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Abstract
Objective: Large aperiodic bursts of activations named neuronal avalanches have 
been used to characterize whole- brain activity, as their presence typically relates to 
optimal dynamics. Epilepsy is characterized by alterations in large- scale brain net-
work dynamics. Here we exploited neuronal avalanches to characterize differences 
in electroencephalography (EEG) basal activity, free from seizures and/or interictal 
spikes, between patients with temporal lobe epilepsy (TLE) and matched controls.
Method: We defined neuronal avalanches as starting when the z- scored source- 
reconstructed EEG signals crossed a specific threshold in any region and ending 
when all regions returned to baseline. This technique avoids data manipulation 
or assumptions of signal stationarity, focusing on the aperiodic, scale- free compo-
nents of the signals. We computed individual avalanche transition matrices to track 
the probability of avalanche spreading across any two regions, compared them be-
tween patients and controls, and related them to memory performance in patients.
Results: We observed a robust topography of significant edges clustering in re-
gions functionally and structurally relevant for the TLE, such as the entorhinal 
cortex, the inferior parietal and fusiform area, the inferior temporal gyrus, and 
the anterior cingulate cortex. We detected a significant correlation between the 
centrality of the entorhinal cortex in the transition matrix and the long- term 
memory performance (delay recall Rey– Osterrieth Complex Figure Test).
Significance: Our results show that the propagation patterns of large- scale neu-
ronal avalanches are altered in TLE during the resting state, suggesting a poten-
tial diagnostic application in epilepsy. Furthermore, the relationship between 
specific patterns of propagation and memory performance support the neuro-
physiological relevance of neuronal avalanches.
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1  |  INTRODUCTION

Empirical evidence supports the hypothesis that the 
human brain displays near critical dynamics, character-
ized by the coexistence of large, aperiodic bursts of acti-
vations (“neuronal avalanches”) and oscillatory activity.1 
The scale- invariant properties shown by brain signals have 
been associated with a dynamical regimen supporting 
maximally efficient and flexible information processing.2

Epilepsy is a neurological disorder characterized by 
recurrent, unprovoked seizures, the generation and prop-
agation of which depend on the activation of networks of 
interrelated brain regions, defined as an “epileptogenic 
network” (EN).3

According to its first, mainly empirical conceptualization, 
which arose in the context of stereo- electroencephalographic 
presurgical assessment of focal epilepsy, the EN represents 
the set of brain regions involved in the primary organization 
of an individual's ictal discharge, and the ultimate target of 
surgical treatment.4 From a broader perspective, network 
theory is applied in the context of epilepsy as a framework 
to describe, with different methodologies, the complex spa-
tiotemporal organization of the EN activity (ictal and in-
terictal),5– 7 as well as its overall clinical impact, which may 
include cognitive dysfunction.8

The critical brain hypothesis may provide a further and 
complementary framework to describe complex brain net-
work dynamics, with important applications for the study of 
neurological disorders.9 In particular, large aperiodic bursts 
of activations that spread across the brain (named “neuronal 
avalanches”) have been observed in large- scale neurophys-
iological recordings.10 More recently, avalanche transition 
matrices have been applied to magneto/electroencepha-
lography (M/EEG) data, in order to encapsulate the spatio-
temporal spreading of neuronal avalanches on a large scale. 
These studies highlighted that neuronal avalanches spread 
preferentially across the white- matter bundles,11,12 and that 
they are drastically altered in neurodegenerative diseas-
es.11– 13 In the context of epilepsy, the criticality framework 
has been used to investigate global brain dynamics during 
ictal and interictal epileptic activity,14– 16 showing a deviation 
of the system from the critical state in both conditions.

In recent years, a significant body of research has 
investigated the intrinsic functional organization of 
brain dynamics in the resting- state (RS) condition. 
Notably, epilepsy- related cognitive abnormalities have 
been linked to an altered architecture of functional 
brain networks at rest.8,17 Most of these approaches are 
based on the analysis of the covariation between the 
corresponding signals and/or spectral power, as well as 
the frequency- specific phase locking (i.e. synchroniza-
tion). However, such techniques rely on the assumption 
of stationarity. In the present work, we investigated 

neuronal avalanche dynamics during RS in patients 
with temporal lobe epilepsy (TLE). We hypothesized 
that even during RS the spatial spreading of neuronal 
avalanches would display specific alterations in individ-
uals with TLE compared to controls. More precisely, we 
predicted that large- scale neuronal avalanches, as they 
spread across the brain at rest, would more likely recruit 
regions that are known to be functionally relevant for 
seizure generation and propagation in TLE. Moreover, 
we hypothesized that abnormalities of neuronal av-
alanche dynamics in TLE would be associated with 
neuropsychological performances, which are typically 
altered in patients with TLE. To test these hypotheses, 
we estimated the neuronal avalanche transition matri-
ces from source- reconstructed EEG acquired in patients 
with TLE and matched healthy controls. From the rest-
ing activity, we estimated the probability of a neuronal 
avalanche spreading between any pair of brain regions. 
Comparing (edge- wise) these probabilities in the two 
groups allowed us to identify, in an unsupervised, data- 
driven fashion, the regions that displayed altered ape-
riodic dynamics in individuals with TLE compared to 
controls. Finally, we related the altered recruitment of 
such regions to cognitive performance.

2  |  METHOD

2.1 | Participants

Between January 2018 and December 2020 a total of 49 
patients with drug- resistant TLE underwent high- density 

Key Points

• Investigation of the brain dynamics during 
resting- state activity in patients with temporal 
lobe epilepsy (TLE) using neuronal avalanches 
(i.e., large- scale patterns of activation)

• We found higher transition probabilities in pa-
tients with TLE in the entorhinal cortex, infe-
rior temporal and fusiform gyri, and anterior 
cingulate cortex

• We found higher eigenvector centrality of the 
left entorhinal cortex in the avalanche transi-
tion matrix, which was related to reduced long- 
term memory performance

• Discussion of the potential application of the 
avalanche transition matrix as a diagnostic tool 
in presurgical evaluations and epilepsy type 
differentiation
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EEG (hdEEG) recording as part of the presurgical evalu-
ation at IRCCS E. Medea, Conegliano (Treviso), Italy. 
The presurgical workup included detailed clinical his-
tory and examination, neuropsychological assessment, 
long- term surface video- EEG monitoring, and 3 T brain 
magnetic resonance imaging (MRI), with positron emis-
sion tomography (PET) as an adjunctive investigation in 
select cases. The sample size was determined based on 
the subject availability of the clinical center. The inclu-
sion criteria were: -  age ≥18 years; − temporal seizure 
onset based on clinical history and ictal video- EEG re-
cordings; − MRI evidence of epileptogenic lesion con-
fined to the temporal lobe or negative MRI; − RS activity 
recorded with hdEEG ≥8 min. A total of 37 patients, 16 
left TLE, 8 right TLE, 13 bitemporal, (mean age = 46.73 
[SD = 15.18]; 20 female) were eligible for the study.

The mean number of antiseizure medications (ASMs) 
per person was equal to 2.05 with a range from a mini-
mum of 0 to a maximum of 5 ASMs. Specifically, among 
the patients with TLE, three had no medication, nine had 
monotherapy, and the rest of participants had polyther-
apy. A description of patients' demographic and clinical 
characteristics is given in Table 1.

The control group was composed of 35 healthy par-
ticipants with no history of neurological or psychiatric 
disorders (mean age = 35.10 [SD = 8.24]; 28 female). The 
study was conducted according to the principles expressed 
in the Declaration of Helsinki and approved by the local 
ethical committee.

2.2 | Neuropsychological scores

All the patients with TLE underwent a neuropsycholog-
ical evaluation focusing on memory, attention/execu-
tive functions, and intelligence. Specifically, long- term 
non- verbal and verbal memory was investigated with 
the delay recall of the Rey– Osterrieth Complex Figure 
Test (ROCFT)18 and the Rey Auditory Verbal Learning 
Test (RAVLT).19 Attention and executive functions 
were evaluated with the Trail Making Test (TMT).20 
Specifically, we included in the analysis both the part 
A and B as a measure of motor speed and attention 
shifting capabilities, respectively. Finally, we used the 
total IQ (TIQ) of the WAIS- IV scale21 as a global intel-
ligence measure. However, not all patients completed 
the assessment. Therefore, we reduced the sample size 
to 27 patients for the analyses of the correlation of the 
neuropsychological functioning with the neural activ-
ity. Summary statistics for each test score in the clinical 
population is provided in Table 1.

T A B L E  1  The table describes the demographic and clinical 
characteristics of the patients with temporal lobe epilepsy, along 
with the scores of the neuropsychological tests.

Patients with TLE
Mean ± standard 
deviation

Age 46.73 ± 15.18
Age at onset 25.30 ± 19.55
Duration of epilepsy (years) 22.38 ± 20.46
TIQ 87.81 ± 19.74
TMT- A 34.45 ± 17.86
TMT- B 118.58 ± 73.77
Rey– Osterrieth Complex Figure 14.69 ± 6.47
Rey Auditory Verbal Learning Test 6.54 ± 2.93

Antiseizure medications Number

CZP 1
ZNS 1
PB 1
OXC 2
ACT 2
LTG 3
None 3
BRV 4
LEV 6
VPA 6
CBZ 7
LAC 8
CLB 8
ESL 11
PER 11

MRI Number

Mesial 9
HS 7
DNET 1
UKN 1

Anterior (temporal pole) 8
FCD 6
Encephalocele 1
Gliosis 1

Anterior + mesial 7
FCD + HS 7
Developmental venous anomaly 1
Supratentorial obstructive hydrocephalus 1

Negative MRI 11

Note: MRI abnormalities are reported by sublobar localization.
The continuous variables are reported as mean ± standard deviation.
Antiseizure Medication Abbreviations: ACT, acetazolamide; BRV, 
brivaracetam; CBZ, carbamazepine; CLB, clobazam; CZP, clonazepam; 
ESL, eslicarbazepine; LAC, lacosamide; LEV, levetiracetam; LTG, 
lamotrigine; NFT, no pharmacological treatment; OXB, oxcarbazepine; PB, 
phenobarbital; PER, perampanel; VPA, valproic acid; ZNS, zonisamide.
Abbreviation of the identified anomalies on the magnetic resonance 
imaging: DNET, dysembryoplastic neuroepithelial tumors; FCD, focal 
cortical dysplasia; HS, hippocampal sclerosis; UKN, unknown.
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2.3 | Resting- state EEG recording

The hdEEG recordings were obtained using a 128- channel 
Micromed system referenced to the vertex. Data were sam-
pled at 1024 Hz and the impedance was kept below 5 kΩ 
for each sensor. For each participant we recorded 10 min 
of closed- eyes RS while they were seated comfortably in a 
chair in a silent room.

2.4 | EEG preprocessing

Signal preprocessing was performed through EEGLAB 
14.1.2b.22 The continuous EEG signal was first down-
sampled at 256 Hz and then bandpass- filtered (0.1– 
45 Hz) using a Hamming windowed sinc finite impulse 
response filter. The signal was visually inspected to iden-
tify interictal epileptiform discharges (IEDs) by GMD, 
AD, and PB and then segmented into 2 s epochs. Epochs 
containing IED activity were successively removed. The 
epoched data were run through an automated clean-
ing algorithm using the TBT plugin implemented in 
EEGLAB (for the details please see Appendix S1). The 
previously mentioned preprocessing analysis pipeline 
has been applied by our group in previous studies in-
vestigating both task- related and RS EEG activity.7,17 
The data cleaning was performed using independent 
component analysis implemented via the Infomax al-
gorithm in EEGLAB.22 The resulting 40 independent 
components were visually inspected (both the topogra-
phy and the time- series), and those related to eye blinks, 
eye movements, or muscle or cardiac artifacts were 
discarded. The remaining components were then back- 
projected to the electrode space. Finally, bad channels 
were reconstructed with the spherical spline interpola-
tion method.23 The data were then re- referenced to the 
average of all electrodes. At the end of the data preproc-
essing, each subject had at least 8  min of artifact- free 
signal.

2.5 | Cortical source modeling

We used the individual anatomy MRI to generate in-
dividualized head models for the patients with TLE. 
The anatomic MRI for source imaging consisted of a 
T1 1 mm isotropic three- dimensional (3D) acquisition 
(256 × 256 × 256 matrix). For three patients and for the con-
trol group we used the MNI- ICBM152 default anatomy24 
from Brainstorm,25 since the 3D T1 MRI sequences were 
not available. The MRI was segmented in skin, skull, and 
gray matter using the Computational Anatomy Toolbox 
(CAT12) and then imported in Brainstorm, where we 

used Boundary Element Models (BEM) via OpenMEEG26 
to compute a realistic forward model (for the details 
please see Appendix  S1). Finally, we used the weighted 
minimum norm estimation as the inverse model, with the 
default parameter settings provided in Brainstorm.

2.6 | Avalanche estimation

We extracted the activity of a total of 68 regions of interest 
(ROIs) from the Desikan- Killiany atlas.27 The ROI time 
series was obtained by averaging the activity across the 
vertices composing each ROI. To study the dynamics of 
brain activity, we estimated “neuronal avalanches” from 
the source- reconstructed ROI time series. First, the time 
series of each ROI was binarized by calculating the z- score 
across time and then identifying positive and negative ex-
cursions beyond a threshold.

A neuronal avalanche begins when, in a sequence of 
contiguous time bins, at least one ROI is active (i.e. above 
the threshold of |z- score| > 3), and it ends when all ROIs 
are inactive.10,28 Note that the ROIs are defined according 
to the parcellation of the MRI. Alternative z- score thresh-
olds (i.e., 2.9 and 3.1) were tested. The total number of ac-
tive ROIs in an avalanche corresponds to its size. These 
analyses require the time series to be binned. In fact, 
neuronal avalanches respond to specific properties that 
are derived from statistical mechanics, which are theo-
retically expected by a branching process operating near- 
critical regimen. Hence, the appropriate temporal binning 
allows capture of critical dynamics. To estimate the most 
reliable time bin length, for each subject, each neuronal 
avalanche, and each time bin duration, the branching 
parameter σ was estimated.29 In fact, systems operating 
at criticality typically display a branching ratio ~1. The 
branching ratio is calculated as the geometrically averaged 
(over all the time bins) ratio of the number of events (ac-
tivations) between the subsequent time bin (descendants) 
and that in the current time bin (ancestors) and then aver-
aging it over all the avalanches.30 More specifically:

where σi is the branching parameter of the ith avalanche in the 
data set, Nbin is the total amount of bins in the ith avalanche, 
nevents (j) is the total number of events active in the jth bin, 
and Naval is the total number of avalanche in the data set. In 
our analyses the branching ratio was 1 for bin = 2 (8 ms).

(1)�i =

Nbin−1
∏

j=1

.

(

nevents (j+1)

nevents (j)

)
1

Nbin−1

(2)� =

Naval
∏

i=1

.
(

�i

)

1

Naval
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2.7 | Transition matrices

Avalanches shorter than 2 time bins (~8  ms) were ex-
cluded from further analyses. However, the analyses were 
repeated also including only avalanches longer than 4 
time bins (~16 ms), in order to focus on rare events (the 
sizes of the neuronal avalanches have a fat- tailed distribu-
tion) that are highly unlikely to be due to noise, and the 
results were unchanged31 (see Figure  S2). A matrix was 
calculated for each avalanche, where the elements in po-
sition (i, j) represented the probability that region j was 
active at time t + σ, given that region i was active at time t, 
where σ ~ 8 ms (see also Figure 1). The matrices were then 
averaged, edge- wise, across avalanches, as to obtain one 
avalanche transition matrix (ATM) per subject t. Then the 
ATMs were averaged, edge- wise, across subjects to obtain 
one matrix per group, and finally symmetrized. The intro-
duction of a time lag makes it unlikely that our results can 
be explained trivially by volume conduction (i.e., the fact 
that multiple sources are detected simultaneously by mul-
tiple sensors, generating spurious zero- lag correlations in 
the recorded signals). Note that each edge is treated as an 
independent process. As such, if one region recruits more 
regions, this is captured by the presence of multiple edges 
in the transition matrix. For instance, for a binning of 2, 

as the avalanches proceed in time, the successive regions 
that are recruited do so after roughly 8 ms. Hence, activa-
tions occurring simultaneously do not contribute to the 
estimate of the ATM.

2.8 | Statistics

For each group, we computed the difference in the prob-
ability of a perturbation running across a given edge in 
patients and controls. To statistically validate the differ-
ence in the transition matrices across groups (patients 
with epilepsy vs control group), we randomly shuffled 
the labels of the ATMs across groups (i.e. each subject- 
specific transition matrix was randomly allocated to ei-
ther the patients or the control group). We performed 
this procedure 10  000 times, obtaining, for each edge, 
the distribution of the differences given the null hypoth-
esis that the ATMs would not capture any difference 
between the two groups. We used the null distribution 
to obtain a statistical significance for each edge. We ap-
plied false discovery rate (FDR) correction for multiple 
comparisons across edges.32 Following this procedure, 
we obtained a matrix with the edges whose prob-
abilities significantly differed between the two groups. 

F I G U R E  1  Graphical representation of analysis pipeline. The panel (A) of the figure represents the source reconstruction of the signal 
from resting- state EEG, and the following generation of the avalanche transition matrix after the source activity thresholding. Panel (B) 
illustrates the statistical procedure of the 10 000 permutation to extract significant edges and nodes.
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Successively, we checked if the significantly different 
edges would cluster over specific brain regions. To this 
end, we computed the expected number of significant 
edges incident on any region, given a random distribu-
tion (with a comparable density), and selected those re-
gions with an above- chance number of significant edges 
clustered upon them. Statistics were again corrected 
using FDR, this time across regions.

To check the consistency of the results we performed 
statistical analyses also for the z- score threshold of 2.9 
and 3.1, and a different time binning including only ava-
lanches longer than 4 time bins (16 ms).

2.8.1 | Correlations with the 
neuropsychological functioning

Finally, we investigated the relationship between the 
probability of an avalanche transition matrix and the 
neuropsychological functioning. At first, we extracted 
centrality measures for each node in the ATMs, namely, 
the eigenvector centrality, using the Brain Connectivity 
Toolbox.33 Successively, we checked for the normality 
of data distribution using the Shapiro– Wilk test. We ob-
served that the graph index was not normally distrib-
uted in the patients group (p  =  .046). For this reason, 
we applied Spearman's correlation between graph the-
ory index of the statistically significant nodes and the 
neuropsychological measures. We then applied FDR 
correction across tests. Considering the relatively small 
sample size, in order to reduce the effect of the extreme 
value in the correlation computation, we applied win-
sorized robust correlations using the WRS2 package in 
R and Bayesian correlation with the software JASP. In 
this case we specifically targeted the significant results 
coming from the FDR- corrected correlation analysis. In 
addition, to control for potential effects related to the 
age we correlated the propagation index (PI) of the sub-
jects, namely the mean across the non- zero elements of 
the ATMs, and the age of the two groups. In addition, we 
correlated the PI with the number of ASMs and the epi-
lepsy duration. The age-  and ASM- related correlations 
have been reported in the Appendix S1.

3  |  RESULTS

We used the spatiotemporal spreading of large aperiodic 
bursts of activations as a proxy for communications be-
tween pairs of regions. Within this framework, large- scale, 
higher- order perturbations are considered to mediate the 
interactions between brain regions. We tested for differ-
ences between the two groups (i.e., patients with TLE and 

healthy controls) in the probabilities of any such perturba-
tion propagating across two brain regions (avalanche tran-
sition matrix). The differences in the ATM were used to 
track (subject-  and edge- wise) the difference on the spatial 
propagation of the perturbations across the two groups. 
To validate the observed differences, we built a null model 
randomizing the labels (i.e., patients or healthy control) 
10 000 times, in order to obtain a null distribution of the 
differences expected by chance. These distributions were 
used to spot, individually, the edges that differed between 
the two conditions above chance level. We applied FDR to 
correct for multiple comparisons across edges.

As a first result we observed that the significant 
edges across groups were preferentially hinging the tem-
porofrontal areas, suggesting that patients with TLE 
show increased transition probability in these areas (see 
Figure 2B; a list of the significant edges is present in the 
Appendix S1).

We then evaluated whether the significantly different 
edges would significantly cluster over specific brain re-
gions. To this end, we computed the expected number of 
significant edges incident on any region, given a random 
network (with a comparable density as the observed ones), 
and selected those regions with an above- chance num-
ber of significantly different edges clustered upon them. 
Statistics were again corrected using FDR, this time across 
regions. These “reliably different” edges cluster preferen-
tially upon the temporal and frontal regions. In particu-
lar, the left entorhinal cortex, the inferior parietal lobe, 
the left isthmus of the cingulate cortex, the right fusiform 
area, the right inferior and transversal temporal cortex, 
and the right rostral anterior cingulate cortex all showed 
to have significantly different edges clustered upon them 
(p < .001, FDR corrected).

These results were consistent across multiple z- score 
thresholds (2.9 and 3.1) as well as different time binnings 
(avalanche longer than 16 ms; see Figures S1 and S2).

Finally, we computed the eigenvector centrality (EC) 
in the ATM of each patient, and for the regions where 
different edges clustered, we related the individual EC to 
the neuropsychological scores. We observed a significant 
correlation (r = −0.437; padj = .045) between the EC of the 
left entorhinal cortex and the score of the delayed recall of 
the ROCFT in the group of patients with TLE. The results 
were robust to the outliers, as checked by the winsorized 
robust correlation (r = −0.467; p = .013). In addition, the 
Bayesian correlation revealed a Bayes factor in favor of the 
significant correlation (r = −0.462; B10 = 4.706).

To test the consistency of the results, we extended cor-
relational analyses across multiple z- score thresholds (2.9 
and 3.1) and avalanches longer than 4 time bins. We ob-
served a significant correlation between the EC of the left 
entorhinal cortex and the score of the delayed recall of the 
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ROCFT (see Table S1). Moreover, it is worth mentioning 
that the direction of the correlation effect between the im-
mediate recall of the verbal memory and the left entorhi-
nal cortex centrality is close to statistical significance. This 
is in line with the relationship between the left temporal 
area and the verbal memory (see Appendix S1).

4  |  DISCUSSION

In the present work we investigated the possible differ-
ences in the spontaneous, large- scale aperiodic activity 
occurring at rest in patients with TLE as compared to 
healthy controls.

We found that fast bursts of aperiodic activations 
(“neuronal avalanches”) during RS are more likely to 
spontaneously spread across temporal areas in patients as 
compared to controls. We were able to provide such map-
ping starting from resting state, identifying areas that are 

typically involved in critical events in patients with TLE, 
and also display a (presumably) pathological role on the 
large- scale functional networks, regardless of the pres-
ence of epileptiform activity. By utilizing the avalanche 
transition matrices, that is, a mathematical tool that ac-
commodates the non- linearities of the large- scale brain 
dynamics and the corresponding multimodal dynamics 
that they generate, we successfully identified the anom-
alous spreading of activity in patients with TLE from 
resting- state EEG data. The investigation of brain dynam-
ics through the criticality framework represents a useful 
tool to describe the mechanisms underpinning the evolu-
tion of brain activity in terms of the aperiodic dynamics. 
However, criticality and neural avalanche have been ap-
plied mostly to identify epileptogenic areas34 or character-
izing brain dynamics during seizures.15,16 It is important 
to note that our work is focused on the basal brain activity, 
assessing the intrinsic network organization of the brain 
with epilepsy when epileptiform activity is not occurring. 

F I G U R E  2  Results of the analyses. Panel (A) represents the group average of the avalanche transition probability matrices. Panel (B) 
(upper and lower parts) illustrates the significant edges differing between patients with temporal lobe epilepsy (TLE) and the control group. 
Finally, panel (C) indicates the significant nodes differing across groups, and the correlation of the left entorhinal cortex with the long- term 
memory performance (delay recall Rey– Osterrieth Complex Figure Test).
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Although derived from the framework of criticality, the 
ATMs allowed us to move away from the traditional stud-
ies of the field, which focused only on the global proper-
ties of avalanches. In fact, we were able to evaluate the 
internal dynamics of avalanches, which may provide use-
ful information on the specific brain regions involved in 
anomalous RS activity.

This line of thinking builds on converging evidence 
indicating that the brain alternates segregated and inte-
grated states.35,36 As such, meaningful communication 
among regions on a large scale would be intermittent and 
might be best understood and measured in terms of aperi-
odic perturbations. We reasoned that if avalanches convey 
interactions occurring between regions, then their spread-
ing should also be modified between groups, if there is a 
different communicative basal pattern. Large- scale, in sil-
ico models have been used to investigate the generation 
and propagation of avalanches across the whole brain.37 
It was demonstrated that avalanches represent the large- 
scale correlate of groups of neuronal ensembles that be-
come subsequently entrained by aperiodic perturbations. 
The ability of each region to respond or not to incoming 
stimuli depends on multiple factors, among which the 
structural connectome and the local properties are key 
elements. This reasoning from theoretical neurosciences 
provided us with the hypothesis that disrupted structural 
and/or functional properties, as seen in the regions typi-
cally involved in TLE, would also alter the ability of these 
regions to correctly receive, handle, and pass on stimuli 
originating from other parts of the brain. Our results iden-
tified in patients with TLE, in an unsupervised manner, a 
number of functional links (i.e. edges) across which ava-
lanches are more likely to spread. The edges are mainly 
incident on temporal and frontocentral regions. These 
results align with the evidence of altered functional con-
nectivity of temporal and frontal areas in TLE.38,39 We 
observed that the significantly different edges hinged pre-
dominantly upon temporal regions such as the left ento-
rhinal cortex and the fusiform area, as well as the superior 
temporal gyrus. These regions are known to be involved 
in TLE. In particular, the entorhinal cortex is considered a 
key player in seizure initiation in TLE.40

Furthermore, individuals with TLE frequently display 
altered functioning, often associated with a hyperactiva-
tion of the network involved in face recognition, includ-
ing the fusiform area,41,42 which we also find to be altered. 
Moreover, our results highlighted the involvement of the 
anterior cingulate cortex (ACC), which has been reported 
previously in TLE. In fact, evoked responses in the cin-
gulate cortex have been detected after hippocampal stim-
ulation in patients with TLE.43 In addition, more recent 
evidence highlighted altered RS functional connectivity of 
the ACC in medial TLE.44

It is notable that the alterations in the avalanche 
spreading that we observed in TLE correlated with cogni-
tive functioning. Specifically, we observed that the more 
the left entorhinal cortex was recruited by the transient 
bursts (i.e., higher centrality in the ATM), the worse were 
the cognitive performance in the long- term memory tasks 
(measured by the ROCFT).

The lateralization of this effect should not be inter-
preted, at the present stage, as a localization of the non- 
verbal memory in the left hemisphere. In fact, converging 
findings highlighted that, although being a reliable instru-
ment for memory performance evaluation, the ROCFT is 
not sufficiently sensitive to characterize the lateralization 
of the memory functions.45 This is probably related to the 
large network engagement related to the ROCFT, which 
to be performed involves also the left temporal lobe due to 
the verbalizability of many of its components.46,47 In fact, 
previous findings highlighted that verbalization compo-
nents partially compensate for the visuospatial deficit in 
the right TLE. It is important to note that the visuospa-
tial deficit becomes evident as the task demands increase, 
and therefore represents an element to be investigated 
during the neuropsychological assessment.48 However, 
there is strong evidence of nontrivial reliance on the left 
hippocampus in terms of resiliency of memory visuospa-
tial functions after surgical resections, which warrants 
further investigation in terms of different effects of lat-
eralization.49 It is noteworthy that the ATM captures the 
whole- brain dynamics, including the contribution of the 
transition across a distributed network. Therefore, in rela-
tion to the limitations related to the lack of lateralization 
specificity of the ROCFT, the novelty of the present study, 
and our sample, we are only able to generate interpreta-
tive hypotheses in relation to the lateralization. In light of 
this, the correlation observed could be linked to the rela-
tionship between the recruitment of a distributed network 
from ROCFT and the whole- brain dynamics captured by 
ATMs. Additional investigations are necessary to better 
characterize the relationship between ATM and memory 
proficiency as a potential tool to shed light on neuronal 
mechanisms in left vs right TLE. However, due to our lim-
ited sample, it is not possible here to further discuss the 
lateralization of memory functions.

Nonetheless, our finding is particularly interesting, as 
it endows the spreading of activations in the data to a func-
tional meaning, since it relates to a cognitive process that 
has been long known to be impaired in patients with TLE. 
In addition, it may be worth noting that the vast major-
ity of large- scale brain- imaging studies have investigated 
the interactions among brain regions exploiting the sta-
tistical dependencies between the corresponding signals. 
With regard to epilepsy, one of the main focuses has been 
to characterize the behavior of brain networks during 

 15281167, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/epi.17551 by U

niversity O
f Padova C

enter D
i, W

iley O
nline L

ibrary on [08/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



   | 9DUMA et al.

seizures or IEDs, since they can provide the most relevant 
information in relation to diagnosis and also to treatment 
selection and planning. In contrast, here we exploited the 
spontaneous dynamics embedded in the simple raw sig-
nal, derived from source-  activation maps of the resting 
activity, purposely disregarding epileptiform activity. It is 
striking that disregarding most of the signals and focus-
ing on the aperiodic transients has allowed us to apply a 
remarkably simple pipeline, which avoids heavy filtering 
and assumptions of stationarity, and is applied in the time 
domain. In fact, by thresholding the z- scored signals, tem-
poral regions naturally emerged as key players in the RS 
dynamics, beyond ictal or IED. However, it is important to 
note that we may have underestimated the true frequency 
of IEDs, since they may not be evident on surface EEG.

At the same time, it remains difficult to provide an 
unambiguous mechanistic interpretation of our findings. 
It might be that a potential alteration of the regional ex-
citation/inhibition (E/I) balance could facilitate the re-
cruitment of a given brain region by the ongoing transient 
large- scale perturbations. In the same line of thinking, 
Burrows et al.50 observed that manipulating the E/I bal-
ance in cellular, in vivo neural networks caused a shift 
of the operational regimen away from criticality, which 
was linked, in turn, to the emergence of epileptic activ-
ity. Beyond the neuroscientific implications, our meth-
odology might directly help the patients' management. 
In particular, the present methodology might serve as a 
non- invasive and cost- effective tool exploiting basal ac-
tivity in order to identify specific profiles of functionally 
altered regions in different forms of epilepsy. Moreover, it 
can be used in complex diagnostic processes, such as those 
in which scalp EEG monitoring failed in recording seizure 
activity. In these scenarios, our methodology allows the 
identification of functionally altered zones that may be 
the target for additional investigation (e.g., intracranial 
recording). However, longitudinal studies are required 
to validate such findings in relation to clinical outcomes 
after surgical resection.

5  |  CONCLUSIONS

Our study evaluated brain dynamics during RS activity in 
TLE as compared to healthy controls utilizing the frame-
work of neuronal avalanches. We found specific altera-
tions of the transition probability in the entorhinal cortex, 
the inferior temporal and fusiform gyri, and the anterior 
cingulate cortex. Higher eigenvector centrality (or EC) of 
the left entorhinal cortex was related to lower long- term 
memory performance. The present methodology might 
serve as a potential diagnostic tool identifying function-
ally altered regions, thereby aiding the diagnostic process.
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