∗ Water Treatment P, N 11d 950K [163] [217] I, O 5.76 P, C, X [220] 0.889 - 0.919
BATADAL Water Distribution P 22m 13K [193] [195] RP, M, O 1.69 C, I [221] 0.970 0.989 0.987
HAI Dataset Power Plant P 10d 1M [157] [222] RP, M 1.83 C [223] 0.780 - 0.950
WADI Dataset∗ Water Distribution P 16d 950K [124] [217] M 1.04 C [220] 0.804 - 0.908
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The challenges’ participants developed different algorithms for intrusion detection ranging
from Random Forest (RF) to Recurrent Neural Network. Housh and Ohar [221] achieved
the best result by proposing a model-based fault detection approach that employs a simulator
to generate benign data and then compare them to the available SCADAs readings to detect
anomalous behaviors. This approach is composed of three main phases: 1) available SCADAs
data are used in a Mixed-Integer Linear Program to estimate the water demand in each node;
2) EPANET simulator is used to generate reference values, which are used to produce simu-
lation errors when compared to actual readings; and 3) a multi-level classification approach is
implemented to classify the obtained simulation errors into events andnormal conditions. The
result shows a Pr of 0.987, andAcc of 0.989, and an F1 of 0.970. In [224]Kravchik and Shabtai
present a detection approach base on under-complete Autoencoder in the frequency domain,
which could reach an F1 of 0.937, which is high, considering the simplicity and non-specificity
of the used algorithm. The presented paper was applied to the first version of BATADAL. Fi-
nally, we must consider that BATADAL is synthetically generated. Therefore this dataset does
not suffer from significant noisy problems, making anomaly detection easier.

Morris et al. presenteddifferent ICSdatasets, which are available online [158]. Eachdataset’s
name is labeled with a number from 1 to 5 and the involved industrial sector.
Dataset 1: Power System Datasets are a collection of three datasets provided by Morris

et al. [158, 225] containing the same data but with various labels. One dataset has binary la-
bels (i.e., Normal and Attack). The second dataset has three-class labels (i.e., Attack, Natural,
andNo Events), which identity as “Natural” events single line-to-ground (SLG) faults and line
maintenance and as “No Events” the normal operations. Finally, the third dataset includes 41
different labels containing more information about the attacks and various events. In particu-
lar, one label is reserved for “No Events” (i.e., Normal Operation), eighth labels contain differ-
ent classes of the “intensity” of the “Natural” samples previously mentioned. The remaining
32 labels identify different attacks such as Data Injection, Command Injection, and Relay Set-
ting Change. All the details about the labeling process are available in the readme file at [158].
Physicalmeasures and logs from the control panel, relays, and Snort captures are collected from
a physical testbed containing two power generators, four IEDs that can switch four breakers,
all connected through switches and routers. Data are provided as a csv file (for the first two
datasets) and ARFF format (for the third dataset).

Different interesting IDSs are implemented on these datasets [225, 216, 226, 227]. In [216]
different machine learning-based anomaly detection algorithms are tested against the three
datasets. Themostperformantmethodwas JRipper algorithm[228] togetherwithADABoost
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(ADA) [229] to improve the performance. The algorithmswere trained on voltage and current
measurements of the four synchrophasors (29 features each). This information was combined
with information on frequencies, impedances, and status flags of relays for a total of 128 fea-
tures. Results show an F1, Re, and precision almost always greater than 0.8, with a peak of F1
of 0.955 in the three-class dataset. Also, Acc was always greater than 0.85. Even if the authors
did not include any numerical results based on common metrics, it is worth mention another
approach presented in [225]. The authors presented a specification-based intrusion detection
framework, which is tested in the discussed dataset. They implemented a Bayesian network to
model different threat scenarios. The authors’ purpose was to build a network with a unique
path for each threat scenario. In other words, each scenario must be described as a sequence
of system states, actions, and events that uniquely identify it. For each threat identified, the
system collected related measurable variables and events. Then, each scenario is divided into
actions that cause the system state transition. Finally, the Bayesian network is built on an inde-
pendent path of states, computed for each threat. An IDS was implemented starting from the
Bayesian network obtained, which reads states and logs to track the system states. The obtained
IDS can classify ten different scenarios containing both faults and attacks by monitoring the
state transitions, with different precision based on the relay location.
Dataset 5: Energy Management System Data [158] is a large anonymized log collected by

an Energy Management System in a utility in the United States of America.
The dataset’s csv contains the timestamp and ID of each event, the SCADAs category (i.e.,

information of the type of event), each device type, the event message, the priority code, the
name of the substation, and the area of responsibility (i.e., the controlling authority). Data
are collected in a period of 30 days. Since the dataset contains only normal operations, no
attacks are provided. For this reason, to the best of the authors’ knowledge, there are not IDS
implemented on this dataset.
HAI Dataset (HIL-based Augmented ICS) [230, 157, 222] is a collection of physical data

from three physical control systems (a GE’s turbine, Emerson’s boiler, and a FESTO’s water
treatment systems). Data were sampled every second in 59 points representing the variables
measured or controlled by the control system. Basing on the GitHub repository [222] (which
currently differs from [230]), the data collected contains seven days of normal system behavior,
a day with 20 different attack scenarios on each control loop, and two days with 14 attacks on
multiple control loops, for a total of 10 days of capturing. Totally, there are around 1 million
samples, 1.83% of which are labeled as under MiTM attacks, in particular relay and modifica-
tion attacks. However, all the attacks are deeply explained in [230]. Data are provided in a csv
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format with a document that accurately depicts the testbed architecture and the dataset’s data.
Due to the novelty of the dataset, released in 2020, there is a lack of IDS implemented on

this dataset. However, in [223] the authors present an anomaly detection strategy based on
clustered deep one-class classification. It is an unsupervised approach that combines clustering
algorithms with Deep Learning (DL) models. In particular, K-means were applied for cluster-
ing on the training set. Then, different types of neural networks (e.g., Deep Neural Network
(DNN), ConvolutionNeural Network (CNN), Recursive Neural Network (RNN)) were im-
plemented topredict the clusters and return softmax values classifiedwith the iForest algorithm.
Currently, on the HAI Dataset, the higher precision is achieved using DNN as cluster predic-
tor (0.95) while the overall higher scores are obtained with CNN as cluster predictor (F1: 0.78;
Pr: 0.78). To complete the research, the same algorithms are tested on another popular dataset,
SWaT [163], showing the best results with the same algorithms (i.e., CNN and DNN).
WADI [124, 125] is a dataset with data collected fromWADI, a water distribution testbed,

created as an extension of the SWaT testbed [120]. The system comprises three subsystems: a
primary grid, a secondary grid, and a return water grid. It is also able to simulate water con-
sumption following time-varying demand patterns. The dataset collects 16 days of continuous
operation: 14 under regular operation and two days within an attack scenario (a total of 15 at-
tacks). The adversary aimed to cut off the water supply to the consumer tanks. In the attacker
model, the adversary has remote access to the SCADAs system. The data recorded represent
the state of all the 123 sensors and actuators connected using Modbus/TCP protocol. The
dataset is free upon request [217], and it is provided as csv files.

There aremany IDSs designed and tested onWADIDataset in literature. MAD-GAN[231]
is an unsupervised multivariate anomaly detection method based on Generative Adversarial
Networks (GANs). This method uses a generative model to create a fake time series and a
discriminator to distinguish between normal and abnormal data. A peculiarity of this work
is that, instead of considering each data stream independently, the framework considers the
entire variable set concurrently to capture the latent interactions among variables. To do so,
the authors implement a sliding-window approach to divide the multivariate time series into
sub-sequences. OnWADI, MAD-GAN obtains a precision of 0.53 and an F1 of 0.62. Better
resultswere achievedbyKravchik andShabtai [224]whichobtain aPr of 0.83 and anF1of 0.75.
They employ an Autoencoder with sequences of length 7 in the time domain. With respect to
SWaT [163] and BATADAL [193], the authors also mention that it was impossible to apply
the AutoEncoder on the frequency domain because most of the features do not have a clear
dominant frequency. However, the best results on WADI were obtained by DAICS [220], a
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deep learning solution for anomaly detection in ICSs. The authors propose a 2-branch feature
extraction framework. The wide branch, containing only one fully connected layer, is used to
memorize the normal state of sensors and actuators. Instead, the deep branch comprises two
fully connected layers between two convolution layers and provides the generalization degree
required to handle events not covered in the training set. Moreover, DAICS introduces the
few-time-steps algorithm which can be used to efficiently reconfigure DAICS in a production
environment when operators encounter false alarms. DAICS can achieve a Pr of 0.919 and an
F1 of 0.804 onWADI.

Network Level

CyberCity Dataset [85, 177, 204] is a dataset collected by the SANS Institute from their own
ICS CyberCity testbed. CyberCity testbed is a complete simulation of an entire city contain-
ing a bank, a hospital, a power plant, andmany other generally available components in a small
town. There is also a tabletop scale model of the city, which shows an electric train’s behav-
ior, a water tower, and a miniature traffic light. A pcap file is freely downloadable online [204]
containing over 170k network packets recorded as a dataset for theHolidayHack cybersecurity
challenge in 2013. The data are unlabeled, but in [85] the authors estimate that about 16% of
the data is under attack. Various attacks are included, such as scanning, information disclosure,
command injection,MiTM, andDoS. The ICS components useModbus/TCP, EtherNet/IP,
andNetBIOS as communication protocols. For each attack presented, some preventative mea-
sures are proposed and evaluated. Some examples are awareness training, systempatching, IDS,
or anti-virus, but it is remarked that neither one is 100% effective. It is worth noting that, at the
best of the authors’ knowledge, there is no precise and official documentation of the dataset
provided by the SANS Institute.
Dataset 2: Gas PipelineDatasets [158, 205] contains a collection of labeledModbus/RTU

telemetry streams from a gas pipeline system inMississipi State University’s Critical Infrastruc-
ture Protection Center [116]. Each stream is composed of some selected features, including,
for instance, an identification bit to discriminate between command and responses, states of
components, length of data, and physical measurements. The authors include different com-
mand injection anddata injection attacks, alongside somedata in normal behavior. The dataset
contains about 397k samples, divided into csv files with a name indicating the particular attack.
The dataset also includes a feature to identify the samples that are effectively part of an attack,
with information about the attacker’s action in the particular moment. The total percentage
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of samples with abnormal behavior is 0.97%. Unfortunately, the dataset does not include each
sample’s timestamps, making it impossible to analyze timing information.
The dataset was used to test differentmachine learning algorithms as a discriminator ofmali-

cious RTU transactions to detect the deployed attacks [205]. Features are derived by analyzing
each raw packet individually to extract the protocol command values. K-Nearest Neighbors
and RF are the two algorithms that provided better results across all the attacks, with a Re/Pr
of 0.75 or higher for five of the seven attacks. More in detail, the most problematic attacks
were burst values (i.e., sending multiple successive pressure values, faster than the data display
rate, to the operator interface) and setpoint value injection (i.e., the attacker sends false pres-
sure values equal to the setpoint). Yüksel et al. [232] formally describe a user-understandable
framework with effective anomaly detection techniques for ICSs. The test implemented using
Modbus/RTU employs the Dataset 2: Gas Pipeline by dividing the attacks into scanning, il-
legal values, timing, and illicit command. The features extracted were only related to the ICS
protocol fields of each packet, such as the type of command, location, or address the host is
accessing. To improve results, the authors also performed a feature selection by excluding fea-
tures with low importance (e.g., incremental fields). The results are highly variable depending
on the trade-off between the detection rate and the false positive rate. However, by fine-tuning
the algorithm, it was possible to achieve a detection rate of 0.9991 and a false positive rate of
0.001.
Dataset 3: Gas Pipeline and Water Storage Tank by Morris et al. [188, 158] are two dif-

ferent datasets from physical testbeds containing both physical data field and network traffic.
The first comprises data deriving from a gas pipeline, while the second contains data from a
water storage tank. Both the datasets come from testbeds at the Mississipi State University’s
Critical Infrastructure Protection Center [116] and are shared as ARFF files. A bump-in-the-
wire approach was used to capture data logs and inject attacks in Modbus communication in
both cases. The implemented attacks are reconnaissance, response and command injection,
andDoS. They cover around 27%of the total data. The authors also provide two short datasets
created using 10% of the complete datasets, suited for rapid tests during the preliminary IDS
development phases. As explained in [158, 132], the gas pipeline dataset contains unintended
patterns that cause some algorithms to identify attacks and non-attacks in unrealistic ways eas-
ily. Therefore, we do not report this work in the corresponding dataset tables. Instead, we
consider the second version of this dataset, called Dataset 4: New Gas Pipeline.
Dataset 4: New Gas Pipeline [132, 158] is a new version of the Dataset 3: Gas Pipeline

dataset. This versionwasproposed tofixdataset problems causingmachine learning algorithms
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models that do not match real system behavior and lead to overly optimistic classification ac-
curacy. In this version, the authors implement 35 attacks and precisely document them in the
paper and the dataset. The dataset includes different labels for each attack, which cover 21.86%
of the capture. Like the previous version, the protocol used isModbus and data are available as
an ARFF dataset containing both physical data and information about the network packets.

D3 andD4 datasets are widely used in the study of IDS for ICS. Feng et al. [233] presented a
multi-level anomaly detector using package signatures andLong Short-TermMemory (LSTM)
networks. The detection architecture provided is composed of two-level. First, a packet-level
anomaly detector based on a Bloom Filter is applied; second, the first-level not-anomaly data
are used as input to a stacked LSTMneural networkmodel time-series level anomaly detection.
The anomaly detector was tested on Dataset 4: New Gas Pipeline using two LSTM layers of
256 nodes, each achieving a Pr of 0.94, Acc of 0.92, and an F1 of 0.85. The most problematic
attack to be detected was the injection of malicious state commands for which a GaussianMix-
tureModel performedbetter. Demertizis et al. [206]proposed the SpikingOne-ClassAnomaly
Detection Framework (SOCCADF), which employs the advanced evolving Spiking Neural
Netowork (eSNN). eSNN is a modular connectionist-based system that evolves its structure
and functionality in a continuous, self-organized, online, adaptive, and interactive way using
incoming information. The framework is supervised and was tested on both the Dataset 3:
Water Storage Tank (Pr 0.981; Acc 0.981; F1 0.981) and the Dataset 4: New Gas Pipeline (Pr
0.988; Acc 0.988; F1 0.988). The same authors adopted eSNN on GRYPHON [234], which
simplifies the validation mechanisms to work in a semi-supervised way, getting as input only
data in standard behavior (i.e., labeled as normal packets). This approachwas able to get a Pr of
0.980, an Acc of 0.980, and an F1 of 0.980 on the Dataset 3: Water Storage Tank, while a Pr of
0.975, an Acc of 0.977, and an F1 of 0.970 on theDataset 4: NewGas Pipeline. Another inter-
esting work is the metaheuristic approach by Mansouri et al. [235]. In this work, the authors
provide an anomaly detector based on neural networks with a pre-processing step able to act
with a different algorithm based on the packet’s delay to have as little impact as possible on the
real-time communications. When computational speed is required, computationally efficient
Evolutionary System [236] optimization is used. Instead, amore accurate but computationally
expensive GreyWolf optimizer [237] is used if with higher latency scenarios. A neural network
is then used to detect malicious data with an accuracy up to 98% on the Dataset 4 New Gas
Pipeline.

Electra [63] dataset was obtained from a real scenario of an electric traction station used in
the railway industry. Electra is composed of 5 PLCs, a SCADAs system, a switch, and a fire-
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wall. All the communications between the components implementModbus and S7commover
TCP/IP with a master-slave model. There are two different datasets, one for each communica-
tion protocol. The implemented and labeled attacks are false data injection, replay attack, and
reconnaissance attacks in both cases. The attacks were deployed with a new device attached
to the network with a MiTM configuration. In both Electra Modbus and Electra S7comm
datasets, the capture lasts about 12 hours in which 94% and 98% of the data are in normal
condition, respectively. The data amount is enormous, containing 387M entries for S7Comm
(36.8GB) and 16M forModbus (1.5GB). The two datasets are freely available on theweb [207]
in csv format.

Together with the datasets’ presentation, Gómez et al. provided an implementation of the
main algorithms used for anomaly detection. The authors implemented both supervised and
semi-supervised algorithms (i.e., One-class Support Vector Machine (SVM), Isolation Forest,
SVM, RF, and Neural Network). Features were obtained by packet inspection and by con-
sidering only the control protocol fields such as MAC and IP addresses, timestamps, errors,
and the application data. On ElectraModbus, a simple supervised RFwith 200 estimators was
sufficient to achieve a Pr of 0.988 and an F1 of 0.987, while a single layer supervisedNeuralNet-
work with 128 neurons was able to reach a Pr of 0.9999 and an F1 of 0.996 on the S7Comm
version. On the other hand, the semi-supervised OCSVM performed properly on both the
dataset, reaching 0.996 of Pr in Electra S7Comm. In the successive year, the same authors pro-
posed SafeMan [238], a framework tomanage both cybersecurity and safety in themanufactur-
ing industry. It is composed of a set of applications and services used to monitor and analyze
the industrial process in real-time. SafeMan is based on Edge Computing (EC) to achieve low
latency and fast deployment of applications and services. Furthermore, EC allows performing
the necessary computing tasks close to the manufacturing activity or the network edge. The
framework contains several components to assist the deployment, and the risk assessment, to-
gether with the cyber threats detection application proposed in [63]. A different and inno-
vative approach was introduced by Li et al. [239] who design an anomaly detection method
based on cross-domain knowledge transferring. Features are extracted from each packet. In
detail, for each frame, the authors derived nine basic features (e.g., connection duration, pro-
tocol type, connection status) and 15 content features (e.g., number of failed login attempts,
number of access to the control). The authors employ the TrAdaBoost algorithm to train a
neural network using not only a part of the data of the Electra Datasets but also employing
data from different domains, both from other ICS (e.g., SWaT Dataset [163]) or other CPS
fields (e.g., KDDCup99 Dataset [240]). Then, they compared the error rate with respect to
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a standard SVM and a standard LSTM, showing better results, especially when employing a
small fraction (< 10%) of the Electra Dataset in the training phase.
HVAC_Traces by Ndonda and Sadre [208, 209] is a dataset recorded on a Heating, Ven-

tilation, and Air Conditioning (HVAC) system powered by Honeywell and used to provide
thermal comfort and acceptable indoor air quality on a university campus. The BuildingMan-
agement System is fully automated, and it is suited to monitor from 15 to 20 structures, each
containing different PLCs and RTUs. Operators can access the system through the HMI.
The protocols implemented are proprietary (e.g., DCE/RPC, NetBIOS, S7Comm) and use
TCP/IP at the transport layer. The data capture was produced using tcpdump, at two routers
via port mirroring. To obtain an accurate timestamp on each packet in two separate recording
points, the authors synchronized the clocks using Network Time Protocol [241]. However,
it was not sufficient to ensure good accurate timing. To overcome this problem, the authors
introduced a correction factor calculated using ad-hoc ICMPmessages sent periodically on the
network. The anonymized dataset is publicly accessible in pcap files, where each file contains
one hour of traffic. In total, there are about 7 days of collected data in normal conditions, with-
out any attacks. Since the dataset does not contain attacks and is a novel collection, there are
no IDS tested to the best of our knowledge.

Lemay et al. [191] present a dataset of a SCADAs network, also called Lemay SCADA, vir-
tually implemented with SCADAs Sandbox. The simulations contain different MTUs and
controllers connected with the Modbus/TCP protocol. The attacks are generated with an in-
fected machine that launches various exploits to infect other devices. Then, the compromised
machines launch different attacks by leveraging Metasploit [186] (e.g., Malware Injection, Re-
connaissance). The authors give particular attention to the labeling process and to maintain
normal intra-packet time properties. The captured data are divided into various collections
with an explicit name indicating the types of implemented attacks. The authors also imple-
mented a cover-channel attacks dataset presented as Lemay Covert. In these attacks, the least
significant bit of the Modbus packets is used to carry information. To the best of our knowl-
edge, this is the only available dataset containing side-channel attacks. Unfortunately, none of
the attacks were designed considering Modbus protocol vulnerabilities. Instead, they are im-
plemented with Off-the-Shelf Tools (i.e., Metasploit [186]). Data collection lasts about 6.25h,
and the samples labeled as attacks are about 0.15% of the total for the first attack, while the
covert channel packets are present in the whole capture. The datasets are shared in both pcap
and csv format.

Schneider and Böttinger [242] proposed an unsupervised anomaly detection framework.
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They employ deep autoencoders with pipelining parallel processing strategies to speed up the
training. While the proposed framework performs well on the SWaT dataset [163], it shows
very different results depending on the attack typewhen applied to the Lemay SCADAdataset.
In particular, to correctly detect an attack, the framework requires a minimum duration of it.
For attacks lasting longer than theminimum threshold, the Pr reaches 100%. Anton et al. [211]
implemented different standard classificationmachine learning algorithms on Lemay SCADA.
The authors extract 14basic features from thepackets andnine additional features derived from
timing and frequency information. Algorithms are tested on three different batches of packets
resulted from merging different Lemay SCADA datasets. Both RF and SVM result in an F1
and an Acc greater than 0.999 with all the batch, while k-means clustering report the lowest
results. In a follow-up work of Anton et al. [243] data are considered as time series. Each sec-
ond of network traffic was aggregated into a single data point. Three different algorithms were
implemented to detect anomalies inside the three batches of captures defined in [211]. The
first algorithm implemented was Matrix Profiles, and it performs well on data with periodic
characteristics, requiring only one hyperparameter. Second, the Seasonal ARIMA-process per-
formed well on periodical data and is more resistant to noise but requires a more complicated
tuning of the three hyperparameters. Finally, the authors implemented LSTM, which requires
a high training effort compared with the other two light-weight approaches. They tested the
algorithms on a subset of the Lemay SCADA datasets containing seven attacks divided into
three categories (fake command, executable upload, file moving). The attacks are almost all
correctly classified with every algorithm. With LSTM, the accuracy is always greater than 0.90,
while the F1 is really variable based on the threshold selection methodology.

Modbus SCADA #1 [212, 213] by Cruz et al. is a dataset containing data recorded from a
small physical testbed simulating a liquid pump. The testbed comprises an HMI, an Adruino-
based RTU, a PLC, a Variable-Frequency Drive, and a 3-phase motor. The protocols used are
Modbus/TCP and Modbus/RTU. Data are divided into subfolders based on the attack de-
ployed. Moreover, each pcap file is named with an intuitive strategy that includes the duration
of both the capture and the attack. The attacks implemented range from MiTM to different
flooding types: ping flooding, TCP SYN flooding, and Modbus Query flooding. All these
flooding attacks are aimed at the generation of DoS. The data recording lasts for 24 days, con-
taining 4.81% of data flagged as under attack.

This dataset was used by Radoglou et al. [214] to test an IDS. Firstly, the authors present an
expansionof Smod [244], a penetration testing tool forModbus/TCP, to enable the generation
of DoS, MiTM, and replay attacks. Then, they deployed an IDS to detect DoS attacks and a
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server for machine learning offloading computation. To train and test the models, the authors
employedCICFlowMeter [245] to extract 83 features fromeachModbuspackets flow. Among
the various algorithms tested, AdaBoost [229] andRF achieve the best results with a Pr of 0.96,
an Acc of 0.81 and an F1 of 0.77.

QUT_DNP3 [64, 199] is a dataset presented in the Ph.D. dissertation of the author. The
dataset contains data collected from a small section of a transmission substation SCADAs net-
work. The testbed involves GOOSE and DNP3 protocols, enabling the communication be-
tween the Master, the Slave, the IED, and the attacker machine. All the communications pass
through an industrial switch. The attacks are categorized into six categories: Injection, Flood-
ing, Masquerading, Replay, MiTM, and all attacks. Each category also contains Reconnais-
sance packets. The attacks are launched by an attacker machine, which also generates a log
providing information about each attack sequence’s start and end. Each dataset file has a dif-
ferent duration based on the attack frequency during the capture creation since the authors
implement a random time between two attacks. Moreover, the dataset is divided into two cate-
gories based on the attack frequency: frequent attacks (i.e., approximately an attack every half
an hour) and infrequent attacks (i.e., approximately an attack every random time between one
and four hours). For each frequency category, the authors provide two datasets, respectively,
for training and testing. Furthermore, a control dataset with only legitimate communications
(i.e., without any attacks) is available, and it covers 24 hours of recording. In total, the dataset
contains 40 days of recording. It is worth mention that the labeling process was performed
with particular care since it was the main topic of the thesis work. The dataset is available on
Github [199]. However, to the best of our knowledge, there are no IDS tested on this dataset.

QUT_S7Comm [200, 201] developed byRodofile et al. is an open-source dataset collected
in a three time-based sub-processes testbed of a mining refinery plant. The plant testbed is
composed of one Siemens PLC acting asMaster and three PLCs actings as slaves, all connected
with a switch to an HMI and communicating using S7Comm protocol. The attack dataset
comprises 9 hours of data and 64 attacks from 13 different possible typologies. Data are pro-
videdwith pcap files and four process logs: amaster log, a conveyor log, a tank log, and a reactor
log. The labels of the attack samples are contained in separated csv files. The control dataset
comprises 8.5 hours of network traffic and process log data, with 32 different processes. This
dataset’s peculiarity is the particular division of the network traffic in separate files based on
the node capture perspective: a file collected from the attacker’s point of view, one from the
HMI, and one from themaster PLC.This particular composition could be initially complex to
use, but on the other hand, it provides higher flexibility with respect to datasets with the entire

68



capture. The dataset is available on Github [201]. To the best of our knowledge, there are no
IDSs implemented on this dataset.
4SICS [202] is a pcap dataset collected by Netresec from an ICS lab at the Industrial Cyber

Security Conference. At this conference, there was an ICS testbed composed of heterogeneous
devices such as PLCs, RTUs, servers, and industrial network equipment (e.g., switch, firewalls).
It was available for hands-on testing by the conference attendees and, since the testbed was
left almost uncontrolled, the data recorded are not labeled. Furthermore, it is impossible to
know what the users have done and, eventually, what kinds of attacks are present. The dataset
includes a wide variety of ICS protocol traffic such as S7Comm,Modbus/TCP, EtherNet/IP,
and DNP3.
S4x15 ICS Village CTF Dataset [215] provided by Digital Bond, contains network traffic

collected during a capture-the-flag (CTF) competition in the ICSVillage. The systemwas com-
posed of different interconnected PLCs, and the dataset contains, without labeling, the attacks
launched by the players to the system. The dataset contains pcap files withModbus/TCP and
BACnet packets.

Basing on this dataset, Yu et al. [203] proposed an anomaly detectionmethod based onTCP
and UDP payload inspection. The detector’s architecture comprises an offline module for the
expected behavior model and an online module containing the actual anomaly detector and a
packet signature generator. In the proposedwork [203], the authors use 4SICS [202] dataset to
model the normal traffic behavior for Modbus/TCP protocol, while the normal traffic behav-
ior of BACnet protocol is based S4x15 dataset. Instead, malicious packets are retrieved from
Quickdraw-Snort [246], a collection of Snort rules for ICS environments, which also provides
some testing packets. Results show Acc and Re close to 100% and a very low false alarm rate.
WUSTL-IIOT-2018 [122, 164] is a dataset recorded from a testbed simulating awater tank

control system. Network traffic was monitored for 25 hours, collecting 25 features. Then, the
authors performed a data cleaning process to delete corrupted or missing values and outliers.
In this phase, about 10k observations were erased, leaving the final version with about 7037k
entries. Furthermore, only the six more relevant features are available in the provided csv file,
together with a column indicating if the observations are related to an attack. Various attacks
have been launched during the capture: port scanning usingNmap [247], address scan attacks,
device identification, and unauthorized access to actuators status by using known exploits of
the Mobus protocol. The final dataset contains 6.07% of data under attack.

On the same paper [122], the authors developed IDSs employing standard Machine Learn-
ing algorithms. The authors selected only six features from the datasets concerning the number
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of packets, the packets’ length, source and destination of addresses, and port numbers. Best re-
sults were achieved by Decision Tree (DT) and k-Nearest Neighbors (kNN) with an accuracy
of up to 100% considering the offline evaluation. Instead, regarding the online phase, DT and
RF obtain the best results with an accuracy of 0.999. Furthermore, these last two models per-
formed well in terms of False Alarm Rate (i.e., percentage of the normal flows misclassified as
abnormal flows) and Un-Detection Rate (i.e., the fraction of the abnormal flows misclassified
as normal flows), which are close to 1.

Physical andNetwork Levels

Electric Power and Intelligent Control (EPIC) is a collection of data from 8 scenarios col-
lected with the EPIC testbed [110, 111]. Each collection scenario lasts for 30 minutes under
normal operations, resulting in more than 5000 readings of sensors and actuators, together
with the corresponding Modbus network traffic. Blaq_0 [217] is a dataset obtained from the
same testbedunder different attacks. Blaq_0 contains network-level data collected froma three-
dayHackaton 2018where different teams attack the EPIC testbed. Both datasets are free upon
request, but the second one is not widely used. The EPIC dataset contains both pcap and csv
files. Both the datasets are free upon request on the iTrust website [217].
QUT_S7 (Myers) [218] is a dataset generated from a small scale ICS testbed. It is com-

posed of a bi-directional conveyor belt system, a water pump system, and a “reactor” pressure
vessel system. All these devices are connected to a power meter, and an HMI is used to collect
logs. The protocol used is S7 Communication, the standard protocol for Siemens PLCs. The
dataset contains device logswith information about each component’s state and pcap files with
network traffic. Data are divided into two folders containing control data (i.e., data in a normal
behavior) and attack data. 21 attacks were launched, consisting of two major types: Injection
Attacks and Flooding Attacks. Furthermore, the authors also provide an xlsx file containing
pre-processed data. The dataset is freely available for the download [219].

In the same paper, Myers et al. [218] proposed a novel process mining based anomaly de-
tection technique. The detector idea is to collect logs in order to produce a record of each
device’s status. From this data, the authors compute amodel containing the expected behavior
of the ICS. The model is designed to manage the entire process instance from start to finish
with only acceptable events. Finally, process mining is used to perform conformance checking
activity, calculating the fit of a given event log by replaying it on the model. Results show that
only 16 attacks out of 21 were correctly identified with several false positives (i.e., Pr: 0.727;
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F1: 0.744; Re: 0.762). The authors motivate that for most false positives, the starting con-
dition was altered by previous attacks. It is a common problem that can be mitigated with a
correct generation of the dataset, as will be discussed in Section 2.1.6, especially taking care of
the labeling part.
SWaT [163, 121] is the most popular dataset in the ICS field. It contains monitoring data

from a fully operational scaled-downwater treatment plant. The testbed contains two separate
networks: a level 1 star network that allows the communication between the SCADAs system
and the six PLCs and a level 0 ring network that transmits sensor and actuator data to the corre-
sponding PLC. The protocols employed for communications are CIP and EtherNet/IP. The
first version (December 2015, described in [163, 217]) is the largest andmost used. This version
includes both network traffic and recordings from all 51 sensors and actuators for eleven days.
Of these eleven days, seven days are under normal operation, and four days contain 36 different
attacks, classified into four types based on the attack number of stage and devices affected. As
reported in [248], the various SWaT releases are very different from the operational point of
view, also implementing different actuators’ control logic. It makes it difficult to transfer the
detection framework among the dataset releases. are free upon request at the iTrust datasets
webpage [217].

The SWaT dataset is probably the most used dataset on which researchers try their IDSs.
Almost all the papers using the SWaT testbeds have no explicit mention of the dataset version
used. However, from the data description, we can infer that the first version is used in almost
all cases. Several innovative detection methodologies have been tested on this dataset, ranging
from sensor noise fingerprint [249], a graphical-based detection approach [250] and a frame-
work to generate invariants with association rules mining [251]. Kravchik and Shabtai [224]
employ the SWaT physical data to test different detection approaches such as Dynamic PCA,
1D-CNN, andAutoEncoder, both in the time and frequency domains. Thanks to the linearity
ofmany relations between sensors and actuators in SWaT, PCAperformed very well, especially
using a sliding-window approach, which results in 0.92 of Pr and 0.879 F1. AlsoAutoEncoder
in the frequency domain reaches similar scores (i.e., Pr: 0.924; F1: 0.873). Similarly to WADI,
excellent results on SWaT physical data were achieved by Abdelaty et al. [220]. This paper in-
troduces DAICS, 2-branch neural network with automatic tuning mechanisms to update the
system model. DAICS scores 0.9185 of Pr and 0.889 of F1. It is worth noting that, despite a
not high Pr (i.e., 0.70) and F1 (i.e., 0.81), MAD-GAN [231] on SWaT achieved a Re of 0.954,
the higher one to the best of our knowledge.

Instead, by relying on SWaT network traffic, Schneider and Böttinger [242] implement an
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autoencoder-based unsupervised anomaly detection framework leveraging pipelining parallel
processing strategies to speed up the training. To overcome the problem of unlabelled network
packets and generate the ground truth, the authors developed a semi-automatic label estima-
tion mechanism to detect the packets with a higher probability of being anomalous and then
use a manual investigation to label them. Results reveal a Pr of 0.998 and an F1 of about 0.988
in scenarios like TCP session reset attack and SYN Flood attack, while other types of attacks as
duplicate acknowledgments or TCP retransmissions are essentially not detected.

2.1.6 Lesson Learned: Good Practices

Based on the knowledge acquired by surveying the different works and analyzing the common
mistakes and solutions implemented, in this section, we summarize concepts and good prac-
tices to consider when selecting a testing system. In particular, we summarize the good prac-
tices in creating an effective testbed in Section 2.1.6 and develop a dataset in Section 2.1.6. Fur-
thermore, we also provide additional insight to help the standardization of the IDS results in
Section 2.1.6. During the designing phase of each of the three resources, the designer must
consider the final use of such resources and the other two resources’ requirements in future
integration. Figure 2.10 graphically represents the relation between the three resources. More
precisely, a testbed should allow an efficient data collection to produce a well-representative
dataset and integrate IDSs to validate the case studies in a real scenario. A dataset must be de-
signed to be an exhaustive and precise representation of a testbed and easily allow data analysis
tasks and implementing an IDSs. Finally, an IDS, which represents the higher-level products
with respect to the other two resources, should generalize on different datasets to avoid con-
struction biases. Moreover, the design of a dataset should consider an easy integration into a
real-world scenario such as a testbed.

Good Practices: Testbed

An effective testbed development passes through various steps and challenges, each composed
of a notable complexity level. These challenges should be considered during the design phase.
Scope Identification. During the design phase, the designer must consider the final applica-
tion. The applications of a testbed can be [80]: i) Discovery, to study and obtain knowledge
about a particular ICSfield or system functioning; ii)Demonstration, to validate or experiment
the research findings; and iii) Education, to use the testbed to educate students, researchers,
and stakeholders. Every scope implies different requirements to deal with and different fund-
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Figure 2.10: Relations between Testbed, Dataset, and IDS.

ing. For instance, if a testbed is specifically designed for IDS development, the authors must
consider developing an attack chain and data collection accurately. On the contrary, the Edu-
cational testbeds do not have this requirement. Instead, they should be composed of an easily
understandable and representative process. In this case, water systems are an excellent choice
due to their immediate visualization. Once the scope is identified, the designer can give the
system’s specific layer adequate importance to satisfy the scope.
Fidelity. If the testbed is used forDiscovery orEducation, data’s perfect fidelity is generally not
needed. In these cases, Virtual or Hybrid testbeds are the preferable platforms to be used due
to their flexibility and cheapness. Contrarily, in the case of validation tests, Physical testbeds
are the best solutions since the smallest variation of measures is fundamental for the research.
A complete work that can help researchers to identify the correct design criteria is [32]. The
US NIST has recommended that a SCADAs testbed for security assessment should consider
four general areas [13]: the control center, the communication architecture, the field devices,
and the physical process itself.
Expensiveness. Expensiveness in the construction and the maintenance of Physical testbeds
are the first barriers a research group will encounter when deciding to build one. Suppose a
research group can deal with this limitation. In that case, it is useful to share with the commu-
nity datasets collected from the Physical testbed and the related documentation, as the iTrust
laboratory of SUTD [194] is doing with SWaT andWADI. Furthermore, provide a simple way
for other researchers to access the testbed can be an added value not only for the community,
which can take advance of it but also for the owner who can have a more critical view of the
system.
Reproducibility and Comparability. Robust and innovative researches need to be repro-
ducible and peer validated. Basing on this, testing on physical testbeds is not recommended
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since it creates difficulties in reproducibility. An intelligent solution is to create one or more
datasets capturing network traffic and physical measures from the testbed and share themwith
the community. In this way, the reviewer can easily verify the study, while the community
will benefit from newly available datasets. On the other hand, if a virtual testbed is used, it is
not required to provide a dataset to support the research. Instead, it is possible to provide the
software with the entire simulation. However, it is fundamental to precisely indicate the ar-
chitecture and the state of the ICS at the beginning of the experiment to avoid reproducibility
errors due to a different scenario.

Missing Representation. We identified that the most common scenario represented with
a testbed is relative to water management (e.g., Water Distribution, Water Treatment). This
is probably because Water Systems are easier to implement regarding equipment and mainte-
nance costs. Another very represented scenario is related to the Electric Plant (e.g., PowerGrid,
Power Power). However, IDSs rarely investigate this scenario. We believe this is due to the diffi-
culty in developing detection systems that deal with high-dynamic environments such as Elec-
tricity. Also, the majority of the related dataset does not include attacks scenario. For future
organizations that want to approach a testbed development, we identified a low contribution
in scenarios such as large-scalemanufacturing, Nuclear Plants, Transportation Systems, health-
care infrastructure, IIoT, or HVAC. Another interesting scenario missing in the testbeds ana-
lyzed is the cloud-based ICS. As discussed in [34], this scenario is always more adopted in real
systems. Therefore, having a testbed related to cloud-based ICSwould help secure future ICSs
by studying the connection between the plant and the cloud, which inevitably opens new at-
tack entry points.

Standardization. We noticed that a common problem in the analyzed testbeds is the lack of
standardization according to the industrial security standards. The most common interna-
tional standard for cybersecurity in the industrial system is the IEC 62443 [252]. However,
different organization releases guidelines and requirements to securing ICSs. These organiza-
tions include NIST [13], North American Electric Reliability Corporation (NERC) [253],
and European Union Agency for Cybersecurity (ENISA) [254]. In 2013 ENISA published a
report providing a list of related works in the field of ICS security [254]. In this report, ENISA
lists initiatives and groups working on ICS security worldwide. Among the presented projects,
the most relevant and yet active, such as SNL Testbed at Sandia National Labs [105] or Joint
Research Center’s testbeds in Italy [86, 123], are discussed in this study. Furthermore, the re-
port describes different standards, guidelines, recommendations, and practices for companies
andmanufacturers tohelp them to secure their installations by exploiting commercial solutions
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and valuable policies.

Good Practices: Dataset

A well-designed dataset should exhaustively represent a testbed’s behavior and allow easy im-
plementation of research findings. To do this, the design process of an effective dataset must
consider the following points.
Labeling. When designing a dataset, the labeling process must be precisely described in the
documentation to allow researchers to process the data accordingly. Packets that are part of at-
tacks must be carefully labeled to provide ground truth to researchers. Furthermore, in a valu-
able dataset, labels must also contain information about the attack type (e.g., Injection, Replay,
DoS) and the attack phase. This last element is essential due to the recovery time ofmany ICSs:
after an attack occurs, the systemmay need some time to stabilize itself. An inaccurate labeling
process can wrongly consider this behavior part of the attack. Hence, a good strategy is to flag
this kind of packet as recovery, leaving the decision onhow to consider them to researchers. The
work [192] explained that the authors of the SWaT dataset decided to label a process data sam-
ple as “Attack” when the attack was launched instead of when the system behavior started to
change. This approach can lead to a ground truthproblem if not correctly documentedorman-
aged. Furthermore, it is important to consider the label generationmethodology accurately. A
manual approach to flag each entry of an attack as malicious is costly, and if the data amount is
largemay be impracticable. On the other hand, fully automatic strategies are possible, and they
work quite well if attacks are at the same time automatically generated. However, automatic
labeling cannot provide high accuracy in case of complex attacks on highly distributed systems.
Semi-supervised approaches provide a trade-off that efficiently spends an expert’s work sup-
ported by a visualization platform such as RiskID [255].
Documentation. Many of the datasets surveyed lack in the documentation. To allow cor-
rect and easy use of the dataset, the designer should include detailed information about the
dataset’s characteristics or a description of the source testbed design. Exhaustive documenta-
tion should include the system’s control logic, a description of the implemented attacks, and
the configuration settings. In the SWaT case, as reported in [248], the recent versions of the
dataset implement different control logic. However, the authors never mentioned such modi-
fications.
Attacks Similarity. A complete dataset should also include attacks. Similarly, in a testbed,
a researcher needs to be able to deploy attacks easily. However, the designer must approach
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this phase with caution. Attacks should be as similar as possible to real cases. If a dataset is col-
lected from a testbed, it is sufficient to launch the attacks following an adversary approach and
various system information. The authors should also include a clear and complete analysis of
the attacker model. On the other hand, it is important and challenging to capture traffic while
the attack is occurring in order to generate the datasets. If not accurately managed, synthetic
packets in the resulting capture could disrupt the fidelity of the dataset, making it unrealistic.
Furthermore, if data are captured in different monitoring points inside the ICS, it is required
a synchronization mechanism to provide consistent data.

Domain Shift. A common problem in a dataset is the so-called Domain Shift, i.e., the differ-
ence between the training entries and the testing data [220, 248]. To support researchers and
IDS development, datasets should be released with complete documentation explaining the
system’s initial state. Another problem observed in [248] is related to the testbed remains un-
stable for a long time. More precisely, after the end of an attack, a system’s behavior may need
time to recover, remaining unstable. In this case, its behavior will be identified as anomalous
by detectors even if flagged as Normal. To deal with this problem, when designing a dataset,
the authors should consider adding another label to classify the dataset, e.g., “System Unsta-
ble”. If the authors can directly interact with the testbed, another solution could be to restart
the system after an attack. An imbalanced dataset is a collection of data that contains a signif-
icantly low number of samples from one class with respect to the other [256]. It is a critical
issue that can influence the performances ofMachine Learning based classifiers. Some datasets
provided by researchers contain a low percentage of data classified as under attack, as reported
in Table 2.4. This happens because attacks generally last for seconds or minutes, while the ICS
is expected to run for much longer. There are different techniques to get better results from
an imbalanced dataset [257]. One solution is to act at the data level by re-balance the data
in a pre-processing phase using different sampling strategies (e.g., down-sampling). Another
novel solution is Data Augmentation, recently introduced to improve Anomaly detection per-
formances in [258]. This technique leverages generative models, such as GAN, to generate
synthetic samples. In [256] the authors performed an experiment to understand the impact
of an imbalanced dataset in the ICS security field. Different datasets were obtained from an
extensive network traffic capture collected from a water control system testbed. To do this, the
authors associated to a fixed number of attack samples a variable number of normal samples to
create five different datasets with different imbalance ratios (i.e., the percentage of data under
attack over the whole dataset). Ratios span from 0.1% to 10.0%. Results show a high Re vari-
ance with better results on higher ratios (Re>0.99 for ratio≥0.70%; Re<0.12 for ratio≤0.30).
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At the same time, theUndetectedRate (UR) (i.e., the fraction of the attack samples classified as
normal) shows near-zero values for high ratio and large misclassification on low ratio datasets
(UR<0.01 for ratio≥0.70%; UR>0.88 for ratio≤0.30). Basing on these results, the authors
conclude that it is advisable to generate datasets with at least 1% of data under attack to reduce
imbalance problems when testing IDSs.

Good practices: Intrusion Detection System

Nowadays, themajority of IDS are based onMachine Learning andDeepLearning techniques.
To build amodel using such techniques is required a notable amount of well-organized dataset
(e.g., balanced, labeled). Since these techniques are not always straightforward to understand
and implement, researchers should implement a clear and well-approved pipeline. The follow-
ing aspects can help the development of effective IDSs.
Results Baseline. While reading the different papers concerning the implementation of IDSs,
we noticed the absence of an evaluation baseline inmany cases. Defining a good baseline could
help researchers evaluate if their proposed research is effective and improve the current state
of the art. Furthermore, various works base their results on a subset of an available dataset. If
not used for a specif reason (e.g., isolate and test a specific attack), this approach could cause
a problem in understanding an IDS’s effectiveness. For this reason, we believe that our Ta-
ble 2.4 can support the future evaluation baseline. We also identified issues in the evaluation
metrics. Many research not always use the same metrics, making it difficult to compare dif-
ferent approaches. We suggest using as many common metrics as possible, such as F1, Acc,
Pr, and Re. Baseline problems are also mentioned in other fields, such as Review Helpfulness
predictions [259], where the authors proposed to used the same features on the different mod-
els proposed by researchers. In this way, it is easier to compare the efficiency of a prediction
model. In the ICS field, IDSs model features can be very different and based on diverse ap-
proaches. However, comparing a proposed model with the best IDSs of the art state could
help future researchers identify the right research directions. Furthermore, to avoid the effect
of design bias of the dataset, an IDS should be validated on multiple datasets.
Data Verification. Generally, researchers rarely investigate the causes of the weak perfor-
mance of IDSs. Sometimes, the reasons may be due to a problem related to the distribution
of the dataset. In [248], the authors showed that SWaT dataset behavior and data distribution
between Training Set and Test Set significantly differ. However, even if the SWaT dataset cur-
rently represents the most used dataset to test IDSs, no previous works analyzed the statistical
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distribution through statistical tests. Finally, to allow the community to validate the research
approach and improve it, a good practice is to release the code repository source code (e.g.,
GitHub, Bitbucket).

2.1.7 Takeaway on ICS Security

In recent years the interconnection between IT andOTnetworks has opened upmodern ICSs
to new risks and novel vulnerability surfaces. These vulnerabilities were highlighted in many
works but also by the dangerous malware targeting industrial companies. Therefore, it is vital
to develop new security mechanisms to protect such systems.
In this survey, we provide a comprehensive overview of the ICS field by presenting the ar-

chitecture and the typical devices employed. We then proposed an analysis of the industrial
protocols used in ICSs, highlighting security measures offered by the protocols, their expan-
sions, and analysis of their diffusion in the real world. Furthermore, we surveyed and analyzed
the different platforms to test new security mechanisms in the ICS field. To do this, we catego-
rized the testbeds as Physical, Virtual, or Hybrid based on their functioning and explained the
various challenges and requirements to consider during the development or selection phases.
Also, we presented the different ICS datasets dividing them based on the type of data provided
and useful information that can help the reader choose the dataset (e.g., attack implemented,
format, and various data information). To do this, we accessed every dataset and analyzed it
separately. We also reported the IDS with the best performance present in the literature to of-
fer a baseline for further work for each dataset. Finally, we depicted different good practices
and suggestions for researchers who want to use this kind of testing method and institutions
that want to build testbeds or collect datasets.

We believe this survey can help address future research on this field and new researcher ap-
proaching the ICS area. In the future, we aim to continue collecting new testbeds and datasets
on the website to create a collection of useful information the research community can exploit
for research and studies on this essential field.
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2.2 ICS ExposureMeasurement

According to the Purdue model [260], which represents the reference architecture model for
the ICSs, these systems were supposed to operate on air-gap environments. However, due
to the rise of the Internet and Ethernet technologies, the industrial business moved towards
the connection to external networks, opening dangerous vulnerability surfaces. This digitiza-
tion process requires the adaptation of legacy protocols that were not designed with security
features (e.g., Modbus and DNP3) to the TCP/IP stack to allow operations such as remote
communication. The lack of encryption and authentication can be exploited for malicious
purposes such as data exfiltration, impersonification, and service disruption. The research in-
terest and effort on ICS security increased with the number of incidents and the involvement
of critical-infrastructures, from the most famous Stuxnet [3] that affected an Iranian nuclear
power plant to the more recent Triton [4] that targeted Schneider Electric products. Many re-
searchers estimated the vulnerable ICS landscape by looking forwell-known ICS ports exposed
to the Internet, by actively performing scanning of the IPv4 address space [261, 262] or lever-
aging public available information [263, 264] gathered by third-parties such as Shodan [265]
and Censys [266]. Shodan and Censys are cloud services that allow the user to scan, discover,
and query the devices connected to the Internet. However, many ICSs could not be indexed
due to the presence of network devices likeNetworkAddress Translations (NATs) or Firewalls,
leading to an incomplete estimation of the vulnerable ICSs. In [267] the authors analyzed the
unprotected industrial traffic transmitted over the Internet, gathering information about the
security status of the host systems.

In this study, we investigate the practical use of ICS protocols over the Internet, most impor-
tantly to learn about security issues. Moreover, we aim to determine if scanning activities (such
as results from Shodan) provides accurate estimates of the use of ICS protocols. To achieve this,
we present a framework to identify the ICS host transmitting industrial traffic over the Inter-
net, based on traffic observed at an IXP. We compare and correlate the obtained results with
the information from a prominent scanner: Shodan. We use Shodan due to its popularity in re-
lated works [263, 264], and because it supports significantly more ICS protocols with respect
to other services (e.g., Censys). Our analysis shows that ICS hosts identified by Shodan are
rarely actively using ICS protocols, and suchmeasurements do not estimate the use of insecure
protocols on the Internet. Instead, IXP (or Internet Service Provider (ISP))-based measure-
ments are required. Our results also provide insights into the volume and type of legitimate
and unprotected ICS communication found on Internet links.
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2.2.1 Background on IXP

In this section we briefly recall the main concepts useful to understand our analysis.

ICS Traffic Analysis Through IXP

Our analysis relies on VSIX [268], a local IXP which manages the traffic circulating in the
NorthEast of Italy. This environment allows to collect packets circulating through the Internet
in a secure and privacy-respectful way. In the following, Section 2.2.1 recalls the definition of
Autonomous System (AS) and IXP,which represent themain entities of our systemmodel. We
detail our system model in Section 2.2.2 while in Section 2.2.2 we present the theory behind
the packet sampling process. Then, Section 2.2.2 and Section 2.2.2 outline, respectively, the
research questions of this study and the framework we implemented to address the proposed
questions.

AS and IXP

AnAS is a group of IP prefixes under the control of a single well-defined administrative author-
ity that defines the routing policies, typically an ISP, uniquely identified by its Autonomous
SystemNumber. The routingwithin anAS is allowed via InteriorGateway Protocol, while the
communication with other ASs relies on the Border Gateway Protocol. An IXP is a network
facility that enables the interconnection and exchange of Internet traffic between more than
two independent ASs according to their Border Gateway Protocol routing configurations. Its
typical architecture consists of single or multiple switches connected to the border routers of
the adherent ASs, ensuring benefits in terms of bandwidth, costs, and latency.

2.2.2 RelatedWork on Security Solutions for ICS

ICS security. The security of ICS is a widely studied research topic. Many research groups
study new security solutions to implement in order to mitigate the threats to which ICSs are
exposed. TheAnomaly detection systems represent a low-cost and effective solution. Anomaly
detection systems do not require any hardware substitution from the point of view of the com-
pany. Indeed they aim to monitor the state of the system passively, focusing, for example, on
the physical state of the network [269], network traffic [270] or considering both of them [74],
and raising an alert when the normal behavior of the system is violated.
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Scan-based analysis. If, on one hand, there aremany contributions in literature that present se-
curity solutions for the ICSs, on the other hand, there are not many contributions that analyze
their current security implementation. Several works [263, 264] leveraged public available in-
formation, like Shodan, to identify internet-reachable industrial devices, while [261] and [262]
manually performed an active scan of the IPv4 address space. For a better understanding of the
threat landscape, Serbanescu et al. [271] deployed a low-interaction honeynet, also showing
how the number of attacks increased after being indexed by Shodan.
Industrial traffic analysis. There is notmuch literature on industrial traffic analysis. In [267]
the authors investigated the industrial communications passing through an IXP and an ISP.
During their analysis, they were able, via correlation techniques, to identify scanning activi-
ties, possible firewall implementation other than unprotected industrial traffic. In our work,
we are not interested in implementing any new tool for identifying industrial traffic, however,
we wanted to exploit a wider range of protocols, so we proposed a slightly different packet
filtering process to identify possible Industrial communications and more scanning activities.
From a security point of view, we analyzed the critical issues deriving from implementing both
industrial and non-industrial communication within the same network infrastructure and we
argued what are the Shodan and Shodan-like services limits compared to a wide-view analysis
of sampled traffic.

SystemModel

In our system model, we assume that different ICSs are connected to a local AS (e.g., as cus-
tomers of an ISP), and the ICSs are using industrial traffic over the Internet for supervision and
control (depicted in Fig. 2.11). The IXP provides the capability to sample traffic, according to
the sFlow standard [272], to understand the used protocols and involved parties. However, our
collector will not identify all the intra-AS communications and inter-AS communications that
do not cross the IXP.

In the consideredmodel, an attacker could be amalicious end host located at another AS, or
a MiTM attacker. The former attacker needs to be active (e.g., scanning the well-known ICS
ports), while the latter can be passive or active. In particular, this last attacker should be able to
sniff the traffic from the IXP, therefore it could be a malicious operator of the IXP, an insider
who obtained the access at the IXP (e.g., the government), an ISP, or, more in general, an IXP
partner. The goals of the attackers are to learn process data (i.e., eavesdrop) and/or manipulate
the ICS actively (e.g., by changing or injecting operational commands).
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Figure 2.11: System model: ICS at AS X, AS Y, and AS Z communicate over the IXP. Scanners on the Internet (AS Z, AS K),
which can be malicious or benign, look for exposed ICS services. The packets exchanged between two hosts belonging to
AS Y and AS Z could still pass through the IXP, even if AS Z is not directly connected. We sat within the IXP network, where
we are able to collect and analyze sampled packets.

ICS Packet Sampling

We assume that the ICSs connected to the IXP are continuously sending traffic over the Inter-
net, with a rate of at least one packet per minute. This is a reasonable assumption in line with
otherworks [273, 274], since the ICSs continuouslymonitor processeswith hard real-time con-
straints. In fact, these systems require frequent and constant polling-time communications to
monitor the physical processes.

We also assume that the number of sampled packets n is at least 10 times lower than the total
number of packetsN passing through the IXP over the observation period T. In this case, the
sFlow sampling process can be modeled as a Binomial distribution B(n, p) [275, 276] where p
is the probability of a successful event. We will discuss this assumption in Section 2.2.5.

Under these assumptions, if an ICS is connected to the IXP and transmits 1 packet per
minute, we can estimate the probability p̂ that the sampled packet belongs to the ICS, as:

p̂ = 1 ⋅ 60 ⋅ 24 ⋅ T
N , (2.5)

whereT is the observation period, in days, and the numerator defines the overall number of
packets sent from such ICS. In the limit case, we obtain p̂ = 1, if N = 1 ⋅ 60 ⋅ 24 ⋅ T. This
corresponds to the case thatwe collected only packets of the ICShost under consideration. The
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probability that we observe at least one packet with the aforementioned characteristics is:

P(X ≥ 1) = 1 − P(X = 0). (2.6)

Generally, the probability to observe k industrial packets is:

P(X = k) = (nk) p̂k (1 − p̂)n−k, (2.7)

where n is the total number of sampled packets and p̂ is defined in Equation 2.5.

ResearchQuestions, Challenges, and Goal

Ourmain goal is to investigate the practical use of ICS protocols over the Internet, in particular
with respect to security. The main questions are: RQ1: How often are (insecure) ICS protocols
used over the Internet? RQ2: How often are ICS services exposed to third parties, in addition to
the intended use by legitimate parties?

The main challenge we faced is that third parties cannot directly observe legitimate use of
ICS traffic unless they are routing the traffic (i.e., are in a MiTM position). Even in that case,
efficiently filtering for ICS traffic out of large volumes of traffic can be challenging.
The outlined challenges raise the following additional research questions: If ICS protocols

are used or exposed, can we identify such hosts using active scanning (e.g., Shodan), or IXP/based
traffic collection? To which degree are the results of both complementing each other? In other
words,RQ3: Is IXP active-scanning based enumeration of hosts a good estimator of (vulnerable)
industrial traffic use on the Internet?

For practical reasons, we focused our work on a geographical region in our country served
by a specific IXP.

Proposed Framework

To address the research questions proposed in Section 2.2.2, we compared the properties of the
industrial traffic passively collected at an IXP with the information gathered by Shodanwhich
actively scans industrial ports. We summarized the steps performed in Fig. 2.12.The first step
consists of data collection andprocessing. However, the differentnature of the twodata sources
(i.e., the IXP traffic and Shodan) requires some consideration. In fact, while Shodanmonitors
all the IP address space, the traffic captured by us is restricted to a geographical region, which
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Figure 2.12: The proposed framework to compare the data collected at the IXP and the information available on Shodan.

makes the comparison unfair. To solve this, we defined a baseline to evaluate the two different
approaches. The baseline is composed of the ICSs indexed on Shodanwhich are themost likely
to be observed from our positions, that are the ones who belong to ASs directly connected
to the IXP. Once the data were collected, we implemented a three-step filtering approach to
extract the industrial traffic from the large dataset of network packets collected at the IXP. This
procedure is based on well-known tools (e.g., Wireshark) and is able to identify both scanning
and legitimate ICS activities.

In the second step, we analyzed the results of the first step to answer the research questions.
We analyzed the legitimate industrial traffic, compared the hosts identified with the baseline,
and investigated the exposure on Shodan of the hosts detected legitimately exchanging indus-
trial traffic. Finally, to gather additional information about the current ICS security practices
and threats, we investigated the data collected at the IXP to detect scanning activities and to
deeply understand the network behavior and architecture (e.g., presence of a NAT) of the
hosts. A port-scan approach cannot identify industrial services hidden behind aNAT, Firewall
or VLAN. Instead, we can identify hidden industrial services by leveraging our IXP sampling-
based approach. The presence of both Industrial and non-industrial traffic from a single host
can indicate such hiding network mechanisms.

2.2.3 Implementation

In this section, we present the implementation of our framework of analysis. In particular,
Section 2.2.3 defines the baseline that we use to compare our approach to a scan-based one,
and Section 2.2.4 outlines the packet filtering approach used to identify the ICSs hosts.
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Collection of the Shodan Baseline

We used Shodan to identify the ICS hosts exposed to the Internet within the IXP area as a base-
line, due to popularity in related works [263, 264], and because Shodan supports significantly
more ICS protocols with respect to other services such as Censys. We define the IXP area as
the set of ASs directly connected to the IXP itself. Due to the limited access to the Shodan
services, we collected all the Italian ICS exposed according to the industrial-control-systems cat-
egory offered by the Shodan platform. However, the list of protocols offered in such category is
incomplete compared to the list of protocol dissector implemented inWireshark and reported
in Table 2.5. In this table, we reported the complete list of the industrial protocols of our inter-
est, the communication ports used and if the current version ofWireshark (currently version is
3.0.5-1) can dissect them. To address the limitations of the aforementioned category, for each
of the missing protocol, we designed a specific query based on the reference ports and com-
mon terms (e.g., port:10001 country:"us" I20100 to discover Automated Tank Gauge
(ATG) tank monitoring systems) collecting the resulting hosts. We performed the queries by
leveraging Shodan API. Finally, we selected the ICSs of our interest discarding the hosts that
do not belong to an AS of the IXP area. We reported the results of the analysis in Table 2.6.

2.2.4 Packet Filtering

The large size of the traffic captured required the implementation of an automatic filtering
approach. We applied a preliminary port-based filter to identify the ICS protocols, basing on
the official documentation of the protocols and the ports list [277]. We reported the considered
protocols in Table 2.5 followed by their port ranges and the Wireshark dissector availability.
Then, due to theWireshark dissector limitations, we applied the following three-step approach.

We reported the number of filtered packets at each step of the filtering process in Table 2.8.

1. Starting from the previously filtered packets, we identified the correctly dissected ICS
packets byWireshark, dividing scanning activities from legitimate activities.

(a) We performed a deep packet inspection with Wireshark to identify all the Indus-
trial Protocols packets supported and marked as not malformed;

(b) We cross-validated the resulting data using nDPI [278], an open-source library
able to dissect a wide range of industrial and non-industrial protocols, removing
all the packets not tagged as non-industrial protocols;
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Protocol Port Ranges Wireshark
TCP UDP

AdvancedMessage Queuing Protocol (AMQP) 5671-5672 - 3
ANSI C12.22 1153 1153 3
ATG 10001 -
BACnet/IP - 47808 3
CoAP 5683 5683 3
Codesys 2455 -
Crimson v3 789 -
DNP3 20000 20000 3
EtherCAT 34980 34980 3
Ethernet/IP 44818 2222 3
FL-net - 55000-55003
FF HSE 1089-1091 1089-1091 3
GE-SRTP 18245-18246 -
HART IP 5094 5094 3
ICCP 102 - 3
IEC60870-5-104 2404 - 3
IEC61850 102 - 3
Modbus/TCP 502 - 3
MELSEC-Q 5007 5006
MQTT 1883,8883 - 3
Niagara Fox 1911,4911 -
OMRON FINS - 9600 3
OPCUA 4840 - 3
PCWorx 1962 -
ProConOS 20547 20547
PROFINET 34962-34964 34962-34964 3
S7comm 102 - 3
Zigbee IP 17754-17756 17754-17756 3

Table 2.5: Industrial protocols with relative ports, Wireshark dissector availability ( 3if wireshark is able to dissect it).

(c) Then,wefilteredout thepacketswhere the IP-source is tagged as scannerbyGreynoise [279].
Greynoise is a security company that collects, labels, and analyzes Internet-wide
scan and attack data and provides access to such information to users via API2.

(d) We considered the difference between the results of b) and c) as legitimate ICS
traffic;

2. In the second step, we further processed the initial port-based filtered packets. The goal
is to identify additional scanning activities targeting the ports of the industrial protocols

2The classification methodology of Greynoise is not public, and this could affect the deduced results and re-
producibility of the experiment.
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Italy IXP Area
Protocol Hosts % Hosts %

MQTT 1531 23.5 206 47.8
Niagara Fox 1382 21.2 50 11.3
Modbus/TCP 1346 20.6 70 15.9
Ethernet/IP 456 7 16 3.6
Siemens s7 417 6.4 37 8.4
PCWORX 373 5.7 2 0.4
CoAP 364 5.6 3 0.7
Codesys 183 2.8 10 2.3
BACnet/IP 170 2.6 26 5.7
AMQP 140 2.1 4 0.9
Omron FINS 83 1.3 6 1.4
ATG 32 0.5 7 1.6
OPCUA 13 0.2 1 0.2
DNP3 11 0.2
IEC60870-5-104 6 0.09
ProConOS 5 0.07
GE-SRTP 5 0.07 1 0.2
Crimson v3 2 0.03
MELSEC-Q 1 0.01 1 0.2

Table 2.6: List of the ICS per‐protocol hosts exposed in Italy and IXP area according to and the corresponding percentage
over the total number.

not supported byWireshark.

(a) We usedWireshark to remove all the notmalformed, industrial and non-industrial
protocols (e.g., SSL, HyperText Transfer Protocol (HTTP)), keeping the packets
generally tagged as TCP or UDP (e.g., SYN packets scanning industrial ports);

(b) We used nDPI to remove additional non-industrial traffic from the previous re-
sults;

(c) Then we usedGreynoise to identify scanning activities;

3. Finally, we gather the results of the first two steps.

(a) We merged the scanners activities identified in 1.c and 2.c, and we tagged them as
ICS scanners;

(b) We considered the sum of the legitimate ICS traffic (i.e., 1.d) and the ICS scanners
(i.e., 3.a) as ICS traffic.
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2.2.5 Results

We collected data for a period of 31 days from the 14th of January 2020 to the 14th of February
2020 at the considered IXP. According to the sFlow standard, the traffic was sampled with a
sampling rate of 2−12 and packet truncation at 128 bytes. The sampling process estimates the
effective traffic passing through the exchange point [275], while the truncation gives access to
the full link layer, network layer, transport layer, and few bytes of the payload. The collection
resulted in ∼1.6B packets for more than 189GB of data. All the source and destination IPs
were anonymized on-the-fly during the capture process. Furthermore, for privacy concerns,
we excluded the entire payload from the analysis.

In the following section, we present the analysis results of the traffic capture obtained af-
ter the collection phase. In particular, Section 2.2.5 discusses the legitimate ICS traffic, Sec-
tion 2.2.5 compares our approach with Shodan, while Section 2.2.5 reports an analysis of the
Shodan-indexed hosts.

Legitimate ICS Traffic

We identified 168 different ICS endpoints and 12 different industrial protocols, with 8 hosts
using two different ICS protocols. The percentage of legitimate ICS traffic identified over the
total number of packets is 5⋅10−5. Overall,MQTTandAMQPprotocols countmore than55%
of the legitimate ICS traffic. This result is not surprising since both protocols are widely used
for IoT communication in non-industrial environments. ANSI C12.22 covers almost 21% of
the total number of packets, followed by Modbus/TCP with 9% and Zigbee with 8%. Other
ICS protocols are Profinet, Ethercat, IEC60870-5-104, and Ethernet/IP together count about
7%. Another interesting result is that despite MQTT official documentation [280] specifies
port 8883 and AMQP port 5671 respectively for communicating over TLS, our results show
that all the MQTT and AMQP communication rely on insecure ports, leading to known vul-
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Packets %

Total ∼1.6B
After Port-based filtering 43584 0.0027
Step 1
a) Wireshark filtering 3188 -
b) nDPI validation 2075 65.1
c) Scanning activities 1360 42.6
d) Legitimate ICS traffic 715 22.4
Step 2
a) Wireshark filtering 32741 -
b) nDPI validation 26171 80
c) Scanning activities 3019 9.2
Step 3
a) Total ICS scanners 4379 -
b) Total ICS traffic 5094 -

Overall industrial traffic %
w.r.t. total one

ICS traffic ∼0.0003
ICS scanners ∼0.0003
Legitimate ICS traffic ∼0.00005

Table 2.8: Number of packets filtered step by step. The percentage represents the number of packets left compared o the
previous step (i.e., the previous row).

nerabilities [281, 282].

Comparisonwith the Shodan Baseline

To addressRQ3, we compared the hosts identified in Section 2.2.5 with the hosts identified in
Section 2.2.3. We defineH as the set of ICS hosts detected by us andHS as the set of ICS hosts
identified by Shodan. We also compute the number i = ∣H ∩ HS∣ of ICS hosts detected by
both approaches.

We reported the results in Table 2.7. Among the 176 hosts h identified in the Table, 12 hosts
are duplicated (i.e., the same use more than one protocol), while among the 402 hS, two hosts
are duplicated. Althoughwe detected an overall amount of 168 unique ICS hosts compared to
440 by Shodan, only 2 hosts were common to both the approaches, respectively anMQTTand
aModbus/TCP endpoint, meaning that the two methods are complementary. Our approach
detectedmore hosts than Shodan for 8 protocol. The Shodan port-scanning approach, instead,
detected more hosts for 12 protocols.

We further investigated why we detected only two endpoints in common with Shodan. To
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do so, we extracted from the dataset collected at the IXP all the packets that come from, or
are directed to, an element ofHS. Results show that 16.3% of ∣HS∣ (72 hosts out of 440) were
captured during our analysis but were not leveraging industrial communication. This means
that they correspond to false positives since they were not actually using industrial protocols or
that their packet rate transmission was below our threshold of 1 packet per minute (defined in
Section 2.2.2).

We relied on sampling rate the assumptions of Section 2.2.2, which are verified since n <<
10N (i.e., the sampling rate is 2−12 and N ≈ 212n), to compute the probability that we miss
all the packets of an ICS host (2.8) and the probability that we observe at least one packet of
an ICS host (2.9) in the sampling period. In particular, given T = 31 days, n = 1599431398
sampled packets:

P(X = 0) = 1.848 ⋅ 10−5, (2.8)

P(X ≥ 1) = 1 − P(X = 0) = 0.999. (2.9)

According to the previous results, the probability we missed an ICS host that respects our as-
sumptions is negligible. A possible explanation is that the 72 hosts indexed as ICS by Shodan
are false positive (e.g., they are general devices with exposed ICS ports) or ICS hosts but are not
currently active.

Hosts Exposure on Shodan

Among the ICS hosts involved in legitimate ICS communication, we are interested in counting
how many of them were also indexed by Shodan, and what kind of information Shodan was
able to gather (i.e., RQ2). We found that 64.3% of such hosts were successfully identified by
Shodan and 11% of themwere foundwith ICS ports exposed, more specificallyModbus/TCP,
MQTT, and AMQP.
In Table ,2.9 we reported the Top-5 exposed services and the Top-5 exposed ports based on

the Shodan collected data. Due to the high percentage ofWeb Servers detected, we investigated
deeply to understand what kind of services these devices were exposing. We found IPCameras,
Printers, Routers, and Network Attached Storage login pages other than energy monitoring
and alarm systems. Note that in this work, due to the potential criticalities of the involved
systems, we were not interested in performing any active penetration test to the identified de-
vices for security and privacy concerns. For this reason, we analyzed the Common Vulnerabili-
ties and Exposures (CVE) information provided by Shodan to identify possible vulnerabilities
caused by unpatched systems or well-known critical services. We found that 10.2% of the sys-

90



Product % Port %
1) MikroTik bandwidth-test server 25 1) 443 11.8
2) Apache httpd 12.5 2) 80 11.5
3) nginx 9 3) 2000 7
4) Open SSH 9 4) 8080 6
5) MQTT 7.9 5) 22 4.1

Table 2.9: Top‐5 ports and services detected by Shodan and percentage of hosts exposing them.

tems indexed were affected by at least one CVE.We then associated with each vulnerability the
corresponding Common Vulnerability Scoring System (CVSS) v2.0 score [283]. According
to the NIST, the severity of a score between 0.0-3.9 is considered low, 4.0-6.9 medium, and
7.0-10.0 high. We found an overall amount of 207 CVEs, 30% of which have a score greater
than 7.0 affecting 81% of the vulnerable hosts, 4.3% greater than 8.0, 2.9% greater than 9, and
2.4% equal to 10.0, all affecting 27.3% of the vulnerable hosts. We must note that all these
vulnerabilities can be exploited remotely.

Summary ofMain Results

RQ1: How often (insecure) ICS protocols are used over the Internet? We observed 12 different in-
dustrial protocols during our collection period. By analyzing these 12 protocols, 6 of them (i.e.,
EtherCAT, PROFINET, IEC60870-5-104, Ethernet/IP, Modbus/TCP, FF HSE) did not im-
plement any encryption, authentication, or integrity protection features by design and were
used by 59 hosts. In addition, protocols such as MQTT and AMQP support TLS (enabling
confidentiality and authentication), but this was not implemented in practice. The use of inse-
cure protocols and missing use of TLS affected an overall amount of 127 hosts, meaning that
75.6% of the hosts are using vulnerable ICS communications.
RQ2: How often are ICS services exposed to third parties, in addition to the intended use by
legitimate parties? We found only a small subset of hosts thatwe identified as legitimately using
ICS protocols (i.e., 7.1% corresponding to 12 hosts) also have ICS protocols ports exposed to
the public Internet. Furthermore, for the hosts that we identified as legitimately using ICS
protocols, we found that a good subset (i.e., 64.3% corresponding to 108 hosts) also has general
IT ports exposed to the Internet. By analyzing these 108 hosts, 11 of them were affected by at
least a CVE, instead, 9 of themwere affected by different CVEs with a CVSS score greater than
7.0.
RQ3: Is IXP active-scanning based enumeration of hosts a good estimator of (vulnerable) indus-
trial traffic use on the Internet? Table 2.7 shows that Shodan finds three times as many hosts as
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ourmethod,while the i valuewe calculated indicates that only about 1.2%of the hosts collected
by our framework were also detected by Shodan. This means that Shodan missed most hosts
that are actually implementing ICS protocols. We can conclude that while Shodan returns a
higher number of hosts, it is largely unable to identify hosts that actually use industrial pro-
tocols for legitimate applications (identified instead by the traffic analysis) even with a forced
manual direction to the right hosts. This may be due to the presence of NATs or other mitiga-
tion mechanisms which block the direct scan on the host port.

2.2.6 Additional Analysis and Insights

In the following section, we reported further resultswe obtained beyond the research questions
defined in Section 2.2.2. In particular, Section 2.2.6 provides a detailed analysis of the origin
of scanning campaigns. Section 2.2.7 reports an analysis of the hosts implementing both In-
dustrial communication and non-Industrial communication. Finally, Section 2.2.7 presents a
validation procedure for the IXP on which we relied on.

Scanning Activities

In this analysis, we associated any scanning activity identified during the packet filtering process
to the relative ICS protocol, according to the targeted port.
Scanned protocols. In Fig. ,2.13 we reported an overview of the protocols scanned by ma-
licious actors. We identified a total of 442 different IPs performing scanning activities. The
most scanned port was 5683 used by CoAP with more than 50% of the scan packets, followed
by BACnet/IP, ATG systems, and DNP3. Almost 30% of the scan packets were designed with
protocol-specific requests, like readProperty function for BACnet/IP, GET /.well-known/core
for CoAP, List Identity for Ethernet/IP, Session Initiate Request for HART IP, and Controller
Data Read for OMRON FINS. The remaining 70% of the packets consisted of 61% of UDP
packets, 32% of simple SYN packets, 35% of RST, and less of the 1% for SYN-ACK and other
combinations, which confirms an established TCP connection.
Scanning actors. We used the Greynoise platform [279] to tag the scanners as Malicious, Be-
nign, orUnknown, according to their logged activities. Greynoise reported the 3.5%of the host
asMalicious, 37.4% as Benign, and the remaining 59% as Unknown. For instance, amalicious
actor was associated with a behavior indicating a Mirai or a Mirai-like variant infection, while
another onewas found opportunistically scanning for Siemens PLCdevices. We also identified
well-known services that periodically scan the Internet address space, such as Shodan and Cen-
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Figure 2.13: Protocols found among the legitimate and scanning ICS traffic. The Y‐axis is log‐scaled.

sys [266]. In particular, the Top-5 most frequent Scanner actors we identified are composed
by the 35% by Censys, the 4.3% by Stretchoid, the 4.3% by Shodan, the 4.3% by Net Systems
Research, and the 3.9% by BinaryEdge, while the 44.1% are unknown actors.

Malicious scanners. We observed that the ATG port is the most scanned by malicious actors,
even more than well-known ICS protocols such as BACnet/IP, Modbus/TCP, and DNP3.
Remote access to the control port of an ATG could provide an attacker the ability to reconfig-
ure alarm thresholds, reset the system, and disrupt the operation of the fuel tank [284, 285].
However, since ATG is mainly used in the USA, this amount of scan traffic can be due to port
10001 being shared with other services. According to [286], several malware leverages this port
to spread over the devices, furthermore, Shodan reports that almost all the devices with such
exposed ports are network antennas. We reported in Figure 2.14 a heatmap with the origin of
the IP associated with each scanning packet. The scanning activities come from 30 different
countries. The 24.4% of the malicious actors come from China, 22% Netherlands, 12% Italy,
10% USA, and 7% Russia, while 8 other countries count for less than 5%. However, we must
note that the authors of the scanning campaigns could also hide their source by using, for in-
stance, a VPN. In this case, the IP origin represented in the map corresponds to the last VPN
hop.
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Packet-based Flow-based
Overall ICS-to-ICS Overall ICS-to-ICS

Before IANA
mapping

Protocol % Protocol % Protocol % Protocol %

TLS 50.7 UDP 47.5 TLS 45 TCP 17.8
HTTP 41.3 TCP 40.1 HTTP 23.7 TLS 15.8
UDP 4.8 OpenVPN 8.8 TCP 18.4 UDP 8.2
TCP 2.7 TLS 1.8 UDP 6.7 ICMP 4.1
DNS 0.1 SIP 1.2 ICMP 3 RTCP 3.1

After IANA
mapping

TLS 50.7 TCP 36.4 TLS 42.9 TLS 1
HTTP 41.3 UDP 16 HTTP 22.6 TCP 0.6
STUN 3.5 OpenVPN 8.8 XMPP 6.6 UDP 0.4
XMPP 1.7 RSF-1 clustering 5.4 HP V.ROOM 5.5 Reserved 0.4
UDP 0.8 ActiveSync 2.4 TCP 3.2 ICMP 0.3

Table 2.10: Top‐5 non‐industrial protocols.

2.2.7 IT Traffic

We identified that more than 91.6% of the industrial endpoints were also communicating via
non-industrial protocols. This can be due to the use of more than one protocol by a single
device, the presence of exposed IT services in ICS devices, or by the presence of a NAT on the
network border that manages the traffic incoming or outgoing from the enterprise and man-
ufacturing zone. In the first column of Table ,2.10 we reported that almost half of the traffic
consists of encryptedTLS traffic, which could be due to the use ofHTTP over TLS or to other
secure communications such as VPNs. Moreover, HTTP covers 41.3% of the overall traffic,
DNS covers 0.1%, while other interesting findings not mentioned in the table that represents
less than 1% are OpenVPN, ESP, Wireguard, STUN, BitTorrent, FTP, and Telnet.

Due to the high amount of non-industrial traffic, we investigated if such behavior happened
also between two endpoints of a legitimate ICS communication. We found out that 69.5% of
the legitimate ICS endpoints also exchange non-industrial traffic. In order to have a clear view
of the identified protocols, we applied a flow-based approach since the high amount of packets
sent from a single host could significantly affect the statistics. As we can see in Table 2.10, this
behavior is strongly evident in the amount ofHTTP traffic, where just 23.7% of the hosts were
using the HTTP protocol with respect to 41.3% found on the packet-based approach. More-
over, to reduce the number of the not precisely tagged TCP protocol, we mapped the lower
port of each communication with the corresponding port registered by the IANA. This ap-
proach significantly changed the results of the flow-based approach for the two ICS-endpoints
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Figure 2.14: Heatmap of the malicious scanning activities origin.

analysis. We must also note that the low percentages obtained are due to the high frequency
with which some ports changed within the same communication.

Validation

To verify the correct functioning of our environment, we injected self-crafted traffic into the
IXP. To do this, we deployed a Modbus/TCP server and a Mosquitto MQTT broker in an
Amazon EC2 server instance. Instead, within the IXP network, we deployed a synchronous
Modbus/TCP and a MQTT client based on pymodbus and paho-mqtt python modules. Dur-
ing the communication between clients and servers, the Modbus client sends a Write Single
Register request, and theMQTT client sends a PublishMessage request. Considering that the
3-way handshakes were already accomplished, the overall amount of packets for each transac-
tion is the following:

• Modbus/TCP:
1. Client sendsWrite Single Register request;
2. Server sendsWrite Single Register response;
3. Client sends TCP ACK to server;

• MQTT:
1. Client sends PublishMessage request;
2. Server sends TCP ACK to the client;

We sent 10Write Single Register and 10 Publish Message requests per second for 24 hours.
In this topology, the sFlowAgent samples just the traffic outgoing from the IXP network. It re-
sulted in 2572852 packets exchanged, 1477915 outgoings, 346 of which were successfully sam-
pled: 164 MQTT requests, 91 Modbus/TCP requests, and 91 Modbus TCP ACK. Further-
more, all the packets were correctly dissected byWireshark. The sampling rate computed as the
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ratio between the sampled packets and the overall outgoing traffic results in about 2.3411 ⋅10−4

packets, which is what we expected, considering a sFlow sampling rate of 2−12. This validation
confirms the correct functioning of our IXP environment, the correct sampling functioning
of sFlow, and the correct dissection function of the network packets byWireshark.

2.2.8 Discussion

Comparison of Approaches. Our traffic analysis approach gives us a very different point of
view with respect to Shodan. While Shodan collects data performing active port scanning and
fingerprinting of the exposed services, having thus a wider overview of the exposed hosts, our
approach allows identifying hosts currently active and communicating. Our analysis shows
that Shodan identified just 2 hosts actually exchanging industrial traffic. There are three possi-
ble explanations for this result: the first one is that the systems were hidden behind a firewall,
NAT,VLANorwere leveraging other port scanningmitigation techniques (e.g., filtering IP of
scanning services), the second one is that the hosts indexed on Shodanwere inactive during our
measurement time window, and the third is that the packet transmission rate was low enough
to avoid sampling detection (i.e., less than 1 packet per minute).
ICS Communications Security. The 98.8% of the ICS that we were able to identify were not
recognized as ICS by Shodan. The 50% of the ICS protocols identified in the legitimate traffic
were not implementing any encryption mechanism due to insecure protocols by design (e.g.,
Modbus/TCP) or bad configurations (i.e., MQTT, AMQP), exposing the whole systems to
potential attacks. The 91.6% of hosts that exchange both industrial traffic and non-industrial
traffic could be exploited by an attacker to investigate which protocols are used and what is the
payload of the packets. For instance, the attacker could gather information about the servers
that are commonly involved, analyze theDNS, FTP, andHTTP content to collect information
about the employees, and use social engineering techniques to spoof them.
Limitations. Ourapproachpresents some limitations. Therefore, as explained inSection2.2.2,
it is possible that sFlowwas not able to detect some active ICS hosts since the accuracy of sFlow
is dependent upon the sampling rate. The sampling rate also does not allow us to perform any
encrypted traffic analysis since we could not record the entire communication flow. Moreover,
the sFlowprotocol truncates the packets at 128 bytes. This last limit, togetherwith the fact that
theWireshark dissector does not support some protocols of interest, may lead to an incomplete
analysis of the traffic. In our environment, the possible false negatives and false positives ob-
tained are due to the third-party tool used in the extraction process (i.e., Wireshark, nDPI, and
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Greynoise), and this makes it impossible to verify the ground truth. Finally, if a host imple-
ments a dynamic port range, instead of using the standard ports reported in Table 2.5, both
our and Shodan approaches fail to correctly identify the host because both the approaches are
port-based, leading to additional false negatives. More precisely, our approach relies on port-
based inspection in two phases: i) during the preliminary port-based filtration; ii) during the
Wireshark deep-packet inspection (i.e., Wireshark fails in identifying protocols that use non-
standard ports).

2.2.9 Takeaway on ICS ExposureMeasurement

The increasing using of insecure industrial protocols through the Internet exposed ICS and
critical infrastructure to a wide range of cyber threats. Active scanning of the IP address space
performed by services such as Shodan is a common practice to detect exposed ICS, however, it
does not properly represent the real use of insecure industrial protocols. In this study, we ad-
dressed three research questions to investigate the current state of the art use of such protocols
over the Internet by industrial systems. To do this, we proposed, implemented, and validated
an analytic framework to detect legitimate industrial traffic communication and scanning ac-
tivities based on a 31-day long sampled traffic capture collected at a local IXP.We compared our
results with the information available on Shodan, proving that Shodan is not enough. In fact,
while Shodan was able to identify a higher number of hosts, it detected only 1.2% of the hosts
found by us. We also show that 64.3% of the hosts have IT services exposed, 11 of which have
an alarming CVE vulnerability score, and that 75.6% of the industrial protocols implemented
to communicate over the Internet do not implement any security feature.

Additional analysis, such as the analysis of the IT traffic, confirmed the convergence of the
IT andOTnetworks inmany systems (in our case the 91.6% of the identified hosts), providing
a deeper point of view of the network architecture and security, such as the high rate of unen-
crypted IT traffic and insecure protocols. These network vulnerabilities could be exploited by
malicious users, who constantly perform scanning campaigns, as our results show. Finally, we
validated our system model by auto-injecting our traffic showing that it respects our assump-
tions.
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2.3 ICS Honeypot Deployment

Most of the ICSs were designed decades ago to operate in an air-gapped environment, as rec-
ommended by the Purdue Mode [260]. Therefore, security practices, such as Encryption and
Authentication, were not considered. However, due to the increasing digitalization and “smar-
tification” of the processes, ICSs have been integrated with Internet connections to allow re-
mote control or remote diagnosis operations. Different works measuring the current exposi-
tion and implemented protocols showed a dramatic security lack. In [10] the authors identify
that 75.6% of the industrial protocols implemented to communicate over the Internet do not
implement any security feature. Among the various security solutions proposed in the litera-
ture, honeypots represent an important protectionmechanism that still needs contribution in
the ICSfield [77]. The goal of a honeypot is twofold: it can be used to fool the attacker, making
them think they are interactingwith the real systemand collecting data about typical adversarial
attack actions. However, developing an ICS honeypot is challenging since it should simulate
both the network and the physical process with high fidelity. Honeypots are classified based
on the level of interaction they offer to an attacker. High-InteractionHoneypots simulate all the
services of the emulatedmachine and allow a high level of interactionwith the emulated system.
Instead, Low-InteractionHoneypots emulates the operating system and services provided by the
simulated device, but due to the lower engagement it provides, it makes it possible to capture
less information.

In this study, we present ICSpot, the firstHigh-Interaction ICS honeypot that addresses the
limitations of the physical process interaction of other ICS honeypots. Since ICSs are charac-
terized by physical processes, the lack of such features can lead to an incomplete emulation of
an industrial system. Once we developed the honeypot, we hosted it in an AWS server and a lo-
cal IXP.We then analyze the results after onemonth of exposition, highlighting the differences
between the two installation points. The source code of the honeypot is available on Github3.

2.3.1 RelatedWorks Limitations

The main challenge in designing an ICS honeypot is integrating a reliable physical process
simulation to capture an attacker’s attention. The majority of the proposed works lack the
implementation of such a feature. ICSpot is built on top of the recent open-source Honey-
PLC [287], which to the best of our knowledge, represents the most advanced ICS honeypot

3ICSpot’ on Github: github.com/ftrole/ICSpot
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Honepot/Features Open
Source

Network
Simulation

Physical
Interaction Log HMI

CryPLH [289]
SHaPe [290]
Gaspot [291]
GridPot [292]
Conpot [293]
Antonioli et al. [294]
HoneyPhy [295]
DiPot [296]
S7commTrace [297]
Mimepot [298]
HoneyNet [299]
HoneyPLC [287]
ICSpot

Table 2.11: Comparison among honeypots in literature. the feature is included. the feature is implemented but has
limitations. the feature is not implemented or not documented.

available. However, HoneyPLC does not include a physical process simulation. Starting from
HoneyPLC, we extended its framework to include additional services and interaction with a
MiniCPS-based [288] physical process togetherwith an interactiveHMI representing the phys-
ical process evolution.

ICS Honeypot Comparison. Table 2.11 reports a comparison between the different ICS
honeypots. This table is an extension of the comparison presented in [287]. To the best of our
knowledge, ICSpot is the first open-source honeypot that exposes an effective and interactive
physical process. We also included anHMI representing the evolution of the process so that the
attacker can interact with the physical process and look at the physics modification in real-time.

2.3.2 ICSpotHoneypot

We developed ICSpot by leveraging different existing ICS tools to obtain a complete ICS hon-
eypot and address the current related works limitations. In particular, we built the ICSpot on
the top ofHoneyPLC [287]. HoneyPLC is a recent and effective honeypotwhich, as explained
by the authors, implemented a complete set of functionalities, including multiple PLCs sim-
ulation, ladder logic capture capabilities, and low Honeyscore. We extended HoneyPLC to
include an interactive physical process, additional industrial exposed services, and a log analysis
interface.
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Figure 2.15: ICSpot Schema

Architecture

Figure 2.15 represents the components of ICSpot and how they interact with each other. The
core tool we used to simulate the TCP/IP stack is Honeyd. Honeyd listens for requests ad-
dressed to the honeypots, simulates, and responds by imitating a list of services. Packets sent
by Honeyd are modified by its personality engine: a component that simulates the behavior
of a predefined operating system or a device chosen from the list of Nmap fingerprints. A
configuration file lists the parameters defining the machine to be simulated, such as its MAC
address, IP address, operating system, and services. Thanks to these features, Honeyd allows
configuring and simulating complex honeypots without exposing the host machine to risks.
ICSpot implements different industrial services described in Section 2.3.2. The most inno-
vative is the S7comm server, and integrating the physical process (Section 2.3.2) has made it
possible to create a highly interactive honeypot that aims to overcome the limitations of the
work described in the previous chapter. Among the different PLCs offered byHoneyPLC, we
decided to emulate Siemens Simatic S7-300. This choice is motivated by the lowerHoneyscore
obtained in [287] allowing, therefore, the best level of simulation and likelihood. The Shodan
Honeyscore is a mechanism that flags a device as a honeypot with a confidentiality score. The
score is calculated by analyzing features like open network ports or default known honeypot
settings. All interactions with ICSpot are recorded, stored, and processed in a Loggingmodule
(Section 2.3.2).
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Physical Process

The main contribution of ICSpot compared to its predecessors is integrating physical process
simulation and thepossibility of interactingwith it. This is achievedby running aMiniCPS [288]
simulation in the host machine. To this end, we leveraged the simulation proposed in the In-
dustrial Hacking Simulator (IHS) project4 by running it on the host machine of the honeypot
in the background. IHS project is based on a simplified simulation of the SWaT water treat-
ment process, provided by MiniCPS [288]. Two PLCs act on two pumps, which regulate the
incoming and outgoing water flow in a tank, turning them on or off to maintain a constant
water level. We integrated with ICSpot the possibility of using the S7comm protocol to write
or read data in the MiniCPS database. In particular, we included the option of reading the
PLC data blocks that include the current values on the MiniCPS database. Furthermore, the
attacker can modify the state of the valves controlling the water flow. This allows interaction
with the real-time undergoing water process. To avoid the crash of the process after disruptive
interactions, we integrated a process adjustment when the water reaches too low or too high
levels. The IHS project also offers a web interface showing data from the simulation. Wemod-
ified such an interface to obtain a specific industrial HMI aspect and exposed it to deceive the
attackers.

Services and Interaction

ICSpot includes a PLCwebsite and aweb interface reporting data about the simulated physical
process, the interactionwith the PLCmemory exploiting the industrial protocols S7command
Modbus, and device monitoring via SNMP protocol. In the following, we reported the details
of the different services exposed.
HTTP. Generally, PLCs integrate HTTP web services to provide a list of functionalities.
ICSpot implements a copy of the Siemens Simatic S7-300 website on port 80. On port 8000,
ICSpot exposes anHMI interface that shows details of the physical process simulated: the tank
water level, the status of the two valves, and the water ingoing and outgoing volume.
SNMP. The SNMP protocol, used to monitor devices connected to the network, is listening
on port 161 UDP. The SNMP agent, when queried, responds with theManagement Informa-
tion Base (MIB), which reports information related to the PLC. This protocol is implemented
with a python script from the SCADAsHoneynet project [299] and contains theMIB data of
a real Simatic S7-300 PLC.

4IHS: github.com/CarlosLannister/IHS
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Modbus. Modbus/TCPprotocol enables the communication between industrial devices and
supervisor computers in a master-slave paradigm. ICSpot implements Modbus/TCP using a
python script from the SCADAsHoneynet project [299]. This implementation is considered
low-interaction but allows connecting to the honeypot, which takes the role of slave, and read-
ing and writing data, exactly as with a real PLC.
S7comm. The S7commprotocolwas challenging to implement,mainly because Siemens does
not release the official documentation. Following the example of HoneyPLC, we employed
the snap7 library to implement an S7comm server listening on port 102 TCP. Based on Hon-
eyPLC implementation, the S7comm server enables different functions. First, it simulates a
Siemens Simatic S7-300 PLC, offering the possibility to read and write PLC memory blocks.
Second, the S7comm server allows the honeypot to fool the Siemens Step7 Manager propri-
etary software. Since this proprietary software cannot detect the honeypot, it is reasonable to
assume that no other application which can connect to it through the S7comm protocol can
do it. Third, the S7comm server allows storing the programs injected by attackers in the vir-
tual machine file system onwhich the honeypot is installed. This allows an accurate analysis of
potential malware. These three functionalities derive from theHoneyPLC server implementa-
tion. Finally, we innovate the implementation of the S7comm server by offering the attacker
data related to the physical process. The attacker can read the value of the volume of water
present in the simulated tank by accessing the data blocks. The attacker can also modify the
state of the valves in the process. This interaction allows the attacker to communicate with
the physical process through the S7comm protocol. The S7comm server runs locally and is
connected to the honeypot via the Honeyd configuration file.

Log Data Visualization

In order to make more usable and organized the data on the log generated by Honeyd, we
leveraged Honeyd2MySQL5 and Honeyd-viz6 open-source tools. Honeyd2MySQL allows ex-
traction of all the information from theHoneyd log and import them into aMySQL database.
Then HoneydViz exploits the database created with Honeyd2MySQL to create a web inter-
face showing useful statistics related to the collected data, such as the number of connections
divided by ports, the IP addresses of themain attackers, their origin, and the connections estab-
lished per day.

5honeyd2mysql: https://github.com/ikoniaris/honeyd2mysql
6Honeyd-viz: https://github.com/ikoniaris/honeyd-viz
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2.3.3 Results

We installed two instances of ICSpot in two different environments. The first honeypot was
installed in an AWS EC2 virtual machine, while the second honeypot was installed in a virtual
machine in a network segment owned by VSIX [268] IXP.
We installed and exposed the virtual machines for one month. We report the data collected

in the following.

Interaction Analysis

Figure 2.16a compares the distribution of the interactions with the different exposed services
for the two honeypot instances. We can see that the most requested were the website (port
80) and the HMI (port 8000). In particular, as reported in Figure 2.16b, we registered 2185
different IPs interacting with the port 8000 in the AWS instance and 105 in the VSIX case.
Instead, we registered for port 80, 555 unique ISPs in AWS, and 1321 in VSIX. While such a
high number of interactions was expected for port 80 since it is one of the most famous service
ports, the high requests in port 8000 confirm the effectiveness of the HMI in attracting and
increasing the attacker’s engagement. Another interesting insight concerns the interactions
through s7comm, attackers’ second most exploited protocol to interact with ICSpot. These
data indicate the effectiveness of ICSpot in implementing a service that faithfully reproduces
that of anoriginal PLC.We also analyzed the origin of the IPs used for interaction. Wenote that
the scanning sources were identically distributed for both honeypot instances. This indicates
that most malicious hosts that scan the Internet for vulnerable machines do not discriminate
against associations or geographic areas but perform systemic network crawling. The nations
from which the highest number of scans have been recorded are the United States and China,
followedbyRussia and India. Note that the original IP source representedmaybehiddenusing
VPN. In this case, the IP identified can represent the last VPN hop.

Interactions Origin

To analyze the presence of malicious actors among the IP sources, we leveraged GreyNoise7.
Greynoise is a company that collects, labels, and diagnoses data and provides access to such
information to users via API. Results between the two honeypot instances were slightly dif-
ferent. In both cases, 97% of the analyzed IP addresses are labeled in the GreyNoise database

7Greynoise, https://greynoise.io/
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Figure 2.16: Services analyzed in the two ICSpot instances and number of different IPs connecting to each service.

“scanner”. However, VSIX honeypot received a higher amount of different malicious scan-
ning according to Greynoise classification (i.e., about 49%). Instead, 22% of the scanning was
labeled asmalicious in theAWShoneypot according to theGreynoise classification. This differ-
ence can be due to Shodan, which labels the AWS instance as a honeypot, reducing the interest
of malicious scanners in analyzing such IP. The top-3 organizations with the highest number
of malicious IP addresses in the VSIX case are Google LLC, Korea Telecom, and Chunghwa
TelecomCo. Instead, in the AWS instance, the top-3 includeDigitalOcean LLC,Google LLC,
and WIND Telecom S.A. Both lists are followed by numerous ISPs from all over the world.
Finally, GreyNoise can identify the actor related to an IP address, i.e., the entity actually us-
ing the IP address. The actor can differ from the organization to which the address belongs
since it commonly happens that ISPs and companies offering cloud computing services or IP
addresses block which are used for malicious activities. All the actors analyzed belong to hosts
categorized as “benign” and represent legitimate organizations scanning the network to iden-
tify exposed and vulnerable services, sometimes also notifying the owners about the dangers
they incur. The most frequent benign scanners in both the honeypot include Stretchoid.com,
Censys, Bitsight, ShadowServer.org, BinaryEdge.io, and Shodan.io. All the malicious scanner
actors are instead unknown by Greynoise.

2.3.4 Takeaway onHoneypot Deployment

We compared the feature of our honeypot with the related works proving its effectiveness and
contribution. The comparison highlights the contribution of ICSpot in terms of physical pro-
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cess simulation. We then exposed ICSpot on two different hosts and analyzed the interactions
after a month of data collection. By leveraging Greynoise, we identified in the VSIX instance
that 49% of the IPs interacting with the honeypots were labeled malicious, while in the AWS
instance, 22%. The service installed on port 8000 has particularly attracted the attention of
attackers labeled as malicious in the AWS instance. This demonstrates the interest of attackers
in interacting with a physical process in an industrial system. We believe ICSpot can represent
a building block toward implementing future honeypots with a higher degree of fidelity. In
future works, we will extend the functions of ICSPot, like the PLC profiles, and compare the
interactions received by ICSPot with other existing solutions.
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3
Vehicles Security

In this chapter, we focus on a second application of CPS, the Vehicles. Vehicle security is a
research area that spans from Intra-Vehicular Network (IVN) communication to vehicles-to-
vehicles communication and vehicles-to-infrastructure communication. Modern vehicles have
been integrated with hundreds of sensors and embedded systems to automatize the control
process and to improve the users’ driving experience. However, as in ICS these novel functions
are built on top of legacy systems, inheriting all the underlying vulnerabilities and exposing the
safety of the drivers to dangerous threats.

This chapter summarizes our research findings in the area of vehicle security. In particular,
Section 3.1 overview the Controller Area Network (CAN) standard used for IVN communi-
cation and its vulnerabilities and proposes an authentication mechanism among the network
nodes by exploiting theCANbit-collisionmanagementmechanism and signal processing tech-
niques [300]. Then, the second part of the emerging paradigm of EV. Nowadays, the climate
change phenomenon is pushing toward a green transition, which has dramatically increased
the sale of electric vehicles to replace traditional fossil-fueled vehicles. However, many works
in the literature highlighted that the novelty of such EV systems led to new challenges from the
security point of view [301, 302]. In this context, in Section 3.2, we present a novel relay attack
on the EV charging process, which an attacker can exploit to charge its vehicle by charging the
fee on a victim [303]. Lastly, in Section 3.3, we present a study on the possibility of profilingEV
by analyzing their charging profile [304], opening to privacy exposure and leakage.
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3.1 Internal Vehicle Network Security

The increase of interconnection and automation in automotive systems led to the development
of new connection and communication standards among their components. TheCAN, intro-
duced in 1993, is themost common standard used for IVNs communication and other applica-
tions such as railways and industrial automation. A vehicular system uses the network’s nodes,
called Electronic Control Unit (ECU). These nodes communicate in broadcast through the
CAN bus. Each ECU represents a single function in the machine, such as the engine control
unit, airbags, or audio system. Modern vehicles include up to 200 ECUs, continuously ex-
changing messages to monitor the car’s behavior. Due to the continuous integration of new
vehicle services, the number of ECUwill significantly increase.

CAN bus was initially created without considering security issues and was designed to op-
erate in isolated LANs without any external interaction. In particular, CAN communication
lacks encryption and authentication mechanisms, making it sensible to integrity, authenticity,
and confidentiality attacks. Over the years, such lack of security properties was exploited by
researchers to demonstrate the feasibility of spoofing attacks [305], command injection [306],
eavesdropping [307], and replay attacks [308]. Despite that, in the last years, cars have been
connected to external services such asGPS navigation systems, 5G connections, and Bluetooth.
This open new vulnerability surfaces exploitable by hackers, also facilitated by the CAN bus’s
inherent vulnerability. One of the most famous events that attracted public attention on ve-
hicle security happened in 2015 when two hackers showed that they could hack a Jeep [8]
remotely. However, more recent studies also highlighted the exploitation of CAN bus with
other attacks such as injection from outside the IVN via wireless channel [309] or ransomware
injection through Over-The-Air updates (OTA) [310]. In 2019, the NIST issued the Special
Publication 800-160 [311], which describes techniques and approaches to improve the cyber-
resiliency of systems. NIST also considered self-driving cars as a system based on new emerg-
ing technologies among the examined use cases. The analysis showed that an adversary could
subvert autonomous technology to divert and potentially crash the vehicle. Indeed, in the hy-
pothesized threat scenario, the adversary installs malware and commands the CAN bus, thus
gaining remote network control. One of the possible mitigations is validating data sent and
received among network nodes.

To guarantee the system’s safety and, consequently people’s safety, new securitymechanisms
to protect CAN communication must be designed. The majority of the proposed solutions
rely onmodifying the CAN standard (e.g., cryptographic primitives [312, 313]) or integrating
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additional nodes (e.g., IntrusionDetection Systems [314, 315, 316]). However, such solutions
are sometimes impossible to implement due tomarket constraints and are difficult to integrate
into current systems.

Acommonsolution tohide information in communication is representedby covert-channels,
introduced by Lampson in 1993 [317]. This technique exploits unintended channels to trans-
mit information. In otherwords, in covert-channels specific data is embedded in a transmission
medium that is not supposed to transfer such data. In literature, this technique has been imple-
mented to exfiltrate information from networks without violating the expected behavior, thus
without triggering IDS (e.g., in [318, 319]). Different works have employed covert-channel
in recent years to implement security mechanisms, e.g., authentication [320, 321, 322, 323].
The strength of this approach is that by stealthy inserting the information within an existing
medium, there is no need to modify the existing protocol.

In this study, we propose an authenticated key distribution system for CAN communica-
tion based on a combination of a watermark-based technique and jamming over a wired net-
work. Indeed, most of the related work assumes the existence of a long-term secret shared
among the manufacturer’s different ECUs installed. We propose and validate a schema to dy-
namically and securely share or refresh this secret between the ECUs by considering the CAN
network communication constraints. Similarly to [324], we define jamming over CAN bus
the intentional interference operation on the signal aimed at destroying the communication be-
tween devices. CAN communication presents broadcast messages on a shared medium; there-
fore, jamming can block the reception of the message for all the listening nodes. Unlike pre-
vious works, our mechanism does not require any additional modification of the CAN stan-
dard or the CAN network architecture (e.g., adding new nodes). Our key distribution sys-
tem exploits the traditional bit collision mechanism at the physical level to destroy part of the
shared secret and reconstruct it at the receiver side. To do this, we use the Watermark Blind
Physical Layer Security (WBPLSec) protocol which utilizes a jamming receiver in conjunction
with a Spread-Spectrum (SS) watermarking technique [325]. TheCAN specification (i.e., ISO
11898) considers three levels of the OSI model: physical, data-link and application layers. Fig-
ure 3.1 represents the standard layer according to the CAN specification and shows how we
integrated the WBPLSec algorithm with it. The architecture we propose can be considered
a Bump-In-The-Stack (BITS) [326], where watermarking and jamming are two atomic func-
tions operatingwithin the standardCAN stack. Instead, the architecture of the standard ECU
is notmodified; indeed,WBPLSec can be implemented at the software level in the ECUmicro-
controller to perform the watermarking while the CAN transceiver is used to perform the jam-
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mingon the bus. Byusing thismethod to secure the communication, the originalmessage to be
transmitted is passed from the application layer (i.e., ECU micro-controller) to the WBPLSec
function, which embeds an SS watermark in the information before passing it to the lower lay-
ers. More precisely, we use watermarking as a covert-channel. Instead, on the receiver side, the
node selectively jams the transmitted message on the CAN bus using the jamming function
added in the stack, making part of the communication unusable for the attacker.

As a result, our solution can be easily implemented in the existing CAN system by installing
a transceiver on the ECUs.

WBPLSec algorithm was already applied with success on different communication means
such as radio frequency [325], acoustic communications [327] and visible light communica-
tions [328]. To the best of our knowledge, this is the first work combining watermark-based
communication with jamming over a wired network to implement a key distribution mecha-
nism over the CAN network.

APPLICATION LAYER

DATA-LINK LAYER

WBPLSec

JAMMING
(WBPLSec)

MAIN CONTROL UNIT
(PROCESSOR or 

MICRO-CONTROLLER)

CAN CONTROLER

CAN TRANSCEIVER
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CANL

APPLICATION LAYER

DATA-LINK LAYER

PHYSICAL LAYER

ISO 11898
STANDARD ARCHITECTURE

COVERT CHANNEL WITH JAMMING
ARCHITECTURE

ECU

PHYSICAL LAYER

Figure 3.1: Integration of WBPLSec in the CAN protocol.

3.1.1 Background

In this section, we briefly recall the main concepts helpful in understanding the remainder of
the study. In particular, in Section 3.1.1 we recall the CAN protocol, with a specific focus on
the physical layer properties, which we exploit to perform the jamming. Then, in Section 3.1.1
we present the application of covert-channels and Watermarking techniques in the security
field.
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Controller Area Network (CAN)

CAN bus is the most common and widely diffused medium for IVN communication. CAN
was initially released in 1986 by the Society of Automotive Engineers. However, nowadays
is also implemented in other applications such as Building Automation and Transportation
applications.

The CAN standard is defined in the ISO 11898, initially released in 1993 [329]. In particu-
lar, the physical layer characteristics of CAN are defined in the ISO 11898-2 [330], also known
as high-speed CAN, and ISO 11898-3 [331], also known as low-speed CAN or fault-tolerant
CAN. CAN enables communication among different nodes or ECUs on a differential bus.
The communications rely on information broadcast, using a linear bus, star bus, or multiple
star buses connected by a linear bus, terminated at each node by a resistance of 120Ω. The base
CAN frame consists of 108 bits, while the extended version of the can protocol has a length of
up to 128 bits. Since theCANprotocol uses a broadcast transmission, every node receives every
frame. To specify the receiver of a frame, there are two standard specifications. TheCAN2.0A
defines 11 bit of identifier field, while the CAN 2.0B defines 29 bit of identifier. In this work,
we consider the CAN 2.0A specification. The data field can contain up to 64 bits of informa-
tion. Finally, the 16 bit CRC field identifies transmission errors and represents the protocol’s
only security feature. Figure 3.2 illustrates the CAN physical layer transmission model, which
relies on dominant signals, or Controller Area Network High (CANH) (encoded as logical 0
s) and recessive signals, CAN (encoded as logical 1 s). An ECU comprises three elements: a
processor, the CAN controller, and the CAN transceiver. According to ISO 11898-1 [332],
which defines CAN data-link layer and physical signaling, the CAN controller and the CAN
transceiver components of each ECUmanage the transmission of data along the CANbus. In
particular, the CAN controller is responsible for assembling the frame at the data-link layer,
while the CAN transceiver translates logical signals received from the CAN controller to the
physical voltage level and vice versa. To avoid the frame collisions due to the broadcast trans-
missions and the shared medium, the CAN protocol implements a Carrier SenseMultiple Ac-
cess/Collision Resolution (CSMA/CR) mechanism based on ID priority: the frame with the
highest priority (lower arbitration ID) gain access to the bus, while all other nodes (higher pri-
ority arbitration ID) switch to a “listening”mode. Furthermore, if two nodes transmit a frame
with the same priority level, if one node transmits a dominant bit and another transmits a reces-
sive bit, in the resulting collision, the dominant bit “wins” between the two (i.e., logical AND
combination). We leverage this collision mechanism to perform intentional jamming at the
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Figure 3.2: Collision management in CAN protocol (ISO 11898).

physical layer level. This will be detailed in Section 3.1.3.

Covert-Channels andWatermarking

Physical Layer Security (PLS) aims at securing communications by exploiting the physical prop-
erties of the communication channel. These techniques include processing the signal sent over
a channel to obtain specific security properties without resorting to protocols or algorithms at
upper layers than the physical one.

Protecting data from unauthorized access is indeed a fundamental aspect of communica-
tions. Cryptographic protocols answer this need. Only those authorized to participate in the
communications have the credentials to interpret the protocol. Unfortunately, there are cases
in which encryption is insufficient, and unconventional communication channels might solve
the problem. In 1973, Lampson defined a covert-channel as a communication channel that is
not intended for information transfer at all [317]. In literature, several contributions investi-
gate how to implement effective covert-channels in different layers of the network. For instance,
Hanspach et al. proposed the utilization of covert-channels to circumvent network security
policies by establishing new communication paths [333]. Moreover, we can use hidden chan-
nels for various legitimate and non-legitimate purposes. While governments and companies
can use these channels to protect their communications, cyber-criminals can also exploit this
technology in the same way. In other words, covert-channels are just another way for digital
communications through information hiding [334].

Watermarking is a technique used to hide or embed a signal into another signal, e.g., pictures
and videos. PLS can be implemented with spread-spectrum watermarking techniques [335].
In particular, we implement the first equation described by Cox et al. [336]. We embed infor-
mation in the original message through an SS watermark.
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Omit long-term key distribution? 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Omit long-term key refresh? 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Requires additional nodes? 3 3 3 3 3 3 3

Table 3.1: Hypothesis in the long‐term key distribution phase of the state of the art work on CAN authentication protocols.

Essentially, the SSwatermark information is overlappedwith theoriginal information stream
and travels within the CANprotocol frames. According to Lampson [317], a communication
channelmade in thisway is a covert channel. Likeother types of covert-channels, watermarking-
based covert-channels allow embedding additional information without using any additional
communication channel. In our case, this specific watermark (spread-spectrum watermark)
encodes additional information within the original message without excessive extension of the
payload. It is sufficient to extend the original message to accommodate the watermark. With-
out the watermark, we would have had to transmit the additional information as an additional
message, which requires much more data to be sent.

Since confidentiality is one of the major concerns in any communication, researchers pro-
posed many innovative solutions to improve it. Confidentiality through PLS was first con-
sidered in 1949 by Shannon, who presented the first application of information-theoretic se-
crecy [337]. On the other hand, cryptography, steganography, and watermarking are tech-
niques that implement data secrecy using different paradigms than PLS. This work uses wa-
termarking as a covert-channel that is not part of the CAN protocol to transfer information
between two devices. Such covert-channel is an essential part of the PLS solution that we pro-
pose here.

3.1.2 RelatedWork

The insecure-by-design nature of the CAN protocol attracted the attention of many security
researchers. Several works in literature proposed different approaches to increase the security
of the transmission over the CAN bus ranging from the re-design of the protocol to the imple-
mentation of IDSs [353]. However, many challenges should be considered when designing a
CAN solution. First, the ECUs have very low computation power, hard real-time constraints,
and typically 8 bytes of payload. Thus, solutions with heavy computational requirements (e.g.,
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Asymmetric Encryption) are not well suited. Second, the IVN architecture may sometimes be
difficult or even impossible to modify after the product deployment. Therefore, solutions re-
quiring additional nodes may be unsuitable and impossible to implement. These factors make
the design of a newCAN security solution challenging. In the following, we briefly summarize
the different security solutions proposed in the literature, grouping them by the implemented
features.
Intrusion Detection Systems. IDSs represent a cost-effective solution to monitor the sys-
tem’s behavior passively or actively. This solution requires a preliminary training period and
is specific to the particular system implemented since similar systems may differ in time con-
straints. Furthermore, the IDS approach requires installing the detector on a node with a high
computational capability and access to the entire bus communication. IDSs are generally based
on traffic analysis [354, 314]), physical invariants such as clock skew [355], bit-based [356] or
frame-based [315], signal characteristics [357, 316]. If, on the one hand, IDSs represents a
flexible solution able to prevent zero-day exploits, on the other hand, IDSs may require a mod-
ification of the CAN architecture and notable computing power.
Security-by-Design. The redefinition of the entire protocol allows for robustly protecting
communication. However, this solution requires a profound modification of the existing pro-
tocol and, consequently, an adaptation of all the current systems currently implementing it.
Different researchers attempted to introduce cryptographic primitives, such as authentication
or encryption. The most common approach is to implement a Message Authentication Code
in the CAN communication (e.g., [338, 308, 341, 313]). The two main approaches used in
literature to send the Message Authentication Code in the CAN environment are to send it
as a separate message or to truncate it. The drawback of the first approach is that it requires
an additional frame for every message, slowing the entire communication. Instead, the second
approach considerably reduces the already short payload available of the CAN frame.
Covert-Channel Authentication. The main idea behind these techniques is to embed se-
cret and unique information in the CAN frame, exploiting protocol properties to authenti-
cate the sender node or the message. The main advantage of this class of techniques is that
authentication information is embedded in the frame that carries the data without requiring
an additional authentication frame and without increasing the bus load. In [358], the authors
present a security mechanism that exploits a covert-channel to implement a secure authenti-
cation between an ECU and the Monitor Node to generate shared session keys. Each ECU
embeds unique authentication frames into CAN frames and continuously transmits them
through covert-channels, which can be received and verified by an additional Monitor Node.
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Figure 3.3: WBPLSec system model on CAN, the transmitter (Alice), the receiver with jammer (Bob) and the adversary (Eve).

Other works present covert-channel techniques to implement message authentication exploit-
ing CAN transmission temporal features [321, 322, 323].

Limitation of RelatedWorks

Although many algorithms introduce innovative authentication schemes for CAN networks,
in most cases, these algorithms omit the implementation of a secure key exchange mechanism
or assume that the key is installed in a secure storage partition at the vehicle production in una
tantum. However, these assumptions are not flexible and do not consider the key refreshment
during normal functioning in case of compromise. In Table 3.1 we report a summary of the
assumptions on the key exchange of the various papers proposing authentication mechanisms
over CAN bus (i.e., transmitter authentication or message authentication). We refer to key
exchange as sharing the long-term secret that can be used, for instance, to validate the Message
Authentication Code. To the best of our knowledge, only in Car2X the authors consider a
dynamic key exchange phase at the vehicle boot time. However, this solution requires adding a
central node tomanage the entire sharing process, with a consequentmodification of theCAN
protocol communication phases.

Contrarily, our solution solves the lackof key exchange solutionsbymodifying thefirst phase
of the communication at the vehicle boot time and without changing the existing architecture.
Our methodology uses features already present in the CAN protocol and requires only modi-
fying the source code in the ECUs.

Fewworks proposemechanisms to exchange long-term secrets in a CANnetwork. We recall
these works and compare them with SENECAN in Section 3.1.7.
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3.1.3 SystemModel

In this section, we present the systemmodel for which SENECAN is conceived. In particular,
in Section 3.1.3 we provide an overview of the key distribution mechanism based on jamming
and watermarking. Instead, in Section 3.1.3 we describe the implementation of theWBPLSec
algorithm in a real testbed to secureCANcommunication. In general, theWBPLSec algorithm
successfully applies to those media where jamming is possible. However, the effect is different
between a wireless and a wired connection. In the former, the legitimate receiver can create a
security region around him through jamming and watermarking [359]. In the latter case, the
information is erased with jamming and then reconstructed with watermarking for all nodes
connected to the bus. Furthermore, in wired communication, we no longer have the concept
of a spatial region of security around the jamming node.

CAN Jamming Receiver

As previously described, CAN implements a CSMA/CR collision revolvingmechanism based
on ID priority. When a collision occurs, the dominant bit “0” wins over the recessive bit “1”.
What happens at the physical level is that, when transmitting a bit “0”, CANH andController
Area Network Low (CANL) are set respectively at 3.5V and 1.5V, with a resulting ΔV = 2V.
Instead, when transmitting a bit “1”, CANHandCANL are set respectively at 2.5V and 2.5V,
with a resulting ΔV = 0V. This means that if both “0” and “1” are transmitted simultane-
ously, the bus will have a final ΔV = 2V and, therefore, all the nodes will see a “0”. A node
can transmit a series of “0” on purpose during another transmission to perform jamming by
destroying a part of a frame.

Based on this principle, we develop an authenticated key distribution mechanism that ex-
ploits the jamming principles at the physical layer over wired communication to destroy part
of the frame selectively. In particular, when Bob notes that Alice is trying to send him a frame,
Bob starts jamming the communication so that only he can reconstruct the destroyed origi-
nal message. To reconstruct the partially destroyed message, we implement the WBPLSec al-
gorithm, which will be described in Section 3.1.3. Since this mechanism expands the size of
the message, introducing an overhead on the transmission, it can be used to exchange a secret
between the nodes (e.g., when the system starts) to encrypt future messages with traditional
symmetric encryption algorithms (e.g., Message Authentication Code and AES), introducing
security properties in the communications.
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WBPLSec Algorithm applied to CAN

Since small sensors have limited computation power, in 2017, Soderi et al. developed the WB-
PLSec protocol for wireless communications as a valuable physical layer security standalone
solution [325]. This technique combines watermarking as a covert-channel and a jamming
receiver.

CAN is a robust vehicle bus for networking intelligent devices. Like the wireless sensors, the
nodes of a CAN network have limited resources. The main intuition that inspired this work
was to provide a new security solution forCANnetwork nodes fully compatiblewith theCAN
standard stack. Indeed, in this study, we investigate the application of WBPLSec for the first
time on a wired bus.

The scheme in Figure 3.3 depicts the proposed system model for the CAN protocol and
is based on four main actions to transmit messages securely through the CAN: (1) spread-
spectrumwatermarking: part of the secretmessage is firstmodulatedwith a spreading sequence
and then summed with the host signal; (2) receive jamming: Bob disrupts only part of Al-
ice’s message using an additional CAN transceiver; (3) message reconstruction: Bob knows
the jammed part, he can reconstruct the clean message. Jamming does not affect the spread-
spectrumwatermark; (4)watermark extraction: we extract thewatermarkusing aCodeMatched
Filter (CMF) that uses the same spreading code (i.e., cW) used in transmission.

With reference to Figure 3.3, let’s assume that the transmitter, i.e., Alice, and the receiver, i.e.,
Bob, would exchange a secret message, i.e., x, for supporting future confidential transmissions.
WBPLSec transmits the information via two independent paths implementing a data splitting
policy. Thus, the information is sent via a narrow-band signal and through the SSwatermarked
signal. Without loss in generality, in the rest of the study, we use the Direct Sequence Spread
Spectrum (DSSS) for watermarking and a Frequency Shift Keying (FSK) as narrow-band sig-
nal1.

Bobpartially jams thewatermarked signal, but this interference only affects the narrow-band
signal because the SS watermark is immune to this type of interference. In this way, the water-
mark is used to recompose the entire signal [325].

The ECU transmitter combines the original modulated signal, xS, with an SS watermark, w.
In particular, we select the first equation for watermarking defined by Cox et al. [336] to build

1We can obtain similar results if we select Amplitude Shift Keying (ASK) for the host signal and DSSS for the
SS watermarking.
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the watermarked signal as follows

x′S(i) = xS(i) + μw(i), (3.1)

where xS(i) is the i-th bit of the continuous FSK transmitted signal [360], μ is the scaling param-
eter andw(i) is the SSwatermark. The signalwatermarking is generatedbyusing the traditional
spread spectrum-based approach [361].

The host FSKmodulated signal xS can be expressed as

xS(i) = Aa

√
2
Ths

⋅ cos(2πfni), for 0 ≤ i ≤ Ths, (3.2)

where Aa is the amplitude and Ths is the symbol time. Then, fn = fc + 1−2b
2Ths

indicates the
two frequencies needed to transmit two (n = 1, 2) binary digits (b). We assume equal to 0 the
initial phase of FSK signal.
Recall that Alice andBobwant to exchange a secret x. This secret ismodulated FSK to create

the host signal while a part, xW, is used to create the SS watermark. We select the lastNW over
N bits from x to create xW, which is given by

xW(i) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩x(i), forN −NW ≤ i ≤ N,

0, elsewhere.
(3.3)

The DSSS watermark signal can be expressed as

w(i) = +∞

∑
k=−∞

Nc−1

∑
j=0

g(i − kTb − jTc)(cW(i))j(xW(i))k, (3.4)

where (xW(i))k is the k-th bit of the watermark signal. (cW(i))j represents the j-th chip of the
orthogonal Pseudo-Noise (PN) sequence. g(i) is the pulse waveform, Tc is the chip time, and
Tb = NcTc is the bit time.

Next, the watermark embedding step in the host FSK signal, equation (3.1), occurs with w
signal modulating a carrier frequency close to the range of the fc used by FSK. The watermark-
ing operation is performed by the ECU sender (Alice) before the transmission over the bus.
Figure 3.3 shows how the transmitter embeds the original message into the host signal. Then,
the processor passes the watermarked signal to the CAN controller that splits it into CAN
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Figure 3.4: WBPLSec jamming operational diagram on CAN.

frames. According to the dimension of the frame allowed by the CAN protocol, each frame’s
data field contains up to 64 bits.

As shown in Figure 3.4, while Bob is receiving CAN frames with his arbitration ID, he can
jam at mostM = NW bits because theseNW bits are transmitted through SS watermark, i.e.,
through the covert-channel. Jamminga signal in theCANprotocol is equivalent to transmitting
a dominant bit on the bus, i.e., the bit “0”. For simplicity in our experiments, we destroy the
entire frame, and therefore we destroy blocks of 64 bits of the data field. The effect of the
jamming will be to destroy the whole frame (i.e., all the fields), canceling it from the bus for all
the receivers, including the attacker (Eve), connected on the same bus. Note that the distance
between Eve and the other nodes does not influence the attack scenario since the propagation
speed of the information can be assumed as the velocity of light. The receiver has two fingers as
shown in Figure 3.3. Bob demodulates the FSK signal with the first, whereas he recovers the SS
watermark with the other. Unfortunately, part of the demodulated information is corrupted
due to the jamming. However, Bob can get a clean signal by replacing corrupted bits with
the information he conveys via the SS watermark that is immune to any jamming interference.
In contrast, the eavesdropper cannot remove the interference because he does not know the
jamming characteristics and which packets frames are affected.

Note that we assume perfect synchronization between Alice and Bob so that the two ECUs
know when the secret is sent. The synchronization between the nodes will be discussed in Sec-
tion 3.1.4. In addition, we know that the legitimate receiver should not jam more bits than
those Alice embeds into the watermark, i.e.,M ≤ NW. Indeed, the WBPLSec algorithm repli-
cates a portion of the original information through the watermark, i.e.,NW of the totalN bits.
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Parameter Value
FSK frequencies1 9.75 kHz, 10.25 kHz
DSSS carrier frequency 12 kHz
Samples2per FSK symbol (sl) 80
Samples2per DSSS symbol (sl) 80
Number of bits FSK payload (N) 128, 384
Number of bits FSK preamble3 128
Max. Number of jammed bits (M) 2÷ 24
Number of bits to create the watermark (NW) 8, 24
Number of bits watermark preamble 8
Watermarking scaling parameter (μ) 0.3
DSSS Processing Gain (Gp)

4 4, 8, 16
1 Up-converted using 10 kHz carrier frequency.
2 We assume the same symbol length for FSK and DSSS signals.
3 It consists of the preamble and a synchronization sequence.
4 Using Hadamard PN code.

Table 3.2: Parameters for WBPLSec experiments over CAN.

In this way, NW will also be the maximum number of usable bits that we can use to recon-
struct the information destroyed through jamming, i.e., M bits. So, in summary, to not lose
information due to jamming, we must haveM ≤ NW.

3.1.4 Protocol Implementation

In the following, we propose the first implementation of WBPLSec over the CAN bus in Sec-
tion 3.1.4, discussing the implementation choices to prove the reliability of this algorithm in a
wired bus. Then, in Section 3.1.4, we present an analysis of the performance of this algorithm
in a virtual environment.

Functioning

The key distribution phase is performed entirely in a dedicated time slot. The total length
of such a slot corresponds to the total number of single key distribution sessions, i.e., the
unordered number of a couple of nodes communicating with each other (i.e., if Alice sends
messages to Bob and vice versa, this is a distribution session since the shared key is symmetric)
multiplied by the time of a single key distribution. This requirement will be discussed in Sec-
tion3.1.7. In this phase, everynodehas a set of defined time slots to send the keys to all the other
nodes that are supposed to communicate within successive phases. This dedicated time slot is
necessary to obtain a communication order and synchronization in the key exchange to avoid
multiple simultaneous jamming from more nodes. The organization of this phase depends
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on the specific number of nodes composing the network and their communication scheme.
Therefore, this phase can be configured by the system manufacturers. We assume that each
ECU stores a list to associate every other ECU to a particular KEY-ID number. The network
manufacturers configured such a list and stored it in a secure and tamper-resistantmemory area.
The reason behind introducing the KEY-ID is that the standard CAN frame does not allow to
specify the sender node. Thus, the receiving node cannot associate the corresponding decryp-
tion key. By including the KEY-ID in the message sent, every receiving ECU knows who is
currently transmitting. Consequently, the receiving ECUs can associate the received symmet-
ric key with the sender KEY-ID and use it for future communication. Future communication
must reserve part of the data field (i.e., 8 bits) to include KEY-ID to authenticate the sender.
Furthermore, since the CAN broadcast communication is based on an arbitration ID, each
ECUwith the same arbitration ID should also share the same key for a specific KEY-ID.More
precisely, if a node sends a message to a specific arbitration ID, all nodes with such an arbitra-
tion ID will receive the message. Therefore, all the receiving nodes with the same arbitration
IDmust know the same key to decrypt the message.

At high-level, the steps required to perform the communication are reported in Figure 3.5
and described as follows.

1. Alicewants to securely send a key toBob in the predefined time slot. The time slot length
is fixed and corresponds exactly to the estimated time to complete the key transmission,
i.e., complete the steps below.

2. Alice FSKmodulates the original key and adds the signal’s watermark. Furthermore, to
prevent the retransmission due to the frames collision, she disables the default transmis-
sion queue capabilities (i.e., if the bus is busy, the ECU will not re-transmit the frame
later). The KEY-ID of Alice is inserted into the original message to authenticate the
nodes correctly. We decide to reserve the last 8 bits of the preamble to the KEY-ID of
the transmitting node to support up to 256 different nodes on the bus. However, this
parameter can be easily extended.

3. While Alice is transmitting frames, Bob, who knows by design that he is the receiver
in this time slot, starts jamming using the additional transceiver to destroy a random
number of frames. Since Alice is a node with no transmission queue, all the jammed
frames will be lost and not re-transmitted once jamming is finished. While jamming,
Bob stores the received frames in a queue.
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Figure 3.5: Protocol steps representation.

4. Bob lost frames during step 3), but he is the only onewith the knowledge of the jammed
bits position and consequently able to recover the key transmitted by Alice. By merging
the frames in the queue in order, Bob can reconstruct the originalmessagewith theKEY-
ID and the key thanks to an FSK demodulator and a watermark extraction.

5. Lastly, Bob extracts and saves the couple (KEY-ID, key) received fromAlice in a tamper-
resistant memory.

This procedure can be performed in the first phase of the network creation (e.g., vehicle pre-
sale) or successive sessions to refresh the keys (e.g., during the vehicle revision or OTA updates),
and it is repeated for every ordered couple of nodes. Again, this requirement will be discussed
in Section 3.1.7. The procedure discussed allows the node to send or refresh the key securely.
Furthermore, the schema enables the distribution of the keys in a one-way transmission way
without requiring a response by the receiving node.

Simulation Performance

In this section, we evaluate the performance ofWBPLSec over CANbus in terms of Bit-Error-
Rate (BER) of the watermarked signal x′S and the watermark w. We simulate in Matlab 2021a
the BITS architecture using the parameters in Table 3.2 to generate the signal with watermark
and the relative jamming during transmission. We simulate the algorithm’s key distribution
behavior, including the jamming interference that produces the cancellation of CAN frames.
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Figure 3.6: BITS architecture over CAN.

Considering the jamming on the bus, the simulations we perform are very similar to a real-
world case. As described in the next section, the effect of jamming is to erase the frames on the
bus, and therefore we can easily simulate it in a virtual environment. In this scenario, we can
evaluate the effect of jamming on multiple transmissions by varying the length of the original
message (N), the SS watermark (NW andGp), and the number of jammed bits (M).
The overall intuition of the BITS architecture is represented in Figure 3.6. There, we show

the watermarked signal (x′S) in the TimeDomain (TD) (Figure 3.6a) and in the Frequency Do-
main (FD) (Figure 3.6b). The TDwhite arrows denote the preamble and the payload, whereas
the watermark is spread over the entire signal. Also, in red, we indicate the information can-
celed by the jamming interference produced by the legitimate receiver.

In a critical view of our contribution, we should note that with this number of samples per
bit, we get up to 40960 samples when x′S is 512 bits long. In fact, we compute x′S with (3.1),
where we represent each bit with 80 samples which include the oversampling rate needed for
simulations. By default, Matlab stores all numeric values in a double-precision floating-point,
representing each sample with 64 bits. Nevertheless, 64 bits is also the length of the CAN
protocol data field. Therefore, we can transmit one sample at a time per CAN frame. This
certainly increases transmission. To give an idea of what could be a real-world transmission
time with this schema, we report Table 3.5 with the theoretical transmission times calculated
with the nominal speeds supported by the CAN standard.

We verify the transmission quality through the WBPLSec algorithm on CAN in terms of
BER. Figure 3.7 shows the average BER and its accuracy (i.e., the standard error of the average)
of thewatermarked signal x′S for two differentmessage lengths and differentwatermark settings.
In particular, we consider for both scenarios the same ratio M

NW
. Under these settings, we can

see that the more bits are destroyed, the greater the BER of the FSK signal. And this is the
effect intended byBob, i.e., disrupting the communicationwith his jammer so that the attacker
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cannot receive the information sent on the channel by Alice.
Before evaluating thenumberof errors in thewatermark after jamming,we extract it through

a CMF. This process is performed by computing the normalized statistics [361, 325]

r ≜
⟨y, cW⟩⟨cW, cW⟩ , (3.5)

where the y is the received signal by Bob, as shown in the system model represented in Fig-
ure 3.3, and cW represents the Hadamard PN sequence. We assume ⟨cW, cW⟩ = 1, i.e. PN
sequences have unit energy. Figure 3.8 shows the output of the CMF, where we can observe
the eight preamble bits used to synchronize with the start of the watermark. It is known how
the matched filter maximizes the ratio at the output of the detector. And, the detector is the
same one that was introducedwith the traditional SS watermarking [361, 325], and the estima-
tion of the embedded bit is given by x̂W = sign(r).

Finally, we observe that the watermark also undergoes interference. Figure 3.10 shows the
average BER and its accuracy (i.e., the standard error of the average) of the watermark w. Nev-
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Figure 3.9: Experimental setup.

ertheless, in Figure 3.10, we can see how the information conveyed through the watermark is
more immune to jamming. This is due to an inherent feature of spread-spectrum technology
that is immune to narrowband interference, such as Bob’s jamming. In particular, when the
processing gain, or Gp, is at least equal to 16, the BER of w is less than 3%. This BER result is
absolutely in line as it is obtained in other implementations of WBPLSec [327].

3.1.5 Testbed Validation

To test and validate the SENECAN functioning, we implement a scaled-down architecture
composed of three nodes. In this section we describe the experiments we perform to repro-
duce the SENCAN distribution phase in a simplified real-world scenario. In particular, in Sec-
tion 3.1.5 we describe our testing environment and the devices used. As an example scenario,
to perform the tests we setN = 512 bits (i.e., 40960 samples in double precision, hence, 40960
frames), Gp = 16 and we jam 16 consecutive bits (M = 16), which correspond to jam 16 ⋅ 80
frames.

Equipment Setup

The architecture used to perform the experiments, represented in Figure 3.9a, is composed of
three nodes: Alice, Bob, andEve. Alice andBob consist of anArduinoUNOboard and aCAN
shield from SeedStudio, respectively. Each CAN shield consists of a Microchip MCP2515
CANcontroller and anMCP2551CANtransceiver. Furthermore, Bob contains an additional
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(a) CANH and CANL under normal conditions. (b) CANH and CANL under jamming condition.

Figure 3.11: Representation of the CANH and CANL under different conditions. The first bit is the start‐of‐frame that
denotes the start of the frame. The images are collected from the oscilloscope and a differential probe.

MCP2551CANtransceiver thatweuse to perform the jamming interference, as the implemen-
tation by Palanca et al. [362]. Instead, Eve consists of a Raspberry Pi 3 and a PiCAN2 DUO
board that provides a CAN bus interface. The decision of using a Raspberry Pi to represent
Eve is motivated by the necessity of easily collecting the traffic passing through the bus with a
third node (i.e., Eve). To do this, we install Wireshark on Eve. Wireshark is a network protocol
analyzer able to inspect and analyze CANbus frames, and it gives us the possibility to monitor
and collect traffic over the bus.

To perform the experiments, we set the transmission rate at 500 kbps, the common bitrate
of high-speed CAN.Whereas the high-speed CAN (i.e., ISO 11898-2 [330]) network requires
only two 120 Ω terminal resistors, we use the resistors embedded in the Arduino CAN shield.

Implementation

The implementation of the experimental architecture is depicted in Figure 3.9b. In our setup,
Alice communicates with a base frame format over the bus and uses a fixed identifier for all
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Algorithm 1: Jamming loop in Bob
Input: N;NW; sl
Output: Deletion ofNW ⋅ sl CAN frames.
jamf := Random(1,NW ⋅ sl); ▷ Frames jammed
jams := (N −NW ⋅ sl − jamf); ▷ Start of jamming
c := 0; framerx := 0;
while c < jamf do

if framerx ≤ jams then
framerx = framerx + 1; ▷No Jamming

else
WriteBit(0, Port, Pin); ▷Write Dominant Bit
Wait(149 μ);
WriteBit(1, Port, Pin); ▷Write Recessive Bit
framerx = framerx + 1;
c = c + 1;

end
end

the frames. To perform the jamming, Bob occupies the channel with the dominant bit to
prevent communication with all the other nodes in the network. However, the default driver
of the CAN transceiver MCP2551 prevents holding a dominant bit for more than 1.25 ms.
In this case, the controller called TXD Permanent Dominant Detection inside the MCP2551
transceiver will disable the CANH and CANL output drivers to prevent data corruption on
the CAN bus. We decide to address this issue by introducing recessive bits during the jam-
ming. The CAN frame implements the practice of bit stuffing. An example of the experimen-
tal setup frame is shown in Figure 3.11a. The overshoot at the end of each frame depends on
the acknowledgment (ACK) bit, which is dominant, and all the nodes drive it except for the
one transmitting the frame. Because more nodes drive the bus dominant, a higher voltage is
observed on the bus at the end of each frame. Communication of Alice is handled in order not
to create a frame queue. In particular, when Alice cannot transmit the frame (e.g., jamming
in progress), she will refuse to transmit the next frame. Moreover, the data field of each frame
is transmitted to Alice via serial communication from Matlab. Implementing serial commu-
nication with Matlab arises from the need to easily store a significant number of samples and
facilitate data processing. Eachdouble value of the bitstream stored inMatlab is communicated
to Alice in a little-endian representation, and an 8 ms delay is added between the serial writing
of this value. For a correct reception of the bytes from serial, Alice will have to wait for 1 ms for
each byte before forwarding the frame on theCANnetwork. Therefore, due to the delay intro-
duced by the implementation setup in Matlab, frames are sent on the bus every 15 ms. Bob is
also connected independently to a device with Matlab to store and process the values received
from Alice. This time, the serial communication is directed from the Arduino board to Mat-
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lab. The Arduino board related to Bob can read the CAN frames through the dedicated CAN
shield, count the frames to activate the jamming via the independent MCP2551 transceiver,
and print the received frames on the serial line. Once Bob receives the predetermined frame
before jamming, he starts to occupy the channel with the dominant bit for the entire time win-
dow necessary to destroy the predefined number of frames as sketched in Algorithm 1. As
mentioned, Bob cannot write a dominant bit for more than 1.25 ms, but frames arrive every
15 ms on average. For this reason, Bob alternates recessive bits to cover the time window of a
single frame. In our setup, we decide to keep the dominant bit for 149 μs a hundred times to
destroy a single frame, as shown in Figure 3.11b.

3.1.6 Secuirty Analysis

In this section we analyze the security of the SENECAN key distribution mechanism. In Sec-
tion 3.1.6 we discuss the possible threatmodel and attacker capabilities based on themost com-
mon assumption in the literature. Then, in Section 3.1.6 we analyze the security properties
which our methodology ensures.

ThreatModel

To evaluate the robustness of our approach, we assume that an attacker can access the commu-
nication over the CAN bus and perform different actions at every moment of the key distri-
bution process. In particular, we consider the scenario where an attacker physically accesses
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the network during the distribution process via the bus. In this setting, the attacker can both
passively sniff or modify the communication. As previously described, we assume that a list to
associate every ECUwith a correspondingKEY-ID is stored in every ECU’s secure and tamper-
resistant memory. This assumption is consistent with the other works in this field, where the
long-term secret is assumed to be securely stored during the production phase. Unlike the
other works, we assume that the pre-shared secret consists only of a list of KEY-IDs used to
associate the transmitting ECU with the corresponding KEY-ID. This corresponds to a weak
secret. According to the literature, the common attacks that an attacker can perform in a CAN
communication are the following.

• Message InjectionAttack: The goal of this attack is to send a customized andmalicious
frame to an ECU to compromise the authentication phase.

• Replay Attack: This attack aims to reuse a previously transmitted and sniffed frame in
successive communication to replicate the legitimate transmission.

• MessageModification: In this case, the goal is tomodify the frame during transmission.
This can be done in real-time by selectively jamming the communication to flip some bit
from 1 to 0, or by collecting the entire message, modifying it, and re-transmit it.

• Eavesdropping: This attack aims at passively sniffing the communication to collect the
traffic during the key exchange and, for example, to analyze it in a second moment to
compromise future communication.

• Masquerade Attack: The attacker can modify and reuse the transmitted KEY-ID to
impersonate an ECU during the exchange phase.

• Adversarial Jamming: An attacker can leverage a disturbing interference (e.g., jam-
ming) similar to ourmechanism to disrupt the communication, destroying one ormore
frames. In this way, an attacker can obtain a denial of service by removing part of the
exchanged message.

Security properties

In the following, we discuss the security features of SENECAN. For each property, we then
state which of the attacks described in the previous section can prevent. As previously men-
tioned, our solution can exchange a long-term shared secret or refresh it. This procedure en-
sures the following security properties.
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Previous Secret Independence 3 3 3 3

Replay Attack Resistance 3 3 3 3

Confidentiality 3 3 3 3 3

Integrity 3 3

Authentication 3 3 3 3

One-Way Transmission 3 3 3

NoAdditional Node 3 3 3

Implementation 3 3 3

Table 3.3: Different Key Distribution approaches for CAN.

Previous Secret Independence. If the key currently used is compromised, SENECANallows
to refresh the keys independently of the previous keys. Therefore the information obtained by
an attacker could not affect the new secret exchange. The only requirement of the procedure
is that the association of the KEY-IDwith each other node is not compromised. This property
allows preventingMessage Injection Attacks.
Replay attack Resistance. It is probably the most challenging feature required for an offline
authentication schema. Generally, this feature requires a nonce exchange and synchronization
by the different nodes. This is a very complex constraint to obtain, as explained in [364]. Dif-
ferent works address this problem with an additional node and a constant synchronization
protocol. In our case, replay protection is ensured because Bob chose and destroyed a random
frame set. This information is known only by him, and the next time a new secret is shared,
the jammed frames will be different. This will avoid any attempts by Eve to reuse an old frame.
This property allows preventingReplay andMessage Injection Attacks.
High Confidentiality. The confidentiality of the communication is achieved thanks to the
jamming phase, which allows only Bob to know the jamming points and consequently recon-
struct the original message. Since every bit of the original message is expanded to 80 frames, 64
bits payload each, to brute force the originalmessage, the attacker requires to compute 2M⋅80⋅64,
whereM is the number of the bit jammed during the frame transmission. The security level of
the schema is consequentlyM ⋅ 80 ⋅ 64. This property allows preventing Eavesdropping.
Integrity. there are two possibilities for an attacker to modify the original message: in real-
time or in a secondary moment. While the first approach is unfeasible due to the anti-replay
property, the second would compromise the watermark, raising errors during the demodula-
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Bitstream Samples Transmission
Time Time1 Optimised

Time2

256 bits 204803
7200 bps4 307.2 s 76.8 s
500 kbps 4.42 s 2.21 s
1Mbps 2.21 s 1.11 s
10Mbps 0.22 s 0.11 s

512 bits 409603
7200 bps4 614.4 s 153.6 s
500 kbps 8.85 s 4.42 s
1Mbps 4.42 s 2.21 s
10Mbps 0.44 s 0.22 s

1 One sample in double precision for each CAN frame.
2 Two samples in single precision for each CAN frame.
3 80 samples for each symbol.
4 Proof of concept with 15 ms delay for each frame.

Table 3.5: Transmission time comparison.

tion and watermarking verification. This property preventsReplay,Message Injection Attacks,
andMessage Modification Attacks. Furthermore, it can also identify Adversarial Jamming at-
tempts.
Authentication. We assume that the list of the KEY-IDs of each node is stored in a secure
memory area of the ECU and therefore cannot be modified. By adding this trusted and confi-
dential information to the message exchanged, we ensure the authentication of the transmitter
and store in the receiver the corresponding coupleKEY-ID andKey. TheKEY-ID could also be
used in future Message Authentication Code mechanisms built on top of this solution. This
property allows preventingMasquerade andMessage Injection Attacks.
Malicious InterferenceResistance. Thanks to the information in thewatermark, SENECAN
can partially mitigateAdversarial Jamming attacks. In the most favorable case, if the adversary
would destroy the framesNW ⋅80 dedicated to transmitting thewatermark, Bob can still recon-
struct the original message using the Algorithm 1. On the contrary, if Eve jams other frames,
SENECAN will still suffer from this type of attack. A manufacturer can increase the num-
ber of bitsNW for the watermarking process, increasing the attackable frame number for the
attacker in exchange for an overhead due to more information to transmit.

3.1.7 Discussion

As described in the previous section, SENECAN allows obtaining all the security properties.
Furthermore, there is no need to add nodes that act as a trusted third party differently from
many previous works. Also, our approach implements a one-way communication rather than
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bidirectional communication (i.e., challenge-responsemechanism)differently fromotherworks.
This is a valuable property, especially in a broadcast environment as CAN, where the sender’s
identity is not declared in the message. Our work proposes a schema to securely exchange or
refresh the long-term shared key. Due to the high computation requirements, we propose to
perform this operation in a non-critical dedicated session (e.g., after the car turns on, in an
OTA update, or during car maintenance). However, there can be other reasons to modify the
long-term keys. For example, a manufacturer may require refreshing all the nodes’ keys to in-
crease their length or change the cryptographic primitives. The manufacturer can also refresh
the keys in case of compromise. After the master secret is shared or refreshed, a car vendor
can implement other security schemes on top of SENECAN for the successive phases of the
communication. Therefore the specific key lifespan can depend on the security policies of the
particular application.

Comparison with other schemes. As discussed in Section 3.1.2, most of the works assume
that the long-term secrets are shared in the ECU during the production phase and do not con-
sider the refresh of such secret in a successive phase. The only possibility to modify such a
secret is physically replacing the ECU. To the best of our knowledge, few works proposed spe-
cific approaches to exchange and refresh long-term secrets in the CAN network. In Table 3.3,
we report the comparison between the other works in literature that propose CAN-specific
key distribution mechanism and SENECAN. The comparison reports the security features
discussed in Section 3.1.6. It is important to note that not all the works discussed the men-
tioned properties. Therefore the analysis is based on our interpretation of the different works.
We include in the comparison the type of communication (i.e., one-way transmission or not)
and if the approaches require an additional node acting as a supervisor or a trusted third party
for the distribution process. This last property is essential since it does notmodify the network
architecture and insert additional nodes. We also compare if the approach proposedwas imple-
mented and tested in a real environment or only discussed theoretically. In fact, in [324, 363],
the authors proposed a collision-based approach similar to ours. However, their schema does
not include integrity and authentication features but was not implemented and validated in a
real scenario. Therefore, the requirement relative to the additional transceiver was not consid-
ered and discussed. We must note that even if SENECAN implements all the security proper-
ties mentioned and overcome their constraints, all the other approaches require fewer frames
to transmit during the distribution, and consequently, they are much faster.

Limitations. We decide to transmit data through the serial to manage the bitstream with
Matlab in the testing phase for implementation simplicity. However, this introduces a bottle-
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neck in the exchange data between Matlab and Arduino, making each frame delivered every
15 ms equivalent to an estimated 7200 bps. This time is also due to the dominant bit-holding
limitation. This overhead is even more impacting if considering the total number of key dis-
tribution sessions. By considering the KEY-ID field of 8 bits, in the limit case, we support up
to NECU = 256 ECUs. Since every pair of ECUs must share a common key, there will be(NECU ⋅ (NECU − 1))/2 = 32640 key distribution sessions. Considering the setting used
in our experiments and reported in Table 3.5 if the bitstream is 256 bits, this would require
32640 ∗ 307.2 s ≃ 2785 h, which is clearly unfeasible. In particular, Table 3.5 reports the
transmission timewith our scenario and the estimated timewith the typical transmission speed
used in CAN environments. We believe that with a dedicated hardware implementation, i.e.,
the computation is entirely implemented in the ECU, without the necessity of the serial com-
munication and the possibility to hold the dominant bit for the desired time, the transmission
time canbe reduced as shown inTable 3.5. In particular, with dedicated hardware, we can avoid
the 115.2 kbps bottleneck due to the serial communication and the need to wait for 15 ms for
every frame due to theArduino driver. Furthermore, since the double-precision representation
used by Matlab overestimates the representation of the signal to reduce the transmission load,
every sample could be converted into a single-precision representation. This improvement al-
lows transmitting two samples in a single frame, thus reducing by half the overall number of
frames to transmit. With these simple optimization, we can cut the communication time as
reported in Table 3.5. Considering a commonCAN transmission speed of 500 kbps, the limit
case transmission time would be 32640 ∗ 2.21 s ≃ 20 h. However, we believe that this num-
ber is still largely overestimated since not all the ECUs need to communicate with each other.
Finally, our solution requires every ECU that implements SENECAN to embed an additional
transceiver. This is because an ECU requires an interface to perform the jamming and another
to read the bus simultaneously.

3.1.8 Takeway on IEVNetwork Security

In this study, we present and prove the effectiveness of SENECAN, an authenticated key dis-
tribution framework for devices communicating through the CAN bus network. The pre-
sented mechanism exploits the default protocol’s bit collision properties to selectively destroy
the frames by jamming over a wired connection. The experimental setup we use represents a
proof of concept for future work in this direction and can be employed by all the devices op-
erating in the CAN network to exchange a long-term secret among the different nodes. More-
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over, in exchange for a long distribution phase, which can be executed in a defined phase of the
system’s life-cycle (e.g., after the production or during the vehicle revision), our approach al-
lows obtainingmore robust security properties compared to similar works and with a minimal
network modification. Despite the reduced transmission speed in the SENECAN proof-of-
concept implemented, we validate the key distribution based on the WBPLSec algorithm. As
previously discussed, we strongly believe that the limitations introduced by Matlab and Ar-
duino can be overcome by introducing ad hoc hardware and optimization. However, we do
not exclude that the presence of dedicated hardware could guarantee Bob jam with a single
transceiver assigned to the reception of frames in a normal traffic scenario. SENECAN is there-
fore helpful for systemswith a limited number of devices communicatingwith and can be used
as a building block for future CAN-based security systems.
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3.2 EVEXchange: ARelayAttackonEVChargingSys-
tem

The fast growth of EVs in the market led to the diffusion of new architectures to support the
energy demeaning required by the vehicles’ battery charging. Despite the global pandemic,
the sales of EVs in the first quarter of 2021 were more than 2.5 times higher than in the same
months of the previous year [365]. Furthermore, the International Energy Agency estimates
that if governments agreed to encourage the so-called “GreenTransition”, EVs could reach 230
million by 2030. Vehicle vendors such as Honda plans to convert to electric its entire car pro-
duction by 2040 [366]. This transition process is also facilitated by the global economic trend,
pushing the adoptionof renewable energies. The growing concern about the climate crisis leads
to a worldwidemovement to create a green and sustainable future. In 2018, TheUnited States
Environmental Protection Agency estimated that the 28.2% of Greenhouse Gas Emissions in
the US is due to the transportation sector [367].

With such a forecast on the increase of EVs, the energy request from the electric grid will
grow as well. This electric demand increase requires smart management of the charging pro-
cess of each device to avoid overloads and local blackouts. The most common and upcoming
paradigm employed to manage the charging of the EVs is the Vehicle-to-Grid (V2G). V2G sys-
tems manage the energy distribution from a Smart Grid to the vehicles (i.e., the final user) by
providing a communication channel between the two parties [368]. It can be used for various
features, from the charging schedule during off-peak hours to more advanced services such as
automatic authentication and billing.

V2G is a novel paradigm and, for this reason, it still requires many investigations on security
features. When designing such a complex and highly interconnected scenario, security aspects
represent extensive and complex requirements, as highlighted by different works [369, 370].
For instance, by exploiting the unique MAC address of a vehicle and unshielded charging ca-
bles, it is possible to track a user across different stations [301]. Since V2G can provide a com-
plete internet connection, the EV is exposed to various threats like malware, affecting the ve-
hicle’s internal components. The charging column can be attacked as well, for instance by a
denial of service attack, blocking the delivery of the charge service to the users. Other exploits
whichhavebeenproven tobe effective in theV2Gscenario include theprofilationof thebattery
behavior [371] and the profilation of the vehicle charging process [304] based on the electric
traces generated from the charging process.
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In this study, we present EVExchange, the first relay attack specifically conceived for V2G
communication. EVExchange allows the attacker to exchange the charging flows, accounting
a victim for the energy consumed. We implemented EVExchange in both an emulated sce-
nario employingMiniV2G [372] and in a physical testbed composed of different Raspberry Pi,
proving its functioning and effectiveness. Finally, we propose an extension of the ISO 15118
protocol (i.e., the standard protocol in V2G communication) that utilizes distance bounding
to identify relay attack attempts. We tested the distance bounding protocol in both scenarios
under different conditions, proving its ability to identify the relay attack.

3.2.1 Background

This section overviews the basic concepts related to the electric vehicle charging system from a
communication perspective. In Section 3.2.1, we introduce the V2G paradigm, while in Sec-
tion 3.2.1 we analyze the most advanced standard in this field. Then, in Section 3.2.1 we recall
the concept of relay attacks.

Vehicle-To-Grid (V2G)

The V2G concept refers to how an Electric Vehicle can communicate with the power grid. It
is a feature reserved for Mode 3 and Mode 4 charges, while Mode 1 and Mode 2 have no com-
munication at all since they employ standard and non-dedicated socket outlets [373]. The
communication can range from simple signaling to high-level communication adopting most
of the ISO/OSI layers. On the energy side, we can identify two different versions. Unidirec-
tional V2G (also referred to as V1G) employs communication to manage the charging of the
EV smartly. V1G can offer services to the grid, such as load leveling by shifting the power
demand to off-peak hours, and the EV owners, by charging the EV when the energy price is
lower. This strategy can impact the grid’s performances avoiding overloads and local blackouts
without requiring huge investments in the infrastructure [368].

The bidirectional V2G represents an advanced paradigm. In addition to offering smartman-
agement of the charging process, it enables the EV to create a bidirectional power flowwith the
grid. The discharge of a vehicle can be useful for the grid and the EV’s owner in different con-
texts. The grid can benefit from ancillary services such as frequency regulation and balancing,
load leveling, and voltage regulation. On the other side, EV owners can get revenues from the
power sold to the grid [374].
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To support the V2G paradigm, different players proposed different communication pro-
tocols. The most widely adopted protocols for the front-end communication between the
vehicle and the Electric Vehicle Supply Equipment (EVSE) are ISO 15118, SAE J2847, and
CHAdeMO. In the back-end communication between EVSEs and control centers, ISO 61850
andOpenCharge Point Protocol (OCPP) are themost used [375]. Among them, c, developed
by theOpenChargeAlliance, is themostwidely used protocol and represents the de-facto stan-
dard [376, 377, 378].

In this study, we uniquely focus on front-end communication. Nowadays, CHAdeMOcan
be considered the defacto standard. It enables communication through a Control Area Net-
work and does not support any authentication method for the vehicle. However, it is available
only on expensive DC chargers, not very suited for private owners. SAE J2847 was instead de-
signed for homes. It supportsACandDCcharging throughPowerLineCommunication com-
munication, and it is suited to manage different technologies, such as smart air-conditioning
or smart refrigerators. However, with the expected increase of EVs in the next years, this inte-
gration canmake it difficult to develop algorithms to manage all the devices smartly. The most
advanced standard is ISO 15118 [379, 380]. It supports both AC andDC charging and shares
the same communication means of SAE J2847, partially employing the same infrastructure.
Since ISO 15118 can support many services, ranging from authentication to vehicle firmware
updates [381], it aims to be implemented globally and become the standard for the future of
electric mobility.

ISO 15118

Firstly released in 2013, ISO 15118 is a modern standard for regulating communications be-
tween the Electric Vehicle Communication Controller (EVCC) and the Supply Equipment
Communication Controller (SECC). EVCC and SECC are, respectively, the endpoints that
manage the transmission on the EV and EVSE [379, 380]. It defines a communication channel
via Power LineCommunication on theControl Pilot (CP) of the IEC62196 connectors [382].

At the beginning of the connection, the Signal Level AttenuationCharacterization protocol
is employed to pair EVCC and SECC through a series of pulses. Then, the EVCC broadcasts
a default number of UDP packets following the SECC Discovery Request (SDP) protocol to
retrieve the IPv6 local-link address of the connected SECC. After that, the High-Level Com-
munication Protocol starts using a TCP communication, generally ciphered using TLS.More
information on the packets exchanged can be found in [372].

137



Unlike the oldest standards (e.g., CHAdeMO), which employ the communication channel
only to exchange technical information about the battery and the recharge process, ISO 15118
leverages high-level communication to provide many services to the grid and the user. The au-
thentication process is based on TLS protocol. The TLS certificate employed for the authenti-
cation can be obtained or updated during the connection phase. Payments are managed by the
standard which supports External IdentificationMeans such as credit cards, Radio-Frequency
IDentification (RFID) cards, or QR codes. Furthermore, ISO 15118 provides a highly com-
fortable service called Plug-and-Charge (PnC). This mechanism allows the user to automat-
ically account for the energy requested without using a card or other payment means at the
recharge. In this way, the user only needs to insert the plug in his vehicle socket to start charg-
ing. The PnC authentication mechanism employs the TLS certificate installed in the vehicle
and used by the charging system to identify the car [383]. The owner can obtain its personal
certificate by registering with a charging service provider, as defined in the ISO 15118 stan-
dard [379]. However, as we will see in this study, PnC can expose the user to some security
threats.

Relay Attacks

A relay attack is a technique through which an attacker can intercept communication between
two entities and replay it in another place in space and time through a proxy [384]. It differs
from a MiTM attack since there is no hypothesis that the attacker can understand or modify
the information relayed (e.g., communication can be encrypted).

Relay attacks are powerful in many applications, generally in transmitting blocks of inde-
pendent information or encrypted data. For instance, proximity cards (e.g., credit cards) are
a profitable target for relay attacks. In this scenario, the card and receiver perform mutual au-
thentication, and all subsequent traffic is encrypted. Using cryptanalysis to recover the keys
might be unfeasible or may require tampering with the hardware with costly instrumentation.
An attacker can exploit a relay attack to transfer the entire data flow (including the authenti-
cation) from the card to a remote reader. A practical attack consists of relaying the data flow
from a victim’s credit card to a reader near the attacker to bill the victim for the payment.

3.2.2 RelatedWork on EV Security

Although electrical vehicle charging systems are a novel topic, various research papers have ex-
amined various aspects of their security. Mustafa et al. [370] proposed a security analysis of
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the charging system, highlighting different threats for charging at home, at work, or in public
places. A similar investigation was conducted by Antoun et al. [369] showing possible coun-
termeasures for ISO 15118 andOCPP.Other works addressed specifically the ISO 15118 stan-
dard [385, 386] proposing threats analysis and security mitigations. Different researchers also
proposed to apply IDS approaches to identify attacks or anomalies in the EV to EVSE commu-
nication [387, 388]. However, none of these works analyzed the threats deriving from relay
attacks in the charging process or tested the feasibility of the presented attacks in a real or emu-
lated environment.

Few researchers conducted in-depth studies on aspects of the security of the ISO 15118 stan-
dard. Martinovic and Baker showed that it is possible to eavesdrop on the communication be-
tween a vehicle and a charging columnby exploiting the electromagnetic emissions of thePower
Line Communication on an unshielded cable [301]. Hofer et al. [389] focused on privacy as-
pects by presenting POPCORN, a protocol that enhances privacy on the ISO 15118 standard.
Toparticipate inV2Gcommunication and especially to use PnC, EV shouldmaintain keys and
certificates stored inside the vehicle itself. To store these data safely, Fuchs et al. [390] designed
HIP, a backward-compatible protocol extension for ISO 15118, which enables the generation
and storing of keys in a Trusted Platform Module within the vehicle. Despite an increasing
interest in these security aspects of the standard, to the best of the author’s knowledge, there
are no available solutions to protect against EVExchange or similar relay attacks.

There are many scenarios in which relay attacks are used. Its application on Near Field
Communication (NFC), for instance, is analyzed in different works in literature [391, 392].
Recently, researchers have successfully proved the effectiveness of a relay attack on the SARS-
CoV-2 contact tracking application, proposing a hashing-based countermeasure to secure the
environment without losing privacy [393]. Also, the vehicular environment was interested in
this kind of attack: examples in the literature show possible relay attacks conducted on the pas-
sive keyless entry [394]. In [395], the authors propose a solution to enforce the relay resilience
of cryptographic protocols in such applications based on a crypto-chain framework. While
numerous studies focus on the communication between vehicles and keys, to the best of our
knowledge, this is the first study that highlights the threat of relay attacks on a V2G communi-
cation.
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3.2.3 System and AdversaryModels

Tobe successfully implemented,EVExchangemust be performed in a scenario that respects dif-
ferent assumptions from the system and attacker points of view. In this section, we outline the
systemmodel and detail the assumption an attacker must respect to implement EVExchange.
System Model. Figure 3.13a represents the scenario in which the EVExchange attack can
be performed. As reported in the figure, two EVs are connected to two EVSEs, which are in
turn, managed by the same back-end infrastructures. Since the victim will set the charging pa-
rameters used for the attacker’s vehicle charge, the attackermust carefully choose two charging
columns entirely supported by his vehicle. The attack can be extended ifmore than two EVSEs
are available. However, this work focuses on the basic scenario with two EVs and two EVSEs.
The front-end communication (i.e., between the vehicle and the charging column) employs the
most common ISO 15118 standard using the PnC authentication method. Alternatively, this
attack is also valid if other means for automatic billing based on a particular ID of the EV are
used, such as Autocharge [396], which employs theMAC address of the EV and is commonly
used in North Europe.

EV and EVSE are connected via wired cables, the most common setting for power and data
travel in different cables. Examples of widely employed socket outlets are Type 1 or Type 2 for
ACandCombo1orCombo2 forDC [397]. There are no substantial differences for this study
as soon as the communication is established and billing data are transmitted through the cable
in the CP pin. It can also extend EVExchange when wireless communication is employed in
the charging process between EV and EVSE.However, we do not consider wireless charging in
this work since it is rarely used in the real world.
Adversary Model. As a preliminary phase, the attacker must tamper with the charging sta-
tion to install two malicious devices (i.e., Dev1 and Dev2) as depicted in Figure 3.13b. The
two devices can be two simple microcomputers (e.g., Raspberry Pi) with two interfaces to de-
modulate the Power Line Communication in the CP pin andWiFi connection capabilities. A
highly skilled attacker could design an ad-hoc device tominimize the device’s size to remain un-
detected. Ideally, each device can be placed in the socket as an adapter, essentially invisible to
an average user. Other solutions could be to cut the charging cable to extract the CP cable, cut
it and connect it to the device’s two Power Line Communication interfaces. The best solution
depends on the charging column’s type.

Furthermore, the two devices must be connected to each other. While a wired connection is
the most reliable and fast solution, it can be visible and could create some suspicion in the user.
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Figure 3.13: Scenarios with two EVs charging from two EVSEs connected to the same Control Center (a) and with the mali‐
cious devices (b). We represent the Unidirectional V2G scenario for simplicity.

A wireless connection is the most suited and straightforward approach to avoid this issue. In
this work, we employed a standard WiFi connection (i.e., IEEE 802.11ac and IEEE 802.11g)
with an intermediate Access Point and in an ad-hoc configuration. If the distance between the
two devices is significant, high-rangewireless connections (e.g., 4G/LTE) can also be employed.

Once installed and activated, the two devices must block the communication channel be-
tween each EV and its legitimate EVSE. Then, they must function as a relay by forwarding
the communication coming from an EV to the other device (calledDev1 to Dev2 relay, or vice
versa), which will recreate the data flow on the EVSE side. It is worth noting that the two de-
vices do not need to read the content of the forwarding traffic. This is important because the
security standard imposes the usage of TLS to encrypt the communication channel in public
places, especially when using PnC [380]. However, as reported in [301], this security measure
is often not implemented in practice, exposing the users to many security issues [372]. How-
ever, even if the traffic is encrypted, the relay process is still feasible, and EVExchange can be
performed. In this work, we will assume that all the communications between EV and EVSE
are always encrypted using TLS. The adversary does not have any valid certificate in addition
to the one in the EV. Therefore, it is computationally infeasible for an attacker to decrypt and
modify packets on the fly. The attacker is only able to stop and forward the communication
flow.

The key concept to enable EVExchange attack is that, while the communication flows are
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forwarded as described above, the energy provided from the two EVSEs is instead directed to
the legitimate vehicle (Figure 3.13b). In this way, the attacker can control the energy supplied
by the victim’s EVSE and vice versa.

3.2.4 EVExchange Attack

After setting the two devices, the attacker can proceed with the EVExchange attack. We now
describe the attack stages through which an attacker can make the victim pay for the energy
consumed. We will use Figure 3.13b as a reference.
The attacker waits for a victim to arrive at the charging station. When the victim plugs the

vehicle into the EVSEA, the attacker will follow by plugging his or her EV into EVSEB.At this
point, both users must set the charging options they need (e.g., time of departure, and energy
requirements). Since the two malicious devices are activated, each request made by a user will
trigger an action in the EVSE of the other user.

At this point, to be stealthy, the attacker must replicate the victim’s request. However, since
the attacker has no clues on the victim’s behavior, he can suppose with discrete confidence that
the victim will require charging the vehicle since it is the most common operation at charging
stations. While it is reasonable to assume that the user will look at the EVSE’s display to verify
the start of the charging process, the victim probably will not notice a minor difference in the
charging parameters, provided that they are displayed in the EVSE. For example, the forecast
duration of the charging process is variable based on the state of charge, the charger type, and
the charging time. Therefore, it is improbable that an average user can precisely predict this
parameter and spot the attack through it. After requesting the service, since the charging pro-
cess can take longer, the victimwill usually get away from the vehicle to spend time doing other
things while the EV is charging. At this moment, the attacker, who controls the victim’s EVSE,
can require a stop of charging from the attacker’s vehicle. The attacker will now trigger a stop
in energy provision in the victim’s EVSE (i.e., EVSEA). At the same time, the EVSE connected
to the attacker’s vehicles (i.e., EVSE B) will continue to follow the victim’s request.

Then, when the attacker is satisfied with the charge of the vehicle, he or she can wait for
the victims to come back and request a stop of charge for the attacker’s EV. Alternatively, the
attacker could stop the charging process before the end in his or her charging column to unlock
the vehicle and go away, for instance, by using the Emergency Stop button.

Since PnC is employed by the two users in this scenario, the payment of the energy provided
to the attacker’s EVSE will be billed to the victim. In the same way, the energy supplied to the
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victim’s EV will be billed for by the attacker but, since the attacker has previously stopped the
charge of the victim (at the moment the victim has moved away), he will pay virtually nothing.
In contrast, the victim will be billed for a complete charge.

In the following, we summarize the steps of EVExchange . These steps are also illustrated in
Figure 3.14.

0. The attacker places the two devices as depicted in Figure 3.13b;

1. The victim connects the vehicle to EVSE A; the attacker connects the vehicle to EVSE
B;

2. The two vehicles start a communication with a charging request which is forwarded by
the malicious devices;

3. The victim, unaware of the attack, goes away from the vehicle;

4. The attacker,while rechargingby the victim’s charging schedule, stops the victim’s charge.

5. When the victim is back, he or she stops the charging process of the attacker.

Devices setup

EVSE BEVSE AVictim EV Attacker EV

Connect to
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Energy Provided

Victim gets away from the vehicle 

Stop
Charging
Request

Charging

Request

Energy Provided
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Stop Provision

Connect to
EVSE A

Charging
Request
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Victim Data Flow EnergyAttacker Data Flow
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Dev 1 to Dev 2 relay
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Figure 3.14: The different phases of the EVExchange attack. We represent the Unidirectional V2G scenario for simplicity.
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Variations of the Attack

EVExchange attacks can be tailored to achieve different goals. We report here two examples,
but many others could be possible.
Discharge Victim’s Battery. We assume a system supporting the bidirectional charge (i.e.,
the vehicle can sell energy to the grid during peak hours and provide ancillary services to the
grid [374]). In this case, since the attacker controls the victim’s communicationwith the EVSE,
he can decide to sell the energy to the grid the power in the battery. Furthermore, by doing so,
the revenue will be billed for in the attacker’s account.
Damage Victim’s Battery. One of the most delicate components of the vehicle is undoubt-
edly the battery. It is subjected to fast degradation through usage, which is responsible for
reducing the maximum capacity over time [398]. In [304] the authors demonstrate the pos-
sibility to profile a vehicle based on the battery charging profile. Some situations can speed
up the degradation process, such as extreme operation temperatures, overcharging, and com-
pletely draining the battery [399]. Since the attacker controls the victim’s charging parameters,
he or she can overcharge the battery by requiring energy even if the battery is full. If the bidi-
rectional charge is available, full discharge can be performed as well. Furthermore, an advanced
attacker couldmodify the EVCCor,more simply, modify packets with battery status on the fly
to send abnormal charging parameters to the victim’s charging column requiring an amount
of energy that may damage the battery.

Attack Validation

The EV charging infrastructure is complex to reproduce and manage since it involves different
technical aspects, from energy to communication, and includes expensive components. The
most common workaround to these limitations is the usage of simulators or emulators. We
started our study by testing the attack on implementation of the scenario in MiniV2G [372],
an open-source emulator able to simulate networks of EVs and EVSEs. MiniV2G is built on
top of Mininet-WiFi [400], a popular software to create realistic virtual networks, running
real kernel, switch, and application code. Furthermore, MiniV2G includes RiseV2G [401],
an open-source simulator to implement the ISO 15118 communication. Currently,MiniV2G
can only emulate the network communication betweenEVs andEVSEswithout simulating the
actual battery charging process. However, this limitation does not affect the implementation
of EVExchange since it is entirely implemented at a network level. For space limitation, we will
not discuss the MiniV2G implementation in this work, but we will focus on the development

144



se1 se2

USB

to


Eth

USB

to


Eth

Dev1    Dev2

ev1 ev2

eth0

eth0

eth0

eth0

eth0

eth0

eth1 eth1

vxlan0

vxlan1

vxlan0

vxlan1

(a) High‐level architecture of the testbed. (b) A picture of the testbed.

Figure 3.15: The testbed employed to test EVExchange attack and countermeasure.

of the physical testbed. However, theMiniV2G implementation and all the code related to this
work can be found on Github1.

Wepreliminary verified the feasibility ofEVExchangeonMiniV2Gand thenwe implemented
a more realistic scenario by using six Raspberry Pis to emulate vehicles, charging columns, and
malicious devices. We used the Ethernet interfaces to simulate the Power Line Communica-
tion communicationwhilewe employedGPIOpins to emulate the energy exchange. We install
LEDs to monitor the different stages (i.e., battery charging, energy delivered, authentication
completed). As in MiniV2G, we employ RiseV2G in the physical testbed to perform the ISO
15118 communication, with a Python wrapper to turn on the LEDs. Figure 3.15a represents
a high-level schema of the testbed, while Figure 3.15b illustrates a picture of the testbed devel-
oped.

Toconnect themaliciousdevices and allow thepackets forwarding,we employLinuxbridge [402]
command to create a channel between the two physical interfaces in each device. These settings
do not alter the normal communication flow between EV and EVSE.
When the scripts to activateEVExchange are executed, bridges are deactivated, and the attack

is set upby employingVirtual eXtensible LocalAreaNetwork (VXLAN) [403]. Generally, this
tool addresses the need for overlay networks within virtualized data centers accommodating
multiple tenants. In our case, we employ VXLANs to create two independent data flows over

1“EVExchange” on Github, github.com/donadelden/evexchange
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the wireless network, which can transport packets from one interface ofDev1 to the opposite
interface ofDev2. We employ this strategy to configureEVExchange by relaying data from each
EV to the opposite EVSE.

3.2.5 Countermeasure

To prevent EVExchange and other potentially related attacks, in this section, we present an
extension of the ISO 15118 protocol, which contains a countermeasure based on a distance
bounding algorithm. In particular, in Section 3.2.5 we design the distance bounding proto-
col, while in Section 3.2.5 we discuss the security and the limitation of the proposed algorithm.
Then, in Section 3.2.5, we describe an implementation of the protocol, providing some numer-
ical results.

Distance Bounding Protocol

To create a countermeasure against EVExchange, we can exploit the temporal delay created by
the relay process of the communication flows through a wireless channel. The strategy of mea-
suring the distance between two devices by considering the RoundTrip Time (RTT) is known
as distance bounding [404]. As demonstrated in its applications in different contexts in the liter-
ature, this approach is the most simple and effective solution to relay attacks. Distance bound-
ing is applied for instance in contactless smart cards [405], NFCdevices [406, 407], and Passive
Keyless Entry [408]. This protocol is well suited to work at the application layer in preventing
relay attacks since these threats inevitably introduce a measurable delay in communication.

In general, the distance bounding enables one device (the verifier) to securely establish an
upper bound on its distance to another device (the prover) [409]. In our case, the verifier is the
victim’s EV, which wants to check the authenticity of the charging column to which its con-
nected. We consider the EVSE (from now on called supply equipment SE to avoid confusion)
as the prover. Therefore, the algorithm’s goal is to assess the EV is connected to the correct SE
by verifying that the distance between them is no more than an expected value.

The phases of the proposed distance bounding protocol are similar to those proposed by
Thorpe et al. [407], where the authors designed a protocol at the application layer of the NFC
protocol. Our algorithm starts after the establishment of the IPv6 connection when the SE
starts the listeningmode. The core of the proposed solution resides in the fast packet exchange.
In this phase, one entitywill immediately respond to eachpacket sent by the other. It is possible

146



to compute the RTT precisely and estimate the distance between the two entities from each
exchange. In the following, we explain the different phases of the algorithm in detail.

1. EV generates a random string α = {α1, α2, . . . , αk}with a fixed length k. Meanwhile, SE
generates a random string β = {β1, β2, . . . , βk} of the same length k. These two steps
can be done beforehand.

2. The fast packet exchange starts for every i = 1, 2, . . . , k and theRTTi is measured:

• EV send a UDP packet to SE containing as data the symbol αi;

• SE receives αi and immediately responds with an UDP packet including βi.

3. After k exchanges, EV computes the mean μ and the standard deviation σ of theRTTs.

4. EV compares μ and σ with μmax and σmax, which represent the thresholds for μ and σ,
respectively. If μ > μmax or σ > σmax, an error is thrown, indicating an attack could be
going on.

5. If no alert is raised, the secure communication between the two entities using TLS can
start as depicted in ISO 15118. Before actually exchanging charging parameters and set-
ting, SE sends to EV the string SSE = {α1̃, β1, . . . αk̃, βk}. Where αĩ indicates the new
string that will be compared with αi previously stored.

6. EV computes SEV = {α1, β1˜ , . . . , αk, βk˜ } and compares SEV with SSE. An alert is raised if
the two strings differ since an attacker might have forged some packets. Where βi˜ indi-
cates the new string that will be compared with βi previously stored.

7. Finally, if no alerts have been raised, the actual charging process can start following the
ISO 15118 protocol.

Security Considerations

An attacker can employ a series of malicious devices placed in the middle between the EV and
the EVSE. For visualization simplicity, in Figure 3.5, we represent this set of devices as one
single entity called relay as a black-box. Considering the adversary devices as a black-box is a
reasonable simplification since the legitimate user is unaware of them. We remark that the relay
device can selectively or completely relay the traffic flow from two entities as for our hypothesis.
Furthermore, the relay can eavesdrop on all the not-encrypted communication between the
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two entities, but it is not equippedwith a valid and signed pair of keys to initialize TLS sessions.
Wedonot assumeany restrictionof the computational capabilities of the adversary. However, it
is reasonable to assume that the attacker cannot decipher ormodify communication encrypted
with TLS.

The proposed distance bounding protocol performs two verifications on the communica-
tion. The first one is represented by the effective distance measurement provided by theRTTs.
The attackermay try to tamperwith it by reducing the latency generated by the relay. However,
each strategy must be consistent and avoid failure in the second check during the verification
of the transmitted data.

To lower theRTTs, an attacker can reduce the relay’s complexity by employing, for instance,
a faster transmission mode. We exclude the possibility of applying a wired connection since it
will be easily spottable by an average user or the service provider. Furthermore, it is common
for normal and semi-fast charging stations to be equipped with a detachable cable that must
be carried by the driver [373], making it even more identifiable a wired relay. An alternative
is to employ faster wireless communication modes with respect to the IEEE 802.11 standards,
such as 5G, to reduce the protocol overhead and any protocol mode translation. However,
this would, on the other hand, increase the system’s cost and complexity. For short distances,
Bluetooth can be considered, but it will lead to equal or lower performances asWiFi [410]. It is
worth noticing that the Power Line Communication employs HomePlug Green PHY, which
has almost no delay at the MAC layer when applied between two entities only [411], making
it even harder to create a fast enough channel to avoid detection. Furthermore, it is important
to recall that the implementation must be small enough not to draw the victim’s attention.

The previous strategies represent attack optimizations to faster the packet exchange. An-
other strategy to reduce the RTT could be to tamper with the initial packet flows. Since the
initial rapid packet exchange is performed without encryption, the attacker could potentially
alter the transmission of the packets. For instance, an attacker can decide to send random βi im-
mediately after seeing an αi to reduce theRTT. This processmight bypass the first alert control
assuring a lower μ and σ, but it will be detected during the second control when comparing SEV
and SSE. By defining αi and βi values from an alphabet of N symbols, the probability for the
attacker to correctly guess the entire string β is 1

Nk . Assuming to employ only the 128 ASCII
chars and a sequence of k = 10 exchanges, we obtain a probability of success for the attacker
of 1

12810 ≈ 10−22 which is negligible. We can further reduce this probability by implementing
additional exchanges k and a larger alphabetN.

Note that the proposed protocol does not try to prevent relay from knowing both α and β.
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Instead, it imposes bounds on themaximum time by which the informationmust be received.
In otherwords, when relay reads the packet containing βi, it introduces a delay thatmakes it too
late for the forwarding of the packet to EV and the achievement of a low RTT. Furthermore,
the transmission of SSE secured by the TLS ensures that relay cannot be able to modify it. The
only way it is possible to change SSE by an attacker in possession of valid TLS certificates is
to pretend to be EV and SE when sending messages to SE and EV, respectively. However, we
can reasonably assume that the Public Key Infrastructure is solid, and the attacker cannot craft
private keys and certificates. Nevertheless, it is essential that both legitimate entities check the
validity of their counterpart’s certificates before starting the charging process.

Evaluation

To implement the distance bounding algorithms, we wrote two Python scripts to be executed
in the EV and the Supply Equipment (SE), respectively. The protocol starts with a pair of hello
messages that enables the EV to get the IPv6 of the SE. Then, the EV starts the algorithm by
sending a UDP packet to the SE that acts as a server and immediately responds. This process
is iterated 100 times to account for channel variability. To evaluate, we compute the mean and
the standard deviation of every set of measures. We perform 1000 executions of the described
protocol for each scenario to validate the countermeasure.

To verify the feasibility and effectiveness of our countermeasure, we preliminary test it on
the MiniV2G emulator under different propagation models and on the physical testbed with
different distances between the devices. We report in the following the results related to the
physical testbed, and space limitations.Wecreate different configurations on the testbed inorder
to represent different possible scenarios:

1. A completely legitimate solution, without malicious devices in place (Wired);

2. A legitimate scenario, with malicious devices, inserted but turned off (Wired OFF);

3. An attack scenario, where the twomalicious devices are connected through a cabled Eth-
ernet connection (Wired ON);

4. An attack scenario, where the two malicious devices are connected through a WiFi con-
nection with a router in the middle, placed at 5cm (WiFi 5cm) or 2m (WiFi 2m) from
the victim.
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5. An attack scenario, where the twomalicious devices are connected through ad-hocWiFi
connection (i.e., without any router in the middle). In this case, we avoid the extra hop
between the two malicious devices given by the router (WiFi ad-hoc).

We represent the mean RTT in Figure 3.16a and the standard deviation of the RTT in Fig-
ure 3.16b. The error bar represents the 99% percentile. There is a clear separation between the
wired data with respect to all the attack cases. Thismakes it simple to search for good threshold
values for μmax and σmax, which are represented as a horizontal dashed line. Based on the data
we have obtained during our tests, we can safely set μmax = 2 × 10−3 and σmax = 0.5 × 10−3,
without almost any risk of having false positives or false negatives.

 Normal
 Attack
 

max

(a)MeanRTT (μ)

 Normal
 Attack
 

max

(b) Standard deviation ofRTT (σ)

Figure 3.16: 99% confidence interval for the mean (a) and standard deviation (b) in each scenario.

Note that the time needed for the distance bounding algorithms is generally less than 0.06s
using 100 fast exchanges, with tops of about 0.3s when under attack, which is in practice a
rare condition. Furthermore, sufficient security could be ensured even with a few exchanges,
reducing the time requirements. Since a charge could last from half an hour to several hours,
we can say that extra time added from this countermeasure is negligible and invisible to the end-
user. Wemust underline that the experiments were performed in a controlled environment. A
thorough evaluation of distance bounding should include a broader spectrum of devices and a
wider range of environmental conditions. However, this is beyond the scope of this work.

150



3.2.6 Takeaway on Relay Attacks on EV Charging Systems

To support the ongoing diffusion of EVs, the charging process’s cybersecurity must be consid-
ered to improve users’ trust in the system. We demonstrated for the first time thatEVExchange,
a relay attack, is a potent threat against the electric vehicle charging environment against the
ISO 15118 protocol. On one side, EVExchange can harm the victim, avoiding the charge of its
vehicle. On the other side, EVExchange can damage the EV by exploiting wrong charging pa-
rameters and useless charging cycles. Furthermore, EVExchange allows the attacker to obtain
a profit such as free energy and money from the victim.

To defend against relay attacks, we developed an effective countermeasure able to identify
the relay attack in the early stages before sensitive data are shared. The security mechanism
adapts distance bounding algorithms to work in the application layer of the ISO 15118 proto-
col. The countermeasure can always detect the attack in less than 0.3swithout affecting normal
communication if no attack occurs.

Since ISO 15118 is a novel protocol, we believe that our work can help the secure develop-
ment of future versions (such as ISO/DIS 15118-20, under development at the moment of
writing [412]), integrating countermeasures against relay attacks. In future works, the devel-
opment of novel technology like Wireless Power Transfer could enable a possible extension of
EVExchange to wireless communication between EV and EVSE.
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3.3 Electric Vehicles Charging Profiling

EVSEs enable the charging process by bringing together multiple technologies. On the one
hand, they allow the user to exchange data with the grid, providing means for authorizations
to a central entity to negotiate the service and pay the associated fees. On the other hand, they
allow for an exchange of information from the EV to the infrastructure, such that the charging
process is conducted by providing safety towards EV’s components. The former communica-
tion process (i.e., user to infrastructure) is secured using cryptographic procedures and secure
network protocols. Their use mitigates all the well-known threats to the users’ security and pri-
vacy fromunprotected communications. However, the latter communication process (i.e., EV
to EVSE) is not secure, as signals are exchanged without encryption or aggregation techniques.
The signals exchanged during the charging process can hence be exploited as a side-channel
to extract information peculiar to each EV, allowing hence for their profiling and successive
recognition [413]. This represents a threat to users’ privacy, as the connection of their EV to
an EVSE monitored by a malicious user may lead to tracking their movement as well as infor-
mation regarding their driving behavior. Since the majority of publicly available EVSEs are
deployed without proper physical protection, they can be accessed by anyone and represent
hence favorable spots for attackers targeting the charging infrastructure [414]. Therefore, an
attacker can easily install devices to collect data regarding the charging process.

In this study, we propose EVScout2.0, an extension of EVScout [413], where we initially
showed the feasibility of profiling EVs based on the current exchanged during the charging
process. In particular, we extend the proposed framework by developing an enhanced feature
extractor, which allows for higher classification scores than our previous work. We then exploit
a novelTimeSeries (TS) for feature extractionby combining the current andpilotsTSs. Wewill
explain the reasoning behind this choice and provide the details of its computation. Further-
more, we consider a larger real-world dataset, comprising up to 300TSs of the current andpilot
signals exchanged by each of the 137 considered EVs, for a total of more than 7500 charging
session. We perform a thorough evaluation of EVScout2.0, showing its profiling performance
considering different training set sizes, as well as different unbalancing in the training-testing
datasets. Compared to the previous work [413], we provide a more comprehensive analysis of
the performance of the attack. In particular, we first show the performance of the novel feature
extractor and investigate the performance of EVScout2.0 for a varying number of features. We
then compare the performance of the different classifiers that can be exploited by EVScout2.0.
We also extend the number of classifiers and provide an in-depth description of the choice of
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their hyper-parameters. We then investigate the dependencies of EVScout2.0 on the number
of training TSs needed for classifying EVs with sufficient confidence. We show that the attack
is already successful considering 7 training examples. We then investigate the battery degrada-
tion over time and its impact on EVScout 2.0 performances. Lastly, we show the superiority of
EVScout 2.0, comparing its performance with those in [413], both on the old and new datasets.

3.3.1 RelatedWork Power Side-Channel

Power consumption can be exploited as a side-channel for different purposes [415]. For in-
stance, an attacker may implement a laptop user recognition by exploiting the current drawn
by a smart wall socket during users’ activity given [416]. The same concept can be exploited for
detecting the user’s presence in a smart home, where raw data can be acquired and analyzed to
detect activity and hence users’ presence [417]. Raw power data also provides information re-
garding the actions a user is performing. For instance, by analyzing raw power data exchanged
via a USB cable, an attacker may be able to obtain information regarding the victim’s browsing
activities [418]. The power exchanged during the charging process via USB can also leak more
sensitive information, which an attacker can later exploit. For instance, the power analysis may
leak information regarding digits composed on a touchscreen, allowing for the deduction of
users’ passwords [419]. However, no previous works investigate the feasibility of leveraging
PSC to profile an EV during the charging process.

3.3.2 EV System and ThreatModel

In this section, we introduce the scenario inwhichwe conceived our experiments. In particular,
in Section 3.3.2 we recall the EV charging system, which represents our systemmodel, then in
Section 3.3.2 we present the threat model designed for EVScout2.0.

EV Charging System

According to the V2G paradigm [420], the charging infrastructure for EVs is a network where
a central controller (power distributor) distributes power based on EVSEs demand while ac-
counting for the maximum supported load by the electric grid. We depicted in Figure 3.17 the
typical architecture of a V2G system. EVSEs in the network may be deployed at different sites,
e.g., private customer premises, public stations, or office buildings. Each EV is both physically
and logically connected to the grid via the EVSE, whichmanages communications between the
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Figure 3.17: System and threat model. Multiple EVSEs are connected to the central control, which provides coordination and
power distribution among them. A single EV is connected to each EVSE. The attacker has access to the physical quantities
exchanged by multiple EVs during the charging phase.

user (i.e., the owner of the EV) and the power distributor. For public charging infrastructures
and office stations, multiple EVSEs are connected to the power distributor through a Central
Control that copes with the demand of a large number of connected users [414]. EVSEs are
typically equippedwith communication interfaces (wireless orwired) to allow communication
with the user and the grid. Utilizing modules in the EV or smartphone, the user can commu-
nicate with the EVSE and, in turn, with the power supplier.

Current implementations of EVSEs are organized in three levels [421, 422]. Level 1 and 2
use a 5 lead connector based on SAE J1772 standard [423], where 3 leads are connected to the
grid via relays in the EVSE. The remaining 2 pins, i.e., pilot and proximity lines, are used for sig-
naling. The proximity line indicates whether a good physical connection has been established
between the EV and the EVSE, blocking the initiation of the charging process in case devices
are not properly attached and preventing hence damage to both the user and the involved de-
vices. The pilot line provides a basic communication means between the EV and the EVSE.
The combination of signals collected from all the pins is used to provide the main processing
unit of the EVSE information regarding the charging process, allowing for metering used to
assess the charging session state. If a problem arises at one of the two sides of the charging pro-
cess, the EVSE computer hardware will remove power from the adapter to prevent injuries on
both sides. Level 3 EVSEs are insteadmore complex, comprising bigger pins for power delivery
and allowing power line communications via the pilot line.

Typical batteries employed for EVs belong to the class of Li-ion (Lithium-ion) [424, 425].
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Figure 3.18: Charging profile of a Li‐ion battery [427]: we see that, as the SoC increases, the charging mode switches from
constant current to constant voltage. We further notice that the two phases are mutually exclusive.

Current andvoltage values are exchangedduring the chargingprocess dependingon the State of
Charge (SoC) of the EV battery and can be divided into two classes: constant current/constant
voltage and constant power/constant voltage [426]. In this work, we consider the first class,
where the charging process can be further divided into two phases:

• Constant current phase, where the current level is constant while the voltage value in-
creases;

• Constant voltage phase, where voltage is constant whereas current decreases.

The charging process starts with the constant current phase, and this operationmode is kept
until the battery’s SoC is above a certain value. After reaching the SoC switching point, the op-
eration mode switches to constant voltage up to the full charge. Typical SoC switching values
lie between 60% and 80% of the full charge. An example of a charging profile for an EV’s Li-
ion battery is shown in Figure 3.18. We here remark that constant current and constant voltage
phases are mutually exclusive in time, as this will be exploited by EVScout2.0.

ThreatModel

We consider two possible threat actors: an external attacker and the charging service provider.
The first scenario considers a general malicious user who wants to target a specific vehicle. In
this case, the attacker can compromise a specific EVSE that the user generally uses (e.g., inwork-
places, public parking lots in industrial areas), reducing the number of EVSEs to compromise
to succeed in the attack. The attacker may be equipped with a small measuring device that can
be connected on one side to the EVSE plug and on the other side to the EV plug. This device
measures the exchanged current at the connection point between the EV and EVSE, and we
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assume that it is hard to notice by users. We assume that the device provides information to
the attacker via either i) a wireless communication module or ii) storing the values of interest
to be lately collected by the attacker. The device used to collect the power traces can be built in
different ways. For instance, it can be composed of an Arduino board2 and a standard power
consumption monitoring module to sample both current absorbed and pilot. Furthermore,
the device can be battery-powered so as not to impact the normal charging behavior. Even
if the integration of an external device may impact the absorbed current, we can reasonably
assume that this does not affect the profiling performance significantly, as demonstrated in
similar works [413, 419, 418, 416].
The second case involves the charging column provider as a threat actor (i.e., the parking

spot owner with the charging columns). In this case, the attacker has a higher possibility ofma-
nipulating the charging columns; therefore, the attack scales better on more vehicles. Indeed,
the V2G infrastructure is exceptionally complex nowadays, and many actors participate in the
energy distribution process (e.g., the energy provider, the energy plan contractor, the charging
column provider, and the parking lot owner) without access to the same data. For instance,
the provider of the charging column does not have access to the user information (data are en-
crypted), but she can instead easily access the power traces. Therefore, she can easily track and
profile users based on their power requirements without being detected.

By employing one of the strategies mentioned above, the attacker has access to the TS of the
signals exchanged between the EVSE and the EV during the charging phase. These values are
hence recorded for each pin of the EV charger. In this study, we assume that the attacker trains
a different classifier for each target EV. To accomplish this, a sufficient number of TSs of the
target EV shall be collected. The attack is hence divided into i) the collection phase, where the
attacker collects data regarding a target EV, and ii) the exploitation phase, where the attacker
exploits the previously computed features to discriminate between different EVs based on the
observed time series. To collect multiple traces of a single vehicle, the attacker may exploit one
or more EVSEs in a public place with regular customers (e.g., workplaces, public parking lots
in industrial areas). In this way, the probability of a vehicle going there many times, and thus
the attacker having access to more charging traces, is higher. To build a set with sufficient fea-
tures, we assume that the attacker collects the TS of the exchanged current values and the TS
of the pilot signals. Notice that, to retrieve this data, the attacker does not need to perform
elaborate V2G network intrusion schemes, as signals are exchanged outside the network. Fur-
thermore, notice that the attacker is not modifying in any way the charging process. Hence,

2https://www.arduino.cc/
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the system cannot automatically detect the attacker’s presence via intrusion/anomaly detection
techniques.

Our threat model is based on the fact that the majority of publicly available EVSEs are de-
ployedwithout proper physical security and hence can be accessed by anymalicious actor [414].
In this case, since there is no access regulation to the EVSEs, the attacker can freely attach the
measuring devices. The attack is further facilitated by the fact that typical users will not mod-
ify the charging system, even though they may notice something unfamiliar. Therefore, the
attackermay not only be represented by the company running the EVSEs network but can also
be anyone interested in obtaining information on users’ consumes and locations. On the other
hand, we notice that the EVSE devices can be routinely checked by the staff of the running
company.

Figure 3.17 shows the assumed system and threat model. In detail, multiple EVSEs commu-
nicate with the Central Control, providing coordination information and power distribution.
A single EV is connected to each EVSE.As previouslymentioned, the attacker gets access to the
time series of the physical quantities exchanged bymultiple EVs during the charging phase and
exploits them for profiling. Note that if the attacker can remotely access the current exchanged
in different network nodes, it can also locate users, leading to user tracking. The knowledge
of the physical signal features associated with each EV (and hence the owning user) can also be
exploited for impersonation attacks. Considering EVSEs, which are automated based on the
specific user needs, an attacker could steal assets from a target user by generating a signal with
the same physical features such that the EVSE recognizes the attacker as the victim. Scenarios
thatmay harm the target user include billing andmisbehaving users’ exclusion from the system.
Therefore, the motivation behind the attack can be multiple. As an illustrative example, con-
sider advertising: the attacker has both information on a certain user’s typical movements, and
the amount of energy s/he consumes regularly. This information can be sold to EVSE owners,
which will target their advertisement to the profiled user according to its demand. Notice that,
although a single classifier is trained for each EV, the attacker collects information regarding
multiple EVs, such thatmore than a single classifier can be implementedwith the gathered data.
Therefore, the attacker can also sell information about the collective use of the EVSE charging
stations by EVs to EVSE companies. Although profiling can be implemented using cameras,
this would not allow the collection of energy traces, therefore losing some of the information
available with the proposed attack. Such information can be obtained utilizing EVScout2.0
which may be used as an alternative or a complementary solution to cameras. The possibility
of tracking a user gives a further threat. In fact, thanks to EVScout2.0, an attacker can detect
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the presence of a target user in a certain place and time based on the fact that his/her EV is con-
nected to a particular EVSE.We stress that the complexity of the overall charging infrastructure
currently imposes several challenges that will be addressed in future implementations. There-
fore, it is not possible to predict which actors will in the future be able to access power traces
and use them for malicious purposes. Therefore, we aim to warn users and developers about
the threat imposed by the cleartext exchange of power traces.

3.3.3 EVScout2.0

In this section we describe the EVScout2.0 analysis methodology. First, we propose a high-level
description of the attack configuration. Then we describe the preprocessing we apply to the
dataset. In particular, we present the concept of tails and outline the method we designed to
extract themautomatically and thewepresentDeltaTS, providing both themotivationbehind
our choice and the means to compute it. Lastly, we describe the novel and automatic feature
extraction technique we employ in EVScout2.0.

Attack Description

As previously stated, in the context of EVs charging infrastructures, users’ data are authenti-
cated and secured. However, physical signals are generally not supposed to implement security
measures and, therefore, can be easily exploited bymalicious users. Since the exchanged current
during the charging phase is a user’s generated data, it comprises features and recurrent behav-
iors useful for profiling attacks. EVScout2.0 identifies and extracts those physical featureswhich
are representative of every single EV, such that we can assert with sufficient confidence if and
when a specific user is connected to the charging grid.

Figure 3.19 shows the block diagram of EVScout2.0’s steps. EVScout2.0 starts with data col-
lection. To profile EVs the attacker must collect multiple charging sessions for each target EV.
We will discuss this requirement in Section 3.3.6, assessing the number of training examples
the attacker needs to collect to profile an EV with sufficient confidence. Once collected the
charging TSs (i.e., the dataset), EVScout2.0 automatically computes the features that charac-
terize each EV. To this aim, in the following, we propose a strategy to exploit the behavior of
batteries during the charging process. In particular, as proposed in EVScout [413], assuming
that the attacker has access only to the ampere-based electrical quantities, we exploit the cur-
rent behavior during the constant voltage phase. Leveraging the nomenclature in [371], we
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Figure 3.19: Block diagram of EVScout2.0’s steps.

name the current TS during the constant voltage phase as tail. In Section 3.3.3 we describe
how EVScout2.0 extracts the tails.
Notice that the choice of exploiting tails is due to the assumption that the attacker has only

access to the ampere-based TS. If the attacker has access to voltage values, the correspond-
ing features can not be extracted from the tail, as the tail corresponds to the constant voltage
phase. Therefore features extracted from voltage values during constant voltage may be under-
representative of the battery’s behavior. If the attacker has access to both current and voltage
TS, current features can be extracted from tails, whereas voltage features can be extracted dur-
ing the constant current phase.
By noticing that each battery follows the current limits imposed by the pilot differently, we

generate a further TS to be used to extract more features. Together with the tail, in EVScout2.0
we exploit the Delta TS, i.e., the TS given by the punctual difference between the current TS
and the pilot TS during the constant current phase. Delta TS hence includes all the data from
the beginning of the TS up to the beginning of the tail. More precisely, since the first few
seconds of the charging are generally noisy, we start our delta computation after the first few
samples. We believe that this derived TS uniquely characterizes the behavior of each specific
EV as we will explain in Section 3.3.3.

Tail Identification

Charging sessions are not necessarily comprehensive of the constant voltage phase, as a usermay
need to leave before the full charge is reached. In [371], the authors presented a framework to
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cluster similar charging behavior based on the charging tail. We exploit this portion of the TS
to performmore detailed profiling. Since EVScout2.0 exploits tails during the constant voltage
phase, we adopt the algorithmwe proposed in [413] to identify whether the considered session
includes a constant voltage phase. The presence of a tail implies that the session terminates
with full SoC, and eventually zero-current exchanged between EV and EVSE. Tails, however,
can not be uniquely identified by the presence of zeros in the current TS, as this may be due
to idle phases during the power scheduling process at the grid side. Furthermore, scheduling
may cause shot noise in the TS also after full SoC, leading to spikes in the TS. Therefore, we
designed a suitable tail reconnaissance algorithm.

To mitigate the effects of scheduling and highlight the trends in the considered TS, we pro-
pose applying a suitable filter. In particular, we filter both the current TS and the pilot TSwith
a lengthNavg moving average filter. Given time instant t and denoting the electric current value
at time t as c(t), the output value y(t) of the moving average filter at time t is given by

y(t) = 1
Navg

Navg−1

∑
m=0

c(t −m). (3.6)

The effects of the moving average filter are shown in Figure 3.20. We see that, with respect
to the non-filtered current TS in Figure 3.20a, the current TS in Figure 3.20b has a smoother
behavior as the filter removes most of the noise and scheduling artifacts. Notice that different
filter implementations canbe considered, e.g., lowpass filter. However, a lowpass filter requires
a more accurate design and leads to ringing effects, which may be misleading for trend, and
hence tail identification.

If the filter has a sufficient length, its effects include spikes removal. This eases the identi-
fication of tails in the TS, as we can rely on the presence of steady zero values when the full
charge is reached. In detail, if the current TS assumes zero values from tstart up to its end, then
we can assume that full SoC has been reached. Tails are characterized by a descending trend in
the TS, as shown from the current behavior during the constant voltage phase in Figure 3.18
and verified in Figure 3.20. By forward analysis of the current TS, it is difficult to identify the
time instant corresponding to the beginning of the tail, as this would imply the overall TS anal-
ysis. Therefore, we propose to proceed backward from the point where full SoC is obtained.
Proceeding from tstart backward, we identify the tail by accounting for the number of samples
in the current TS reporting an ascending trend. Notice that, even though scheduling and noise
could affect the trend of the TS, its effects are mitigated by the moving average filter (see Fig-
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Figure 3.20: Normal current trace and filtered current trace with respect to the pilot during a sample charge. The delta is
also plotted multiplied by a factor of 10 to increase understandability.

ure 3.20b). A perfectly backward-ascending trend is given by a negative difference between the
values at time t and t − 1, i.e., y(t) − y(t − 1) < 0. However, we notice that tails do not al-
ways exhibit a perfectly backward-ascending trend. In fact, if the non-filtered TS is affected by
heavy noise, its effects are still visible after filtering. Therefore, we relax the concept of perfect
backward-ascending trend including samples for which y(t) − y(t − 1) ≤ ε, with ε being a
small positive value. Furthermore, we also allow for short descending trends by accounting for
Tmax consecutive segments for which y(t)− y(t− 1) > ε. If this is the case forTmax consecutive
samples, the trend is considered fully descending and hence discarded.

Based on the considerations mentioned above, the steps of the tail extraction algorithm are
shown in Algorithm 2. We denote as I the set of EV indexes. Notice that each current TS is
associated with a unique pilot TS.We denote as C(i) andP(i) the sets of the current and pilot
TS associated with ID i ∈ I , respectively. We assume that the two sets are ordered such that
the current and pilot TS associated with a certain charging session are associated with the same
index in the two sets. We define the setW(i) = {C(i),P(i)}, whose elements (c, p) are the
couples of current and pilot time series respectively taken from sets C(i) and P(i). For each
TS c ∈ C(i), we calculate the filtered current and pilot TS respectively denoted as c̃ and p̃ by
applying the filtering function (3.6). We then search for the time instant tstart, from which c̃
is composed only by zero values. If tstart is found, then the current time series might contain a
tail, and we proceed to identify the number of tail samples. Given our definition of backward
ascending trend, we compute the number of samples for which the filtered time series is such
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Algorithm 2:Tail extraction algorithm.
Data: W , I, Cmax, Tmax,Navg
Result: Tc,Tp
for i ∈ I do

for (c, p) ∈ W(i) do
compute c̃ and p̃ via (3.6);
compute tstart;
if tstart found then

n = 0, s = 0 ;
for t = tstart, tstart − 1, . . . , 1 do

if c̃(t) − c̃(t − 1) > ε then
n = n + 1;

▷ increase counter of backward-ascending samples
else

n = 0;
s = s + 1;

▷ reinitialize counter after descending trend
end
if n = Tmax then

exit loop;
▷maximum length reached

end
end
Tc(i) = Tc(i) ∪ c̃(tstart, s);
Tp(i) = Tp(i) ∪ p̃(tstart, s);

▷ add the detected time series to the sets
else
end
go to next c;

▷move to the next time series
end

end

that c̃(t) − c̃(t − 1) ≤ ε. As short descending trends are also allowed, we account for the
number n of consecutive descending samples. However, if this trend is persistent, we should
discard these samples. Therefore, we set a threshold value Tmax for the number of descending
samples, afterwhichwe stop the counter. Instead, the counter is reset if an ascending segment is
found after a descending samples series. Given the number S of tail’s samples, the tail c̃(tstart, s)
is obtained from the filtered current TS, starting from tstart − s up to tstart. The tail p̃(tstart, s)
associated to the pilotTS is analogously obtained, starting from tstart−sup to tstart. Both current
and pilot TS are eventually added respectively to the set Tc(i) and Tp(i) of current and pilot
TS tails associated with EV ID i.

Delta TS computation

Aside from current tails, we compute another TS to extract features for the classifiers. Since dif-
ferent batteries’ charging sessions have different charging parameters, the maximum current
which can be absorbed is variable and characterize the specific vehicle [413]. Furthermore,
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pushed by advanced charging algorithms [428], during some periods, the EV can be forced
into charging at a lower current, e.g., to deal with peak leveling during peak hours. However,
as visible in Figure 3.20, generally, the battery does not charge at the exact amount of energy
expected from the pilot signal. Furthermore, the absorbed current often exhibits small varia-
tions around the maximum current deliverable by the charging column. It is particularly true
when considering the behavior of the two TSs is the time preceding the tail. To capture these
changes, we compute Delta TS, i.e., the TS given by the combination of the current TS and
the control pilot TS during the constant current phase (i.e., the period preceding the tail).

To compute Delta TS, we calculate the difference between the current and pilot TSs at each
time instant during the constant current phase. While the pilot TS generally is not affected
by noise, the current TS instead exhibits some tiny positive and negative spikes, as shown in
Figure 3.20a. While the tails generally follow a decreasing trend, the values assumed by the TSs
before the tail (i.e., the ones used to compute the Delta TS) are generally more constant. Since
the moving median filter provides better performance in removing noise and spikes when the
data in the neighborhood of the peak are quite constant [429], we use it instead of the moving
average filter used in Section 3.3.3.

Given time instant t, we denote the electric current value at t as c(t) and the correspondent
pilot value as p(t). The resulting point at time t in the Delta TS can be expressed as:

z(t) = p(t) −median (c [t − ⌊Navg

2 ⌋ , t + ⌈Navg

2 ⌉]) . (3.7)

where c[a, b] represents the array of values of the TS c from t = a to t = b, Navg is the filter
length, andmedian(x) is themedian value of array x (i.e., themiddle value separating the grater
and lower halves of x).

Improved Feature Extraction

Segmentation represents a classical approach for feature extraction in TSs [430, 431, 416]. Un-
fortunately, segmentation is not a viable solution since the TSs we consider here are generally
short with no stationary components. Therefore, we do not further process tails before extract-
ing features. In our previous work [413], we computed the mean, mode, median, max value,
standard deviation, auto-correlation, length of the tail, and the slope of the linear approxima-
tion for each tail. Furthermore, we used as a feature the total kW delivered and the overall
session time duration, leading to a total of 18 features considering both pilot and current TSs
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independently. Instead, in this work, we adopted a more sophisticated feature extraction pro-
cess that can extract several more features.

We analyzewidely used feature extraction tools that can automatically extract features froma
givenTS [432, 433, 430]. We use Time Series Feature Extraction based on ScalableHypothesis
tests (tsfresh) [434], which is available as a Python package easily integrable with other tools
such as scikit-learn [435]. tsfresh exploits the power of 63 TSs characterization methods to
extract hundreds of features from a TS. Moreover, it contains functions to slightly reduce the
number of features to remove the less meaningful ones. We use tsfresh to extract features
from the current tails and the delta current-pilot TSs. It is worth mentioning that, with re-
spect to the previous work [413], we decided not to employ features extracted from the tails of
the control pilot TS since the pilot tail is generally based on the optimization algorithm [428]
and not on the behavior of the battery. For example, even if the battery has reached its maxi-
mum SoC, the control pilot could remain at a high value if the grid has energy available. In the
same way, if many vehicles start requesting energy, the control pilot will reduce its value inde-
pendently of the SoC of our target EV. Furthermore, we removed the needs for the duration
of the charge and the total energy absorbed by the battery (kW) since they can depend on the
user behavior and the SoC of the battery at the beginning of the charging process.

Since tsfresh can generate around 800 features for each TS both from the time and fre-
quency domains. We removed those that are not relevant to our classification problem. To
reduce the number of features, from now on denoted as NoF, we select the most significant
ones by using SelectKBest of scikit-learn [435] with the chi2 function, which is suitable
for classification purposes. Since the chi-squared measures the dependence between stochastic
variables, we can highlight and select only the features that offermore information for the classi-
fication. We employ this strategywith respect to othermore complexmethods such asRandom
Forest feature reduction, since SelectKBest can achieve approximately the same results with
lower computational complexity. As expected, due to the high variance in the charging tail, the
most meaningful features are related to the tail TS. For example, high feature importance score
is assigned to the values that aremore than r times sigma distant from themean of x, with differ-
ent r ∈ [3, 5, 6, 7], indicating the number of outliers that the moving average filtering has not
eliminated. Other significant important features include the number of peaks, the standard de-
viation, the quantiles, and the c3 statistics [436] (a coefficient used to measure non-linearity).
The features computed from the delta TS are instead less relevant, but the standard deviation
has a significant importance score. More details on the features extracted can be seen in the
tsfresh documentation [434].
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3.3.4 Evaluation FrameworkDescription

In the following, we present the experiments we use to test EVScout2.0. In particular, in Sec-
tion 3.3.4 and Section 3.3.4 we describe respectively the ACN Infrastructure and Dataset on
which we based our analysis. We then explain how the new version of the dataset differs from
the one in the previous work. Then, in Section 3.3.4 we outline themachine learning classifiers
we use to profile EVs.

The ACN Infrastructure andDataset

In order to test EVScout2.0, we exploit the Adaptive Charging Network (ACN) proposed
in [428]. It consists of level 2 EVSEs connectedwith a central controller that regulates power ex-
changes in the grid. Employing an online optimization framework, the ACN allows adapting
the power exchanged in the grid, satisfying users’ power demand while coping with the grid’s
capacity limits. The dataset comprises 50kWDC charging sessions from different ACNs sites,
each reporting user-specific measurements such as the arrival and departure time, the kW/h
delivered, current and pilot TSs collected between the EV connection and disconnection time.
Notice that, although the user may have planned for a full recharge during the selected period,
this may not be reflected in the TS. In fact, due to the variable number of connected EVs, the
upper power limit of the grid, and the premature departure of the user, the battery may not
be fully charged at disconnection time. Notice also that, in the ACN dataset, not all TS are
sampled with the same period. However, we avoid upsampling with filtering because it can in-
troduce statistical features that are not representative of the analyzed battery. Each user in the
dataset is identified by a unique ID associated with the owned EV. We specifically focused on
the biggest site, Caltech, which contains charging sessions collected from 54 different EVSEs.

NewDataset

Like in the previous work [413], we decided to use the ACN dataset containing time series
sampled with an average period of 3.8s. However, since the dataset was recently enlarged, we
expanded the number of EVs considered from 22 to 187. To generate the dataset, we selected
all the available EVs up to June 18, 2021, from the caltech site (one of the three locations
available in the dataset). We also excluded by default EVs without charges and charges without
any EV assigned (i.e., anonymous charges). To download the dataset, we employ the Python
APIs provided by the ACN Dataset [428]. The number of charges associated with each EV
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ranges from one to over 300. However, not all the charges are performed up to the full SoC,
and thus, not always a tail is available. We, therefore, remove these TSs and the corresponding
EVs, because our method is based on the presence of the tails to compute features on both
current and delta. Furthermore, we consider all the EVswithmore than 8 employable charging
processes associated. We made this choice to be able to effectively use cross-validation even for
those EVs with a small number of charges. After this cleanup, 137 EVs remains in the dataset,
resulting in a dataset more than six times bigger than the one used to test EVScout in [413].

Classification Algorithms Comparison

The first step of EVScout2.0 is to build a suitable dataset to be exploited for profiling, as ex-
plained in Section 3.3.4. It is worth mentioning that the dataset does not provide any informa-
tion regarding the brand and the model of the EVs. Since the energy behavior highly depends
on the chemical reactions of the single battery, we believe that EVScout2.0 could be able to dis-
tinguish EVs of the same model. Furthermore, the batteries employed by the analyzed EVs all
belong to the same class, i.e., constant current/constant voltage. However, since both classes
discussed in Section 3.3.2 showparticular behaviors in time, we believe that our attack could be
easily extended to the constant power/constant voltage class. The effectiveness of EVScout2.0
in these cases will be investigated in future works.

For each session,EVScout2.0 first identifies whether a tail is present and discards all the other
sessions. Then it builds a feature vector for each tail, associating itwith the IDof its correspond-
ing EV.We testEVScout2.0 across all EVs in the dataset by averaging the performance obtained
with every single classifier. In particular, we implement a binary classifier (One-vs-Rest strat-
egy) for each EV, and we associate each feature vector of the target EV with label 1, otherwise
with label 0 all the other traces (i.e., non-target vehicles). The overall performance of the ob-
tained classifiers is averaged considering 100 randomly created training and testing sets, except
RF and ADA classifiers for which, for timing reasons, we consider 25 iterations. The overall
performances of EVScout2.0 are obtained by averaging the results obtained for each ID’s clas-
sifier in order to mitigate too high or low results caused by a particular vehicle.

Let us denote as Q the ratio between the number of feature vectors associated with the tar-
get EV and the number of feature vectors associated with other EVs. Hence, Q measures the
amount of unbalancing in the considered dataset. To further assess the performance of EVS-
cout2.0, each classifier is tested for multipleQ values. Regardless of the valueQ, the 80% of the
dataset has been used for training and the remaining 20% for testing unless otherwise specified.
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As the number of feature vectors of a single EV is smaller than the overall number of feature
vectors, when considering small Q values, the set of feature vectors associated with other EVs
is randomly created from the overall set. Another value that can lead to different results is the
number of featuresNoF employed in the classification. Since our feature extraction strategy re-
turns about 1500 features, using them all can lead to overfitting. We show in the next sections
how different NoF values affect the classification performance and provide a justification for
choosing a suitable NoF value that provides a good threshold to balance classification perfor-
mance and overfitting.

3.3.5 EVScout2.0 Performance: Vehicle Profiling

We first assess the performance of EVScout2.0 in terms of profiling every vehicle based on its
charging behavior. To this aim, we implement and compare common machine learning algo-
rithms for classification. Wedescribe in Section 3.3.5 the classifiers, andweprovide a discussion
on their hyper-parameters setting. Then, in Section 3.3.5, we present the results obtained via
EVScout2.0with the different classifiers.

Classification Algorithms

Once features have been identified and selected, EVScout2.0 feeds them to a binary machine
learning classifier. The profiling task can be formulated as a supervised classification problem,
where a two-class classifier is trainedwith both features from the target EV and features from all
other EVs. In particular, we assume that a classifier whose input is the features vector from the
target EV shall return output value 1, otherwise it shall return output value 0. In literature, this
approach is also calledOne-vs-Rest, andmore precisely, it aims at creating a specific model for a
single device by using the other class, composed of other different devices, to create a decision
bound around the class under consideration. If, on the one hand, this approach requires a
different model for each class, on the other hand, it allows focusing on a single class, leading to
a more robust model for the specific class.

We evaluate our pipeline by using and comparing six different common machine learning
models which are often used in the field [437, 438], namely:

• SVM classifier [439];

• kNN classifier [440];

• DT classifier [441];
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Model Parameter Values

SVM
kernel [‘rbf’]
regularization (c) [1, 10, 102, 103]
gamma (γ) [10−4, 10−3]

kNN
n_neighbors [1, . . . , 10]
weights [‘uniform’, ‘distance’]
metric [‘euclidean’, ‘manhattan’]

DT criterion [‘gini’, ‘entropy’]
max_depth [8, 10, 14, 30, 70, 110]

LR max_iter [5000]
regularization (c) [10−2, 1, 102]

RF n_estimators [50, 200, 1000]
max_depth [10, 100,None]

ADA n_estimators [10, 100, 500, 1000, 5000]
Table 3.6: Grid search cross validation parameters for each model.

• Logistic Regression (LR) classifier [442]

• RF classifier [443];

• ADA classifier [444].

Hyperparameters optimization is obtained via grid search with cross-validation to fine-tune
our models and extract the best results. Table 3.6 indicates the different parameters employed
in the grid search for each model. The training set is suitably divided into training and vali-
dation sets, which we test on a grid of possible hyper-parameters. Notice that all six classifiers
are standard machine learning algorithms without deep architectures. Although deep learn-
ing automates the feature extraction process, a large number of samples shall be used to train
deep architectures effectively. The use of non-deep structures allows us to show the feasibil-
ity of EVScout2.0 over our currently available dataset and, simultaneously, control the feature
relations during the classification process. The same motivation resides behind the choice of
binary classifiers. In fact, a single multi-class classifier can be designed to have a single class for
each EV. However, multi-class classifiers require a larger dataset for training purposes than bi-
nary classifiers. Although we consider a larger dataset than our previous work [413], it is not
big enough to provide interesting results with deep models or a multi-class scenario.
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Profiling Results

We exploit the implementation of the classification algorithms employing the scikit-learn li-
brary [435]. Results are assessed in terms of Pr, Re, and F1. We present numerical results as-
sessing the validity of EVScout2.0 as a function ofQ, the amount of unbalancing in the dataset.
This measure provides evidence of how the model is resistant in constrained scenarios where
the attacker has few charging traces available for the target vehicle. Since traditional perfor-
mance measures such as F1 may be misleading when considering highly unbalanced datasets,
the geometric mean (G-Mean) between recall and specificity has been proposed as a suitable
performance metric [445]. Therefore, we consider G-Mean an accurate indicator of the va-
lidity of EVScout2.0 for large Q values. By denoting as TP, TN, FP, and FN respectively the
number of true positive, true negative, false-positive and false-negative outcomes, we can ex-
press the Re as R = TP

TP+FN , and Specificity as α = TN
FP+TN . Geometric Mean (Gm) is hence

obtained as G-Mean =
√
αR. We recall that we present each score as the average over different

vehicle-specific trained models to obtain more robust scores and avoid biases due to specific
vehicles with a highly diverse charging profile.

Since the tail extraction process is automated, the number of extracted tails also depends on
the parameter values. Based on our previouswork [413], we setNavg (i.e., the size of themoving
average filter) to 25, which provides the best value in terms of classification scores. A smaller
filter lengthwould fail to removenoise on theTSs,while a bigger onewouldfilter out important
data characteristics. We used the same value for the median filter to maintain coherence in the
TSs since, albeit, with the necessary differences, the two filters are quite similar. Notice that the
filtering process aims to improve tail identification and classification performance. Therefore,
the optimal filter length is obtained by a trial and error process instead of selecting a length
based on, e.g., correlation analysis.

We employ the classifiers provided by the scikit-learn Python library [435]. For each model,
we perform a GridSearchCV to tune the model using grid search with cross-validation. In the
following, we present an analysis of the results with respect to different parameters and values.

Number of FeaturesNoF

Firstly, we analyze the scores based on the number of featuresNoFmaintained after the feature
extraction phase. In Figure 3.21 we plot the F1 scores for different ratios Q using the same
model (kNN) but varying the numbers of featuresNoF from 10 to 200. We can see a significant
increase in the score going from 10 to 25 features, especially for higher ratios Q. From 100
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Figure 3.21: F1 score of kNN classifier with different numbers of featuresNoFs.

features up, the increase is instead negligible, meaning that the features already capture almost
all the entropy available. For this reason, we selectedNoF = 100 for the other experiments in
this study unless otherwise specified.

Unbalance of the Dataset Q

To understand how our models deal with the unbalance of the dataset (i.e., the ratio between
the number of feature vectors associated with the target EV and the number of feature vectors
associated with other EVs), we test all the six models against different values of Q. We test Q
values ranging from 1 (i.e., the same number of feature vectors for the target and the other EVs)
to 5 (i.e., five timesmore features vectors not related to the target EV).We crafted thenon-target
class in the training set to obtain more robust scores by randomly sampling the charging traces
among all thenon-target vehicles. Furthermore, tomake the classificationproblemmore “open-
world”, we inserted in the test set, as non-target class, traces of vehicles without occurrence in
the training set.

Figure 3.22 shows the results obtained by EVScout2.0 for differentQ values. It is possible to
notice how all the scores decrease with Q for all six models. As the number of considered EVs
increases withQ, the chance of two users having the same EVmodel or having EVswith similar
charging profiles increases. This is reflected in a worsening of classifiers’ performance. With
no unbalancing (i.e.,Q = 1), we reach the highest precision of 0.88 with the RF classifier. On
the other hand, almost all the classifiers reached at least 0.86 in the recall, except for DT, which
has lower performances almost for every indicator. We notice that the RF classifier is the most
resistant to changes in Q if we look at the precision, while LR offers the best recall scores. If
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we look at both scores, even if the absolute values are generally lower, kNN and ADA seem to
be the most resistant to higher Q. Furthermore, we can observe that for the maximum Q = 5,
precision and recall are respectively 0.77 (with RF) and 0.71 (with LR), meaning that EVs can
still be profiled with sufficient confidence.

As for the other scores, also F1 degrades for increasing values ofQ for all the models. We can
see that RF is the best one for almost all the ratios Q, while for the highest two (i.e., Q = 4.5
and Q = 5) ADA performed slightly better. However, this is not the case regarding G-Mean,
confirming its validity for unbalanced datasets. In particular, ADA presents a large variance in
terms of G-Mean, a sign that is not a suitable algorithm for highly unbalanced datasets. Other
algorithms, such as RF, kNN, and LR, are instead able to maintain high values of G-Mean for
every value of Q. This shows that profiling can be achieved with good results irrespective of
the amount of unbalancing in the dataset, i.e., a single user can still be profiled based on its
charging profile also in largely populated networks.

All these considerations must be considered when designing EVScout2.0. The best algo-
rithm for each case can be selected if the dataset distribution is known. In particular, RF is
advisable for perfectly balanced datasets, LR for highly unbalanced datasets. Instead, if the
dataset is unknown and a resilient model is needed, kNN can be a good choice. In fact, we
employed kNN in many experiments from now on, also thanks to its fast training time with
respect to other models such as RF or ADA.

3.3.6 EVScout2.0 Performance: Additional Performance Anal-
ysis

In addition to the classification-based analyses, we included additional scenarios based on the
training set characteristics. Since the data conditions may be different in a real-world scenario,
we propose an analysis considering different data properties in the following. In particular, in
Section 3.3.6, we examine different training set size values to assess the minimum number of
charges needed toobtain sufficiently high classification scores. In fact, a large number of labeled
traces in a real-world attack may be challenging to obtain. In Section 3.3.6, we investigate if
and howmuch the Li-ion battery’s degradation impacts the performance of EVScout2.0. This
analysis can be useful to understand how amodel can still be precise when dealing with natural
phenomena like physical battery degradation.
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Figure 3.22: Performance of EVScout2.0 for a different amount of unbalancing in the dataset. Results are shown for the
different classifier algorithms and NoF = 100. We see that good classification performance are obtained for all classifier.
AsQ increases, some classifiers aremore robust than others to increasing unbalancing. Results onG‐Mean show that profiling
can also be achieved in largely populated networks.

Training Size Variation

In a real-world scenario, an attacker may be limited by the number of labeled charges s/he can
get for a target vehicle. For instance, the attacker may not want to leave its malicious device
in the field too much to reduce the possibility of being detected. To simulate this scenario,
we analyze the performance of EVScout2.0 while varying the train set size. We avoid using as
target EVs with less than 70 charges with tails, while to create the groupwith the others EVs we
employed thewhole dataset. As a testing set, we always use the last 20% of the available charges.
For the training set, we set fixed values from the 80% to the 10% of themin number of charges
for each EV (i.e., 70). In other words, the training set size ranges from 7 to 56 feature vectors
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Figure 3.23: F1 scores of kNN classifier while reducing the training set size.

for each EV, with steps of 7 charges.

In Figure 3.23a, we can see how the F1 decreases while decreasing the training set size. How-
ever, we can appreciate a significant fall only for the smallest values of the training set, while the
increase is less relevant for training set sizes bigger than 14. Above 42 charges, the performance
increase is almost negligible, especially considering the smallerQ ratios. We can also look at the
absolute values of the F1. It is greater than 0.69 for the most unbalanced dataset when using
14 feature vectors, showing discrete classification performance evenwith small training sets. By
considering the total number of vehicles per training set size and the imbalance ratio, we can
compute the number of vehicles of the target class in the different scenarios. In particular, we
can notice that with 7 charges (i.e., the training set size 14 ifQ = 1, training set size 21 ifQ = 3,
and training set size 35 if Q = 5), we can obtain an F1 Score of at least 75%. With only 7
charges, we can achieve a good classification precision for the target vehicle.

Furthermore, we also analyzed the impact of both training set reduction and feature reduc-
tion. In Figure 3.23b, we see the different behavior of the F1 score while varying the number
of features and the training set size (we show the data only for Q = 1 for clarity). As expected,
there is a clear drop in the performances for the lower training set sizes. However, this can be
partially compensated by employing a bigger number of features, up to 100. Over this thresh-
old, the gain is negligible, coherently with what is presented in Section 3.3.5 and Figure 3.21.
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Battery Degradation Performance

The degradation of a Li-ion battery used in an EV is widely discussed in literature [398]. Dur-
ing a battery life, many aspects can adversely affect its performance depending on the number
of charge cycles, aging, operating, and storing conditions. Degradation on EV batteries can
lead to a shorter traveling distance and a reduced battery’s available power output [446]. Gen-
erally, a battery is considered at the end of its life when it has already lost 20% of its initial
capacity. Modern Li-ion batteries should have a five to ten-year calendar life depending on
the materials and how they are managed. They should be able to supply between 1000 and
2000 cycles of charge. However, many behaviors, such as keeping the battery at a high SoC or
high temperature, or often employing fast chargers, can reduce even more the lifetime of the
battery [447, 446].

Being aware of this problem, we investigate if the battery degradation affects our profiling
model. Since the charge profile of anEVwill always be different due to the variation of the phys-
ical properties of the battery, we analyzed how the extracted features degrade the performance
of EVScout2.0 in time. To test how our model behaves in this context, we selected the 10 EVs
with the higher number of charges (i.e., more than 150 charges for each EV) spanning about
two years. We train the kNN classifier in the first part of the data, and we then test it over mul-
tiple consecutive test set batches. In particular, the training set accounts for the TS measured
in a specific period and represents the baseline to measure the successive battery degradation.
Each testing set is given by batches of Z chronologically consecutive TSs, with Z = 5% of the
total available testing data. In other words, we considered as each test set a sliding timewindow
of consecutive TSs.

Initially, we train employing only the first 30% of the data for each EV. These results are
shown in Figure 3.24a, where it is possible to see a small difference in scores while shifting the
testing set. However, we cannot blame the physical battery degradation for these results for a
series of motivations. Firstly, the reduction is not important in absolute terms (i.e., less than
0.1 for Q = 1) and can be due to different behaviors of the users in different periods (e.g.,
detaching the EV before full SoC). Secondly, it is not the monotonous decrease that we would
have expected. Instead, the scores seem not to follow any pattern, showing good classification
results also in the last steps (i.e., testing set given by more recent TSs). Third, the small size of
the training set employed can be a partial motivation for the random behavior of the scores.

To remove the train set size as a variable to create strange behavior in the results, we perform
a second train using the 60% of the data. By doing so, we obtain a chart with fewer points, as
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Figure 3.24: F1 score for different ratios while varying the start of the testing set. Each value in the horizontal axes represent
the score on a testing set composed of the 5% of the data starting from the point forward. Dashed horizontal lines represent
the mean of the F1 for each ratio.

shown in Figure 3.24b. In this case, scores are almost constants with tiny variations which are
expected in the context.

This demonstrates how EVScout2.0 can perform well, also considering a time distance of
almost two years between the training and the testing data. Although not affected by the small
battery degradation that could happen in this time frame, it could still be affected by unusual
andunpredictable behaviors of the EVs owners or by theACNscheduling algorithm, especially
when considering highly unbalanced datasets and a small training set. Furthermore, this experi-
ment can be seen as a remark on the need for a big training set as presented in Section 3.3.6. We
will provide more analysis on the degradation in future work, considering datasets that span
more than two years.

3.3.7 EVScout2.0 Performance: Comparisonwith EVScout

In our previous work [413], we performed experiments similar to those discussed in previous
sections but employing a different pipeline, a different feature extraction process, and a smaller
dataset composed of only 22 EVs. Since it was one of the first works on the privacy of the
EV charging systems, we use the results of [413] as a comparison baseline. In particular, we
propose two different comparisons: one using the previous EVScout on the new and extended
dataset, and one using the new EVScout2.0 on the small dataset employed in [413]. It is worth
mentioning that we employed the exact dataset used in [413] and not simply the same EVs
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updated with the new charges.

EVScout on the new dataset

We tested EVScout [413] in our new dataset. To generate results comparable with those pre-
sented in this study for EVScout2.0, we employed the same dataset with 137 valid EVs, even
if EV with less than eight charges could also be used in EVScout. We performed the same
pre-processing phases and assessed the performance for Navg = 25. Results are shown in Fig-
ure 3.25a for different values ofQ. We can see a clear dominance of EVScout2.0with respect to
its previous version in the new dataset composed by 137 EVs. The difference in the classifica-
tion performance ranges from about 0.15 forQ = 5 to more than 0.20 forQ = 1. We remark
that the different charging traces (also for the same vehicle) belong from different EVSEs in the
same site. Therefore, the results confirm that themodels implemented are resistant tomultiple
EVSEs and that different charging stations do not significantly impact the charging behavior.

EVScout2.0 on the previous dataset

Furthermore, we test our new algorithm EVScout2.0 on the same dataset employed for the
testing of EVScout. SinceEVScout2.0 needs at least 8 charging session comprising tails for each
EV, we have to discard four EVs, resulting in a total of 18 EVs. We show the results of this
experiment in Figure 3.25b. Even if the enhancement is less pronounced with respect to the
new dataset scenario, we can see a clear improvement in the performance of EVScout2.0 with
respect to its previous version, especially considering high unbalancingQ.

3.3.8 Possible Countermeasures

To deal with information leakage from smart meters [448] proposes to obfuscate the commu-
nication between user and supplier through rechargeable batteries. This solution is effective
in modifying the demand-response correlation in the measured data. This approach can be
leveraged to mitigate the effects of EVScout2.0, where the EV’s battery drains current from a
secondary battery which communicates with the EVSE, masquerading the original battery’s
tail behavior. However, as the number of involved batteries doubles, this approach incurs a
higher implementation cost at both EV and EVSE sides. Furthermore, the attacker may be
able to extract features from the secondary battery and still perform profiling. A similar con-
cept is exploited in [449], where noise is added to smart meters data via an adversarial learning
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Figure 3.25: F1 values of the comparison with the previous work [413].

framework. This idea can be exploited tomitigate the effects ofEVScout2.0by adding a suitable
amount of noise to the current required by the EV’s battery during the tail phase. However,
this would imply redesigning how EVSEs manages the current required by EVs, as the added
noise may mislead both the attacker and the EVSE. The risk is, therefore, that the recharging
process’s efficiency drops. In [419], the authors successfully applied a low-pass filter to remove
the information leakage due to the high-frequency components from the signal. However, the
work targets mobile devices, which are very different from vehicles, with tiny batteries and dif-
ferent charging patterns. Other non-technical countermeasures are also possible. For instance,
EV owners can be educated to check the presence of suspicious devices attached to the EVSE.
Furthermore, running companies should often inspect their equipment for illegitimate devices
and install closed-circuit TV to detect the presence of such devices. As described above, several
solutions in the literature prevent the leaking of power side-channel information. However,
most of them have been studied for the smartphone environment and are rarely implemented
in reality. In future work, we will focus on identifying ad-hoc solutions to prevent the infer-
ence of sensitive information via power-side channels, specifically in communications between
EVs and EVSEs.

3.3.9 Takeaway on EV Profiling

Aswe demonstrated, introducing a charging system that utilizes personal information can lead
to privacy leakage and profiling attacks. In this study, we extended our previous work propos-
ingEVScout2.0. Inparticular, we extended thework in [413]by employing abigger dataset, and
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a novel feature extraction technique, and compared more algorithms for the classification task.
We also show how real-world constraints such as limited training test size and battery degra-
dation over time impact the classification quality. With respect to the previous work, we em-
ployed a bigger dataset going from 22 to 137 EVs. We employed six models capable of reaching
precision and recall of 0.88 for the balanced datasets while still offering good results (precision
0.77, recall 0.71) with highly unbalanced datasets. Furthermore, we evaluate the performance
loss generated by a training set size reduction, showing how EVScout2.0 can reach good perfor-
mances even with a small training set. In addition, we assess that the proposed algorithm can
correctly identify EVs even if the model is trained with data two years early. Finally, we showed
that EVScout2.0 is capable of attaining good classification performance, even in challenging
scenarios such as highly imbalanced datasets or small training sets, proving to be a viable and
effective solution for EV profiling. We believe this work can warn all the parties involved (i.e.,
the users, the manufacturers, and the scientific community) about the feasibility of profilation
attacks in the growing V2G infrastructure.
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4
Cross-domain Cyber-Physical Systems

Applications

In the previous chapters, we focused on the security issues of two widely studied CPS appli-
cations. As discussed, CPSs expose a wide range of services to dangerous threats due to their
complexity and the intertwining between the physical and IT worlds. Therefore, it is impor-
tant to approach the CPS security analysis from multiple angles. In this chapter, we leverage
the knowledge of the previous studies to investigate other CPS application domains. In par-
ticular, in Section 4.1, we present a survey on the usage of PSC in the literature, focusing on
both the existing attacks and countermeasures [415]. As will be discussed, PSCs have been
proven effective in reversing and profiling the functioning of many embedded devices (e.g.,
smart cards, vehicles, and laptops). Then, in Section 4.2, we extend the approach applied in
EV in Section [450], and we show how it is possible to fingerprint USB devices. This funding
can be used, for instance, to securely authenticate a personal device and avoidmalware delivery
injection in critical applications (e.g., Stuxnet). Finally, in Section 4.3, we present the first secu-
rity analysis of the emerging Hyperloop transportation technology [451]. Hyperloop merges
the concepts of ICS since it consists of a critical, distributed, and sensing infrastructure, and
the concept of vehicle, due to the pod communication management. As a result, Hyperloop
inherits all the vulnerabilities and risks of the two systems.
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4.1 Power Side-Channel Overview

The wide spread of smart devices such as smartphones and IoT stand-alone devices led to the
diffusion of new standards to include them in daily life. According to Statista [452], by the
end of 2020, 44.9 percent of the world’s population is projected to own a smartphone. Most
of such devices rely on the USB standard for two main functions: data transfer and power
charging. While USB protocol security is a topic widely studied, less importance is given to the
charging application.

Nowadays, most high-end smartphones have an average duration of around 11 hours with
a normal user usage [453]. Users rely on power bank suppliers or charging stations in public
places to deal with this limitation. However, generally, common users do not take seriously
the possible threats that can occur when connecting their mobile device to untrusted USB
ports. A survey [454] conducted in 2016 involving 1, 439 volunteers frommultiple industries
revealed that most volunteers were unaware of any risks associated with charging their phones
in public places. Worse, many trusted mobile charging stations and wall plugs interact with
their phones while using them. In 2018, another survey [455] in the form of a questionnaire
involving 2, 500 participants showed that users are less concerned about smartphone charging
threats compared to mobile malware. These results underline that a malicious attacker may ex-
ploit users’ unawareness to compromise charging tools, steal sensitive information from users,
or compromise the device plugged in.

Several works showed that it is possible to leak sensitive user information through unin-
tentional physical and electromagnetic phenomenons, such as vibration [456], noise [457] or
power consumption [458]. These attacks are generally referred to as side-channel attacks. The
strength point of such attacks is that they rely on the system’s physical uncontrolled charac-
teristics, which are difficult to avoid considering during the design phase. Furthermore, while
traditional attacks need to take control of the targeted device actively, side-channel attacks are
passive and hard to detect. For instance, an attacker may compromise a power bank or a public
charging station by adding an integratedmodule to delivermalicious payloads [459] (i.e., active
attack) or to collect power consumption traces (i.e., passive attack). In both cases, the attacker
would directly or indirectly steal private user information frommobile devices.

This study provides a broad overview of the side-channel attacks that exploit a USB connec-
tion. This class of attacks is generally underestimated by users, even if it can raise significant
privacy threats. Once presented and analyzed themain side-channel attacks in the literature, we
also survey the countermeasure implemented to prevent such attacks. Furthermore, we present
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the different tools employed in research to discuss attack feasibility and countermeasure devel-
opment. To the best of our knowledge, we are the first work that surveys this topic.

4.1.1 RelatedWork

The literature includes several surveys that collect countermeasures for USB attacks. However,
different analyses and aspects are taken into consideration. Most of those surveys focus only
on the software and hardware vulnerabilities of the two devices involved in the USB commu-
nication. This survey analyzes the side-channel effects of USB powering and communication.
In [460], the authors present a detailed survey related to the main attacks which exploit the

USB standard. The authors specifically focused on malware injection via USB devices and
software attacks on USB drives with hack tools. However, this work is relatively outdated (i.e.,
2011), so it does not consider recent attacks usingmaliciousUSB peripherals or the BadUSB at-
tack family and side-channel attacks. Most attacks are based onAutoRun andAutoPlay vulner-
abilities, which are already solved and deprecated in the recentOperative Systems version [461].
Moreover, this work provides a multilayered security mechanism based on software implemen-
tations in the operating system. However, since 2011, several new attacks were developed, and
the proposed solution may be ineffective, mostly on recent side-channel attacks.

In 2017, Nissim et al. [462] reported 29 different USB-based attacks analyzing the goal of
such attacks and the corresponding weakness exploited. The attacks were divided based on
the USB hardware required for executing the attacks: i) programmable microcontrollers, ii)
the common USB peripheral devices that can be found in most organizations and households,
and iii) crafted devices composed only from electrical hardware component. The authors also
present different tools for detecting USB attacks. However, none of the presented attacks con-
siders using USB for charging purposes or the communication side-channel effects.
In [463], the authors present an accurate Systematization of Knowledge (SoK) to survey

and categorizeUSB attacks and defensemechanisms by also considering the recentUSBType-C
standard. The authors classified theUSBvulnerabilities dividing them into different communi-
cation layers (i.e., Physical Layer, Transport Layer, Application Layer, andHumanLayer). The
survey also includes a description of the different vulnerabilities at each layer, the correspond-
ing countermeasure, and the proposal of an authentication system for USB Type-C standard.
Although the survey covers all security issues related to the USB standard, it gives little space
to side-channel attacks, leaving out the most recent ones, such as the Juice Filming Charging
(JFC) attack.
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The literature also includes different surveys about side-channel attacks. In 2009, Cai et al.
presented one of the first works [464] collecting and explaining the classes of threats related to
mobile phone sensors’ information. However, this study does not consider modern machine
learning-based attacks. A recent and complete survey was proposed by Spreitzer et al. [465]
in 2017. In this work, the authors proposed a systematic classification of side-channel attacks
according to the information extracted, the attacker’s position, and the type of attack (i.e., ac-
tive modification or passive sniffing). The authors proposed the classification of side-channel
attacks as the main contribution. In our survey, we follow this classification, but we consider
a threat model that no other work has not previously explored in the literature. Moreover,
in [465], the authors analyzed only one USB electric power-based side-channel attack. There-
fore, all more recent machine learning-based power trace classification techniques are not in-
cluded. More recently, Conti et al. [466] presented an analysis of the literature on network
traffic analysis techniques on mobile devices and related datasets. However, the authors fo-
cused only on the side-channel attacks related to the network traffic analysis.

To sum up, this survey focuses on the side-channels rising from the physical connection be-
tween the twodevices via aUSB cable. By passively observing and analyzing these side-channels,
attackers can extract sensible information from the involved devices. Furthermore, we provide
an overview of the countermeasures to prevent such attacks and the tools to support the re-
search in this field. To the best of our knowledge, this is the first survey to cover such an emerg-
ing class of attacks on USB connections.

4.1.2 Background

In this subsection, we recall the main concepts about USB useful to understand the remainder
of the study. In particular, subsection 4.1.2 will briefly recall how USB environment and how
it works while subsection 4.1.2 will recall the concept of side-channel.

USB Ecosystem

Universal Serial Bus is themost popular standard used to wired connect peripheral devices (i.e.,
USB devices) to a central host and transmit information. The first USB version 1.x was intro-
duced in 1996 [467] by a group of seven companies to standardize the connection between
the different external peripherals and the PC. This first version supports a transmission veloc-
ity of up to 12 Mbps. During the years the USB standard evolved, passing through versions
1.1 [468], 2.0 [469], 3.0 [470], 3.1 [471], 3.2 [472] up to the latest version 4.0 [473] which
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support a transmission velocity up to 40 Gbps. Different plugs, transmission velocity, and
power delivery capabilities characterize each standard. Therefore the devices supporting USB
communications are heterogeneous and not always backward compatible. Over the years, the
evolutionof theUSB standard allowed the integrationofnew functions in addition to transmit-
ting information, such as the ability to power or recharge stand-alone devices. Therefore, the
evolution of the USB standard and the use of USB for multiple functions allowed to increase
in the spectrum of compatible peripheral devices, opening, on the other hand, new dangerous
vulnerabilities surfaces. Implementing new features in an insecure standard by design forced
the research community to find alternative solutions to secure the security lacks.

As reported in [463], security problems related to the USB standard are present at many
communication levels, and during the evolution of this standard, security was rarely consid-
ered. Despite that, in 2014, the Universal Serial Bus Implementers Forum (USB-IF) explicitly
stated that security falls outside theUSB specification scope. According to [463], USB commu-
nications rely on four main layers, as depicted in Figure 4.1. In this categorization, the higher
level consists of the Human Layer. This layer involves all the actions and interactions between
the host and the end device. There could be communications where both entities rely on hu-
mans, e.g., data transfer between PC and smartphone, or a human can control only one of
the two sides, e.g., smartphone charging. The action performed at this layer affects all the un-
derneath layers creating unique functioning patterns. Attackers can exploit this layer through
social engineering attacks or human errors. TheApplicationLayer comprises the user-level pro-
grams and software on the host and the device sides. Generally, at this layer, the main attacks
are Code Injection (e.g., Stuxnet [3], Duqu [474], andConficker [475]) andCode Exfiltration
(e.g., USBee [476]). The Transport Layer regulates the data transmission policies between the
two entities involved in the communication. The main attacks at this layer are Protocol Mas-
querading and Protocol Corruption (e.g., Kernel level bugs [477] and USBProxy [478]). Fi-
nally, the physical layer comprises signals representing communications occurring at the lower
level over the USB bus. Typical attacks at this level include Signal Eavesdropping (e.g., USB
snooping [479]), and Signal Injection (e.g., USB Killer [480]) This survey will focus on USB
Communication’s physical layer, which is the vector of the so-called Side-Channel attacks.

In version 1.0, the USB standard supported only two plugs type: Type-A and Type B. The
wires used in the cable are depicted in Figure 4.2. USB 1.1 introduces other four plugs: Mini-A,
Mini-B,Micro-A, andMicro-B. These versions rely on the same transmissionwires introduced
in version 1.0 but introduce new plugs to integrate devices with smaller dimensions. In 2016,
the USB 3.0 Promoter Group and the USB-IF introduced the USB Type-C Authentication
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specification [481] toType-Cproducts. Unlike type-A andB,Type-C orUSB 3.0 generally has
additional data and power wires, thus making both charging and data transmission faster. Fur-
thermore, from version 3.1, USB standard allows transmitting also video signals. USB Type-C
Authentication is basedonaSelf-SignedCertificate,which end-devices use to authenticatewith
hosts. However, as shown in [463], USB Type-C Authentication protocol reveals many secu-
rity problemswhen formally verified. More recently, in 2019, USB-IF released a new version of
Type-CAuthentication specification [482]. However, no related security study by the research
community has been published so far. Instead, in the more recent standard USB 4.0 [473], the
words “security” and “secure” are never mentioned in this 549 pages document. The only se-
curity aspect mentioned is “authentication”.

In recent years USB standard was also introduced in the smartphone world. In fact, USB
On-The-Go (OTG) standard [483] is used to allow recharging the device and to connect pe-
ripheral devices (e.g., USB flash drives, digital cameras, mouse or keyboards). In this scenario,
the host is the power supplier (i.e., power bank, wall socket, a smartphone, or a general de-
vice with charging capabilities), and the end-device is the device powered by the host (i.e., a
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Figure 4.3: Example of possible side‐channels during devices charging process.

peripheral device or the smartphone in a recharging scenario). Also, in this case, there is no ref-
erence to security features in the OTG standard specification [483]. Smartphones can also be
connected via USB to a host running software to update or restore the device. Generally, the
software used to perform critical operations requires user authentication only from the device
side (i.e., password confirmation). In contrast, the software can perform any function without
authentication, enabling potential malicious threats.

As described so far, the USB standard is designed without considering security. However,
USB is used in a wide range of applications, ranging from critical applications (e.g., ICSs) to
home applications (e.g., Internet of Things (IoT) devices). Furthermore, the devices relying on
such communication are very heterogeneous with different requirements and specifications,
opening also a problem of standardization of security measures. For these reasons, it is impor-
tant to identify security threats arising from the insecureUSB standard design and develop new
security solutions to prevent potential malicious events.

Side-Channel Attacks

Side-channel attacks refer to those attacks exploiting uncontrolled systems’ physical character-
istics to compromise the confidentiality or the integrity of the system. Side-Channel attacks
were originally implemented to break cryptographic primitives exploiting common patterns in
the power consumption to reverse the algorithm (e.g., Simple Power Analysis and Differential
Power Analysis). However, in recent years side-channel attacks have also been implemented
to profile actions in different encrypted network traffic scenarios such as smartphone user ac-
tions [484, 485], IoT actions [486], and internet traffic [487]. A side-channel attack’s main
idea is to leverage uncontrolled physical characteristics produced by the system during its func-
tioning (e.g., power consumption, noise, timing) to identify confidential information and func-
tioning patterns. Figure 4.3 shows different possible side-channels derived from Smartphone
charging process.

According to the categorization in [465] side-channel attacks can be categorized differently.
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Generally, side-channel attacks are passive since they aim to passively listen and leak informa-
tion to learn confidential information or model the system’s behavior. However, an active at-
tack can rely on side-channels to corrupt the system’s physical characteristics (e.g., injecting a
signal) to modify the system’s normal function or tamper with it. Based on the information
extracted, the side-channel attacks can target physical properties (e.g., power consumption or
electromagnetic emanation) or logical properties (e.g., statistics provided by the operating sys-
tems). Finally, we can also categorize the attacker’s position according to its target. An attacker
can beLocal if it is in direct control of the device. Vicinity attackers are nearby the target device
and can, for instance, wiretap or eavesdrop on the communication. Remote attackers only rely
on software execution on the targeted device, for example, employing back-doors.

4.1.3 ThreatModel

As modern mobile devices’ applications provide more and more advanced functionalities and
personalized user experiences, they are also increasingly becoming energy-demanding. The in-
tensive usage of those apps, combined with their need for energy, often causes batteries to be
quickly depleted. For this reason, users need to charge their devices multiple times a day due to
their long usage time and limited battery capacity [488]. The increasing demand for ways for
users to charge their devices led to the growth of the mobile charging industry [489] and the
installation ofmobile charging stations in public places where everybody can access them, such
as airports, coffeehouse, or libraries [490]. While publicmobile charging stations provide users
with a convenient solution, plugging smart devices with unknown charging ports can expose
the user to potential threats [491].

In this survey, we consider the security and privacy research work that considers a threat
model where a mobile device is connected to a USB port via a cable. In particular, we con-
sider an attacker that can observe one or multiple side-channels by controlling or by accessing
the surrounding of the USB charging port. In the threat model considered by this survey, we
define the device that provides a USB port (e.g., public charging station, power adapter, USB
hub, desktop PC) as host device, the portable device (e.g., laptop, smartphone, tablet computer,
portable hard drive, keyboard) powered by such USB port as end device, and the USB connec-
tion cable as channel. Figure4.4 depicts the various components of the threat model.

Considering an attacker that has control over a host’s USB port, the USB cable, or the USB
hub, we can identify three attack scenarios as proposed in [492]: public charging stations, semi-
charging stations, and chargers borrowed from others. We refer to public charging stations as
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Figure 4.4: The threat model considered in this work and the possible sensor/probe placements for side‐channel measure‐
ments (i.e., the source of the dashed arrows).

the USB ports on appliances available in public places such as airports, shopping malls, and
entertainment venues. In this scenario, the attacker tamperswith charging stations and exploits
users’ default trust in the person providing the charging station. Semi-public charging stations
are devices that USB ports cannot be fully attended by users all the time. An example of a semi-
public charging station in a hotel, a user has no control over nor can inspect the assigned room
before check-in. During this time, an attacker can access the room and deploy its attack tools
on the available USB ports. In the third scenario, users can borrow a charger from another
person to charge their devices. In this case, an attacker could have previously tampered with
such a charger and deployed its attack tool.

Considering an attacker that does not control the host’s USB port, we assume that the at-
tacker can access the immediate surrounding of such aUSBport, the end device, or the channel.
In this situation, an attacker can place a probe (e.g., antenna, sensor) and observe wireless side-
channels such as electromagnetic, radio-frequencies, or sound emission from either the end
device, the channel or the host.

4.1.4 Attacks

The wide diffusion of the USB standard in daily life and the low cost required to reproduce a
usage scenario allowed researchers to study in-depth the vulnerabilities associatedwith theUSB
environment. This subsection categorizes the work according to the type of side-channels an
attack relies on. The side-channel-based attacks considered in this survey are summarized in
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Year Work Target
device

Targeted
Information

Analysis Side-
channel

Location &
components

2006 Oren [493] Host device
(PC)

Key extraction Frequency
spectrum

Voltage
variance

USB port,
end device

2009 Vuagnoux
[494]

End device
(keyboard)

Keystrokes Matrix Scan
Technique

Electromagnetic
(EM)
emissions

Magnetic probe

2015 Genkin
[495]

Host device
(laptop)

Key extraction Signal
processing

Voltage
variance

USB port,
end device

2015* Meng
[492, 454,
496, 455]

End device
(smartphone)

Screen and
user inputs

Machine
Learning,
OCR

Mobile
High-
definition
Link
(MHL)
standard

Modified USB
charger

2016 Belgarric
[497]

End device
(smartphone)

Elliptic curve
encryption

Machine
learning

EM
emissions

Triggering app,
magnetic probe,
electric probe

2016 Genkin
[498]

End device
(smartphone)

Elliptic curve
encryption

Machine
learning

EM
emissions,
Electric
current

External Coil,
USB pass-through

2016 Sim [499] End device
(keyboard)

Keystrokes Signal
processing

EM
emissions

Oscilloscope

2017 Spolaor
[458, 485]

End device
(smartphone)

Personal data Signal
processing

Electric
current

Malicious app,
USB port

2017* Yang
[500, 501]

End device
(smartphone)

Web pages, un-
der Tor

Machine
learning

Electric
current

USB port,
Host

2017 Su [479] End device Transfer data Signal
processing

Voltage
variance

USB hub,
Host device

2021 Cronin
[502]

End device
(smartphone)

Screen and
user inputs

Machine
Learning

Electric
current

USB port,
Host device

Table 4.1: Side‐channel based attacks on USB powered devices by year (* year of the first original proposal).

Table 4.1.

Electromagnetic Emissions

EM emissions (or radiations) [503] are waves that can propagate in space, and they include visi-
ble light, radio waves, microwaves, etc. For example, such emissions are generated by electrons’
flow from the data transfer on a USB cable that acts as an antenna. Attackers can exploit this
phenomenon to extract cryptographic keys and keystrokes recognition.
Attacking Elliptic Curve-based Encryptions. The Elliptic Curve Digital Signature Algo-
rithm (ECDSA) security relevance is meaningful since important companies employ elliptic
curve encryption in their payment systems. Genkin et al. [498] demonstrated that ECDSA
implementations on mobile devices are vulnerable to electromagnetic and PSC attacks. Based
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on this, the authors perform such attacks by proposing a complete and inexpensive framework
prototype. In the paper, the authors consider two similar threat models: an end device lying
over a coil or connected to a USB cable. In the former threat model, the coil senses the elec-
tromagnetic emissions from the end device’s processor while performing. These traces can be
acquired by the attacker’s PC via an inexpensive device (i.e., a sound card). With this setting,
the authors can extract the ECDSA signature key used by theOpenSSL library running on iOS
andAndroid devices. In the latter threatmodel, the authors perform the same attack by relying
on power analysis over the USB cable (see subsection4.1.4).

In a similar work, Belgarric et al. [497] show that, for elliptic curves over the prime domain,
private keys on smartphones can be recovered using electromagnetic side-channels and lattice
simplification techniques. In this study, the USB cable is assumed to be the only I/O interface
of the end device (i.e., a smartphone), and it is used as a trigger for the oscilloscope via self-
written software installed on the targeted device. Such software sends a trigger signal through
the enddevice’sUSB interface (connected to the oscilloscope’s trigger port) and immediately in-
vokes the Bouncy Castle signature function. The electromagnetic radiations are then acquired
and analyzed by manually observing additive operations in the collected traces. Similar to the
previous attack, the authors apply lattice-based cryptanalysis on such traces to obtain the cryp-
tographic keys.
Keystrokes Recognition. Considering a USB wired keyboard as the end device, researchers
show how to infer keystrokes from electromagnetic emanation side-channel. In 2009, Vuag-
noux et al. in [494] conducted an extensive study on this kind of attack by testing its feasibility
on different keyboard technologies, among which PS/2, USB, laptop, and wireless. In par-
ticular, the authors assess Matrix Scan Technique as the most effective method for keystroke
inference on the USB cable. Under similar settings, a brief study by Sim et al. in [499] aims at
inferring keystrokes from wired keyboards only via signal processing.

Electric Power Analysis

This class of attacks consists ofmeasuring the electric energy provided by aUSBport to the end
device. Since a USB port delivers energy to an end device using direct current, an attacker can
rely on the measurement of electrical quantities: current (in Ampere), electric resistance (in
Ohm), the difference of potential (in Volt), and power (inWatt). In this subsection, we explore
the electric power analysis-based attacks that have been exploited to retrieve cryptographic keys,
exfiltrate data, and infer content from either host or end devices. We underline that the attacks
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targeting host devices typically rely on voltage variancemeasurement since they assume anopen
circuit scenario (i.e., no electric current flows from the 5V to GND pins). Besides, the attacks
targeting end devices measure the electric current since the circuit is closed on a load (i.e., end
device).
Cryptographic Key Retrieval. One of the first works that use energy consumption as a side-
channel onUSB is proposed byOren et al. [493]. In this work, the authorsmeasure the voltage
variance on the host’s USB port to reveal ongoing system activities. For example, it is possible
to apply power analysis to infer operation signatures such as the execution of OpenSSL RSA
decryption (the RSA acronym comes from the authors’ family name of the original algorithm:
RonRivest, Adi Shamir, and Leonard Adleman). This attack could be perpetrated bymeasur-
ing the voltage variance via a connected end device. A similar scenario is considered by Genkin
et al. in [495]. This work aims to retrieve RSA and ElGamal keys from a laptop via cryptanaly-
sis and signal processing. Although themain focus of such a paper is electromagnetic emissions
from the laptop’s chassis, the authors also explore a use case involvingUSB,VGA, andEthernet
cables. In particular, the authors show that it is possible to perform the attack on themeasured
shield potential via a simple voltage-meter. It is worth noticing that both these works target the
host device as the attack victim since they aim to extract its cryptographic keys.
Data Exfiltration. To exfiltrate private information from an Android device, Spolaor et al.
in [458] propose to use the power consumption during the charging process as a covert chan-
nel. In particular, this attack is carried out while the end device is in an idle situation (i.e., no
user interaction, screen off) to achieve stealthiness. When the battery level is high enough, the
authors observed that part of the unused electric power supplied by a USB port is directly used
to power other mobile devices’ functionalities. Based on this observation, the attack encodes a
message (i.e., the targeted private information) as temporized energy over-consumption on the
end device, which can be observable (then decoded) from the host device. Implemented for
the Android operating system, this attack is composed of two components:

• A malicious application named PowerSnitch, installed on the end device, converts the
information to exfiltrate in binary code. According to the value of the bit to transmit,
the PowerSnitch app generates aCentral ProcessingUnit (CPU) burst, which causes the
over-consumption for a pre-determined time interval (i.e., energy pulses). To remain un-
detected, this app also checks whether certain transmission conditions are satisfied (e.g.,
the screen is off, Android Debug Bridge is not active, high battery level). Moreover, the
PowerSnitch app does not require any special permission except to access the informa-
tion to exfiltrate.
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• On the host device, the attacker controls the power supplier (i.e., USB port) and can
measure the electric current provided to the end device. The attacker can process the
signal from the energy traces, decode the binary transmission, and reconstruct the origi-
nal information.

Since this attack does not use the data transfer feature of theUSB cable, it also works when soft-
ware (i.e., charge-only mode) or hardware (e.g., the so-called USB condoms) countermeasures
are in place. Due to this covert channel’s hostile nature, the data transfer rate is quite limited
(i.e., between 1 and 2bits per second), but it has a low BER. However, the authors improved
the original attack by providing a better transfer rate and amore compact and cheaper solution
for measuring the electric current, which could be embedded in a power-bank or a common
USB charger [485].
Crosstalk Leakages. After testing, Su et al. [479] found that most computers and external
USB hubs suffer from crosstalk leakage effects. This side-channel allows malicious peripherals
located outside the communication path to capture and observe sensitive USB traffic. The
authors also assess that crosstalk leakage effects could be observed on the USB power cable.
Therefore, physically cutting the USB data cable and charging-only USB cable are ineffective
as countermeasures against this attack.
Interaction Inference. More recently, Cronin et al. [502] found that while a smartphone is
charging, the power trace via theUSB charging cable leaks information about its screen content.
Based on this discovery, the authors propose Charger-Surfing, a PSC-based method. It uses
the power leakage from the smartphone to infer the animation’s location playing on the smart-
phone’s touch screen and thus obtain sensitive information about the user. Amore prominent
feature of Charger-Surfing is that its effectiveness is victim-independent. An attacker can use
data acquired from any end device’s touch-screen as training data for the neural network. This
means that the attack can be carried out without knowing the specific model of the victim’s
end device, which adds to the danger of Charger-Surfing.
Web Pages Identification. One of the strongest side-channel analysis points is that it reveals
important information or patterns, even if the communication is encrypted. This concept was
usedbyYang et al. [500] to attackdataprivacyduring the chargingprocess. The authors demon-
strated that an attacker could steal user information while a user is using a mobile charging sta-
tion to charge a smartphone. The attackworks evenwithout using the data transfer function of
the USB cable. Based on this finding, the authors proposed a side-channel attack that leverages
USB power consumption correlation, analyzing the relevant variables that may cause power
consumption changes. The attack leverages a malicious charging station and can identify the
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web pages loaded by the user while charging with the malicious station.

Browsing web pages using Tor is considered secure, but it is not immune to PSC attacks on
USB cables. In an extended version of the attack [501], Yang et al. can identify the websites the
user visited through Tor, even hidden services, with a higher accuracy rate than ordinary web-
sites. This studywas performed by relying on themeasurement of the electric current supplied
when charging the smartphone.

Juice Filming Charging Attacks

An interesting class of attacks that leverages the threat model considered in this survey is the
JFC attack [492]. These attacks rely onMHL technology, which activates automatically when
an Android device or iPhone is connected to a projector via the USB cable. In other words,
the JFC attack exploits the MHL standard to turn the USB cable into a video cable (VGA or
HDMI). As a result, the end device’s screen and user inputs can be obtained by the host device
(e.g., modified malicious charger) via the USB data connection. Despite not relying on a side-
channel, the JFC attack is included in this survey since it is transparent to the user, unaware of
the activeMHLconnection between the end device and host device. As reported byMeng et al.
in [492], when an end device is connected to a malicious charger that enables MHL, the latter
one can record the user’s input (i.e., taps on a touch-screen) and screen activity. To make this
attack even more dangerous, JFC cannot be detected by anti-malware software, and it works
on both iOS and Android end devices.

An extension of the JFC attack proposes implementing a prototype system called Juice-
Caster [454]. JuiceCaster automatically segments the video feed fromMHL into images, and
it applies the Optical Character Recognition (OCR) technology to extract private textual in-
formation. JuiceCaster can automatically start when a new end device is detected, record the
video in MP4 format, and store it in a folder. To further enhance the efficacy of JFC attacks,
Meng et al. also extend JuiceCaster system in [496] to automatically identify meaningful pri-
vate information via machine learning techniques from a long-lasting video feed.

The effectiveness of JFC attacks is also assessed in three real-world environments [455]: a
company with more than two hundred employees, a university, and a business hall. Deploying
modified chargers under these settings, the authors collected personal user information, includ-
ing user keys, email accounts, and social network chat logs. These results further confirm that
the JFC attack seriously threatens user privacy.
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4.1.5 Countermeasures

Through the years, researchers also investigated methods to counter the leakage of private in-
formation via side-channels. In most cases, the authors of an attack also propose possible soft-
ware or hardware countermeasures against such an attack. In addition to that, side-channel
analyses can also be relied on to detect ordinary attacks on USB. Such attacks generate a re-
source usage overhead (e.g., CPU usage, data transfer) on host or end devices, which produces
side-channels. In this subsection, we report countermeasures against side-channels attacks or
countermeasures that rely on side-channels for detecting ongoing attacks via USB interfaces.
Table 4.2 summarizes the countermeasures in the state-of-the-art. In what follows, we catego-
rize the countermeasures according to the type of side-channel involved.

Countering EM Emissions

Vuagnoux et al. [494] propose different countermeasures to cope with keystrokes inference
attacks, which can also be valid against other attacks relying on EM emissions side-channels.
As a first solution, the authors suggest properly shielding keyboards to reduce electromagnetic
radiationwithout affecting their normal function significantly. However, this solution dramat-
ically increases production costs since all internal components of a keyboard and cable have to
be shielded and the host device. Therefore, a second solution is to secure the surrounding area
around a vulnerable keyboard. This can be achieved by shielding the room (which may still
be costly) or establishing a physically secure perimeter (e.g., one hundred meters). Both these
solutions would stop attackers from observing EM emissions. Thus both these solutions can
also counter other EM emanations-based attacks. A third solution is to input high-frequency
filtered matrix signals [504] into the keyboard, which limits the electromagnetic radiation to a
certain extent. However, with this solution in place, electromagnetic emanations are noisy but
still present, and they can further be analyzed with the aid of machine learning. As a fourth
solution, using two-ways encryption for communication is a possible software-based counter-
measure to protect user data from EM emissions side-channel attacks. The attacker will not
retrieve the encrypted communication content even if EM emissions are still measurable. In
the specific case in [494], keyboards’ communication chips should be modified to implement
encryption. However, encryption alone may not be enough: 1) weak encryption schemes can
be broken; 2) an attacker can still leverage other side-channels information (e.g., keystrokes
timing) to profile the user behavior. It is worth noticing that users can use only the second
countermeasure, despite not always being possible, which can be implemented by users while
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Year Work Attack Countermeasure Principle Disadvantages Advantages
2009 Vuagnoux [494] EM emission on keyboards Shield cables/key-

board
Reduce EM emanations High cost Effective

Create a safe space Designation of signal
shielded areas

Valid only within a certain range Low cost,effective

Encrypted USB com-
munication

Modified keyboard chip Encryption may be cracked Improves communication security

High frequency
filtered matrix signal

Limiting EM emission Does not eliminate EM emission Improves security

2015 Meng [492] JFC attack USB Condom InhibitUSBdata transfer Disrupting USB data transfer Effective
System Alerts Reminder to users Burden on users None
Special unlocking
method

No password input on
screen

May hinder usability Input undisclosed

Own the charger Avoid unfamiliar charg-
ers

Not always practical Effective

2017 Su [479] Crosstalk leakage Session key encryp-
tion

Increase confidentiality
level

May be cracked No additional Hw

Dedicated 5V power
supply

Decouple data and
power USB wires

High cost, special hardware Effective

2017* Jiang [505],
Meng [455, 506]

JFC attack Detecting CPU
utilization

JFC attack increases
CPU usage

Hinders user experience Highly targeted

2019 Farhi [507] Malboard side-channel detec-
tion module

Detection via three side-
channels

Additional hardware required Effective

2020 Barankova [508] Keyloggers USB Keylogger detec-
tion

Measure keyboard
energy consumption

Additional hardware required Effective

2020 Ibrahim [509] Malicious end devices Detection of deceitful
end devices

EM emissions finger-
printing

Additional hardware required High accuracy,Zero false positives

2020 Matovu [510] Activity inference Randomize current
draw

Change load resistors Additional hardware required Effective

Random usage patterns
via service

May affect user experience Effective

2021 Cronin [502] Charger-Surfing Randomize keyboard
positions

Adding burden to deci-
phering

Hinder usability Position not predictable

Delete input anima-
tion

user input cannot be cap-
tured

Feedbackmissing Effective

Increased noise Input difficult to capture Noise can be filtered Low cost
Eliminate leakage
channels

Low-pass filter into
charging circuit

Additional hardware required Effective

Table 4.2: Proposed countermeasures against Side‐channel attacks on USB powered devices by year (* year of the first original proposal).
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the other ones have to be implemented by the manufacturers (i.e., they need special hardware
modules). EM emission side-channel is not only used to carry out attacks but also to detect
malicious end devices disguised as USB flash drives (e.g., Rubber Ducky, Keylogger). Ibrahim
et al. in [509] assess that end devices generate unique EM emissions during boot operation
when connected to a host device via USB. The authors leverage this observation to propose
MAGNETO, a framework that fingerprints the EM emissions from USB devices (i.e., USB
flash drives). When an end device is connected via USB, MAGNETO can measure the EM
emissions of such device and identify its manufacturer andmodel with high accuracy and zero
false positives. By continuously monitoring EM emissions, the authors can also detect poten-
tially malicious activity initiated by USB devices even after the boot process.

Electric Side-Channels

Several works proposemethods to protect devices from side-channel attacks that exploit power
consumption. To cope with Charger-Surfing and other similar side-channel attacks, Cronin
et al. in [502] propose both software- and hardware-based solutions that take into account
the specific characteristics of such attacks. The PSC produced by button animations can be
addressed with the first proposed software-based countermeasure: randomizing the key posi-
tions on touchscreens. This kind of countermeasure has already been widely adopted in many
financial savings applications. However, applying this method to lock screen password/PIN
negatively affects the usability of end devices. Users would have to assess the new key positions
every time they are randomized,which is inconvenient in time-critical and repetitive operations,
such as screen unlocking and small payment authorizations. A second possible software-based
countermeasure is to remove the button input animations. However, this solution would not
provide feedback to the user on whether the button was correctly pressed. A third software-
based countermeasure consists of addingnoise on the screen, for example, byusing an animated
background. Yet, this solution has two downsides: 1) animated backgrounds can only be used
on the lock or home screens, so they cannot secure the use of on-screen keyboards (e.g., messag-
ing); 2) if the animation is predictable (e.g., in a loop), the generated noise can be filtered out
with enough samples. As a hardware-based countermeasure, the authors propose to mitigate
the power leakage by inserting a low-pass filter into the charging circuit. This solution filters
out the frequencies used to carry out Charger-Surfing attacks.

Matovu et al. in [510] proposed one software and one hardware solution to counter PSC
attacks for smartphones. The hardware countermeasure consists of a scrambler unit to be de-
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ployed on the host side. Such a countermeasure relies on amicrocontroller randomly switching
several load resistors to variate the current draw, thus masking the signal properties. Similarly,
the software countermeasure perturbs the current draw by the user activities via a background
service that generates random patterns of CPU and memory resources usage. The authors
prove that both solutions effectively counter user activity inference attacks.

Su et al. [479] propose one software-based and one hardware-based countermeasure against
crosstalk leakage attacks. On the software side, the authors argue that session encryption (e.g.,
the Diffie-Hellman key exchange protocol) can effectively mitigate such attacks. However, an
excessively lasting session may give enough time to attackers to break the encryption. On the
hardware side, a solution that eliminates crosstalk leakage onUSB hubs consists of two compo-
nents: 1) optically decouple the USB data lines; and 2) deploy a dedicated 5V power supply for
each downstream port. An alternative effective but less expensive solution is to decouple the
USB power and data lines using an LC low-pass filter in a low-dropout (LDO) voltage regula-
tor.

Farhi et al. [507] propose a Malboard: a malicious hardware USB device. Such a device
can automatically inject keystrokes (e.g., malicious commands) with a target user’s behavioral
characteristics into a host device. Bymimicking the user’s behavior, Malboard can elude detec-
tion mechanisms that continuously verify the user’s identity via her keystrokes. The authors
also propose a method to detect Malboard, which leverages three side-channels from the key-
board device: power consumption, sound, and the user’s reaction to input errors. Thismethod
achieves perfect detection accuracy for all three side-channels.

Barankova et al. in [508] develop a method to identify the presence of keyloggers hidden in-
side keyboards, keypads, or cables. The authors propose an effective countermeasure based on
the electric voltage-current side-channels onUSB interfaces to identify these malicious devices.

Countermeasures against Juice Filming Charging Attack

Together with the first proposal of the JFC attack in [492], Meng et al. also suggest some
methods to defend against such an attack. On the operating system side, the user should be
promptedwith a notification regarding possible privacy threats fromutilizing unfamiliar charg-
ing devices. On the USB interface side, users can rely on secure hardware to prevent USB data
transfer (e.g., USB Condom) to deactivate theMHL connection. However, this would under-
mine other USB functionalities. To prevent secret information from being disclosed viaMHL
(e.g., PIN code, unlocking pattern), the authors suggest relying on unlockingmethods that are
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not recorded on the screen, such as fingerprint, iris recognition, and face recognition. On the
user side, only using personal chargers is a simple and effective solution but also not always
convenient. However, most of these methods either transfer the burden of security on the user
or disrupt the USB standard’s functionality.

To cope with these inconvenient, further research on JFC attack [505, 511] assess that such
attack increases theCPU andGraphics ProcessingUnit (GPU) usage on end devices, thus their
energy consumption. In [505], Jiang et al. first investigated the energy consumption caused by
JFC attacks by surveying more than 500 participants. However, the increased CPU usage by
JFC attack has minimal effect on the user experience, being imperceptible by the average user.
Based on these findings,Meng et al. in [511] further studied the impact of JFC attacks on both
CPUs andGPUs usage to develop JFCGuard. This securitymechanismmonitors and analyzes
CPU and GPU usage during the end device’s charging.
JFCGuard is further improved to detect JFC attacks by relying on CPU usage only (not

on GPU usage) [506]. First, the authors identify unique patterns from users while charging
their end devices by investigating the habits of more than a hundred mobile device users from
China andDenmark. Then, amachine learning-based detector (i.e., SVM) identifies anomalies
by monitoring CPU usage. Detecting an anomaly will trigger an alert and notify the user of a
potential JFC attack, suggesting taking some actions (e.g., stopping charging).

4.1.6 Tools for Side-ChannelMeasurements

The surveyed works rely on different tools to measure side-channels under our threat model.
Most of these works provide a detailed description of such tools and experimental settings. To
foster new researchers approaching side-channel analysis, we list and discuss the various ap-
proaches in the state-of-the-art. In Table 4.3, we summarize the hardware and software tools
categorized by side-channel.

Electromagnetic Emissions

The research that considers EM emissions relies on several solutions for sensing/probing and
data acquisition. Considering keystroke inference attacks, Vuaxgnox et al. in [494] use a Uni-
versal Software Radio Peripheral (USRP, which ranges from Direct Current to 2.9GHz, 64M
Samples per second, 12 bits resolution) and GNURadio for wide-band spectrum analysis and
process modulations. To capture a wide-band signal, the authors rely on Analog-to-Digital
Converters (ADC) that acquire EM emanations between 25MHz and 300MHz via an
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Side-channel Work Use Tool Function &Model Type Notes

EM
emissions

Vuagnoux [494] Attack

Data acq. USRP SDR Hw Range DC - 2.9GHz, 64MSps, 12bits
Analysis GNURadio Sw Signal processing and modulation
Probe Antenna Hw Obtain the raw signal
Data acq. Tektronix TDS5104

O-scope
Hw Assess the triggering signal, 5GSps

Sim [499] Attack Probe Near-field Hw Measure EM emanation fromUSB cable of keyboard
Data acq. O-scope Hw Convert analog signal to digital data

Genkin [498] Attack
Probe Coil Hw Collect EM emissions
Data acq. Creative sound card Hw Amplify and analyze signals

Belgarric [497] Attack
Probe Magnetic probe Hw Measure the magnetic field of end device
Probe Electrical probe Hw Measure trigger from on D+ wire of USB cable
Data acq. O-scope Hw Convert analog signal to digital data

Ibrahim [509] Counterm.
Probe Aaronia PBS2 EMC Hw 25mmmagnetic field probe PBS-H3
Data acq. HackRF One SDR Hw Convert analog signal to digital, Low-cost
Data acq. Rohde&Schwarz FSW8

Spectrum Analyzer
Hw Convert analog signal to digital, High-cost

Electric
voltage/
current

Spolaor [458, 485] Attack

Data acq. Monsoon powermeter Hw Measuring electric current on USB cable
Data acq. PowerSnitch Sw Encodes information into CPU bursts on the end device
Sensor ADS712 low-current Hw Measure on GNDwire of USB cable, Hal sensor
Data acq. Arduino Nano board Hw ATmega328 micro controller

Yang [500, 501] Attack

Power Rigol DP832 Hw Supply power to the end device
Bypass 200Ω resistor Hw Connect D+ and D- wires on USB cable
Probe 0.1Ω resistor Hw Shunt resistor on GNDwire of USB cable
Data acq. NI USB-6211 DAQ Hw Measure voltage on the shunt resistor

Barankova [508] Counterm. Sensor INA219 current shunt Hw Measure on 5V wire on USB cable, I2C bus
Data acq. Raspberry Pi 3 Hw Get data via GPIO, Automated inspection

Cronin [502] Attack
Probe 0.3Ω resistor Hw Shunt resistor on GNDwire of USB cable
Sensor AD7813 ADC Hw Analogic to ditital converter, 62.5KSps, 10bit
Data acq. Espressif ESP32 Hw Tensilica Extensa LX6, WiFi & BT

Genkin [495] Attack Amplifier Bruel&Kjaer 5935 Hw Provide 40db gain to the signal
Data acq. NIMyDAQ Hw Measure voltage at USB power wires, 16bits, 200KSps

Su [479] Attack Data acq. Agilent MSO6104A
O-scope

Hw Convert analog signal to digital data, 4GSps

Probe Agilent 10073C Hw Passive, measure voltage, up to 500MHz
Counterm. Circuit LC filter & LDO Hw Low-pass filter, decouple USB power and data wires

Genkin [498] Attack Probe 0.33Ω resistor Hw Shunt resistor on GNDwire of USB cable
Data acq. Creative sound card Hw Measure the voltage from shunt resistor

MHL
standard Meng

[492, 454, 496,
455]

Attack Data acq. USB to VGA/HDMI Hw Embedded into a USB charger

Processor
usage Jiang [505],

Meng [455, 506]
Counterm. Data acq. App to monitor

CPU/GPU usage
Sw Detect ongoing JFC attacks

Table 4.3: List of Hardware (Hw) and Software (Sw) tools used for side‐channel measurements.
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antenna (i.e., bi-conical antenna, 50Ω VHA 9103 Dipol Balun) and an oscilloscope (i.e.,
Tektronix TDS5104). Continuously capturing a wide-band signal is not feasible due to the
limited amount of memory of the oscilloscope. To cope with this shortcoming, the authors
use an ADC to identify specific triggers (i.e., peaks) and collect only the interesting portions
of the signal. In their experimental settings, Sim et al. in [499] use a near-field probe and an
oscilloscope and measure and acquire the EM emitted from the USB cable of keyboards.

Attacks that aim to infer cryptographic keys also rely on similar experimental settings: a
probe to sense EMemission and a data acquisition device. In particular, Belgarric et al. in [497]
also use an oscilloscope for data acquisition from amagnetic probe placed near the end device’s
processor. To detect triggers from ongoing cryptographic processes, the authors rely on an
electrical probe connected to the D+ wire of the USB cable. In the attack in [498], Genkin et
al. propose two threat models: one that senses EM emissions via a coil and one that measures
the electric current via a shunt resistor on the GNDwire of USB cable. In both scenarios, the
authors propose an inexpensive Creative sound card as a device for signal amplification and
data acquisition.

To identify fake USB flash drives, Ibrahim et al. in [509] profile end devices by measuring
their EM emissions when connected to a host device’s USB port. In their experiments, the
authors measure such emissions with a magnetic probe (i.e., Aaronia PBS2 EMC PBS-H3).
For the data acquisition from this probe, the authors propose a low-costHackRFOne SDR or
a more reliable but expensive Rohde&Schwarz FSW8 signal and spectrum analyzer.

Electric Voltage/Current

Considering the side-channels related to electric properties, we can distinguish between two
typical approaches:

• Current measurement on a circuit closed by a shunt resistor (i.e., voltage drop) or Hall-
effect sensor (i.e., on the 5v or GNDwires of a USB cable).

• Voltage variance measurement from an open circuit (e.g., from 5v and GND of a USB
port);

Yang et al. in [500, 501] andCronin et al. in [502] bothmeasure the electric current flowing
through a shunt resistor (i.e., of 0.1Ω and 0.33Ω, respectively) on the GND wire of a USB
cable. While the former method uses a high-precision data acquisition tool (i.e., National In-
struments USB-6211 DAQ) to measure the voltage drop on the shunt, the latter relies on a
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high-speed analog to digital converter (i.e., AD7813) connected to a dual-core microcontroller
board (one core for measurements and one core for wireless data transmission). It is worth
noticing that, to allow charging currents above 500mA, the authors in [500, 501] connect the
D+ andD- wires of the USB cable with a 200Ω resistor. In their second threat model, Genkin
et al. in [498] also consider a shunt resistor. Still, they acquire the data via a Creative Tracker
Pre sound card, which amplifies the voltage drop signal (60dB gain) and converts it to digital
data (at 192K samples per second).

In the preliminary version of their covert channel attack, Spolaor et al. in [458] develop
the PowerSnitch app for Android devices to encode the target information in CPU bursts.
The authors measure the electric current overhead produced by such bursts with a Monsoon
power monitor1. Since this device is very precise but quite expensive (around 800 USD), in
the improved version of the attack in [485], the authors propose a low-cost solution (about
20 USD) composed of an ADS712 low-current Hal-effect-based sensor and an Arduino nano
board. Since such a solution is also designed to be compact, it can fit into power banks and
USB chargers.

The countermeasure against keyloggers proposed by Barankova et al. in [508] measures the
electric current with a shunt resistor on the USB 5v wire used by a keyboard. To measure
such current, the authors rely on an INA219 current sensor that provides the data via an I2C
communication protocol to a Raspberry Pi 3.

To assess the feasibility of a crosstalk leakage attack in [479], the voltage variance is measured
via a passive probe (i.e., Agilent 10073C) on a USB port from the same USB hub of the target
one. Subsequently, the authors use an oscilloscope (i.e., Agilent MSO610A with 4G samples
per second) to acquire themeasurements fromsuch aprobe. As a countermeasure to this attack,
the authors implement an improved USB condom that embeds an LC low-pass filter (with a
ferrite bead inductance of 27 NH) and a low-drop voltage regulator (i.e., LDFM50).

To correctly measure the voltage variance for extracting cryptographic keys, Genkin et al.
in [495] attach a probe at the power wires at the far-end of a cable (e.g., USB, VGA, and Eth-
ernet). Such voltage variance is first amplified with a high-input-impedance low-noise ampli-
fier (i.e., a customized Bruel&Kjaer 5935 with 40dB gain), high-pass filtered at 10 kHz, and
thenmeasured by a voltmeter (i.e., National InstrumentsMyDAQ, 16 bits resolution, and 200
KSps).

1High-voltage Monsoon power monitor - https://www.msoon.com/high-voltage-power-monitor
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Enabling andDetecting JFC attacks

JuiceFilmingCharging attackneeds to enableMHLviamicroUSBbymodifying aUSBcharger.
In particular, Meng et al. in [492, 454, 496, 455] use an HDMI/VGA to USB converter(e.g.
VGA2USB2) to acquire the video feed from the victim Android and iOS end devices. Since
an ongoing JFC attack generates a not negligible processor usage, an app installed on the end
device [505, 455, 506] can monitor the CPU/GPU usage to detect such attack via machine
learning techniques.

4.1.7 Takeaway on Power-Side Channel

We can identify some trends and common approaches from the analysis of the work surveyed.
In the first instance, we can notice that researchers focused their efforts on electric power and
electromagnetic emissions side-channels to carry out their attacks and develop countermea-
sures. While the former side-channel needs probes to be physically attached or modify a USB
port, cable, or charger (i.e., shunt resistor for electric current and probe on twoUSBwires), the
latter can be measured wirelessly with magnetic or near-field probes at a short middle distance
from the target device. In both cases, such attacks are passive. Therefore they are challenging
to be detected via software countermeasures.

The countermeasures proposed in the state-of-the-art mostly focus on preventing specific
traditional and side-channel attacks. Unfortunately, some countermeasures may be costly or
inhibit useful functionalities. For example, shielding vulnerable hosts and end devices can be
expensive unless done by manufacturers’ design. Also, monitoring processes to detect a spe-
cific attack (e.g., JFC attack) can be computationally expensive and hinder user experience. As
another example, a USB condom prevents exploits and malware attacks by physically cutting
off the data communication (i.e., D+ and D- wires) and stops legitimate data transfer and not
protecting against PSC attacks.

In general, users can protect their host, and end devices can be protected from these attacks
in two ways. The first solution consists of being aware of such threats and adopt security-
oriented behaviors. In particular, avoid using untrusted hardware, public charging stations,
power banks for rent, or not owned USB chargers. If this cannot be avoided, the second so-
lution is to use hardware-based countermeasures. To mitigate electric PSC, users can use fre-
quency filters (e.g., LC filter and LDO) on the USB power wires or decoupled power sources
(e.g., on USB hubs). Avoiding EM emissions can be particularly challenging, and it requires

2VGA2USB - https://www.epiphan.com/products/vga2usb/
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joined efforts frommanufactures and users. On the one hand, manufacturers should produce
hardware secure by design and properly shielded to prevent or mitigate EM leakages. On the
other hand, users canmake sure to use such hardware and software that enables encryptedUSB
communications. However, these solutions may be costly (additional/customized devices) or
hard to implement (specialized communication protocols).
We also noticed that themost used analysismethods are signal processing andmachine learn-

ing techniques. Researchers apply the signal processing techniquewhen they know the specific
protocol or communication they are targeting (e.g., serial communication). In some cases, sig-
nal processing relies on additional triggers that determine when interesting information can
be observed. On the other hand, machine learning techniques are leveraged when the attack
requires discovering unknown patterns or recognizing previously seen patterns (classification)
produced by a target entity (e.g., web page, process, keystroke).
We also identify several unexplored aspects of our threat model that may lead to possible fu-

ture research directions. First, the twomain physical side-channels (i.e., electric power and EM
emissions) may be leveraged to infer additional information about the users and end devices.
For example, a user can be uniquely identified from the side-channel leaked by the set of back-
ground processes running on an end device. Second, other physical side-channels (e.g., acous-
tic, temperature, timing) and their combination with other ones (i.e., electric power and EM
emission) are only marginally investigated for USB keyboard devices. Future research could in-
vestigate the feasibility of carrying out the attacks or improving USB communications security
via such side-channels. Third, to the best of our knowledge, side-channels from IoT devices
powered via USB have not been investigated yet.

Another promising research direction is the investigation of emerging charging technolo-
gies’ side-channels, among which wireless charging technology seems to be the most promis-
ing [512]. Manufacturers of mobile devices (e.g., Huawei, Xiaomi, Apple) have made this
technology a selling point for their flagship products in recent years [513]. While widely used
wireless charging devices adhere toQi standard [514], Apple invested efforts inAirPower [515],
a wireless technology that charges devices of different power. Another similar technology, Xi-
aomi’s spaced charging technology Air Charge [516], has achieved long-range charging of 5W
for a single device within a few meters radius. These technologies project power beams to end
devices via electromagnetic induction and mmWaves, and they do not involve data transmis-
sion. Since wireless charging technologies have an individual power source, a possible side-
channel attack could monitor end devices’ real-time position from a single location.
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4.2 USB Power Fingerprint

The default trust on USB ports on a host device (e.g., workstation, public charging station,
powerbank) canbe exploitedbyhackers to exfiltrate private information fromUSBdevices [517],
such as smartphones, tablets, and flash drives (i.e., host-to-guest attack). An attacker can dis-
guise a malicious USB peripheral [518, 519] (i.e., guest-to-host attack) as a legitimate one to in-
ject harmful commands (BadUSB,Mousejack, Rubber Ducky), deploymalware [3, 474], steal
private user information (OMGCable, BadUSB2.0), spy on a user (tiny microphone/camera,
cottonmouth, GSM spy bug), or destroy host’s hardware (USBKill). Hence, malicious USB
peripherals can cause severe harm to a host device if not promptly identified and blocked.
In recent years, several research works have investigated the feasibility of fingerprinting USB

devices to protect host devices by relying on Physical Unclonable Functionss (PUFs) [520],
or side-channels such as timing [521, 522] and electromagnetic emissions [509]. To the best
of our knowledge, no work in the literature considers PSC information to fingerprint USB
peripherals.

ThreatModel

This study investigates the feasibility of inferring coarse- and fine-grained information about a
USB peripheral from its power traces measured at a USB port. Our system aims to protect the
host device by identifying unauthorized or malicious USB peripherals, thus detecting attacks
such as malware injection or private information exfiltration. In what follows, we describe
possible use case scenarios, the attacker capabilities, and the PowerID preparation.
Use Case Scenarios. We conceive the threat model by considering three use case scenarios
described in the following, where users and system administrators can rely on PowerID to en-
hance the security of the USB ecosystem.
1. End-user PersonalProtection: Aside frommalware-infected storage drives, dangerous threats
to the user security and privacy (e.g., data exfiltration, command injection, credential theft) are
perpetrated via USB attack tools disguised as flash drives or even concealed within USB cables.
To protect from these attacks, users may want to assess the legitimacy of a USB peripheral.
Hence, users can deploy PowerID on aUSB port to build power trace-based fingerprints for all
their legitimate peripherals creating a whitelist of allowed personal devices.
2. Organization Assets Protection: An organization has a strict policy on the peripherals that
its members are allowed to use. For instance, an organization does not allow storage drives to
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prevent the theft of intellectual property orWiFi adapters thatmay expose its network to exter-
nal threats. Hence, an organization’s security team may enforce access control on its worksta-
tions to avoid potential attacks or human errors in connecting rogue USB peripherals. To this
end, an organization can deploy PowerID to allow its members to connect only USB periph-
erals with pre-approved characteristics (e.g., type, model) or permitted actions (e.g., read-only)
while alerting the security team whether anomalous power traces are detected.

3. Infrastructure Access Control Enforcement: In a critical infrastructure scenario (e.g., nuclear
plants, refineries, or water distribution systems), stringent access control rules regulate access
to field devices (e.g., Programmable Logic Controllers, and control centers). Tampering with
an individual field device can lead to catastrophic consequences for both the environment and
the population surrounding the infrastructure. For example, Stuxnet [3] was an example of
malware delivered to critical infrastructure via an infectedUSB storage drive. As in the previous
use case, PowerID can enforce the list of authorizedUSBperipherals allowed to connect to field
devices. To build this list, the security team trains PowerID on the power trace fingerprinting
only to allow a set of specific peripherals and block malicious connection attempts.

Attacker Capabilities. We assume an attacker aims to compromise the host device of a user,
an organization, or a critical infrastructure with a malicious USB peripheral. The attacker’s
objective may include delivering malware, exfiltrating sensitive information, or corrupting the
host device. Therefore, the attacker replaces the legitimateUSBperipheralwith a compromised
one (with the same appearance but concealing an attack tool) inducing the user to connect it to
the host. Moreover, the attacker may obtain physical access to a user’s host device (e.g., lunch-
time attack) and attempt to connect its attack tool to the USB port.

PowerID Preparation. We assume that the adversary cannot interfere with power traces
collection (e.g., sensor tampering) or compromise the model training phase (e.g., poisoning
attack [523]) since such processes are crucial in the PowerID preparation. To obtain optimal
fingerprints, we assume that the hardware settings during these processes are the same (or sim-
ilar) as the ones of the final deployment (i.e., testing phase). We believe this is a reasonable
assumption since organizations typically purchase many identical host devices with the same
hardware components. PowerID framework relies on an external standalone device to collect
the power traces from an electric current sensor between the host and the peripheral under test
(more details in subsection 4.2.1). Traces processing and analysis can be done locally on such
a device or remotely on a server (i.e., such a device streams the collected traces via networking
technologies).
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Goals of the Analyses

In our analyses, we assess whether we can infer information about a USB peripheral from the
power traces analysis. In particular, the objective of our analyses is to answer the following
questions:

1⃝ Type: Can we recognize the type of a USB peripheral during its states Boot andOn?

2⃝ Model: Can we distinguish the specificmodel of a peripheral during its states Boot and
On?

3⃝ Device: Given peripherals of the same model, can we assess the identity of a specific
device?

4⃝ Action: Considering a peripheral inOn state, can we recognize an ongoing action given
a device type? E.g., reading from an flash storage drive (Fd), downloading from a WiFi
adapter.

5⃝ Device via action: Given an ongoing action for a type of peripheral, can we identify a
specific device?

6⃝ Bad vs. Good: Can we discriminate betweenmalicious USB-based tools and legitimate
peripherals?

4.2.1 PowerID SystemDesign

In this subsection, we present our system and describe its components. In Figure 4.5, we pro-
vide an overview of PowerID. As a preliminary parameter, the inference target 1 defines the
specific information about the connected peripheral as the target of the inference. Excluding
the power traces acquisition 2, such parameter influences all the other components 3-6 and
outcome 7 of our system. It is worth noticing that we can use the same power trace as input
of several instances of our system with different inference targets. In what follows, we describe
in detail the components of PowerID system.

Power Traces Acquisition

This component acquires the power traces of a connected peripheral via a sensor deployed be-
tween the port and such a peripheral (step 2). Such a sensor provides reliable measurements
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Figure 4.5: System design.

of the electric current supplied by the port. The resolution and sampling rate of a sensor de-
termines the quality of power traces acquired as well as their size. While a low resolution and
sampling rate negatively affect the informativeness of a power trace, a high sampling rate re-
quires more computational resources and time for processing. For this reason, it is important
to find a trade-off between trace quality and the required processing and resources available.
A sensor needs to be calibrated to provide readings within zero and maximum current pro-
vided by the considered USB port safely under the full-scale value to avoid saturation. As an
additional requirement, the sensor deployment should not affect the performance of the pe-
ripheral. With the above requirements inmind, we consider an ADC as a sensor that measures
current in terms of voltage drop on a shunt resistor (see subsection 4.2.2). Finally, this compo-
nent delivers the power traces for further processing. In Figure 4.6 we report some examples of
power traces collected from our experiments.

Traces Processing

We process the acquired power traces to obtain viable data for a machine learning-basedmodel.
The goal of this process is two-fold: preserving the information within power traces and iden-
tifying the current state of the peripheral. To attain this goal, we apply three methods: trace
segmentation 3, state identification 4, and feature engineering 5. It is worth noticing that we
apply the same process to obtain the datasets for both themodel training and testing. However,
while the state of a peripheral is known in the training data, during the testing, we identify the
state with step 4.
Traces Segmentation. In this step, we divide the power traces into segments by applying a
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Figure 4.6: Example of power traces of states Boot and On for different devices.

sliding window. Such a method considers two parameters: the window duration and overlap
ratio. In selecting values for these parameters, we consider several insights obtained by the ob-
servations of the power traces of USB peripherals. Since some activities span for a brief time, a
window with a long duration may produce segments that include an excessive amount of data
unrelated to a state or action. Hence, such segments may not contain enough meaningful in-
formation for a considered inference target. The overlap allows us to obtainmore segments for
training our models and make them more robust to noise and avoid overfitting. However, a
big overlap can produce excessive segments and information redundancy, leading to high com-
putational overhead in the processing phase. From the observation of the obtained traces, we
set a duration window of 1 second with a 75% overlap.

State Identification. In our system, we focus on the states Boot and On of a USB peripheral.
The analysis of segments from stateBoot allows us to early achieve the inference target 1 within
a few seconds from the connection of a peripheral to the monitored USB port. PowerID also
relies on stateOn segments to infer all the considered target information, especially the ones re-
lated to the actions on a peripheral (i.e., 4⃝ and 5⃝). Due to low variability, we do not consider
the power traces during the state Sleep. While identifying the starting time of a stateBoot is triv-
ial (i.e., change between open to close circuit), the identification of the transition time between
states Sleep and On requires a refined approach since different peripherals produce heteroge-
neous power consumption in these states. Hence, we need a general approach independent of
the considered peripheral (rather than setting a specific threshold for eachUSB peripheral type
and model). To do this, we apply on groups of four consecutive segments a Changing Point
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Detection algorithm based on cumulative sum [524]. In particular, we consider a valid chang-
ing point if: (1) the next one does not occur within less than 250ms, (2) there is at least 25%
of value increase. We consider as the start of a stateOn the changing point identified by at least
three segments among the four in the same group.

Features Engineering. We consider the segment of a power trace as a univariate time-series,
i.e., sequential single data points over a constant time increment. Therefore, we apply the fea-
ture extraction method for time series provided by the tsfresh libraries [434]. Such libraries
allow the extraction of 740 features from each segment, such as statistical features (e.g., mean,
standarddeviation, variance), linear trend, coefficients of Fast Fourier, andContinuousWavelet
Transform. The feature extraction depends on the inference target 1 and differs between the
model training and testing phases. During the training phase, we select the kmost significant
features that effectively characterize the inference target. As a general approach, we aim tomin-
imize the number k for two main reasons: (1) to not incur the curse of dimensionality and (2)
to reduce the time and computational resources required by the feature extraction process. In
the testing phase, we only extract the kmeaningful features for the inference target and the ones
required by regression for stateOn identification.

SelectedModel

For each inference target 1 considered, we train a classification model on the selected features
for such a target. Upon the preliminary analyses, we select the Random Forest classifier as it
achieves a higher performance among the other considered learners. While side-channel analy-
ses via deep learning techniques [502, 525, 521, 526] can automate the feature selectionprocess,
the training of a deep neural network requires a huge number of examples and high computa-
tional and time resources due to the repeated training (i.e., epochs) for weights and parameters
optimization. By performing the classification via non-deep learning-based techniques, we can
pre-select the important features, thus reducing the complexity of the problem (i.e., the num-
ber of features to extract from the time series) and, consequently, the model size in memory.
In the testing phase, we load the pre-trained model (step 6) related to the inference target and
test the previously unseen power trace segments. As a result of the classification, the model
provides in the output the inferred information 7.
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4.2.2 Experimental Setup

In this subsection, we describe the implementation details of the power traces collection frame-
work in subsection 4.2.2 and the dataset collection and processing setup in subsection 4.2.2.

Power Traces Collection Framework

We design and implement a framework to collect the power traces for our analyses. In Fig-
ure 4.7a, we overview the logical components of our framework1, while in Figure 4.7bwe show
our experimental setup.
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(a) Logical schema of the framework. (b) Equipment setup.

Figure 4.7: Framework for power traces collection.

Power Traces Acquisition. In our experimental framework, we measure the electric current
supplied by a USB port to a peripheral in terms of the voltage at the extremities of a shunt
resistor (i.e., 0.01Ω) in a series of theGND (ground)wire of aUSB extender cable. Wemeasure
such voltage with the ADC of a National Instruments USB-6210 Data AcQuisition (DAQ)
and acquire the measurements via DAQExpress tool (depicted purple in Figure 4.7a). Despite
such ADC can acquire up to 125ksps (samples per second), we set the sampling rate to 10ksps
to achieve a faster feature extraction.
Actions Controller. For our analyses, collected power traces for states Boot, On, and Sleep
of the USB peripherals. To automatize this process, we rely on two components: Plug in/out
controller for Boot and Action executor forOn and Sleep.

From the hardware perspective, thePlug-in/Out controller uses a series of electronic switches
driven by a micro-controller (i.e., Arduino Nano). Data and power wires of the USB cable

1For the sake of simplicity, we report a USB 2.0 pinout while our experimental setup fully supports the USB
3.1 standard
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Type Action Description

Flash Drive /
Portable
Hard Drive

Write Transfer files from host to guest
In-Write Copy files locally guest to guest
Open Open a file inside guest device
Read Transfer files from guest to host
Delete Delete files from guest device

WiFi
Adapter

Connect Connect to a WiFi network
Download Download files via WiFi network
Upload Upload files via WiFi network
Disconnect Disconnect from aWiFi network

Bluetooth Active Transfer files via Bluetooth
Microphone Active Audio recording from the guest
Webcam Active Video acquisition from the guest
Mouse Active User activity (click, move, scroll)
Keyboard Active A user typing textual contents

Table 4.4: List of considered actions for device types.

are connected to an electronic switch. From a software perspective, we can open or close the
switches by sending the related command to themicro-controller. In particular, we implement
such a function to replicate the insertion of a USB peripheral into a USB port (i.e., first con-
necting the power and then the data wires), thus triggering the state Boot.

Once the peripheral is connected to the host, the Action executor performs a list of actions
(i.e., stateOn) according to the type of peripheral currently under test. In Table 4.4, we report
the list of considered actions for each peripheral type. For actions based on file transfer (e.g.,
Write, Download), the action executor involves a file randomly selected fromapool of fileswith
assorted sizes (i.e., from 10MB to 200MB).

To obtain a reliable ground truth for our data, the scripts of the Action controller log the
timestamp for each plugin/out and action. To assess whether a script is properly triggered and
action on the peripheral, we also monitor the USB data traffic via USB sniffer (i.e., USBPcap
collector).

Dataset Collection and Analyses Setup

We collected the power traces of the USB peripherals listed in Table 4.5. In total, we collected
8 different device types, 35 different device models and 82 unique devices. In total, we collect
more than 6k traces for state Boot (i.e., around 46k segments) and more than 14k traces for
state On (i.e., around 108k segments with AR ≥ 0.5). We obtain the power traces from the
USB 3.1 ports of a laptop Lenovo Legion AMD Ryzen 7 5800H 16-core CPU 3.2GHz with
16GB RAM runningMSWindows 10 64-bit.

For the power traces processing and model training, we use a Desktop PC AMD Ryzen 9
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Table 4.5: List of the USB peripherals involved in our analyses (# indicates the number of individual peripherals)

.

Type ID Brand Model USB v. #

Flash
Drive

Fd1 Kingston DT100 G3 3.2 6
Fd2 Sandisk 3.2Gen1 3.2 6
Fd3 Aigo U310 pro 3.1 6
Fd4 Aigo U310 3.1 1
Fd5 Kingston DTKN 3.2 1
Fd6 Kingston MicroDuo3 G2 3.2 1
Fd7 PNY TA4-064 3.2 1
Fd8 Sandisk Ultra 3.2 1

Portable
Hard
Drive

Hdd1 WD My Passport 3.1 2
Hdd2 WD Black P10 3.1 1
Hdd3 Seagate One Touch 3.2 1
Hdd4 Toshiba DTB420 3.0 1

WiFi
Adapter

WiFi1 TP-Link WN726N 2.0 6
WiFi2 TENDA U6N300 2.0 6
WiFi3 D-Link DWA-171 2.0 3
WiFi4 ASUS USB-AC57 3.1 1
WiFi5 ASUS USB-AC68 3.0 1
WiFi6 Ugreen AC650 11ac 2.0 1
WiFi7 Mercury UD6H 2.0 1

Bluetooth
Adapter

Bt1 Lenovo BT5 LX1815 2.0 4
Bt2 Ugreen BT4 US192 2.0 1
Bt2 TP-Link TL-UB240 2.0 1

Microphone
Mic1 Ugreen DesktopMicrophone (Mic). 1.1 4
Mic2 Soaiy L28 1.1 1
Mic3 Depusheng T7 1.1 1

Webcam
Wcam1 Logitech C270 2.0 2
Wcam2 Logitech C920pro 2.0 1
Wcam3 Philips P506 HD 2.0 1

Mouse

Mouse1 Dell MS116c 2.0 6
Mouse2 Logitech G102 2.0 2
Mouse3 Logitech M546 2.0 1
Mouse4 Logitech MXMaster 2.0 1

Keyboard
Keyb1 Dell KB216d 2.0 6
Keyb2 Logitech K845 2.0 2
Keyb3 DURGOD TAURUS K320 2.0 1

5900X 12-core 3.7Ghz CPU with 64GB RAM running MSWindows 10 64-bit. As libraries,
we utilize the tsfresh for the time series feature extraction, Scikit-learn for the machine learning
model and evaluation metrics implementations, and imblearn to deal with dataset unbalance.

4.2.3 Experimental Evaluation

We analyze the performance of PowerID to answer the research questions in subsection 4.2.
Upon a preliminary comparison across several learners, we select RF classifier as a classification
method. In each analysis, we split the dataset into 80% training set and 20% testing set using a
stratified approach to maintain the same class proportions. By relying on a validation set (10%
of the training set), we study the performance of a model trained by varying the number of
features k. In particular, we select the k top features ranked by their ANOVA F-value. Since
the analyses have different goals, the best feature set can change considerably. For this reason,
we perform a different feature selection for each analysis. Tomitigate the possible unbalancing
in the training set, we employ SMOTE algorithm [527] to balance the elements in each class.
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1⃝ Type Multiclass
2⃝ Model Multiclass
3⃝ Device Binary

4⃝ Action Multiclass

5⃝ Device Binary

6⃝ Bad vs. good Multiclass

Table 4.6: List and description of the analyses.

We tune the hyper-parameters of RF by running a five-fold cross-validated grid-search over
different sets of parameter values. We use the above-described pipeline in all the considered
analyses unless explicitly mentioned.

In Table 4.6, we summarize the analyses we present in the remainder of this subsection. In
particular, we report the states considered for every analysis and the devicemodels employed for
the classification. We refer asmulticlass to a classification task involving more than two classes.
Instead, we refer as binary to a specific binary classifier with the focus on a single target class at
the time (i.e., we apply aOne-vs-All strategy). This second approach allows themodel to create
a decision bound around the target class to discriminate it with respect to all the other classes.
In this type of classification, we report the aggregated results as the average of the binary classi-
fication of all the considered classes. Interested readers can find more details on the difference
between these two approaches in [528].

To attain an open-world scenario in a multiclass approach, we consider an additional class
Other composed of a random sample of segments (10% of the considered dataset) unrelated to
the current analysis but with the same AR. Similarly, we attain an open-world condition for a
binary approach by removing the 10% of the non-target classes from the training set but not
from the testing set.

We evaluate our classification performance with several standard metrics: Pr, Re, F1, Gm,
andAreaUnder the receiver operating characteristicCurve (AUC). For each analysis, wepresent
the experimental results, highlight the meaningful insights and discuss the limitations.
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Types State = Boot, k=100 State =On, k=50
F1 Pr Re Gm F1 Pr Re Gm

Fd 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99
Hdd 0.97 0.97 0.98 0.99 1.0 0.99 1.0 1.0
WiFi 0.99 1.0 0.98 0.99 1.0 1.0 0.99 1.0
Bt 0.93 0.93 0.93 0.96 0.98 0.97 1.0 1.0
Mic 0.95 0.93 0.96 0.98 0.98 0.97 1.0 1.0
Wcam 0.98 0.98 0.99 0.99 0.99 0.98 1.0 1.0
Mouse 0.95 0.94 0.95 0.97 0.99 0.99 1.0 1.0
Keyb 0.94 0.94 0.94 0.96 0.98 0.97 1.0 1.0
Avg. 0.96 0.96 0.96 0.98 0.99 0.98 1.0 1.0
Std. 0.02 0.02 0.02 0.01 0.01 0.01 0.0 0.0

Table 4.7: Results of the analysis 1⃝ for device type recognition in terms of F1, Pr, Re, and Gm.

Device Type Classification 1⃝

In this analysis, we aim to classify the device type from the power traces during the states Boot
andOn. Considering the state Boot, we can assess the peripheral within a few seconds from its
connection to a USB port. However, we also classify the type of a peripheral during its activity
(i.e., state On) to continuously verify that its type would not change (e.g., an Fd turns into a
spy camera/microphone after some time).

Method and Dataset. We collect power traces from peripherals and grouped them by device
type, obtaining eight in different classes. We also consider an additional class Other where in
the state Boot analysis corresponds to random traces from the stateOn, and in stateOn analysis
corresponds to random traces in the state Sleep.

Results. Wefirst analyzed themulticlass classification performance on the validation set, vary-
ing the number of features selected. By inspecting the Mouse and Keyboard (Keyb) traces on
the stateBoot, we observe thatmost of them follow a sequence in terms of power draw: an initial
peek at the connection (below 0.5 second), flat low, moderate, and stabilize in the state Sleep.
Hence, we can assume that the model requires more information (features) and segments to
classify them correctly. Hence, by selecting the best 100 features for the state Boot, we achieve
the performance plateau with all the device types. For state On, we can achieve high accuracy
even with a small number of features as we reach the plateau with 50 features for all considered
types. Considering the best feature sets for the two states separately, we report the result of
the classification on the testing set in Table 4.7. PowerID models can discriminate with high
accuracy between the device types for both the statesBoot andOn. Therefore, every device type
has a unique fingerprint.
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Figure 4.8: Performance for the analysis 2⃝ varying the number of considered features.

DeviceModel Classification 2⃝

In this analysis, we delve a further level deep into the device identification by assessing whether
the states Boot and On can discriminate the device model. Therefore, we perform a multiclass
classification by considering as classes all the different device models in Table 4.5.

Method and Dataset. We group power traces by the device model, obtaining the 35 different
classes. We consider an additional class Other that for the state Boot analysis corresponds to
random traces from the stateOnwhile for stateOn analysis corresponds to random Sleep traces.

Results. We report in Figure 4.8 the F1 on the validation set, varying the feature number. The
results indicate the average F1 and the standard deviation of the devicemodels belonging to the
same device type. Considering the stateBoot, we can notice in Figure 4.8a that the performance
plateau for every device model is reached at around 75 features. As in the previous analysis, we
also note that the Keybmodels are hard to classify when using information from a few features.
This is again due to the quick handshake between the host and the device during theBoot phase.
Regarding the state On in Figure 4.8b, the classification performance is high. Thus, we can
conclude that this state presents a clear fingerprint for all device models.

By selecting the best 75 features for both states Boot andOn, the results on the testing set un-
derline that most of the device models present a unique power fingerprint, also among devices
of the same type. However, the device model fingerprints from the state On perform better
than the ones on state Boot. In particular, the devices which perform worst are the Keyb3 and
Fd8, From a visual inspection of the traces for such models, we observe that the state Boot lasts
a short time (below 0.5 second), thus more difficult to fingerprint.
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Authentication of Individual Device 3⃝

In this analysis, we aim to discriminate individual devices of the samemodels. This fine-grained
analysis detects whether a device has been tampered with or substituted.
Method and Dataset. We consider power traces of the device models with at least four indi-
vidual devices, i.e., the device models with # ≥ 4 in Table 4.5. For the same model devices, we
perform a binary classification using one device as a target class at a time. Given a target device,
we remove the segments of one random non-target device from the training set, and we added
them to the testing set. We iterate this process for every device of a givenmodel considering the
states Boot andOn.
Results. We analyzed the averaged F1 by device model varying the number of considered
features. As expected, due to the high specificity of this analysis, we generally achieve lower
performance than analyses 1⃝ and 2⃝. For both the states, we require at least 100 features to
reach an F1 higher than 0.95 for most models. The detailed results of the testing set are re-
ported in Table 4.8. Confirming the results from the previous analysis, PowerID achieves a
F1 higher than 0.9 for most models on state On but it cannot correctly discriminate a few in-
dividual Mouse1 and Keyb1 devices for the state Boot. As a noticeable exception, the WiFi1
model has the lowest score on the stateOn. Upon further inspection, we confirm our findings
by observing that the traces of the action are very similar among the devices of such a model.

Model State = Boot, k=100 State =On, k=100
F1-score Precision Recall Gmean AUC F1-score Precision Recall Gmean AUC

Fd1 0.97±0.04 0.97±0.05 0.97±0.03 0.98±0.02 1.00±0.00 0.98±0.01 0.98±0.02 0.98±0.02 0.99±0.01 1.00±0.00
Fd2 0.98±0.02 0.98±0.03 0.98±0.04 0.99±0.02 1.00±0.00 0.96±0.02 0.96±0.01 0.97±0.02 0.97±0.01 1.00±0.00
Fd3 0.98±0.04 1.00±0.00 0.96±0.08 0.98±0.04 1.00±0.00 0.91±0.07 0.91±0.07 0.91±0.07 0.95±0.04 1.00±0.00
WiFi1 0.98±0.01 0.99±0.01 0.98±0.03 0.99±0.01 1.00±0.00 0.79±0.02 0.72±0.02 0.88±0.05 0.90±0.01 0.97±0.02
WiFi2 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.00 1.00±0.00 0.97±0.02 0.97±0.03 0.98±0.02 0.98±0.02 1.00±0.00
Bt1 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
Mic1 1.00±0.01 1.00±0.00 0.99±0.01 1.00±0.01 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
Mouse1 0.82±0.12 0.79±0.15 0.87±0.10 0.90±0.07 0.96±0.03 0.95±0.05 0.95±0.06 0.96±0.05 0.97±0.03 1.00±0.01
Keyb1 0.90±0.12 0.92±0.07 0.89±0.17 0.92±0.10 0.98±0.03 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
Avg. 0.96±0.06 0.96±0.06 0.96±0.05 0.97±0.03 0.99±0.01 0.95±0.06 0.94±0.08 0.96±0.04 0.97±0.03 1.00±0.01

Table 4.8: Results of the analysis 3⃝ for device fingerprinting. For each row, we report the averaged scores (and its standard
deviation) across the devices of the same model.

Actions Classification per Device Type 4⃝

In this analysis, we focus on the stateOn, and we investigate whether we can infer type-specific
actions across all models. After identifying the device type (analysis 1⃝), PowerID aims to iden-
tify unexpected action a device performed (e.g., unauthorized file transfer).
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Figure 4.9: Results for analysis 4⃝ for action identification per device type.

Method and Dataset. We consider three device types of power traces: Fd, external hard
drive (Hdd), and WiFi. We focus on these types because they have a broader set of actions to
analyze (see Table 4.4). For every device type, the classOther is composed of random segments
of actions by the other types.
Results. Figure 4.9 reports the results of the analysis. In particular, Figure 4.9a shows that
the actions ofWiFi type have a clear fingerprint while Fd andHdd require a higher number of
features to reach an average F1 higher than 0.8. For a better understanding, in figures 4.9b, 4.9c,
and 4.9d we report the confusion matrix with the 75 best features selected for Fd, Hdd, and
WiFi, respectively. In figures 4.9b and 4.9c, we can observe that most of the miss-classification
of Fd and Hdd are betweenWrite and In-Write actions. This is probably because In-Write is
derived by the combination of Read and Write. Therefore, In-Write generates power traces
similar to theWrite actions. Moreover, the Hdd type suffers from the Other class mainly due
to the similarity with traces of the Fd type.

Individual Device by Actions 5⃝

The previous results demonstrate that PowerID identifies with suitable accuracy types, models,
the individual device of a specific model, and actions. Building on top of analyses 1⃝ and 4⃝,
we investigate whether PowerID can discriminate individual devices from the actions they are
performing.
Method and Dataset. Similarly to analysis 4⃝, we focus on Fd, Hdd, and WiFi types. In
particular, we considerRead andWrite for Fd and Hdd, andDownload andUpload for WiFi.
These actions are the most commonly performed for legitimate and malicious purposes (e.g.,
data exfiltration, malware injection). We select the power traces of the actions from all device
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Figure 4.10: Performance of analysis 5⃝ for device fingerprinting on different actions.

models for each type. Considering a class is the pair (Device,Action), we obtain 46, 10, and 38
classes for Fd, Hdd, and WiFi, respectively. For each device type, we perform binary classifica-
tion on such classes.
Results. We report the results in Figure 4.10. We represent with the low and high caps of
error bars the best and worst scores among the individual devices, respectively. Overall, Pow-
erID achieves good classification for all the types and actions, despite the highnumber of classes
per type. In particular, we observe that in the case of Fd and Hdd, the different actions are
distinguishable from one device to another. However, theWiFi type obtains slightly lower per-
formance and higher variability. From a detailed analysis, we assess that some devices (ofmodel
WiFi1, WiFi2, andWiFi6) are miss-classified due to similar behavior in several power trace seg-
ments. Despite the variability in the WiFi type, PowerID can correctly discriminates most of
the devices. Hence, it is possible to fingerprint an individual device from its actions.

Malicious Device Identification 6⃝

To assesswhether it is possible to detectmalicious devices from their power traces, we perform a
multiclass classification between legitimate peripherals and BadUSB devices, focusing on states
Boot andOn.
Method andDataset. In this analysis, we collect power traces from fourBadUSBdevices (two
WiFi-enabled and two memory-based BadUSB devices). While collecting the traces, we run
several common attacks, such as local (memory-based) and remote (WiFi-enabled) command
injection on the command prompt (varying the types and number of commands) and WiFi
scanning and connection. For the state Boot, we execute the attack at the device connection,
while for state On, we delay its execution. The class Other legitimate is composed of traces
from legitimate peripherals other than Fd type (e.g., Bluetooth (Bt),Mic,WiFi). Moreover, we

217



Flash drives
Other legitimate

Memory-based BadUSB

WiFi-enabled BadUSB
0.90

0.92

0.94

0.96

0.98

1.00
Pe

rfo
rm

an
ce

 sc
or

e

F1-score
Precision

Recall
Gmean

(a) State Boot.

Flash drives
Other legitimate

Memory-based BadUSB

WiFi-enabled BadUSB
0.90

0.92

0.94

0.96

0.98

1.00

Pe
rfo

rm
an

ce
 sc

or
e

F1-score
Precision

Recall
Gmean

(b) State On.

Figure 4.11: Performance of analysis 6⃝ on the discrimination between legitimate and malicious types.

use the features set of the states Boot andOn identified in 1⃝.
Results. From the results in Figure 4.11, we observe that PowerID discriminates the BadUSB
devices from Fd and other legitimate peripherals with perfect accuracy.

4.2.4 Takeaway onUSB Power-Side Channel Fingerprint

This study presents PowerID, a framework to fingerprint the USB peripherals based on their
power consumption during different working conditions. Based on the fingerprints of autho-
rized peripherals, PowerID can protect the host from USB-based threats, identify unautho-
rized peripherals, and detect illicit actions. We extensively evaluated the performance of Pow-
erID with an exhaustive power traces dataset composed of more than eighty unique devices
spanning 35 models and eight types. Results highlight that PowerID achieve a high accuracy
in inferring peripheral type, model, activity, and identity.
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4.3 Hyperloop

Hyperloop is a radically new concept of transportation system introduced by Elon Musk in
2013 [529], where he described a preliminary version (Figure 4.12) of the Hyperloop project
connecting Los Angeles and San Francisco. The vision Musk is to provide fast transportation
means by mitigating air resistance and friction. Besides the speed objective, Hyperloop also
allows for reduced operating costs and, hence, for energy savings. After the first official docu-
ment, theproject continued throughuniversity contests organizedbySpaceXand laterwith the
foundation of two startups: Virgin Hyperloop and Hyperloop Transportation Technologies.
Today, different companies are working onHyperloop systems, andHyperloop testbeds are de-
ployed in different countries like Europe, America, the East, andMiddle-East [530, 531, 532].

Figure 4.12: First Hyperloop conceptual design rendering [529].

Hyperloop is characterized by two main elements: a tube with vacuum capabilities and a
capsule that travels along the tube with passengers or cargo, exploiting air pressure and electro-
magnetic forces. Hyperloop promises a set of advantages compared to available transportation
systems. First of all, as already mentioned, it provides high-speed transportation. Airlines gen-
erally fly at 980km/h, and special trains reach a speed of 570km/h, expected for Hyperloop is
1220km/h. Secondly, it allows for reduced operational costs. By placing solar panels properly
over the tube carrying the capsule, generated energy can be used to run the system and stored
for later use [529].
In recent years, cybercriminals are increasingly targeting CPSs. Examples are countless and

interest a wide range of categories, from attacks against nuclear plants [3] to vehicles and trans-
portation systems [8, 533]. Therefore, assessing the system’s weaknesses is necessary to prevent
dangerous consequences.

This subsection analyzes the different components of the current state-of-the-artHyperloop
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technology and the challenges they pose in cybersecurity. Despite the lack of official documen-
tation, we collected information from publicly available sources and identified common ele-
ments with other transportation systems, such as aviation, railways, and automobiles, to create
a high-level description of the Hyperloop system. Based on similar domain knowledge, we fo-
cus on the different components of Hyperloop and their interconnection, identifying the key
security and privacy vulnerabilities they imply. We focus on their interaction via signaling and
communication by considering the overall Hyperloop ecosystem as a group of interconnected
sub-systems. This provides us with means to analyze the cyber-physical security of Hyperloop
at different levels, starting from in-pod threats and going to the complex vehicle to infrastruc-
ture interactions. Finally, we propose different security practices to prevent possible attacks.
To the best of our knowledge, this is the first work focusing on the cybersecurity challenges
related to Hyperloop technology.

4.3.1 Overview of theHyperloop Infrastructure

In this section, we overview the components of the Hyperloop system, focusing first on the
physical infrastructure and then on the network infrastructure.

Physical Infrastructure

We represent in Figure 4.13 the overall physical infrastructure of Hyperloop. We divide the
physical system into three macro components: the tube, the station, and the capsule.
Tube. The tube is a pipe with a near-vacuum environment inside, reaching an air pres-
sure equivalent to 60, 960m above sea level, where the Hyperloop capsule transits [531, 534].
Thanks to this environment, the tube significantly reduces the aerodynamic drag to guarantee
high speeds while keeping energy consumption at a minimum level. The tube exploits a series
of venting valves deployed along its length to rapidly pressurize and depressurize the internal
environment. In case of emergencies, the capsule will stop at a predefined emergency station
deployed along the route length. The tube is equippedwith emergency egresses every 75m to al-
low passengers to exit the vehicle in case of need [534]. The tube implements valves specifically
built to isolate and re-pressurize part of the tube to ease the repairing process. The Hyperloop
system aims at producing more energy than it consumes thanks to solar panels placed over the
tube [529, 534]. The energy consumption of the Hyperloop mainly depends on the journey’s
distance and the number of seats, but it is generally lower than aircrafts [535].
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Capsule. Hyperloop trains are called pods or capsules. According to to [532, 536], the capsule
has the size of a small commercial aircraft with a capacity of 28-50 passengers each, allowing for
the transportation of more than 160, 000 passengers daily from Los Angeles to San Francisco
(561km) [532]. The capsule’s size depends on the purpose (i.e., passenger or cargo), and the
tube-to-pod size ratio varies from 1.4 to 4 [536]. Different levitation mechanisms are under
investigation, ranging from air beaming employed in the first concept [529], to more efficient
electromagnetic or electrodynamic suspension systems [537]. Four propulsion engines flank
pods to support any possible levitation implementation high-speed movements. Thanks to
the sound bulkhead, the capsule can accelerate without impacting the quality of experience
of the passenger. Capsules are designed for ultra-high-speed using various technologies. In
particular, pods can be wrapped with materials to monitor and transmit critical information
such as temperature, stability, and integrity [532]. Two or more lithium-ion battery packs will
power the capsule life support system, making it unaffected by power outages. Battery packs
will be charged at the base station before the start of the journey. Otherwise, Musk mentions
the possibility of storing compressed air to reverse as energywith fans in secondmoments [529].
Station. According to [534], the Hyperloop portal will be a central hub that integrates all
nearby transportation systems to enable a seamless end-to-end journey. The station will offer
digital ticketing, biometric check-in, wayfinding, and on-demand boarding services. The Hy-
perloop stationwill include portals fromwhich passengersmay depart and arrive. To foster the
availability of on-demand transportation and remove the need for timetables, the Hyperloop
systemwill allowmultiple pods to convoy or autonomously break away from a convoy to reach
their destination. This will be possible thanks to the high-speed switching technology, which
combines the benefits of on-demand transportation with higher efficiency and train through-
put [534]. Furthermore, this system will allow pods to avoid stopping at every station.

Network Infrastructure

The network architecture to manage Hyperloop is proposed in different works [538, 539]. As
depicted in Figure 4.14b, we divide the network infrastructure into four layers.
Hyperloop Network. This Hyperloop-specific layer contains the first communication link
with the field network. This includes communications between capsules (originating from the
pod itself or from user services), between capsules and the station, or between capsules and
the Internet. To support the fast communication between internal antennas, Remote Access
Unitss (RAUs), and stations, we can assume the existence of a wired bus (e.g., optical fiber) in-

221



Figure 4.13: An overview of the Hyperloop physical infrastructure and its details.
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side the tube, which interconnects these entities. RAUs are placed outside the tube to provide
an Internet connection to the communication inside the tube. The connection between the
HyperloopNetwork and theAccessNetwork can bewireless (e.g.,WiFi, 5G) orwired (e.g., op-
tical fibers) to meet the requirement of fast communication. The tube is internally equipped
with several antennas used to communicate with the pods. More antennas are installed on cap-
sules to alleviate the timely expensive handover process [538]. The communications originated
by the users inside the pods and from the instrumentation on the capsule are captured by the
internal antennas and then forwarded to the station (via a wired connection) or the Internet
(via RAUs).

Access Network. Connects theHyperloopNetwork and the AggregationNetwork. The Ac-
cess Layer is also responsible for gathering the information between the various RAUs placed
along the tube and connecting themwith one or more ISPs. In fact, since the tube can be hun-
dreds of kilometers long through different countries, the ISPs can differ based on the geograph-
ical area. An ISP is an organization that provides the Internet connection to the requestor by
assigning it a public IP address. Besides communication coming from the pods, this network
allows the ground station of the Hyperloop to connect to the Internet, enabling services such
as remote connection.

Aggregation Network. It connects the Access Network to the Core Network by gathering
and routing the information between the different ISPs. ADSL, WiFi, Ethernet, and optical
fiber are among the technologies used in this layer.

Core Network. The purpose of this layer is to interconnect the different components of
the network, enabling access to the various facilities and services, such as databases and clouds,
for computations. It must provide low congestion, short delays, high availability, and strong
adaptability to support future applications.

4.3.2 Hyperloop CommunicationNetwork

In the following, we divide the network into the different communication channels employed
for the system’s operation. Figure 4.14a represents a schema of the various communications in
the Hyperloop network.

Wedivide communications into Pod-to-Pod (P2P), Pod-to-Tube (P2T),User-to-Pod (U2P),
Tube-to-Station (T2S), In-Pod (InP), and User to all the devices available in the stations, User-
to-Station (U2S), e.g., ticketing service.
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Pod-to-Pod Communication

P2P communication exchanges information in a model similar to vehicle platooning. Pods are
expected to automatically merge and detach based on their routes [532]. To avoid collisions,
a pod must detect the presence of another pod and its relative location. To this aim, pods ex-
change messages containing information on their location and speed with other pods. Data
transmission between high-speed pods could be supported by ad-hoc protocols similar to Ded-
icated Short Range Communications used for vehicle-to-vehicle communication.

Pod-to-Tube Communication

The P2T link is used to control the pods. Thanks to this link, the tube can control andmanage
the magnetic or air forces needed to handle the pod’s movements and maneuvers. Viceversa,
the pod can apply magnetic or air forces for the movement generated by the onboard engine.
It demands great attention to guarantee the safety of infrastructure and passengers.

The P2T link can also be used to exchange messages about the status of the capsule and
its location. This information will then be delivered via a T2S link to the central station for
managing purposes, such as pressure regulation and motor management. Thanks to RAUs
deployed along the tube, the pod can also use the P2T link to access the Internet to guarantee
users’ connectivity or exchange information with external entities [539].

As discussed in [538], there are only two wireless standards to support communication at
theHyperloop speed: 802.11ax networks and 5GNR.They are therefore likely to be employed
in the existing Hyperloop infrastructure between internal antennas and pods.

User-To-Pod Communication

To provide an infotainment system to users during transportation, the pod is equipped with
an internal wireless network. Hence, users can retrieve information regarding the trip status,
their current location, and expected arrival time. Furthermore, users have access to entertain-
ment material and more generally to the Internet. This connection is guaranteed by the P2T
communication link that provides access to the Internet thanks to the RAUs located along the
tube. The various access points are connected to the local ISP, which enables the connection
to the core network providing Internet access.

224



Tube-to-Station Communication

The operations that the tube needs to handle to guarantee that pods can safely travel from
one station to another need to be managed by a central entity. These operations include, for
instance, operating valves that create the near-vacuum environment and opening emergency
exits in case of need. Furthermore, the tube needs to actuate the pods’ motion according to the
scheduling and report to the station information about the pod’s status formanaging purposes.
These connections canbe eitherwired (e.g., optical fiber) orwireless (e.g., LTE, 5G), depending
on the requirements in termsof latency and reliability. Furthermore, a dedicatedpower linewill
deliver the energy collected via solar panels to the accumulator deployed at the central station.
A second power line will provide energy for operations related to the tube. These operations
include the application of power for maglev and pods direction.

In-Pod Communication

Each pod is equipped with an internal network where controllers and actuators regulate the
basic pod functioning. This concept is similar to that exploited in modern vehicles, where a
Controller Area Network bus connects many ECUs. The pod might use a similar technology
to connect different internal areas and manage operations such as air conditioning, door op-
erations, fire alarms, and battery management system [540]. All these units are connected to
the pod safety controller that continuously monitors data to guarantee safety. This network is
also used to deliver power to the different components of the pod. For instance, suitable con-
trollers handle the flank propulsors that allow for high-speed movements. In-vehicle networks
are usually implemented via cable, and different ECUs manage different pod parts.

User-to-(Devices in the) Station Communications

For a complete analysis of the Hyperloop system, we have to consider the communications oc-
curring inside the station between the users and the infrastructure. Many smart devices are
available to users. Tickets can be bought from ad-hoc terminals, which have to verify the avail-
able seats on the pods in real-time. Turnstiles manage the user’s access to the boat area and
could use the user’s biometrics information to facilitate the access. Displays show delays and
departure times for pods and help users find the proper gate. Furthermore, even if not physi-
cally located in the stations, we can consider the smartphone apps and web services that enable
users to buy tickets remotely in advance to avoid long queues.
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Figure 4.14: Network composition of Hyperloop.

4.3.3 Cybersecurity Analysis

Based on similar domain knowledge (e.g., ICSs and vehicular systems), we present an analysis
of the possible security and privacy issues for each communication category. Table 4.9 reports
the different attacks affecting each communication link, the corresponding threats, and their
effect on the system.

Pod-to-Pod Security

Several cyberattacks can affect P2P communication. MiTMattacks canmodify or craft packets
to include false information about the pod and generate a wrong reaction in the neighboring
pods. For instance, one pod under attack can claim to be close to the preceding pod and make
it speed up. Alternatively, an attacker may launch a Sybil attack by sending data from an in-
existent capsule to create inconsistencies between different sensors. Furthermore, an attacker
might capture P2P communication packets in a blackhole attack preventing packet forward-
ing. These attacks, especially if coordinated on a certain number of capsules, can potentially
be very destructive and create disorder in the network. MiTM can also be used to send mali-
cious messages to disconnect a pod from a convoy. Another way to force the disconnection of
a pod could be a flooding attack leading to a DoS. This could make a capsule unable to receive
messages from other pods, inhibiting early reaction to theHyperloop system’s problems. Even
if a complete disconnection of the target pod is not possible due to the high capacity of the
communication channel, a slight delay in the packet transmission could be dangerous due to
the hard real-time constraints on location sharing to avoid incidents.
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Supposing pods periodically broadcast their position to alert all nearby pods, spoofing a false
location couldmake all the other pods takewrong actions such as break or speed-up/down even
if not needed, leading to inefficiency (e.g., delays) or crashes.

Pod-to-Tube Security

P2T communication has several purposes ranging from critical aims (e.g., managing the levita-
tion of the pod) to secondary scopes (e.g., forwarding the traffic from the infotainment system
of the pod). AMiTM attack can tamper with the levitationmechanism to increase or decrease
its power leading to the derailing of the pod (i.e., slamming to the edges or the floor of the
tube). Hijacking a pod may also be possible. In fact, due to high-speed switching, an attacker
may trigger a switch to detach a pod from a convoy and redirect it in the wrong direction.

Location data is transmitted not only on the P2P channel but also with the ground station,
through the tube, for central safety management. An attacker can spoof this communication
to sendmessages with false locations of the pods to generate inconsistencies in the system. Fur-
thermore, hiding the presence of a pod near the station via spoofing could make another cap-
sule leave the station before the hidden pod’s departure, causing sudden breaks or incidents.
Although the pod’s location might be helpful for scheduling purposes and estimating arrival
times, real-time location sharing might represent a privacy threat. Indeed, a user may target a
specific pod and hijack it to a particular location. Although the pod travels at a very high speed,
an attackermay predict when a targeting podwill reach a specific point in the tube based on the
shared location information. Therefore, it is fundamental to protect the privacy of the pod’s
location. Furthermore, an attacker might infer information on the users traveling in the pod
due to the exchange of data fromU2P and P2T.Without traffic encryption or aggregation, an
attacker may track and profile users.

The pod must forward the data through the tube to reach the ground station and the ISP.
An attacker could disable or delay this exchange of messages by performing a flooding attack
from a pod. DoS could lead to the disruption of the infotainment system and the delay of
safety-critical data flows.

It is possible to imagine an exchange of energy between the tube and the pod (via, e.g., wire-
less power transfer) to charge the pod’s batteries. This kind of energy flow must be managed
by the tube following the requests coming from the pod. An attacker could tamper with this
communication to stop the energy request and avoid charging the pod, or it may require more
power than needed to damage the batteries. Furthermore, a DoS could prevent the packet
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exchange, lead to an unpredictable energy transfer behavior, or limit the number of pods to
benefit from it.

User-to-Pod Security

The infotainment system is a central purpose of the U2P network. Amalicious user can gener-
ate a DoS attack to prevent other users from using the system. Since the pod is shielded inside
the tube, the stop of this communication channel may imply the stop of every communication
outside the tube. To access the infotainment system, the user is requested to authenticate using
credentials linked to the ticket to assign bandwidth and fairly keep track of users’ misconduct.
A malicious actor can hijack another user to circumvent restrictions or can DoS the authenti-
cation system to avoid other users connecting to the access point. It is reasonable to think that
users will purchase a ticket that grants them access to the pod. The pod is in charge of checking
the ticket validity. A malicious user may use a relay attack to steal another user’s ticket or jam
the pod receiver to prevent all users from accessing the pod.

Given the number of users connected to the same access point, a malicious entity could try
to attack other users, for instance, to eavesdrop on communications and steal sensitive informa-
tion. MiTM could also be possible for non-encrypted communications, while traffic analysis
could be applied to infer users’ activities by monitoring encrypted data. With a view to the
future, a router can also cache content to serve popular user requests faster [541]. These sys-
tems can be vulnerable to cache poisoning attacks, leading to phishing attacks and credentials
leakages. A malicious user can also eavesdrop on U2P communication to track and profile a
specific user’s pod access.

Tube-to-Station Security

T2S communicationmust be reliable since it has tomanage the high trafficof pods andpossible
issues regarding trips. ADoS attack canmine the system’s availability and prevent the exchange
of messages in the T2S communication.

Again, even a small delay indata communication canbedevastating in systemswithhard-real
time constraints if propermitigation techniques are not inplace. Similarly,manipulationof the
data transmitted can damage the system. Sendingmaliciousmessages can affect the tube’s func-
tioning, such as forcing depressurization. An evil entity who obtained control of the channel
could also insert false anomalies or spoof pods’ information, for instance, to make the system
stop for useless maintenance. On the contrary, if the system suffers in case of minor malfunc-
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tions, an attackermay spoof sensor values to hide anomalies andprevent the propermonitoring
of the Hyperloop system. Another possible effect of an injection attack could be the complete
shutdown of tube parts’ by, e.g., opening a closing depressurization valve, creating an interrup-
tion of the service and potential accidents.
Since the tube covers long distances, possibly in different states, it is also important to con-

sider physical attacks which can damage the communications. A malicious actor can tamper
with the wired connections to stop communication if cables are exposed to external entities.
All the devices, such as RAUs, which are placed along the tube, need constant monitoring
because the manumission of the T2S communication could potentially have catastrophic con-
sequences.

In-Pod Security

Even if most of the management and computations occur outside the pod, the capsule has to
provide sensor measurements andmanage the actuators to execute the station’s orders. ADoS
in the in-pod network could lead to a consumption of resources and prevent or delay the recep-
tionof criticalmessages. Theseurgentmessages control critical systems such as emergency stops
or fire detectors. Hence even a small delay in the packets could lead to accidents. The capsule
controls many non-critical devices, such as ventilation and infotainment systems. Tampering
with these technologies can create discomfort to the users (e.g., losses of connection, too high-
/low air temperature, turning off lights) or compromise user privacy by eavesdropping on the
communication between the users and the access point. An attacker gainingMiTM capability
in the in-pod network could propagate false messages, creating inconsistencies in the pod’s sta-
tus and hence false alarm messages. Alternatively, the malicious user could lead to dangerous
behaviors of the pod’s components (e.g., opening the door while the pod is in movement) or
tampering with the battery management system to remove the power source.

User-to-(Devices in the) Station Security

Amalicious user can exploit different attacks to impact U2Ss security and privacy. An evil user
can steal sensitive data thanks to MiTM and eavesdropping. Information on a specific user’s
habits may lead to profiling or user tracking, representing a privacy violation. An attacker may
also spoof the U2Ss communication to create false messages. For instance, an attacker may
be able to bill another user for a ticket or modify the information shared with a user on the
availability of free seats in a pod, thus preventing purchases. Furthermore, the attacker may
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Communication Attack Threat Effect Countermeasure Impact

Pod-to-Pod
MiTM, Spoofing, Relay-
ing, Replaying

Impersonation, Information Gathering, Vulnera-
bility Exploitation,Manipulation, SystemCorrup-
tion, Loss of Service

Sending messages with malicious information to make the pre-
ceding or following pod break or speed-up/down to cause colli-
sions; Disconnect a connected pod, or connect a disconnected
pod

Authentication, Encryption High

DoS, Flooding System Corruption, Loss of Service Pod unable to receive messages from other pods; Generated de-
lays make received information useless

Resource management recovery, IDS Medium

Location Spoofing Manipulation, System Corruption Injecting false information on the location of nearby pods to
create collisions

Distance bounding, Digital Signature High

Pod-to-Tube

MiTM, Relaying,
Replaying

Impersonation, Information Gathering, Vulnera-
bility Exploitation,Manipulation, SystemCorrup-
tion, Loss of Service

Sending fake commands to a pod or to the tube; Derail a pod;
Hijack a pod

Authentication, Encryption, IDS High

DoS, Flooding System Corruption, Loss of Service Disable or delay the exchangeofmessages between tube andpod
(both ways); Prevent exchange of energy between the tube and
the pod

Resource management recovery, IDS Medium

Location Spoofing Manipulation, System Corruption Create inconsistencies between pod’s real and claimed locations Distance bounding, Digital Signature Medium
Privacy violation Private Data Leakage Track the locationof a pod, togetherwith identifiers of onboard

users
Data Anonymization, Encryption Low

Tube-to-Station
MiTM, Spoofing, Relay-
ing, Replaying

Information Gathering, Vulnerability Exploita-
tion, Manipulation, System Corruption, Loss of
Service

Sending malicious control messages that affect the tube’s func-
tioning; Generate anomalies or spoofing the pod information;
Shutdown parts of the tube; Hide running anomalies

Authentication, Encryption, IDS High

DoS System Corruption Prevent exchange of messages from T2S and vice-versa Firewall, IDS Medium
Physical Tampering System Corruption, Loss of Service Cut the wired communication; Tamper with the RAUs to in-

terrupt the service
Enforcement with anti-tamper mate-
rials, Anomaly detector

Medium

User-to-Pod
MiTM, Eavesdropping,
Attacks to authentica-
tion system

Private Data Leakage, Loss of Service Intercept andmodify users communications to the external net-
work; Steal sensitive information; Prevent users to access the
pod using the purchased ticket

IDS, Encryption, Authentication,
Data Anonymization

Low

DoS,Attacks to authenti-
cation system

System Corruption, Loss of Service Prevent user from exchanging information with the pod
(mostly related to infotainment), and so with the Internet

Resource management recovery, Au-
thentication, Firewall

Low

Privacy violation, Phish-
ing

Private Data Leakage Steal private information of users in the pod Encryption, Authentication Low

In-Pod-
Communication

MiTM, Spoofing, Relay-
ing, Replaying

Information Gathering, Vulnerability Exploita-
tion, Manipulation, System Corruption, Loss of
Service

Compromise in-pod critical and non-critical systems (e.g., info-
tainment, ventilation, light, emergency exits, fire detectors and
extinguishers)

IDS, Integrity check Medium

DoS, Flooding System Corruption, Loss of Service Consume resources and prevent or delay the reception of criti-
cal messages (e.g., malfunctions, emergency stops)

Firewall, IDS High

User-to-
(Devices in the)
Station

MiTM, Eavesdropping Private Data Leakage Steal sensitive information from the user Encryption, Authentication, VPN Low
Spoofing, Attacks to au-
thentication system

Manipulation, SystemCorruption, Loss of Service Bill another user for a ticket; Prevent users from booking a
ticket; Prevent user from reaching the legitimate pod

Encryption, Digital Signature Low

Privacy violation Private Data Leakage Tracking users pod’s accesses; Profiling users Data Anonymization Low

Table 4.9: Possible attacks and threats affecting Hyperloop and the consequent effect on the system.
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modify the information on the pod for the purchased ticket, causing passengers to miss their
pods. Also, an attacker may modify the information that the station shares with the user on
scheduling and pod tracking, thus causing traveling issues.

4.3.4 Attacks Countermeasures

The first line of protection of the system should follow the best security practice and security
standards from the system’s design phase. These standards are applied by industries but also
by governments and researchers. Since Hyperloop is a novel technology, no security standards
support its design phase. However, Hyperloop inherits different properties from other sectors,
such as automotive, railway systems, and aviation, therefore, the designer can rely on the exist-
ing standards. For instance, automotive security policies are collected in different standards
such as AUTOSAR and ISO/SAE 21434. Instead, industrial security standards are defined,
for instance, in IEC 62443 and NCSC secure design principles.
Besides security standards, security mechanisms can be applied to increase the overall secu-

rity level of the system and prevent attacks. Table 4.9 shows the list of the possible countermea-
sures related to each attack previously described.

To prevent MiTM attacks, the most common solution is introducing encryption and au-
thentication techniques in communication to avoid data manipulation from unauthorized
parties. Instead, DoS attacks are very challenging to prevent. Common strategies include re-
source managers correctly allocating the memory to the critical processes and redistributing
the resources if a DoS attack is detected. To prevent network attacks, a common solution is
the implementation of Intrusion Detection Systems to identify malicious behaviors early and
make accurate decisions to protect the system. It is also possible to implement a good firewall
in strategic points of the network (e.g., the station or the different access points) to increase the
perimetral protection of the network.

An important factor for preserving the system’s function is ensuring every pod’s correct lo-
calization. For this reason, an attacker may try to spoof the pod’s location to alternate and
compromise Hyperloop. Other than the previous measures to avoid spoofing, like encryption
and authentication, a common solution to prevent spoofing of communication is the intro-
duction of a distance bounding protocol. This protocol measures the physical distance of an
entity by analyzing the expected response time. In this way, the delay added by manipulating
data or by a spoofed position will be detected by the receiver. This protocol has been widely
used to prevent relay attacks and GPS spoofing.
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Due to the system’s distributed nature, the physical infrastructure of the Hyperloop also
opens potential vulnerability surfaces. Themost common solution to prevent physical tamper-
ing is integrating anti-tampering material equipped with sensors that identify attempts. An-
other solution is to employ anomaly detector software to identify the alteration of a process
related to a compromised device.
To prevent user privacy leakages, a standard solution is to provide correct anonymization

in all communications involving sensible data. Possible solutions include encryption and data
aggregation. In the case of devices with limited capacity or time-constrained operations, differ-
ential privacy represents a viable solution.

4.3.5 Takeaway onHyperloop

Hyperloop represents an innovative and promising technology that is still under development.
Indeed, currently, there are no official documents related to the system’s technical implemen-
tation, which does not allow precise analysis of the infrastructure. However, cybersecurity is a
continuous analysis process, which must be seriously considered from the design phase. This
requirement is emphasized sinceHyperloop exhibits a large attack surface comprising network,
communications, and physical processes. Compromising the security of a transportation sys-
tem can dramatically impact the safety of the passengers and the surrounding environment.

This study represents the first work in the direction of the analysis of the cybersecurity of
theHyperloop system. In particular, we identified themain type of communication character-
izing the Hyperloop system and investigated possible attacks and threats on the different parts
of the infrastructure. Then we discussed the best practices, countermeasures, and standards to
prevent potential catastrophic attacks. We reported how traditional attacks could compromise
the system’s safety. Furthermore, we discussed the privacy issues related to users and the infras-
tructure. For each of the identified vulnerabilities, we also proposed possible countermeasures.

This analysis should be deepened in future works using more precise technical details of the
Hyperloop. In addition, we expect that academia and industries will develop more reliable
communication and efficient protocols to support the Hyperloop high-speed communication
shortly. Future security researchers must also consider and include such novel technologies.
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5
Conclusion

CPSs arenowadays employed in awide spectrumof services, ranging from industrial operations
to transportation systems. Their distributed and complex nature makes them intrinsically dif-
ficult to secure against attacks, exposing the safety of the involved users to dangerous incidents.
For this reason, in this thesis, we investigated three RQs aimed at analyzing the modern threats
affecting these systems, and the possible countermeasures to them.
In the first part of the thesis, in Chapter 2, we focused on ICS security, gathering all the

knowledge in this field from the literature and proving a systematic analysis of the testing plat-
form and the IDS solutions operating on them. To motivate the necessity of improving the
security of current industrial systems, we performed a measurement study highlighting the
dramatic exposure of the communication protocols and services of more than 50 industrial
endpoints. Then, we developed an innovative ICS honeypot. While measuring the honey-
pot exposure, we noted that industrial systems are still highly targeted by malicious actors over
the internet on specific vulnerable industrial services. Therefore, ICSs still represents a prof-
itable target for attackers due to their vulnerabilities and the business they produce. For this
reason, future studies must provide design guidelines to secure the design of future systems
and develop effective detection and sanitization mechanisms to mitigate possible attacks and
subsequent catastrophic consequences.

In the secondpart of the thesis, we focused on the security of vehicular systems. In particular,
we highlighted, inChapter 3, the intrinsic design vulnerabilities on the IVNs and the emerging
EV ecosystem, and we proposed innovative security mechanisms. More precisely, we focused
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on the design issues in the CAN protocol, and we identified that the proposed solution relies
on strong assumptions on the pre-shared secret. To this end, we proposed a key distribution
algorithm based on watermarking and jamming to alleviate such assumptions, which can be
integrated into current vehicle systems without hardware modifications. Then, concerning
the novel EV environment, we showed the feasibility of a relay attack on the charging process,
which allows charging of the recharging fees on a victim, and a privacy attack on the charging
process. Like ICS, also vehicles suffer from a weak design in terms of security properties since
they rely on legacy components. Therefore, vehicle manufacturers should re-design the car’s
communication system or build security technologies on top of the existing ones. However, as
we have shown, recent technologies like EVs also suffer from common vulnerabilities like relay
attacks or privacy leakage exposure.

As final study cases, in Chapter 4, we leveraged the knowledge of our studies on ICS and
vehicles domain to analyze cutting-edge state-of-the-art of cross-domain CPS applications. In
particular, we first systematically surveyed and analyzed the PSC-based attacks and counter-
measures on USB application. Then, we propose a framework to fingerprint common USB
peripherals in order to authenticate legitimate devices and prevent the connection ofmalicious
ones and the subsequent delivery of malware, like in the Stuxnet case. Finally, we performed
the first security analysis of the emerging Hyperloop technology by leveraging the common
points with other CPSs. The analysis highlight that this novel technology imposes new chal-
lenges from the security point of view, like the necessity of using specific lightweight protocols
to handle the train speed or the exposure of critical components.

To sumup,CPSs still needs contribution in the security field. Indeed, the systematic analysis
of the various systems highlights the presence of many gaps from the security perspective and
remarks on the requirement for additional studies and secure design standards in this field.

FutureWork andDirections

Driven by the finding of this thesis, in future works, we will leverage the gathered experience
to discover and shed light on novel threats affecting CPS both from the design and implemen-
tation perspectives. This thesis has shown that many vulnerabilities similarly afflict CPSs of
different belonging from different domains. Studying how CPSs operate, interact with each
other and identify common design patterns is essential for identifying risks and vulnerabilities
and preventing attacks with dramatic consequences. At the same time, we will focus on identi-
fying innovative and effective security solutions to prevent or mitigate potential attacks by also
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considering the constraints and limitations that affect these systems. The security solutions
must consider the requirements that characterize the CPS domain, such as real-time operating
constraints, limited computational capacity, and long lifespan. Because in many attacks, the
human factor is the entry vector (e.g., phishing, social engineering), it is necessary to keep the
human being at the center of solutions by designing inclusive and user-friendly solutions for
human operators and end users. In the following, we summarize possible research directions
that the community .

• Secure communication protocols: Develop robust and secure communication protocols
that protect against cyber-attacks such asman-in-the-middle attacks, packet sniffing, and
eavesdropping.

• Resilient and fault-tolerant systems: Create cyber-physical systems that are resilient and
fault-tolerant to mitigate the risk of catastrophic failure due to cyber-attacks.

• Intrusiondetection andprevention: Develop effective intrusiondetection andprevention
mechanisms that can detect and prevent cyber-attacks in real-time.

• Data security and privacy: Enhance the security andprivacy of sensitive data transmitted
within cyber-physical systems. This could include developing secure data transmission
protocols, encryption, and access control mechanisms.

• Security testing and verification: Develop innovative tools and techniques for testing and
verifying the security of cyber-physical systems.

• Collaborative security: Develop collaborative securitymechanisms that can enable cyber-
physical systems to work together to detect and mitigate cyber-attacks.

• Secure supply chain: Develop secure supply chain mechanisms to ensure that compo-
nents and software used in cyber-physical systems are free from malicious code or vul-
nerabilities.
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