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Abstract

Nowadays, authentication systems are widespread in our devices. They

protect the security of our systems, guaranteeing that only authorized people

have access to reserved services and data. Thanks to this role, authentication

systems made their first appearance in the ‘60s, with the diffusion of the first

computers in universities. Over the years, these systems have evolved. If

the first authentication systems were based only on passwords, they are

considerably advanced today. In particular, with the widespread diffusion

of smartphones, authentication systems became commonly used, focusing on

user-friendly systems such as biometrics. This evolution generated a market

that is growing strongly, and it is expected to increase by 15% again in the

next few years, with revenues of hundreds of billions of dollars.

Usability is not the only factor influencing the evolution of authentica-

tion systems. Their safety also determines their evolution over time. If an

authentication method guarantees the security of a system, it is also true

that it is the first to suffer from cyber-attacks. After the appearance of new

authentication technologies on the market, it is frequent to notice the spread

of new methods to bypass the security of the novel technology. Research in

these areas becomes fundamental: on one side, to discover new authentica-

tion systems that can improve the usability of our devices, and on the other,

to anticipate possible vulnerabilities and make these systems more secure.

This thesis investigates the security of authentication methods, and it is

composed of two logical parts that focus on: (i) the development of novel at-

tacks against existing authentication methods, (ii) the development of novel

authentication methods. In the first part of this thesis, we focus on attacks

against authentication methods. In particular, we show the effectiveness

of three attacks against the security of password and PIN authentication

methods. The first work shows how an attacker can use the audio recorded

v



during a VoIP call to infer the keys pressed by a victim. We showed how this

attack could be used to infer passwords successfully. The other two works

of the first part consist of two distinct methods to steal secret codes from

ATM PIN pads. For all these attacks, we propose effective countermeasures

showing how important it is to actively participate in research in this field

to improve the security of authentication systems. In the second part of

this thesis, we explored authentication systems from the perspective of both

users and devices authentication. In particular, we investigated a novel bio-

metrics method based on recognizing the user’s chewing movement and a

new authentication method to ensure the security of legacy cyber-physical

systems. We present our experimental results for the former, showing how

our method can guarantee user security by keeping a user-friendly environ-

ment. For the latter, we present our authentication method showing how it

can improve the security of legacy infrastructures, keeping costs down.
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Chapter 1

Introduction

In computer science, authentication is the process by which the identity of a

computer, software, or user is verified and authenticated to be used for one

or more services. The first authentication system was born in the ‘60s with

the spread of computers in universities as a computing tool shared between

several students and professors. Initially, these computers did not have any

access control system, and users could access all files on these machines. In

1961, this precarious condition led Fernando J. Corbató to develop the first

password login system to secure access to the files of the Compatible Time-

Sharing System (the operating system used by MIT). This first rudimentary

system did not provide any security for passwords (stored in clear text on

disk), but formed the conceptual basis for the followed systems. In the late

‘60s and early ‘70s, programmers became aware of the storing passwords in

cleartext problem. In the early ‘70s, the cryptographer Robert Morris devel-

oped the first password storage system based on hash functions. A few years

later, this password encryption scheme was included in the 6th version of

UNIX, building the first password storage system as we know it today. Even

though the introduction of cryptography significantly improved the security

of computer systems, new threats continued to appear, and authentication

systems continued their development. In the early ‘80s, to overcome the

problem of password reuse, One-Time Password (OTP) systems were intro-

duced, which generated random passwords to be used mainly as a second

authentication factor. However, the real game-changer was the introduction

of asymmetric cryptography, which significantly changed the management

of secure communications. The first Public Key Infrastructure (PKI) was

1
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created thanks to the asymmetric algorithms, allowing two users to authen-

ticate and identify each other.

Over the years, the use of authentication systems has changed signifi-

cantly. If in the ‘60s they were only used by professionals, they have become

part of everyday life over time. This phenomenon has reached its peak in the

last decade, with the widespread diffusion of smartphones. Thanks to these

devices, there has been a widespread diffusion of biometric authentication

systems (particularly fingerprint and face recognition), with the consequent

generation of a large expanding market.

In conclusion, in about 60 years, we have seen the rapid development of

digital authentication. Started as simple passwords saved in plain text,

it evolved into advanced systems widespread in our everyday lives and

equipped with sophisticated biometrics.

1.1 Research Motivation and Contribution

As described in the previous section, authentication systems have seen pro-

gressive development over the decades. A particular case concerns the au-

thentication of people, which is based on the assumption that a person to be

authenticated knows a secret: the authentication system will recognize as

legitimate a user who can provide this secret. There are three different kinds

of secrets to be provided to a digital system: (i) “A thing you know”, typi-

cally a password or a PIN; (ii) “A thing you have”, such as a smartphone,

a card with a magnetic stripe or microchip (e.g., a credit card), a physical

object such as a token, or a certified application; (iii) “A thing you are”,

which includes all the unique characteristics of the human body that can

define the identity of a person. This last category of authentication methods

is called biometrics and includes technologies like fingerprint, voice stamp,

retina, and/or iris. Thanks to their transparency for the user, investments

in biometrics have seen a significant increase in recent years. The user no

longer has to enter a card or password actively but only has to place his

finger on a reader or, even better, a camera independently scans his eye and

gives him access.

In this thesis, we investigate the security and privacy of authentication

methods. Our research work includes the following two parts:

• Attack against existing authentication methods proposes practically

feasible attacks that can be used to violate the users’ security and

privacy, but also possible countermeasures against such attacks.

2
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• Novel authentication methods presents two novel authentication sys-

tems developed for smartphones (a novel biometric) and cyber-physical

systems, respectively.

In what follows, we briefly introduce the parts mentioned above and

highlight our contributions. In this thesis, some passages have been quoted

verbatim, and some figures have been reused from the works [23, 35, 37, 39],

all coauthored by the author of this thesis.

1.1.1 Attack Against Existing Authentication Methods

As we have discussed so far, it is a constant challenge between authentica-

tion methods and new attacks. Since the first authentication methods were

developed, cyber-attackers began to imagine techniques to illicit access to

protected systems. In particular, attacks against authentication methods

have multiplied in recent decades. This proliferation is due to the great

variety of authentication methods available to date (e.g., passwords, unlock

signs, pins, biometrics), for which there are specific attacks that exploit the

weaknesses of a given system. Therefore, if initially only brute force or hash

table attacks were used to steal passwords, then attacks became more spe-

cialized, exploiting specific hardware vulnerabilities. An example consists in

using a spray to freeze a computer’s RAM to read it later and extract the

password (at this point saved in plain text in the volatile memory). Still,

to carry out attacks against systems that use an unlock sign, the residual

grease on the screen has been exploited to infer the secret symbol [13]. Other

attacks have been developed to recover the fingerprints that a victim leaves

on solid objects, but the same can be reconstructed from photos of the vic-

tim’s hands recovered on the internet using only open-source intelligence

techniques.

In the first part of this thesis, we developed new methods to attack ex-

isting authentication methods. In particular, we focused on attacks against

passwords and PINs (specifically, ATM PINs).

1.1.1.1 Skype & Type: Keyboard Eavesdropping in Voice-over-

IP

Over the years, several keyboard eavesdropping techniques have been devel-

oped, which allow stealing sensitive information such as passwords, PINs,

or simply private texts. These techniques exploit the emanations of the

keyboards as the electromagnetic ones, acoustic, and the vibrations emitted

during the typing. Some other techniques exploit the residual thermal radi-

3
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ation that a user leaves on a keyboard or analyze the inter-keystroke timing

to leak information about the pressed keys. Among all these techniques,

one of the most powerful is undoubtedly the one developed by Asonov [10],

which allows discriminating between the keys pressed by the victim based

on the characteristic sound that each of these keys emits. However, even if

this attack is effective, one of its main limitations is the need for physical

proximity. Indeed, to perform the attack, a microphone must be placed in

the vicinity of the target keyboard, limiting the feasibility in a real context.

Contributions: In Chapter 2, we present a novel technique for acoustic

eavesdropping that exploits VoIP calls. We propose a method that removes

the physical limitation of previous attacks by exploiting the victim micro-

phone. During the VoIP call, the attacker records the call audio and uses this

audio to infer the keys pressed by the victim. Thanks to this side-channel,

the attacker can infer sensitive information typed by the victim during the

VoIP call (e.g., sensible text or password). Our paper also demonstrates how

to use our attack by exploiting alternative microphones, such as headphones

connected to the victim’s computer or a smartphone on the same table as

the keyboard. We also show how it is possible to use this attack to perform

word recognition and password reconstruction. Thanks to our attack, the

computation times for a brute force attack can be drastically reduced to the

point of making it feasible to use it in a real context. Finally, we conclude

by proposing a potential countermeasure to our attack that can improve the

security of VoIP without worsening the call quality.

1.1.1.2 Hand Me Your PIN! Inferring ATM PINs of Users Typ-

ing with a Covered Hand

One of the most commonly used attacks against PIN-based authentication

systems is placing a hidden camera to record the PINs entered by victims.

This technique was mainly used to attack ATMs, where it is relatively easy

to hide a camera. However, these attacks became rapidly popular among

ATM users, who adopted countermeasures. One of the most popular hides

the entered PIN by covering the PIN pad using the non-typing hand. This

technique, although simple, is highly effective in stopping the hidden camera

attack.

Contributions: In Chapter 3, we present a novel kind of PIN security

attack on ATMs. Our method is based on the assumption that the user cov-

ers the PIN pad while typing. Thanks to the testbed we built, we collected

videos of 58 people entering PINs on an ATM PIN pad. The results we ob-

tained show that it is possible to reconstruct the PIN entered by the victim

4
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even though the view on the PIN pad is totally or almost totally covered.

To demonstrate that this is not a trivial task, we also conducted a test to

compare human performance with our algorithm performance. These results

showed that our algorithm outperforms humans’ capabilities, demonstrat-

ing how this task is difficult for an attacker without proper support. We

also conducted a study to show the most effective covering strategies that a

user might adopt, and we proposed possible countermeasures to our attack.

Moreover, we made available publicly the dataset we collected, hoping that

this will be useful for future research in this area and the security of ATMs.

1.1.1.3 We Can Hear Your PIN Drop: An Acoustic Side-Channel

Attack on ATM PIN Pads

Attacks that exploit video recordings of PIN pads have become more

widespread over time due to their great simplicity of use. However, this

kind of attack requires placing a camera directly on-site, limiting its appli-

cability in many real-world contexts. This limitation led to the development

of several attacks specialized on PIN pads. Indeed, this restricted category

of keyboards has a more straightforward layout than a standard computer

keyboard. Besides favoring the performance of the attacks, this simplified

layout allows the use of a series of techniques otherwise not feasible on large

keyboards. To date, attacks against PIN pad exploit heat signatures, inter-

keystroke timing, and even a combination of these.

Contributions: In Chapter 4, we propose a novel attack to infer

keystrokes in an ATM PIN pad. This attack exploits a microphone hid-

den in the vicinity of the ATM to record the keys pressed by the victim.

The main advantages of our attack are the high effectiveness and the sig-

nificant distance between the hidden microphone and the target PIN pad.

These two aspects combined make this attack a severe threat for ATMs. In

the experiments we conducted, we also investigated the performance of our

attack in realistic conditions by simulating its performance in environments

with different levels of noise. Results showed how our attack is resilient even

in realistic non-optimal cases. Finally, we proposed several countermeasures,

thus improving the security of existing ATMs against this threat.

1.1.2 Novel Authentication Methods

Thanks to the development of new sensors, our smartphones gradually in-

tegrated new authentication methods in the last decade. Among the most

popular, we find fingerprint recognition even if, in recent years, the use of

facial recognition and retinal scanning systems had a substantial increase.
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One of the research directions investigated in this thesis concerns the study

of biometrics authentication methods. A particular emphasis is placed on

behavioral biometrics, which authenticates a user based on the unique be-

havioral pattern when interacting with the system. These authentication

methods can consider a wide range of parameters, which include how a

user: interact with the keyboard (keystroke dynamics), move the mouse,

answers a call [44], or moves his eyes in certain situations [53]. The second

part of this thesis focused on implementing new authentication methods

and improving existing methods. We investigated authentication systems

from the perspective of both user and device authentication. In our first

work, we developed a new user-friendly authentication method falling into

the biometrics category, while in the second, we developed an authentication

method for securing an unsafe legacy industrial protocol that is still widely

used today.

1.1.2.1 Eathentication: A Chewing-based Authentication

Method

In the last years, biometric authentications have been discovering a solid

development thanks to their high transparency to the user and good relia-

bility. Transparency is given by the intrinsic nature of these methods, which

only require the user to interact with the device as they always do. Security

can be given by two factors: (i) the ability of these methods to uniquely

recognize a person based on physical characteristics that are difficult to vi-

olate or reproduce, (ii) the intrinsic possibility of some of these methods to

be used as behavioral biometrics to authenticate a user on an ongoing ba-

sis. In particular, in the case of behavioral biometrics, this implies that an

impostor should be able to correctly impersonate the victim for the entire

period he uses the device and not only be able to authenticate at login time.

Contributions: In Chapter 5, we present a novel behavioral biomet-

rics authentication method that relies on authenticating a person based on

the moments of their external ear channel during chewing. To ensure this

method to be user-friendly, we investigated its performance with both users

chewing food and users simulating an empty mouth chewing. Smartphones

could use this system as a secure unlocking system integrated into the ear-

phones. Indeed, intelligent earphones already provide unlocking features,

but their security level is shallow since they do not authenticate the user.

Our method aims to fill this gap by offering a simple to use and secure

system. In this regard, we initiated a patent application to protect the in-
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tellectual property of this method (Patent n. 102020000001192, Publication

number WO2021148932A1).

1.1.2.2 TAMBUS: A Novel Authentication Method Through

Covert Channels for Securing Industrial Networks

In recent decades, information systems have progressively merged with in-

dustrial systems, giving rise to what is now called Cyber-Physical Sys-

tems (CPS). This integration became more and more widespread over the

years, thus producing a security gap in the industrial world. Indeed, to

integrate novel features for legacy CPS devices, often, these have been inte-

grated into more modern networks. This innovation process has not always

considered the risks that these integrations could lead to, thus exposing

critical systems to threats not foreseen at the time of their design. In par-

ticular, two crucial points are the use of legacy communication protocols and

the presence of outdated devices: the first because they may lack security

features, and the second because confidential information is stored in unse-

cured hardware. All these vulnerabilities can be a risk for the security of

CPSs, exposing them to possible cyber-attacks. Nowadays, these problems

are pervasive, as updating industrial plants, although simple from a strictly

IT point of view, is problematic for the high costs. What drives up costs is

often the need to interrupt the continuous production of facilities to replace

and test new hardware: these operations must be planned years in advance

and require enormous resources.

Contributions: In Chapter 6, we present our new authentication

method for MODBUS/TCP. MODBUS is an industrial protocol created

at the end of the ‘70s that, thanks to its widespread use in CPS it became a

de-facto standard over time. This protocol is so widely integrated into man-

ufactories that updating the environment is economically disadvantageous

for many companies. For this reason, its version over TCP is still widely used

in industrial systems, even though there are new protocols more secure and

performing to date. MODBUS is, in fact, a protocol in the clear, which does

not provide cryptography features to send messages over the TCP network.

Therefore, anyone with access to the network can modify the messages sent

with potentially catastrophic consequences for the system. Since legacy de-

vices only support MODBUS, our approach introduces a new protocol that

improves system security and is fully backward compatible with the legacy

version. Our proposal exploited two covert channels to transfer security

information over the MODBUS protocol transparently. To the best of our

knowledge, this is the first approach that proposes a solution that is at the
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same time backward compatible with MODBUS and not implemented in a

secure by obscurity design.

1.2 Publications

This section reports the list of publications produced from the works pre-

sented in this thesis. These manuscripts have been produced during my

Ph.D. and published in peer-reviewed journals, conferences, and work-

shops. A complete list of published and currently submitted articles is

listed in chronological order as follows: Section 1.2.1 lists journal articles,

Section 1.2.2 lists conference and workshop papers, and Section 1.2.3 lists

applied patents.

1.2.1 Journal Publications

J1 Stefano Cecconello, Alberto Compagno, Mauro Conti, Daniele Lain, &

Gene Tsudik. Skype & Type: Keyboard Eavesdropping in Voice-over-

IP. ACM Transactions on Privacy and Security (TOPS), 22 columns

(4), 1-34, 2019. DOI:10.1145/3365366. (JCR IF 2018: 2.103; IT-

ANVUR Class: 1)

J2 Giuseppe Bernieri, Stefano Cecconello, Mauro Conti, & Gianluca Lain.

TAMBUS: A novel authentication method through covert channels

for securing industrial networks. Elsevier Computer Networks, 183,

2020. DOI:10.1016/j.comnet.2020.107583. (JCR IF 2020: 4.200;

IT-ANVUR Class: 1)

1.2.2 Conference and Workshop Publications

C1 Mattia Carlucci, Stefano Cecconello, Mauro Conti, & Piero Ro-

mare. Eathentication: A Chewing-based Authentication Method.

2020 IEEE Conference on Communications and Network Se-

curity (CNS), Avignon, France, 2020, pp. 1-9. DOI:

10.1109/CNS48642.2020.9162343. (MA: C; Acceptance rate:

27.8%)

C2 Matteo Cardaioli, Stefano Cecconello, Luca Pajola, & Federico Turrin.

Fake news spreaders profiling through behavioural analysis. In CLEF

Labs and Workshops, Notebook Papers. 2020.

C3 Matteo Cardaioli, Stefano Cecconello, Merylin Monaro, Giuseppe Sar-

tori, Mauro Conti, & Graziella Orrù. Malingering Scraper: A novel
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framework to reconstruct honest profiles from malingerer psychopatho-

logical tests. In Proceedings of the 28th International Conference on

Neural Information Processing (ICONIP), Virtual, December 8-12,

2021. DOI: 10.1007/978-3-030-92310-5 50. (GGS: 3/B; CORE:B;

MA:B)

C4 Kiran Balagani, Matteo Cardaioli, Stefano Cecconello, Mauro Conti,

& Gene Tsudik. We Can Hear Your PIN Drop: An Acoustic Side-

Channel Attack on ATM PIN Pads. Submitted at European Sympo-

sium on Research in Computer Security.

C5 Matteo Cardaioli, Stefano Cecconello, Mauro Conti, Stjepan Picek,

Simone Milani, & Eugen Saraci. Hand Me Your PIN! Inferring ATM

PINs of Users Typing with a Covered Hand. 2021 In Proceedings of the

31th USENIX Security Symposium (USENIX Security 2022), Boston,

USA. (GGS: 1/A++; CORE: A++; LiveSHINE: A++; MA:

A++)

1.2.3 Patents

P1 Mattia Carlucci, Stefano Cecconello, Mauro Conti, & Piero Romare.

Method of authenticating a user through analysis of changes in the

external ear canal. IT Patent n. 102020000001192, 2020. Publication

number WO2021148932A1 (29/07/2021)
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Attack Against Existing
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Chapter 2

Skype & Type: Keyboard Eaves-

dropping in Voice-over-IP

Circumvention of cryptographic-based data protection techniques usually

requires compromising one of the end-hosts, to be able to capture plain-

text before it is encrypted. A more convenient way of capturing plain-

text before encryption, thus avoiding the needs of compromising a system,

is eavesdropping on physical emanations: observing unintentional leakage

of emanations which happen during the regular devices’ operations. First

discovered in 1943 [62], this mechanism has been proven to be applicable to

several types of emanations: electromagnetic [134], visual [16], tactile [123],

and acoustic [10, 63].

Convenient targets for physical eavesdropping attacks are I/O peripher-

als (e.g., keyboards, mice, touch-screens and printers), as their emanations

directly leak information on the unencrypted input or output text. In par-

ticular, exploitation of keyboard acoustic emanations proved effective in re-

constructing the typed input. In this specific class of eavesdropping attacks,

an adversary learn what a victim is typing by analyzing the sound produced

by the keystrokes. Typically, sounds are recorded either directly, using mi-

crophones [10, 21, 67, 69, 95, 103, 135, 147, 149], or by exploiting various

sensors (e.g., accelerometers [102, 138]) to re-construct the same acoustic

information. Once collected, the audio stream is typically analyzed using

techniques, such as supervised [10, 67, 69, 103] and unsupervised [21, 149]

machine learning, or triangulation [95, 135, 147]. The final result is a full or

partial reconstruction of the victim’s input.
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In the past years, all proposed keyboard acoustic eavesdropping attacks

required a compromised (i.e., controlled by the adversary) microphone near

the victim’s keyboard [10, 21, 67, 69, 95, 103, 135, 147]. However, requiring

physical access strongly limits applicability of such attacks, thus reducing

their real-world feasibility. For this reason, recent proposals [8, 43] relaxed

the physical proximity requirement, exploiting Voice-over-IP (VoIP) appli-

cations to move the adversary in a remote-setting scenario. Premise to this

attack, called Skype & Type attack (or S&T attack for short), is the observa-

tion that people involved in VoIP calls often engage in secondary activities,

such as: writing email, contributing their “wisdom” to social networks, read-

ing news, watching videos, and even writing research papers. Many of these

activities involve using the keyboard (e.g., entering a password). VoIP soft-

ware automatically acquires all acoustic emanations, including those of the

keyboard, and transmits them to all other parties involved in the call. If one

of these parties is malicious, it can determine what the user typed based on

keystroke sounds. Such an adversary is realistic: it is not always the case

that two parties engaged in a VoIP call have mutual trust. For example,

such a situation might happen between lawyers on opposite sides of a le-

gal case, or negotiators for different parties. Moreover, the pervasiveness of

VoIP software provides to an attacker a huge attack surface, hard to achieve

with previous approaches. Considering Microsoft Skype alone, the number

of active monthly user is about 300 million.

Contributions. In this chapter, we discuss the following contributions:

• We demonstrate S&T attack based on remote keyboard acoustic eaves-

dropping over VoIP software, with the goal of recovering text typed

by the user during a VoIP call with the attacker. S&T attack can

also recover random text, such as randomly generated passwords or

PINs. We take advantage of spectral features of keystroke sounds and

analyze them using supervised machine learning algorithms.

• We evaluate S&T attack over a very popular VoIP software: Skype. We

designed a set of attack scenarios that we consider to be more realistic

than those used in prior results on keyboard acoustic eavesdropping.

We show that S&T attack is highly accurate with minimal profiling

of the victim’s typing style and keyboard. It remains quite accurate

even if neither profiling is available to the adversary. Our results show

that S&T attack is very feasible, and applicable to real-world settings

under realistic assumptions. S&T allows to greatly speed up brute-

force cracking of random passwords. If the target text is not random,
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S&T exploits contextual information (such as the typing language) to

recognize words with very high accuracy. Moreover, experiments with

Google Hangouts indicate that it is likely susceptible to S&T attack

as well.

• We show, via extensive experiments, that S&T attack works well with

different common and inexpensive recording devices, on a great variety

of typing styles and speed, and is robust to VoIP-related issues, such

as limited available bandwidth that degrades call quality, as well as

human speech over keystroke sounds.

• Based on the insights from the design and evaluation phases of this

work, we propose a countermeasure to S&T and similar attacks that

exploit spectral properties of keystroke sounds. Our proposed coun-

termeasure is transparent, does not impact severely the quality of the

voice during the call, and is able to disrupt spectral features — making

previous data collected by an adversary useless.

Difference with Preliminary Version. The novel contributions of this

work, compared to the preliminary version in [43], lie in a greatly extended

experimental evaluation, and in improvements to the performance of S&T

and of our proposed countermeasure. Regarding the experimental evalu-

ation, our preliminary work considered only laptop keyboards and laptop

microphones. We now also consider (i) different victim device setups, such

as external membrane and mechanical keyboards; and (ii) different record-

ing devices, such as victims that use a smartphone for their VoIP calls, or

use a headset microphone, a typical setup in enterprise. Additionally, we

shed light on the impact of typing speed, showing that even for the fastest

typist S&T is still effective, and greatly expand the number of users in our

experiments. Regarding the performance of S&T, we improve the recogni-

tion of non-random text by exploiting contextual information such as the

typing language. Finally, we refine our countermeasure and are now able

to successfully prevent S&T attack in a transparent way, without impacting

the quality of the call.

Organization. Section 2.1 overviews related literature and state-of-the-

art on keyboard eavesdropping. Next, Section 2.2 describes the system

model for our attack and various attack scenarios. Section 2.3, presents S&T

attack. Section 2.4 describes how we collected the data that we then use to

evaluate S&T attack in Section 2.5. In Section 2.6 we show some practical
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applications of S&T attack. Finally, Section 2.7 proposes some potential

countermeasures, and Section 2.8 summarizes the chapter and overviews

future work.

2.1 Related Work

Eavesdropping on keyboard input is an active and popular area of research.

This section begins by overviewing attacks that rely strictly on acoustic

emanations to recover the victim’s typed text and then summarizes results

that study eavesdropping on other physical emanations, such as the WiFi

signal, and surface vibrations. For a complete treatment of keyboard side

channel attacks, we refer to the recent survey in [107].

Attacks Using Sound Emanations. Research on keyboard acoustic

eavesdropping started with the seminal paper of Asonov and Agrawal [10]

who showed that, by training a neural network on a specific keyboard, good

performance can be achieved in eavesdropping on the input to the same

keyboard, or keyboards of the same model. This work also investigated the

reasons for this attack and discovered that the plate beneath the keyboard

(where the keys hit the sensors) has a drum-like behavior. This causes the

sound produced by different keys to be slightly distinct. Subsequent efforts

can be divided based on whether they use statistical properties of the sound

spectrum or timing information.

Approaches that use statistical properties of the spectrum typically apply

machine learning, both supervised [10, 67, 69, 103] and unsupervised [21,

149] versions.

Supervised learning techniques require many labeled samples and are

highly dependent on: (1) the specific keyboard used for training [10], and

(2) the typing style [67, 69]. Such techniques use Fast Fourier Transform

(FFT) coefficients and neural networks to recover text that can also be

random. Overall, supervised learning approaches yield very high accuracy.

However, this comes at the price of strong assumptions on how the data

is collected: obtaining labeled samples of the acoustic emanations of the

victim on his keyboard can be difficult or unrealistic.

Unsupervised learning approaches can cluster together keys from sounds,

or generate sets of constraints between different key-presses. It is feasible

to cluster key sounds and assign labels to the clusters by using relative

letter frequency of the input language [149]. It is also possible to generate

sets of constraints from recorded sounds and select words from a dictionary

that match these constraints [21]. Unsupervised learning techniques have
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the advantage that they do not require ground truth. However, they make

strong assumptions on user input, such as obtaining many samples, i.e.,

emanations corresponding to a long text [149], or requiring the targets to

be dictionary words [21]. They are less effective when keyboard input is

random.

An alternative approach involves analyzing timing information. One

convenient way to exploit timing information is using multiple microphones,

such as the ones on mobile phones [95, 135, 147], and analyze the Time

Difference of Arrival (TDoA) information to triangulate the position of the

pressed key. Such techniques differ mostly in whether they require a training

phase [135], and rely on one [95] or more [147] mobile phones.

All the previously cited approaches assume physical proximity with the

adversary — this requirement can be relaxed by using VoIP software to

acquire keyboard sounds, as demonstrated in [8, 43]. The main difference

between our work and [8] lies in a much more extensive experimental eval-

uation on more realistic scenarios, and in a less obtrusive countermeasure,

that we validate through more complete testing.

Attacks Using Other Emanations. Another body of work focused on

keyboard eavesdropping via non-acoustic side-channels.

Typing on a keyboard causes its electrical components to emit electro-

magnetic waves, and it is possible to collect such waves, to recover the orig-

inal keystrokes [134]. Furthermore, typing causes vibrations of the surface

under the keyboard. These vibrations can be collected by an accelerometer

(e.g., of a smartphone) [102], or by a camera that captures small movements

of the surface [81], and analyzed to determine the pressed keys.

Inter-keystroke timing also leaks information about the pressed keys.

The idea is that users require slightly different time to type different se-

quences of characters, allowing keystroke recovery. This was successfully

exploited by observing inter-keystroke timing over SSH connections [125],

and from videos of users typing on masked password fields [15].

Analyzing movements of the user’s hands and fingers on a keyboard rep-

resents another way of recovering input. This is possible by video-recording

a typing user [16] or by using WiFi signal fluctuation on the user’s laptop [7].

In general, changes in channel state information of wireless signal can also

be leveraged to recover typed text in a known language without the need

for training [57]. On touchscreen keyboards (e.g., smartphones), the typist’s

eyes follow the fingers’ movement — therefore, tracking eye movements can

leak information on the typed text [40].
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Finally, heat radiation from hands to the device in use can be captured

by thermal cameras, and used to infer keystrokes on PIN-entry devices [140],

and standard keyboards [83].

2.2 System and Threat models

To identify precise attack scenarios, we begin by defining the system model

that serves as the base for S&T. Section 2.2.1 describes our assumptions

about the victim and the attacker, and then carefully defines the problem of

remote keyboard acoustic eavesdropping. Section 2.2.2 then presents some

realistic attack scenarios and discusses them in relation to the state-of-the-

art.

2.2.1 System Model

The system model we consider in this work is depicted in Figure 2.1. We

assume that the victim has a desktop or a laptop computer with a built-

in or attached keyboard, i.e., not a smartphone or a tablet-like device.

Hereafter, it is referred to as target-device. The victim also owns a device

with a microphone, hereafter referred to as recording-device. A genuine copy

of some VoIP software is assumed to be installed on recording-device; this

software is not compromised in any way. Also, recording-device is connected

to the Internet and engaged in a VoIP call with at least one party who

plays the role of the attacker. We underline that target-device and recording-

device might not correspond — as long as target-device is close enough for

recording-device microphone to pick up its keystroke sounds.

The attacker is a malicious user who aims to learn some private infor-

mation about the victim. The attacker owns and fully controls a computer

that we refer to as attack-device, which has a genuine (unmodified) version

of the same VoIP software as recording-device. The attacker uses attack-device

to receive and record the victim’s acoustic emanations using VoIP software.

We assume that the attacker relies solely on information provided by VoIP

software. In other words, during the attack, the attacker receives no ad-

ditional acoustic information from the victim, besides what VoIP software

transmits to attack-device.

2.2.2 Threat Model

S&T attack transpires as follows: during a VoIP call between the victim and

the attacker, the former types something on target-device, for example a text
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Figure 2.1: System model. There are different possible configuration of
target-device and recording-device. Victim’s target-device needs not to correspond
to recording-device — as long as there is physical proximity.

of an email message or a password. We refer to this typed information as

target-text. Typing target-text causes acoustic emanations from target-device’s

keyboard, which are picked up by the recording-device’s microphone and faith-

fully transmitted to attack-device by VoIP. The goal of the attacker is to learn

target-text by taking advantage of these emanations.

We make the following assumptions:

• As mentioned above, the attacker has no real-time audio-related infor-

mation beyond that provided by VoIP software. Acoustic information

can be degraded by VoIP software by downsampling and mixing. In

particular, without loss of generality, we assume that audio is con-

verted into a single (mono) signal, as is actually the case with some

VoIP software, such as Skype and Google Hangouts.

• If the victim discloses some keyboard acoustic emanations together

with the corresponding plaintext — the actual pressed keys (called

ground truth) — the volume of this information is small, on the order

of a chat message or a short e-mail. We expect it to be no more than

a few hundred characters.

• target-text is very short (e.g., ≈ 10 characters) and random, corre-

sponding to an ideal password. This keeps S&T attack as general as
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possible, since dictionary words are a “special” case of random words,

where optimization may be possible.

We now consider some realistic S&T attack scenarios. We describe them

starting with the more generous setting where the attacker knows the vic-

tim’s typing style and keyboard model, proceeding to the more challenging

one where the attacker has neither type of information.

1) Complete Profiling: In this scenario, the attacker knows some

of the victim’s keyboard acoustic emanations on target-device, along with

the ground truth for these emanations. This might happen if the victim

unwittingly provides some text samples to the attacker during the VoIP

call, e.g., sends chat messages, edits a shared document, or sends an email

message1. We refer to such disclosed emanations as “labeled data”. To be

realistic, the amount of labeled data should be limited to a few samples for

each character.

We refer to this as Complete Profiling scenario, since the attacker has

maximum information about the victim. It corresponds to attack scenarios

used in prior supervised learning approaches [10, 67, 69, 103], with the differ-

ence that we collect acoustic emanations using VoIP software, while others

collect emanations directly from microphones that are physically near target-

device.

2) User Profiling: In this scenario, we assume that the attacker does

not have any labeled data from the victim on target-device. However, the

attacker can collect training data of the victim while the victim is using the

same type of device (including the keyboard) as target-device2. This can be

achieved via social engineering techniques or with the help of an accomplice.

We refer to this as User Profiling scenario, since, unable to profile target-

device, the attacker profiles the victim’s typing style on the same device

type.

3) Model Profiling: This is the most challenging, though the most re-

alistic, scenario. The attacker has absolutely no training data for the victim.

The attacker and the victim are engaged in a VoIP call and information that

the attacker obtains is limited to the (unknown) victim keyboard’s acoustic

emanations.

1Ground truth could also be collected offline, if the attacker happened to be near the
victim, at some point before or after the actual attack. Note that this still does not require
physical proximity between the attacker and the victim in real time.

2In case the target-device is a desktop, knowing the model of the desktop does not
necessarily mean knowing the type of the keyboard. However, in mixed video/audio call
the keyboard model might be visually determined, when the keyboard is placed in the
visual range of the camera.
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The attacker’s initial goal is to determine what laptop the victim is using.

To do so, we assume that the attacker maintains a database of sounds from

previous attacks. If the attacker already profiled the model of the current

victim’s target-device, it can use this information to mount the attack. We

refer to this as Model Profiling scenario, since although the attacker can

not profile the current victim, it can still profile a device of the same model

as target-device. We observe that this scenario could also apply in the case

where the attacker is not directly in the VoIP call, but compromised the

VoIP software of the victim to act as a remote microphone.

2.3 Skype & Type attack

S&T consists of two main activities: training attack models tailored on

specific victims or keyboard models, and classification of unknown keystroke

sounds — the actual attack. We divide S&T in 4 different phases, depicted

in Figure 2.2 for the first three, and Figure 2.3 for the last phase. We first

overview the four phases. Then, we detail all the steps of the four phases.

A. Data Collection - The attacker receives keystroke sounds involun-

tarily leaked by the victim during a VoIP call. The attacker might

know the keys corresponding to the sounds (and later use such sounds

to train a machine learning model).

B. Feature Extraction - The attacker now pre-processes the keystroke

sounds. He runs a pipeline that divides the recorded waveform, cor-

responding to all received keystrokes, into shorter waveforms, each

containing the sound of a single keystroke. He then extracts mean-

ingful features from the waveforms, obtaining one feature vector per

keystroke.

After Phase B, the attacker can continue either with Phase C or Phase D.

If the attacker knows the keys corresponding to each sound he received in

Phase A, he continues with Phase C to train a tailored machine learning

model:

C. Model Training - Using the labeled data, the attacker removes the

least important features from the feature vectors (known as feature

selection). Then, he trains a supervised machine learning model to

classify keystroke sounds into different keys — and obtains a trained

model that can be later used to perform S&T attack.
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Figure 2.2: S&T, pre-processing steps: collection of victim’s typing sounds
(Step A), and machine learning pipeline to process them (Step B) and to
train an attack model (Step C) if the keys corresponding to sounds are
known.

If the attacker during Phase A received non-labeled keystroke sounds, his

goal is to infer the typed keys. Therefore, he continues to Phase D, where

he uses a trained machine learning model to obtain the predictions:

D. Attack Phase - The exact steps depend on the specific threat model

scenario. If the attacker already knows the attack model to use (i.e.,

the Complete Profiling and User Profiling scenarios), he loads such

model and uses it to predict the most likely keys for the keystroke

sounds. Otherwise, in the challenging Model Profiling scenario, the

attacker first performs Device-classification (to discover the likely key-

board in use by the victim), then loads the indicated model and pro-

ceeds to obtain predictions.
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Figure 2.3: S&T, attack steps: the attacker determines which attack model
to load (depending on the scenario), and then predicts the keys of the given
sounds (Step D).

We now describe in more details all four phases and their different steps.

Throughout the rest of the section, we refer to the phases and steps presented

in Figure 2.2 and Figure 2.3.

2.3.1 Phase A: Data Collection

All envisaged scenarios involve the attacker engaged in a VoIP call with the

victim. During the call, the victim types something on target-device’s key-

board. As expected, the VoIP software records and transmits the keystroke

sounds to the attacker. The attacker then records such sounds — for ex-

ample by channeling VoIP output to some local recording software. If the

attacker knows the keys corresponding to the keystroke sounds (for example,

as discussed in Section 2.2.2, thanks to a common chat, shared document,

or email), he keeps these annotations to generate labeled data. The attack

then proceeds to the next phase.

2.3.2 Phase B: Feature Extraction

The main goal in this phase is to extract meaningful features from acous-

tic information. The first step is segmentation, needed to isolate distinct

keystroke sounds within the recording. The attacker then slices the wave-

form into sound samples, containing one keystroke sound each. Subse-

quently, using these sound samples, we build derived values (called features)
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that represent properties of the keystroke sounds. This step is referred to

as feature extraction.

The details of the steps are the following:

1. Segmentation. We perform data segmentation according to the fol-

lowing observation: the waveform of a keystroke sound presents two

distinct peaks, shown in Figure 2.4. These two peaks correspond to

the events of: (1) the finger pressing the key — press peak, and (2)

the finger releasing the key — release peak. Similar to [10], we only

use the press peak to segment the data and ignore the release peak.

This is because the former is generally louder than the latter and is

thus easier to isolate, even in very noisy scenarios.
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Figure 2.4: Waveform of the “A” key, recorded on an Apple Macbook Pro
13” laptop.

To perform automatic isolation of keystrokes, we set up a detection

mechanism as follows: we first normalize the amplitude of the signal

to have root mean square of 1. We then sum up the FFT coefficients

over small windows of 10ms, to obtain the energy of each window.

We detect a press event when the energy of a window is above a cer-

tain threshold. The threshold is a parameter that can be tuned. We

observed that background noise is usually significantly quieter than

keystroke sounds — therefore, all points in time when the intensity of

the waveform is above the 90th percentile of all intensities are most

likely “events” where, e.g., a keystroke happened. In case of more

background noise, or external loud noises, the threshold might need

manual tuning by the attacker, or manual data cleaning to remove

the spurious high-intensity sounds (e.g., a door slamming). The same
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holds if there is overlap of voice and keystroke sounds — the attacker

might need to manually increase the threshold in order to only capture

the high-intensity keystroke sounds.

2. Slicing. For each event detected by the data segmentation step,

we then extract the subsequent 100ms [21, 149] of waveform as the

keystroke event waveform. If keystroke sounds are very close to each

other (i.e., less than 100ms), it is possible to extract a shorter wave-

form with minimal loss in accuracy (see Section 2.4.1).

3. Feature Extraction. As features, we extract the mel-frequency cep-

stral coefficients (MFCC) [98]. These features capture statistical prop-

erties of the sound spectrum, which is the only information that we

can use. Indeed, due to the mono acoustic information, it is impossible

to set up an attack that requires stereo audio and uses TDoA, such

as [95, 135, 147]. Among possible statistical properties of the sound

spectrum — including: MFCC, FFT coefficients, and cepstral coeffi-

cients — we chose MFCC which yielded the best results. To select the

most suitable property as a feature, we ran the following experiment:

Using a Logistic Regression classifier we classified a dataset

with 10 samples for each of the 26 keys corresponding to the

letters of the English alphabet, in a 10-fold cross-validation

scheme. We then evaluated the accuracy of the classifier

with various spectral features: FFT coefficients, cepstral co-

efficients, and MFCC.

We repeated this experiment with data from five users on a Macbook

Pro laptop. Accuracy results were as follows: 90.61% (± 3.55%) for

MFCC, 86.30% (± 6.34%) for FFT coefficients, and 51% (± 18.15%)

for cepstral coefficients. This shows that MFCC offers the best fea-

tures. For MFCC experiments we used parameters similar to those

in [149]: a sliding window of 10ms with a step size of 2.5ms, 32 filters

in the mel scale filterbank, and used the first 32 MFCC.

2.3.3 Phase C: Model Training

This phase happens when the attacker received keystroke sounds as labeled

data, i.e., together with the corresponding keys. With labeled data, the

attacker can train a supervised learning classification model.

We argue that the attacker needs to have labeled data, and use a super-

vised classification technique: as discussed in Section 2.2.2, approaches that

25



Stefano Cecconello Authentication methods: Novel attacks and defenses

require lots of data to cluster, such as [21], are incompatible with our as-

sumptions, because we might have only a small amount of both training and

testing data. Moreover, potential randomness of target-text makes it impos-

sible to realize constraint-based approaches, which would require target-text

to be a meaningful word, as in [149].

The detailed steps of this phase are the following:

4. Feature Selection. The attacker determines the most relevant

features, among all features produced by the Feature Extrac-

tion step. To do so, S&T uses a Recursive Feature Elimina-

tion algorithm [66], that tries to find the best performing sub-

set of features among the full set. This step helps eliminat-

ing features that are irrelevant and only capture background

noise or non-discriminating parts of the sound spectrum.

5. Training. The attacker now needs to train a machine learning model

to discriminate between different keys based on their keystroke sounds.

We consider key classification to be a multiclass classification problem,

where different classes correspond to different keyboard keys. There-

fore, the input to the classifier for training is a set of feature vectors,

representing properties of keystroke sounds — each associated to the

specific key that generated the sound. Ideally, the attacker should

have more than one sample for each key. The classifier then learns to

discriminate between different keys of target-device by sound properties.

To perform key classification, we use a Logistic Regression (LR) clas-

sifier, since it outperformed other tested classifiers, including: Linear

Discriminant Analysis (LDA), Support Vector Machines (SVM), Ran-

dom Forest (RF), and k-nearest neighbors. We tested this in a pre-

liminary experiment that uses each candidate to classify a dataset of

10 samples, for each of the 26 keys corresponding to the letters of the

English alphabet, in a 10-fold cross-validation scenario. We use MFCC

as features, and, for each classifier, we optimized its hyper-parameters

with an extensive grid search: we repeated training and testing with

all possible combinations of hyper-parameters, and selected the best

performing combination.

To evaluate the classifiers’ quality in this experiment, we used accu-

racy and top-n accuracy measures. Given true values of k, accuracy

is defined in the multiclass classification case as the fraction of cor-

rectly classified samples over all samples. Top-n accuracy is defined

similarly. The sample is correctly classified if it is present among the
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top n guesses of the classifier. Results of this preliminary experiment

are shown in Figure 2.5 which demonstrates that the best performing

classifiers are LR and SVM. This is especially the case if the classifier

is allowed to make a small number of predictions (between 1 and 5),

which is more realistic in an eavesdropping setting. In particular, both

LR and SVM exhibit around 90% top-1 accuracy, and over 98.9% top-

5 accuracy. However, LR slightly outperforms SVM until top-4 — for

this reason, we selected LR for S&T.
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Figure 2.5: Average top-n accuracy of single key classification, as a function
of the number of guesses, for each of the tested classifiers.

6. Trained Model. Once the attacker trained his LR model with the

labeled data, he stores such model and any important auxiliary infor-

mation (e.g., the features to eliminate in future samples). This model

is tailored to the specific scenario the attacker trained his model for.

2.3.4 Phase D: Attack Phase

This phase happens when the attacker receives some keystroke sounds with-

out knowing their corresponding keys. For example, the victim might have

typed his password on some website during the VoIP call. In this case, the

attacker wants to predict the keys corresponding to the received sounds. The

exact steps depend on the threat scenario, as shown in Figure 2.3: in Com-

plete and User Profiling scenarios, the attacker knows which attack model

to load, and can directly proceed to Step 8. Instead, in Model Profiling

scenarios, the attacker does not know the target-device used by the victim —

he therefore needs to first understand this information by performing Step

7, Target-device classification.

7. Device-classification. In Model Profiling scenario, since the attacker

has no knowledge of the victim’s typing style or target-device, it begins

27



Stefano Cecconello Authentication methods: Novel attacks and defenses

by trying to identify target-device by classifying its keyboard sounds.

We consider the task of target-device classification as a multiclass classi-

fication problem, where different classes correspond to different target-

device models known to the attacker. In particular, the attacker main-

tains a database of keystroke sounds corresponding to many different

keyboard models, and wishes to predict which keyboard model gener-

ated some other unknown keystroke sounds.

To perform this classification task, we use a k-nearest neighbors (k-

NN) classifier with k = 10 neighbors, that outperformed other classi-

fiers such as Random Forest and Logistic Regression in our preliminary

experiments. The k-NN classifier, when given an unknown sample (i.e.,

the feature vector of a keystroke sound) finds the k closest samples in

terms of sound features, and outputs their corresponding target-device.

The prediction for the target-device that generated such sound is the

majority of these outputs.

The output of this phase is the keyboard used by the victim (i.e., his

target-device), or that the target-device is unknown. In this latter case,

the attacker can not perform S&T.

8. Load Attack Model. Once the attacker knows the target-device

used by the victim, and depending on the specific scenario, he

loads the specific model previously trained on the appropriate

data. This model, given a feature vector corresponding to a

keystroke sound, retains only the appropriate features that

were determined by Step 4 in its previous training, and then

generates predictions for the keystroke.

9. Predictions. Given a feature vector of a waveform of a keystroke,

attack models can return a list of predictions of probable keys corre-

sponding to the pressed key that generated the sound. Such predic-

tions are ordered by probability, such that, e.g., the first 5 predictions

returned by the model correspond to the 5 most likely keys according

to the classifier. These ordered predictions help build further use-cases

for S&T, for example prediction of typed words (Section 2.6.1) or of

passwords (Section 2.6.2).

2.4 Experimental Setup

To assess the feasibility of S&T attack on all considered scenarios and com-

binations of target-devices and recording-devices described in Section 2.2, we
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collected a large dataset of keystroke sounds on a variety of settings. In this

section, we first describe the two data collection campaigns that we carried

out, and motivate them by illustrating the different hypotheses we planned

to test on each campaign in Section 2.4.1. We then discuss the demographics

of our study participants, the implications and generality of our study, and

detail the experiment protocol in Section 2.4.2.

2.4.1 Data Collection

We performed two separate data collection campaigns:

• First Campaign. We collected data to test our different attack

scenarios (Complete, User, and Model Profiling, introduced in Sec-

tion 2.3) — that requires to have multiple target-devices of the same

model — and the difference between typing styles, i.e., Hunt and Peck

and Touch typing (to simulate typists of different skill levels).

• Second Campaign. Besides expanding our collection of target-devices,

we collected data to test the impact of different recording-devices on

S&T. Moreover, we tested the impact of typing speed by requiring

participants to type a popular sentence in English — a natural activity,

that allowed participants to type at their own pace.

We summarize our broad choice of devices and setups in Table 2.1. In

total, we collected data from 12 unique participants and 14 keyboards of

11 different models. Considering the use of different recording-devices, we

collected 156 unique datasets.

First Campaign. We collected data from 5 distinct users. For each user,

the task was to press the keys corresponding to the English alphabet, sequen-

tially from “A” to “Z”, and to repeat the sequence ten times, first by only

using the right index finger (this is known as Hunt and Peck typing, referred

to as HP from here on), and then by using all fingers of both hands (Touch

typing) [69]. We believe that typing letters in the order of the English al-

phabet rather than, for example, typing English words, did not introduce

bias. Typing the English alphabet in order is similar to typing random text,

that S&T attack targets. Moreover, a very fast touch typist usually takes

around 80ms to type consecutive letters [34]. We show that this is the case

with our data in Section 2.5.4; moreover, we argue that S&T attack works

without any accuracy loss with samples shorter than this interval. In order

to test correctness of this assumption, we ran a preliminary experiment as

follows:
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Table 2.1: Configuration details of our data collection campaigns.

First Setup Second Setup

Users 5 8

Target Devices 6 (2 laptops of 3 different

models)

4 laptops
3 USB membrane key-
board
1 USB mechanical key-
board

Typing Style Hunt&Peck
Touch typing

Touch typing

Recording Devices Laptop microphone Laptop microphone
Smartphone
Headset microphone

Typed Text Ten times the entire
English alphabet (a-z),
in order

Ten times the sentence
“The quick brown fox
jumped over the lazy
dog”

Total Datasets 60 (5 users · 6 considered

keyboards · 2 typing styles)

96 (4 users · 4 considered

keyboards · 3 recording de-

vices) — repeated twice
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We recorded keystroke audio of a single user on a Macbook Pro

laptop typing the English alphabet sequentially from “A” to “Z”

via Touch typing. We then performed Step B (Feature Extrac-

tion) and Step C (Model Training) as described in Section 2.3.

However, instead of extracting 100ms of the waveform, we ex-

tracted 3ms (as in [10]), and then from 10ms to 100ms at intervals

of 10ms for each step. We then tested S&T attack in a 10-fold

cross-validation scheme. Figure 2.6 shows top-5 accuracy of this

preliminary experiment, for different lengths of the sound sample

that we extracted.

We observe that, even with very short 20ms samples, S&T attack suffers

minimal accuracy loss. Therefore, we believe that adjacent letters do not

influence each other, since sound overlapping is very unlikely to occur.

3 10 20 30 40 50 60 70 80 100
Sample Lenght (ms)

0

20

40

60

80

100

To
p-

5
A

cc
ur

ac
y

Figure 2.6: Top-5 accuracy of single key classification for different sample
lengths.

Note that collecting only the sounds corresponding to letter keys, in-

stead of those for the entire keyboard, does not affect our experiment. The

“acoustic fingerprint” of every key is related to its position on the key-

board plate [10]. Therefore, all keys behave, and are detectable, in the same

way [10]. Due to this property, we believe that considering only letters is

sufficient to prove our point. Moreover, because of this property, it would be

trivial to extend our approach to various keyboard layouts, by associating

the keystroke sound with the position of the key, rather than the symbol of

the key, and then mapping the positions to different keyboard layouts.

Every user performed the data collection task on six laptops: (1) two

Apple Macbook Pro 13” 2014, (2) two Lenovo Thinkpad E540, and (3) two

Toshiba Tecra M2. We selected these as being representative of many com-

mon modern laptop models: Macbook Pro is a very popular aluminium-

case high-end laptop, Lenovo Thinkpad E540 is a 15” mid-priced laptop,

and Toshiba Tecra M2 is an older laptop model, manufactured in 2004. We
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needed pairs of laptops of the same model to test the User Profiling and

Model Profiling scenarios. All acoustic emanations of the laptop keyboards

were recorded by the microphone of the laptop in use, with Audacity soft-

ware v2.0.0. We recorded all data with a sampling frequency of 44.1kHz,

and then saved it in WAV format, 32-bit PCM signed.

Second Campaign. We collected data from 8 distinct users — 7 of which

did not participate in the first data collection campaign. The task for each

user was to type a famous pangram (i.e., a sentence with all the letters of

English alphabet): ”The quick brown fox jumps over the lazy dog”, as it is

short and simple. All users typed the sentence ten times for each considered

keyboard, using all fingers of both hands (Touch typing).

We recorded these users on 8 different keyboards: 4 laptop keyboards,

and 4 external USB keyboards. We selected the devices to be representative

of many common user setups. Regarding laptops, we tested an HP 250 G5

(a low-priced domestic laptop), a Dell Inspiron 13 5000 (mid-range business

laptop), and a Dell XPS 13 9333 and an Asus Zenbook UX303UB (high-

end slim laptops with aluminium bodies). Regarding external keyboards, we

tested 3 popular office membrane keyboards — HP 9009, Fujitsu KB900, HP

KU-0316 — and a mechanical keyboard, a AUKEY KM-G3 equipped with

“OTEMU Blue” mechanical switches, with a distinctive “clicking” sound

typical of mechanical switches.

We concurrently recorded keystroke sounds with three different recording

devices:

• The laptop in use — external USB keyboards were recorded using

either the Dell XPS 9333 laptop microphone (HP 9009, AUKEY KM-

G3) or the Dell Inspiron 5000 laptop microphone (Fujitsu KB900, HP

KU-0316);

• A smartphone placed in proximity of the laptop/keyboard in use —

either a Samsung Galaxy S6 (HP 9009, AUKEY KM-G3) or a Huawei

P10 lite (Fujitsu KB900, HP KU-0316);

• A headset with a microphone, worn by the study participant — we

used a generic Samsung inexpensive headset, connected to a Huawei

P9 Lite.

All recordings were done with a sampling frequency of 44.1kHz, and then

saved in WAV format, 32-bit PCM signed.

Resulting Datasets. All recorded data was then processed through a VoIP
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software — we chose Skype as representative, as (i) it is one of the most

popular VoIP tools; (ii) its codecs are used in Opus, an IETF standard [133]3;

(iii) it reflects our general assumption about mono audio.

We filtered the sound samples by routing the recorded sounds through

the Skype software, and recording the received emanations on a different

computer (i.e., on the attacker’s side). As we saved raw data from the

microphones at their native quality, there is no difference between imme-

diately recording Skype-filtered data, or filtering at a later moment, as we

did: Skype receives the same data as if it were receiving it from the micro-

phone in the first place. To perform this filtering, we used two machines

running Linux, with Skype v4.3.0.3 for the first setup, and Skype v8.11.0.4

and 8.34.0.78 for the second setup4, connected via a high-speed network.

During the calls, there was no sensible data loss. We analyze bandwidth

requirements needed for data loss to occur, and the impact of bandwidth

reduction, in Section 2.5.4.

At the end of data collection and processing phases we obtained datasets

for the first and second setups. For the first set of experiments, each dataset

consists of 260 samples, 10 for each of the 26 letters of the English alphabet.

For the second set of experiments, each dataset consists of 10 repetition of

the aforementioned pangram.

In total, we recorded 12 unique participants and 14 keyboards of 11 dif-

ferent models. As mentioned, considering the use of different recording-devices,

we collected 156 unique datasets. The number of users and of keyboards we

considered greatly exceeds related works on keyboard acoustic eavesdrop-

ping [10, 67, 69, 103]: such works evaluated 1–2 users on 1–3 keyboards,

testing on a quantity of data comparable to only 10 of our datasets. We

further discuss generality in the next section.

2.4.2 Study Participants

We recruited a total of 12 unique participants for our study. Participants

were randomly selected among (primarily) college and graduate students

who agreed to be part of the experiment. Five participated in the first data

collection campaign, and eight in the second campaign — one participant

joined both the first and the second campaign. Out of 12, 4 were female and

8 were male. The youngest was 20 years old at the time of the experiment,

while the oldest was 31; the mean age was 25.8 (±3.07). Nine participants

3Opus is employed in many other VoIP applications, such as Google Hangouts and
Teamspeak.

4Between the first and second data collection campaigns, Skype v4 was discontinued
by Microsoft.
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had a Computer Science/Engineering background, two had humanities back-

grounds, one had a high school diploma. All participants self-reported to

be confident with typing on a computer keyboard, and experienced in the

use of computers. All of them already knew how to type with both hands

(Touch typing), with different degrees of confidence.

The participants’ typing speed was diverse. We recorded the inter-key

time of the 8 participants to the second data collection campaign (where the

task was to type an English sentence), and show them in Figure 2.7.
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Figure 2.7: Distribution of inter-key timing of experiment participants.

We can see that three participants are consistently fast typists (subjects

1, 2, and 3), three are somewhat average-speed typists (subjects 4, 5, 6),

one is a slow typist (Subject 7), and one is noticeably non-uniform in typing

speed (Subject 8). There is no apparent correlation between demographics

and average speed: one of the fast typists has a background in humanities,

while the slowest is in Computer Science.

We believe that typing speed is a good proxy for typing experience,

therefore our diverse population can be representative of skilled and less

skilled typists. Moreover, less skilled typists are simulated by our HP typing

style. Furthermore, intuitively skilled typists represent the worst case for

S&T, because of the increased probability of overlapping keystroke sounds.

However, our population exhibits an age bias, skewed towards young people,

and is thus unclear how it generalizes to greatly different age groups.

Experimental Protocol. Approval from an Institutional Review Board
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was not mandatory to collect and handle the recorded data in the institution

where the tests were carried out. However, we followed well-established good

practices in data collection and handling, that we now report in detail.

Participants were asked to sit on a chair in front of a computer with a

keyboard. Where applicable, they were asked to wear a headset microphone.

They got time to relax and get acquainted with the task, whether it was

about typing the English alphabet or the pangram sentence. Participants

were only required to type in a specific way when testing the HP typing style

hypothesis, otherwise they were encouraged to type in their usual way, with

as many fingers as desired. Participants (who signed an informed consent)

were informed that they were free to interrupt the experiment at any time

and request deletion of their data if they desired. There was no incentive

for participants to complete the task as fast as possible, or to meet any

performance goal (e.g., participants were not penalized for making mistakes,

and did not have to re-type a sentence in case of mistakes) — therefore, we

believe there was no bias in our data collection procedure.

Data was handled confidentially, and is stored encrypted in our labo-

ratory. The data is anonymized together with the identities of the partic-

ipants, and was only used for the specified purpose of running this study.

The mapping between anonymous identifiers and demographic information

is securely stored in a different location.

2.5 S&T Attack Evaluation

We evaluated S&T attack in all scenarios described in Section 2.2.2:

• We report Complete Profiling scenario in full detail (Section 2.5.1),

by analyzing performance of S&T attack separately on all considered

keyboards, typing styles, and VoIP filtered and unfiltered data. These

results serve as a reference for the accuracy of S&T attack on other

scenarios.

• We then analyze User Profiling (Section 2.5.2) and Model Profiling

(Section 2.5.3) scenarios only on realistic settings, namely Touch typ-

ing, VoIP filtered data. We compare these results with results of Com-

plete Profiling, to understand the impact on accuracy of less powerful

adversaries.

• We thoroughly evaluate the impact of different conditions on the base-

line Complete Profiling scenario (Section 2.5.4). We explore the im-

pact on S&T attack accuracy of different typists, different inexpensive
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recording devices that are commonly used in VoIP calls, small training

sets, and VoIP-specific issues such as degradation of call quality due

to low bandwidth, and voice on top of keystroke sounds.

• We conclude by discussing our results and their significance (Sec-

tion 2.5.5).

Evaluation Technique. Unless otherwise specified, we evaluate S&T ac-

curacy on a given dataset as follows. We consider the given dataset in a

stratified 10-fold cross-validation scheme5. For every fold, we proceed with

Step C and Step D of S&T (see Section 2.3): we perform feature selection

on training data using Recursive Feature Elimination [66], and then train

a machine learning model. We then calculated the accuracy of the classi-

fier over each fold, and then computed the mean and standard deviation of

accuracy values.

We underline that data collected in our first campaign is already bal-

anced (i.e., there are 10 samples for each letter), while data collected in our

second campaign is not (i.e., we have 10 repetitions of the pangram, where

letters occur with different frequencies). Therefore, every time we use data

from the second campaign, we perform undersampling : we randomly select

a subset of the data such that every letter appears 10 times — and thus the

resulting dataset is balanced. To mitigate randomness in the undersampling

process, we repeat it for 5 times, and then average the results.

Baseline. We evaluated the accuracy of S&T attack in recognizing single

characters, according to the top-n accuracy, defined in [30]. As a baseline,

we considered a random guess with accuracy n/l, where n is the number of

guesses, and l is the size of the alphabet. Therefore, in our experimental

setup, accuracy of the random guess is n/26, n ∈ [1 . . . 26], since we consid-

ered 26 letters of the English alphabet. Because of the need to eavesdrop on

random text, we can not use “smarter” random guesses that, for example,

take into account letter frequencies in a given language. Moreover, these

results serve as a baseline to more complex attacks that consider additional

information (e.g., the language of target-text).

5In a stratified k-fold cross-validation scheme, the dataset is split in k sub-samples of
equal size, each having the same percentage of samples for every class as the complete
dataset. One sub-sample is used as testing data, and the other (k−1) — as training data.
The process is repeated k times, using each of the sub-samples as testing data.

36



Authentication methods: Novel attacks and defenses Stefano Cecconello

2.5.1 Complete Profiling Scenario

To evaluate the scenario where the victim disclosed some labeled data to

the attacker, we considered all datasets registered with laptop internal mi-

crophones (i.e., all datasets of the first setup, and a subset of the datasets

of the second), one at a time, following our evaluation technique.

Figure 2.8 depicts results of the experiment on the realistic Touch typing,

Skype-filtered data combination. We observe that S&T attack achieves its

lowest performance on the Dell XPS laptop and on the Fujitsu USB keyboard

(recorded through the Dell Inspiron 5000 internal microphone), with low

top-1 accuracies of 36.81% and 38.92%, but satisfactory top-5 accuracies of

65.81% and 68.02%, respectively. Performance on the other USB keyboards

are similar to the Fujitsu, with the mechanical AUKEY keyboard being

the best performing at a top-1 accuracy of 48.08% and top-5 of 79.72%.

Interestingly, the second worst performing laptop is the Dell Inspiron 5000

with top-1 and top-5 accuracies of 52.67% and 79.56% — given that the

four USB keyboards were recorded using the two Dell laptops’ integrated

microphones, these results hint to these microphones leading to inaccurate

recordings.

Lenovo laptops have intermediate performance, with top-1 accuracy of

59.8%, and a top-5 accuracy 83.5%. The similar HP laptop exhibits sim-

ilar performance. On the Macbook Pro, Asus Zenbook, and Toshiba, we

obtained very high top-1 accuracy between 73.3% and 83.23%, and top-5

accuracy between 94.5% and 97.1%. We believe that these differences are

due to variable quality of manufacturing, e.g., the bodies and keyboards of

our particular Lenovo and HP laptops are made of cheap plastic materials.

Another possible reason are different microphones: we show in Section 2.5.4

that different recording devices can have an impact on accuracy up to 10%.
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Figure 2.8: S&T attack performance — Complete Profiling scenario, Touch
typing, Skype-filtered data, average accuracy.
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Confusion Matrices. We extend our investigation to classification mis-

takes: we analyzed the confusion matrices of our classifiers, to see if mis-

classifications give us some insights. We report the confusion matrices for

two sample keyboards, the Asus Zenbook and Dell Inspiron 5000 laptops, in

Figure 2.9 (confusion matrices for other keyboards look similar and exhibit

similar patterns).
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(b) Dell Inspiron.

Figure 2.9: S&T attack performance — confusion matrices.

We observe that many misclassifications involve neighboring keys on the

keyboard: some examples are y–u and t–y on the Asus Zenbook, x–c, and

s–w on the Dell Inspiron, and c–f, q–w, t–g, and w–e on both keyboards.

These results further confirm the observations of Asonov and Agrawal [10]

regarding the influence of position on keyboards on keys’ sound — and

suggest that it is possible to further increase the accuracy of S&T by biasing

the classifiers’ predictions to exploit locality.

Impact of Typing Style and VoIP Software. Interestingly, we found

that there is little difference between this data combination (Touch typing,

Skype-filtered data, that we consider the most unfavorable) and the others.

In particular, we compared average accuracy of S&T attack on HP and

Touch typing data, and found that the average difference in accuracy is

0.80%. Such results are reported in more detail in Figure 2.10. Moreover,

we compared the results of unfiltered data with Skype filtered data, and

found that the average difference in accuracy is a surprising 0.33%. This

clearly shows that Skype does not reduce accuracy of S&T attack.

Generality of VoIP Software. We also ran a smaller set of these ex-
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Figure 2.10: S&T attack performance — accuracy of HP and Touch typing
data.

periments over Google Hangouts and observed the same tendency, that we

show in Figure 2.11. This means that the keyboard acoustic eavesdropping

attack is applicable to other VoIP software, not only Skype. It also makes

this attack more credible as a real threat.
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Figure 2.11: S&T attack performance — accuracy of unfiltered, Skype-
filtered and Google Hangouts-filtered data.

From now on, we only focus on the most realistic combination — Touch

typing and Skype filtered data. We consider this combination to be the

most realistic, because S&T attack is conducted over Skype, and it is more

common for users to type with the Touch typing style, rather than the HP

typing style. We limit ourselves to this combination to further understand

real-world performance of S&T.

2.5.2 User Profiling Scenario

In this case, the attacker profiles the victim on a laptop of the same model

of target-device. We selected the dataset of a particular user on one of the
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six laptops, and used it as our training set. Recall that it includes 260

samples, 10 for every letter. This training set modeled data that the attacker

acquired, e.g., via social engineering techniques. We used the dataset of the

same user on the other laptop of the same type, to model target-device. We

conducted this experiment for all six laptops.
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Figure 2.12: S&T attack performance — User Profiling scenario, average
accuracy.

Results reflected in Figure 2.12 show that top-1 accuracy decreases to

as low as 14% on Toshiba and Lenovo laptops, and to 19% on Macbook

Pro. However, top-5 accuracy grows to 41.9%, 54%, and 45.6% on Lenovo,

Macbook Pro, and Toshiba, respectively. This shows the utility of social

engineering techniques used to obtain labeled data of the victim, even on a

different laptop.

2.5.3 Model Profiling Scenario

We now evaluate the most unfavorable and the most realistic scenario where

the attacker does not know anything about the victim. Conducting S&T

attack in this scenario requires: (i) target-device classification, followed by (ii)

key classification.

Target-device classification. The first step for the attacker is to deter-

mine whether target-device is a known model. We assume that the attacker

collected a database of acoustic emanations from many keyboards.

When acoustic emanations from target-device are received, if the model of

target-device is present in the database, the attacker can use this data to train

the classifier. To evaluate this scenario, we completely excluded all records

of one user and of one specific laptop of the original dataset. We did this to

create a training set where both the victim’s typing style and the victim’s

target-device are unknown to the attacker. We also added to the training set
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several devices, including 7 USB keyboards (Apple Pro, Logitech Internet,

Logitech Y, and the four USB keyboards we recorded for our experiments),

as well as 6 laptops (Acer E15, Sony Vaio Pro 2013, and the four laptops

we recorded in the second data collection campaign: HP 250, Dell XPS,

Asus Zenbook, and Dell Inspiron). We did this to show that a laptop is

recognizable from its keyboard acoustic emanations among many different

models: our experiments try to recognize one target-device model among 16

different candidate devices.

We evaluated the accuracy of k-NN classifier in identifying the correct

laptop model, on the Touch typing and Skype filtered data combination.

Results show very high accuracy of 96%, while a random guess would only

have a probability of succeeding of 1/16 = 6.25%. This experiment con-

firms that an attacker can determine the victim’s device, by using acoustic

emanations.

We now consider the case when the model of target-device is not in the

database. The attacker must first determine that this is indeed so. This

can be done using the confidence of the classifier. If target-device is in the

database, most samples are classified correctly, i.e., they “vote”correctly.

However, when target-device is not in the database, predicted labels for the

samples are spread among known models. One way to assess whether this is

the case is to calculate the difference between the mean and the most-voted

labels. We observed that trying to classify an unknown laptop consistently

leads to a lower value of this metric: 0.22 vs 0.49. The attacker can use

such observations, and then attempt to obtain further information via social

engineering techniques, e.g., laptop [89], microphone [46] or webcam [100]

fingerprinting.

Key classification. Once the attacker learns target-device, it proceeds to

determine keyboard input. However, it does not have any extra information

about the victim that can be used to train the classifier. Nonetheless, the

attacker can use, as a training set, data obtained from another user on a

laptop of the same model as target-device.

Results of S&T attack in this scenario are shown in Figure 2.13a. As

expected, accuracy decreases with respect to previous scenarios. However,

especially with Macbook Pro and Toshiba datasets, we still have an appre-

ciable advantage from a random guess baseline. In particular, top-1 accuracy

goes from a 178% improvement from the baseline random guess on Lenovo

datasets, to a 312% improvement on Macbook Pro datasets. Top-5 accuracy

goes from a 152% on Lenovo to a 213% on Macbook Pro.
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Figure 2.13: Average attack accuracy

To further improve these results, the attacker can use an alternative

strategy to build the training set. Suppose that the attacker recorded multi-

ple users on a laptop of the same model of the target-device and then combines

them to form a “crowd” training set. We evaluated this scenario as follows.

We selected the dataset of one user on a given laptop, as a test set. We then

created the training set by combining the data of other users of the same

laptop model. We repeated this experiment, selecting every combination of

user and laptop as a test set, and the corresponding other users and laptop as

a training set. Results reported in Figure 2.13b show that overall accuracy

grows by 6-10%, meaning that this technique further improves classifier’s

detection rate. In particular, this increase in accuracy, from 185% to 412%

(with respect to a baseline random guess) yields a greater improvement than

the approach with a single user on the training set.

Results show that S&T attack is still quite viable in a realistic VoIP

scenario, with a target text which is both short and random. Moreover, this

is possible with little to none specific training data of the victim, i.e., the

attacker might even have no prior knowledge of the victim.

2.5.4 Variations

We thoroughly investigated the impact of different conditions on the baseline

Complete Profiling scenario. In the following, we report the impact on S&T

attack accuracy of different typists, different inexpensive recording devices

that are commonly used in VoIP calls, small training sets, and of VoIP-

specific issues such as degradation of call quality due to low bandwidth, and

voice on top of keystroke sounds.
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Impact of Typist.

We report here a detailed breakdown of results by different typists on the

Complete Profiling scenario in Figure 2.14. Without loss of generality we

only consider keystrokes recorded through internal microphones of laptops,

to ease presentation of the results. We observed the same tendencies that

we report over all the different recording devices.

On these considered datasets, all subjects typed with all their fingers

(Touch typing), however, as observed in Section 2.4.2, their typing speed is

different. We observe that S&T attack often performs better on the slow-

est typist: accuracy is from 10 % to 35% better on Subject 4, who is the

second slowest participant, and around 10% better on Subject 8, who had

a non-uniform typing speed. However, Subject 7 who is the slowest is more

susceptible only on 2 out of 4 keyboards, with the notable exception of the

Fujitsu USB keyboard, where he is the worst performing. Another notable

exception is with HP 9009, where the fastest subject is the best performing.

Overall, we observe that the impact of typing speed is variable and, in most

cases, accuracy is bounded within a few percentage points.

Impact of Recording-device.

We report a detailed breakdown of the impact of different recording-

devices, divided by target keyboard, in Figure 2.15.

Performance of S&T attack are consistent across different recording-

devices. In particular, accuracy on some considered keyboards (HP 9009, HP

250 G5, Dell Inspiron 5000, Fujitsu KB900) is very similar across recording-

devices— for example, the HP 9009 only has 3.5% difference in top-5 accuracy

on average. Our results do not show significant difference between exter-

nal and integrated keyboards, showing how S&T attack is feasible if the

keyboard is not physically part of the same hardware of the microphone.

The best performance is usually achieved by using a headset or the laptop

itself as recording-device— with the notable exception of the HP KU-0316

USB keyboard, where the smartphone is slightly outperforming the other

recording-devices.

These results further prove that it is not necessary for S&T attack to

have strong physical proximity between recording-device and target-device (or

to sit in the same enclosing, as it is the case for laptops). Another im-

portant outcome of these experiments is the extremely good performance

of S&T attack when using an inexpensive headset microphone as recording-

device: indeed, its results are comparable, or even better, than the laptop’s

integrated microphone, and to the smartphone.
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(b) Dell XPS 9333.
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(c) HP HP 250 G5.
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(d) HP 9009 USB keyboard.
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(e) Asus Zenbook UX303UB.
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(f) Dell Inspiron 13 5000 series.
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(g) Fujitsu USB keyboard.
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(h) HP USB keyboard.

Figure 2.14: S&T attack performance — Complete Profiling scenario, Touch
typing, Skype-filtered data; average accuracy for different typists.
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(a) AUKEY USB mechanical keyboard.
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(b) Dell XPS 9333.
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(c) HP 250 G5.
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(d) HP 9009 USB keyboard.
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(e) Asus Zenbook UX303UB.
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(f) Dell Inspiron 13 5000 series.
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(g) Fujitsu KB900 USB keyboard.
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(h) HP KU-0316 USB keyboard.

Figure 2.15: S&T attack performance — Complete Profiling scenario, Touch
typing, Skype-filtered data; average accuracy for different recording devices.
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We believe that these results further prove the dangerousness of S&T

attack. First, one could feel more inclined to type on his keyboard and

multi-task during a Skype call if he’s using a smartphone or a headset to do

it — as the two devices are not the same. However, our results prove that

smartphones and headset microphones are as good as the laptop’s micro-

phone in leaking keystroke sounds. Second, the effectiveness of eavesdrop-

ping through microphones shows that it could be possible to attack a third

party’s keyboard: someone who is only close to the user having the call,

who could easily think to be immune to eavesdropping.

Impact of Small Training Set.

As discussed in Section 2.2.2, one way to mount S&T attack in the Com-

plete Profiling scenario is by exploiting data accidentally disclosed by the

victim, e.g., via Skype instant-messaging with the attacker during the call.

However, our different training datasets have an important shortcoming:

they do not respect the letter frequency distribution of any language, as

models are trained with a balanced amount of letters — 10 samples for each

letter. Ideally, the attacker should be able to mount S&T even if the training

data is limited to a handful of chat messages. Therefore, to understand the

impact of realistic letter frequency distribution, and of the attacker being

able to collect just a few sentences together with their ground truth from

the victim, we operated as follows:

• “A-Z” dataset: to account for realistic letter frequency distribution,

we retained 10 samples of the most frequent letters according to the

Oxford Dictionary [1]. Then, we randomly excluded samples of less

frequent letters until only one sample for the least frequent letters was

available. Ultimately, the subset contained 105 samples, that might

correspond to a typical short chat message or a brief email. We then

evaluated performance of the classifier trained with this subset, on a

10-fold cross-validation scheme. This random exclusion scheme was

repeated 20 times for every fold.

• “Quick Brown Fox” dataset: As this dataset is composed by En-

glish sentences, we don’t need to alter its letter frequency distribution.

However, to reduce its size, we randomly selected 4 sentences out of the

10 available for each subject and device: 3 sentences (135 characters)

form the training set — one, the test set. We then evaluated perfor-

mance of the classifier. This random exclusion scheme was repeated

20 times for every laptop and user combination.

We show results on Touch typing, Skype filtered data in Figure 2.16.
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Figure 2.16: S&T attack performance — average accuracy when training on
a small subset of samples that respects the letter frequency of the English
language.

We observe that, with both datasets, there is an acceptable top-5 accu-

racy loss of 10%-25%, depending on the specific model and user. This mainly

happens because now the training sets are very small (105 and 135 charac-

ters, respectively), and the less frequent letters for which we have only a few

samples in the training set are harder to classify. However, with an impres-

sively small training set, S&T attack still provides very good performance.

There is an evident outlier: the Asus Zenbook laptop performs almost as

good as with the full training set, despite the reduced size of the training set.

These results further motivate the Complete Profiling scenario: the attacker

can exploit even a few acoustic emanations that the victim discloses via a

short message during a Skype call.
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Impact of Fluctuating VoIP Bandwidth.

A prominent issue that stems from using VoIP to perform S&T attack,

is that the SILK codec [133] degrades performance of S&T attack. For

example, this codec reduces audible bandwidth whenever available Internet

bandwidth is low, in order to use less bandwidth. This useful technical

feature can, however, harm accuracy of S&T attack, because it degrades the

sound spectrum.

In the experimental setup, both VoIP end-points were connected to a

high-speed network. However, a realistic call might go over slower or more

error-prone network links. Therefore, we performed a number of sample

Skype calls between the two end-points while monitoring network load of

the transmitter (i.e., the one producing emanations).

We experimented as follows: we filtered all data recorded on one Mac-

book Pro laptop by all the users with the HP typing style using Skype,

together with a five minutes sample of the Harvard Sentences, commonly

used to evaluate the quality of VoIP applications [119]. We initially let

the Skype software use the full bandwidth available, and we measured that

the software used an average of 70 Kbit/s without any noticeable packet

loss. We subsequently limited the bandwidth of the transmitting machine

at 60 Kbit/s, 50 Kbit/s, 40 Kbit/s, 30 Kbit/s, respectively, 20 Kbit/s. We

observed that, with values below 20 Kbit/s, the quality of the call is com-

promised, because of frequent disconnections. S&T attack with such a small

bandwidth is therefore not possible, and we argue that real users suffering

this degradation of service would anyway not be willing neither able to con-

tinue the Skype call. Therefore, we believe the bandwidths we selected are

representative of all the conditions on which we find the Skype software is

able to operate. We then evaluated both the accuracy of S&T attack, and

the quality of the call by using the voice recognition software CMU Sphinx

v5 [91] on the Harvard Sentences. We show the results in Figure 2.17.

From Figure 2.17, we can see that, while there is no change to the ac-

curacy of the voice recognition software until the 20 Kbit/s threshold, the

classifier suffers a noticeable loss at and under 40 Kbit/s. This analysis

shows that aggressive downsampling, and communication errors, can greatly

hinder the accuracy of the attacker on the eavesdropping task, and that a

loss of the order of 20% is to be expected if the connection speed is very

low. We also observe that, at 20 Kbit/s, even if the Skype call is working,

many samples of both the speech and keyboard sounds are lost or irrepara-

bly damaged due to the small bandwidth, and the final quality of the call

might be undesirable for the user. However, it is realistic to assume Skype
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Figure 2.17: Voice recognition and S&T attack accuracy, on data acquired
through Skype with different connection bandwidths.

to be always working at the best possible quality or almost at the best pos-

sible quality, since 70-50 Kbit/s are bandwidths that are small enough to be

almost guaranteed.

Impact Of Voice.

In the experiments we described so far, we did not consider that the

victim can possibly be talking while he types target-text. However, in a VoIP

call, this can happen frequently, as it is probable that the victim is talking

while he types something on the keyboard of his target-device. We evaluated

the impact of this scenario as follows: we considered all the data of one user

on the Macbook Pro laptop, consisting of 260 samples, 10 for every class, in

a 10-fold cross-validation scheme. As usual, we used 9 folds to train a model

as described in Step C (see Section 2.3). We then overlapped the sounds

of the last fold (i.e., the test data) with random portions of a recording of

a male voice spelling some Harvard Sentences [119]. The overlap was done

by summing the amplitude of the waveforms, and taking care that it was

not exceeding the maximum intensity allowed by its discrete representation.

We underline that the algebraic sum of the amplitudes of two waveforms

leads to a very good approximation of recording the two sounds on the

same microphone at the same time. This physical phenomenon is known

as superposition of waves (also defined as wave interference), that happens

when two waves are incident on the same point (in our case, the microphone)

— we refer the interested reader to the definition of acoustic interference

in [19]. To account for the random overlap, we repeated the process 10

times, to have the keystroke sound overlap different random phonemes. We

then evaluated the mean and standard deviation of the accuracy of the

classifier.
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We repeated the described experiment with different relative intensities

of the voice against the intensity of the sound of the keystrokes. We started

at -20dB, meaning that the keystrokes are 20dB louder than the voice of the

speaker, and evaluated progressive steps of 5dB, until we had the voice of

the speaker 20dB louder than the keystrokes. We performed this scheme on

the data for all users on the Macbook Pro laptop, with Touch typing and

data filtered with Skype. We show the results in Figure 2.18.
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Figure 2.18: S&T attack performance — average accuracy, overlap of
keystroke sounds and voice, at different relative intensity.

We observe that, from −20dB until 0dB, S&T attack does not suffer

almost any performance loss, and then the accuracy rapidly decreases, until

it reaches the random guess baseline at +20dB. We explain both the positive

and the negative results with the phenomenon of auditory masking [137],

where only the most powerful tone among all the tones at a given frequency

is audible. This phenomenon is a direct consequence of wave interference.

In our case, the greater the difference between the intensity of the sound of

the keystroke and of the voice, the more only the frequencies of the louder

sound will be audible.

We believe that the takeaway of our experiment is the following:

keystrokes that are still audible can be predicted by S&T, while keystrokes

that are covered by voice cannot, as too much information is lost because of

wave interference. Given that the keystrokes are very loud when recorded

from a laptop microphone, or in close proximity of the keyboard, it is likely

that most keystrokes can be recovered despite the presence of voice.

2.5.5 Discussion and Limitations

To corroborate our claims, we evaluate the statistical significance of our

obtained results. To do so, we applied a statistical test that measures how

likely the results could have been generated by chance: the binomial test [42].
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This statistical test allows to model scenarios where the observations are di-

vided into two categories. In our case, we consider the two categories to be

the results of S&T on our baseline scenario (Complete Profiling), and the

baseline random guess. The null hypothesis is that our results are gener-

ated by chance — and thus the two categories are similarly likely. We first

modeled the baseline random guess observation as a binomial distribution

B(n, p) with the following parameters: n (the number of trials) corresponds

to the number of collected sample for a single letter — 320; while p (the

probability of success on a single trial) corresponds to the top-10 accuracy

of the baseline — 10/26.

We then perform the binomial test to compare our observation (the

accuracy of S&T) to this binomial distribution modeling the baseline: we

evaluate the probability P (X > x), where X is the distribution B(n,p) and

x is the minimum achieved score obtained by our attack. The minimum

achieved score in our attack is 0.5. We then calculate P (X > 0.5) = 1.09709·
10−5, allowing us to refuse the null hypothesis for p < 0.001 — thus showing

statistical significance of our results.

The calculation of the binomial test, combined with all our results on

different settings, target-devices, and recording-devices, shows that S&T attack

is a provable threat for a large population of keyboard users. However, as

previously discussed in Section 2.4.2, our study has some limitations. While

we believe that good typists are somehow the worst case for S&T attack,

as observed by highest accuracy obtained by the slowest typists, our exper-

imental population is composed of mostly young people that have a certain

degree of confidence with keyboards and computers. There are hints that

S&T is applicable to less expert typists, as our HP typing style experiments

tried to simulate the typing patterns of less accustomed users; however,

we cannot affirm with certainty if our results generalize to greatly different

populations, e.g., older users with very low proficiency with a keyboard.

2.6 S&T Practical Applications

We now consider two practical applications of the results of S&T attack:

understanding words, and cracking random passwords. In particular, if the

victim is typing English words, we analyze how S&T can help understanding

such words. If the victim is typing a random password, we show how S&T

attack can greatly reduce the average number of trials required in order to

crack it, via a brute force attack. In the following, we report the results of

these practical applications on the Complete Profiling scenario, and on the

Model Profiling scenario.
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2.6.1 Word Recognition

To evaluate how S&T helps understanding the words that the victim typed,

we proceeded as follows. We drew a number of random words from an

English dictionary; we call such words actual words. For each actual word,

we reconstructed its typing sound combining the sound samples of each letter

in the actual word. We used the sound sample of the letters we collected

in Section 2.4.1. We then performed S&T attack, to obtain the top-10

predictions for each letter of the actual word. We combined these predictions

with an English dictionary, by sorting it according to each word’s probability

given the predictions from S&T, and retain the first 20 words: the most

probable guessed words for the actual word. We then count how many

times the actual word is contained in the 20 most probable guessed words.

Furthermore, we calculated the number of correctly guessed characters as

the minimum of the Hamming distances between the actual word and the

guessed words.

We report in the following the results of our experiments on 1000 random

English words, on the Complete Profiling scenario. We show in Figure 2.19

how many times the actual word was in the set of guessed words. In particu-

lar, for 4-characters long words, we were able to recover 71% of them on the

Lenovo laptop, up to 98% of the words on the MacBook Pro laptop. The

accuracy increases for longer words, because the impact of wrong guesses

is mitigated by the presence of more characters. From 10-characters long

words, on MacBook Pro and Toshiba, we were able to recover 100% of the

words. For Lenovo, from 15-character words.
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Figure 2.19: S&T attack performance — fraction of entirely correct recov-
ered words of different lengths, by combining S&T attack guesses with a
dictionary.

Figure 2.20 shows the average amount of correctly guessed characters.

We observe that on the Toshiba laptops the average number of correctly

recovered letters of the word is around 50% for words of length 4-7, and then
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rapidly increases. Average correctness of the recovered word for Lenovo is

between 80% and 90%, and rapidly approaches 100% from words of length

10, as discussed in Figure 2.19. With Macbook Pro laptops, S&T almost

always recovers all the letters correctly, consistently with its very high results

in the Complete Profiling scenario.
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Figure 2.20: S&T attack performance — fraction of correctly guessed char-
acters for not completely correct recovered words, by combining S&T attack
guesses with a dictionary.

We believe these results highlight the threat posed by S&T attack. In-

deed, when recovering text in a known language (e.g., English), additional

information on words amplifies the results of S&T, allowing almost perfect

word recovery in many settings. Furthermore, as shown by the confusion

matrices in Figure 2.9, misclassifications often happen among neighboring

keys — a language model could further be expanded to weight more predic-

tions corresponding to neighbors of the first few guesses.

2.6.2 Password Recognition

Secure passwords that prevent dictionary attacks are random combinations

of alphanumeric characters. In this section, we shed some light on how S&T

can help cracking random password with an improved brute-force scheme

that takes advantage of our results. We distinguish between two cases:

characters that are typed with a single keystroke (i.e., lowercase letters,

numbers, some symbols, the caps-lock key, and uppercase letters during

caps-lock), and characters that are typed with two keystrokes, Shift + a key

(i.e., symbols, and uppercase letters with Shift). We first detail a scheme

that works ok single-keystroke characters, as it reflects our experimental

results, and calculate the speedup of the improved brute-force scheme for

such keys. We then outline how a more complete scheme could consider the

Shift key.
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The improved brute-force scheme for single-keystroke characters is as fol-

lows: given the x guesses of S&T for each of the n characters of the target

password, we first consider all the xn combinations of such characters. We

then assume that the set of x guesses of the first character was wrong, and

subsequently consider all the other characters. When we finish considering

that one set of guesses was wrong, we consider all the combinations of two

wrong guesses (i.e., first and second sets of guesses were wrong, first and

third sets were wrong, up to the seventh and eighth sets). We repeat this

scheme until we finally try the combinations where the classifier was always

wrong. This brute-force scheme leverages the probability of success of S&T

to minimize, on average, the required time to crack a password. If we con-

sider a target password of 10 lowercase characters of the English alphabet,

a regular brute-force scheme requires requires (26)10

2 = 8.39 · 1013 guesses to

have 50% probability. On the Complete Profiling scenario, that we recall

has an average top-5 accuracy of more than 90%, we only need 9.76·106 tries

to have 50% probability. This corresponds to a very high average speedup

of 107, and an entropy reduction of more than 50%. On the Model Profiling

scenario, where we have a top-5 accuracy around 40%, we need 7.79 · 1012

tries to reach 50% probability of cracking the password, which is still one

order of magnitude better than plain brute-force attacks, on average. There

is similar tendency if the attack guesses ten characters for every character

of the password. These results are calculated on letters only (our collected

dataset) — but other single-keystroke keys are similarly detectable by S&T,

given training data.

To consider characters that are typed with two keystrokes, an improved

scheme would need to precisely pinpoint the pressure and release of the Shift

key. We leave the development of a complete acoustic-enhanced password

cracker as future work, and here hint on the following fact. As discussed

in Section 2.3.2, keystroke sounds have a press and a release peak. Users

keep the Shift key pressed down to type special characters — therefore, the

attacker could detect the Shift key by finding keystrokes that have press

and release peak separated by other keystrokes. This consideration can

be used to deduct that properly-detected subsequent single key presses are

instead the alternate character of such key. Another possibility is to train

a dedicated attacker model to detect the Shift key only. We leave this as

future work.
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2.7 Countermeasures

In this section, we present and discuss some potential countermeasures and

analyze their efficacy in preventing S&T and other attacks that use sta-

tistical properties of the sound spectrum. While we discussed some coun-

termeasures in our preliminary version of this work [43], here we provide

a complete countermeasure, able to completely prevent attacks based on

spectral properties of keystroke sounds.

First, we argue that designing good countermeasures to keyboard acous-

tic eavesdropping attacks, such as S&T, is difficult. This is because the

underlying goal for the user is to perform high-quality, undisturbed VoIP

calls. However, many countermeasures impact VoIP call quality. For ex-

ample, one simple countermeasure is applying a short “ducking” effect, a

technique that drastically lowers microphone volume and overlaps it with a

different sound, whenever a keystroke is detected. However, this approach

would greatly degrade voice call quality. Another possible countermeasure,

proposed in [8], is to introduce fake keystroke sounds during the call, when

the user is typing. However, we note that this countermeasure requires

training with keystroke sounds of the specific laptop in use, and users might

find it annoying, as the amount of noise increases greatly. We believe that

ideally, an effective countermeasure should be minimally intrusive and affect

only keystroke sounds.

Moving from these observations, we design a less intrusive countermea-

sure against all techniques that use sound spectrum information — per-

forming short random transformations to the sound whenever a keystroke

is detected. One intuitive way to do this is to apply a random multi-band

equalizer over a number of small frequency bands of the spectrum. This al-

lows us to modify the intensity of specific frequency ranges, called “bands”.

Each band should be selected at random and its intensity should be modified

by a small random amount, thus effectively changing the sound spectrum.

All these random decisions should change every few seconds, to prevent the

adversary from learning the modifications. An alternative approach, to re-

duce intrusiveness, can be to trigger the countermeasure only when the OS

detects a keystroke.

To show the efficacy of this countermeasure, we ran the following ex-

periment: we considered, as usual, our datasets in a 10-fold cross-validation

scheme. As detailed in Section 2.3, we trained the classifier (Step C) with

9 folds. However, before evaluating the accuracy of the attacker, we trans-

formed the test data as follows: we applied a multiband equalizer with 50

bands to the test data only, where each band has a random center between
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100 Hz and 12,000 Hz, a very high resonance factor Q of 20 (meaning that

the gain of each band has impact only on neighboring frequencies), and a

random gain between -5dB and +5dB. We then measured the accuracy of

the classifiers on the test data processed by our countermeasure.

We report that our countermeasure proves extremely effective: top-1 ac-

curacy of the test data filtered by the countermeasure is 3.75%–6.18% (ran-

dom guess baseline is 3.84%) and top-5 accuracy is 18.70%–24.70% (base-

line is 19.23%). Even top-10 accuracy is greatly impacted: 37.38%–44.94%

(baseline is 38.46%). This shows that S&T has no sensible advantage over

random guesses after applying our countermeasure to keystroke sounds.

Our approach also allows the speaker’s voice to remain intelligible. To

show this, we operated as follows: we selected a corpus of recordings of 30

spoken sentences, and used the IBM Watson speech-to-text engine to ex-

tract the content of the sentences. We then applied our countermeasure on

the sentences, and used again IBM Watson to obtain their transcripts. To

account for the randomness in the countermeasure, we repeat the process 5

times and average the results. We report a very high similarity between the

transcripts before and after the countermeasure: 93.69%(±11.89%). This is

further confirmed by considering the average Pearson correlation between

recordings before and after our countermeasure: 86.35%. As a final valida-

tion, we listened to the resulting files and confirm the acceptable quality —

we uploaded an archive with the original files and their transformations by

the countermeasure on the project webpage6.

As a final experiment, we tested whether this countermeasure is effective

against different spectral features: we repeated our experiment extracting

both MFCC and FFT features, applying the countermeasure on test data.

Results in Figure 2.21 show S&T accuracy, with and without the counter-

measure, for MFCC and FFT features.

We observe that our proposed countermeasure also successfully disrupts

FFT features (used, e.g., in [10, 67, 69, 103], besides MFCC features (used

in this work, and in [8, 149]). Indeed, the accuracy of S&T goes down to

the baseline random guess for both sound features.

A more simplistic approach is to use software or emulated keyboards, i.e.,

those that appear on the screen and are operated by the mouse. Similarly

trivial ideas include: (1) activating a mute button before typing, or (2) not

to type at all whenever engaged in a VoIP call.

6 https://spritz.math.unipd.it/projects/dst
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Figure 2.21: Average accuracy of single key classification against a random
equalization countermeasure. Accuracy of both FFT and MFCC features
after countermeasure lies exactly on the random guess baseline.

2.8 Summary

We demonstrated a highly accurate VoIP-based remote keyboard acoustic

eavesdropping attack. We first described a number of practical attack sce-

narios, using VoIP as a novel means to acquire acoustic information under

realistic assumptions: random target text and very small training sets, in

Section 2.2. Then, in Section 2.3 we demonstrated an attack with these as-

sumptions in mind and carefully selected the tools to maximize its accuracy.

In Section 2.4 we detail the data we collected to then thoroughly evaluate

S&T attack in several scenarios in Section 2.5. In Section 2.6 we showed

that S&T attack can be used to recover both random and non-random text,

and finally we discussed some potential countermeasures to S&T and other

attacks that leverage spectral features of keyboard sounds, in Section 2.7.

We believe that this work, due to its real-world applicability, advances

the state-of-the-art in acoustic eavesdropping attacks. S&T attack was

shown to be both feasible and accurate over Skype, in all considered at-

tack scenarios, with none or minimal profiling of the victim’s typing style

and keyboard. In particular, it is accurate in the Model Profiling scenario,

where the attacker profiles a laptop of the same model as the victim’s laptop,

without any additional information about the victim. This allows the at-

tacker to learn private information, such as sensitive text or passwords. We

also took into account VoIP-specific issues – such as the impact of audible

bandwidth reduction, and effects of human voice mixed with keystroke audio

– and showed that S&T is robust with respect to both. Finally, we discussed

some countermeasures and concluded that S&T is hard to mitigate.

Future Work. The high accuracy of S&T highlights the importance of
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robust countermeasures to such sound-based side channels. Our proposed

countermeasure is able to completely stop S&T (and other attacks that

leverage spectral properties of keystroke sounds). However, as it might im-

pact the call quality, more thorough user studies are needed to validate

our preliminary claim that voice is not affected by the countermeasure. An-

other interesting direction might be, instead of random equalization in hopes

of disrupting important features, leveraging results on adversarial machine

learning and transferability to generate the minimal perturbations that cause

attacks such as S&T to misclassify keystroke sounds.
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Chapter 3

Hand Me Your PIN! Inferring ATM

PINs of Users Typing with a Cov-

ered Hand

The wide deployment of various Cyber-Physical Systems (CPS) has a sig-

nificant impact on our daily lives. Unfortunately, the increased use of CPS

also brings more threats to users. This is especially pronounced consid-

ering new attack vectors that use machine learning approaches. As such,

threats become a global issue, and the need to design secure and robust sys-

tems increases. One common security mechanism in devices like Automated

Teller Machines (ATMs) and Point of Sale (PoS) depends on the security

provided by the Personal Identification Numbers (PINs). While ATMs and

PoS devices are widely used 1, many people do not consider security risks

and defenses beyond those commonly mentioned 2: i) hide the PIN while

typing, and i) make sure no one watches the screen (shoulder-surfing at-

tack). In the context of financial services, ISO 9564-1 [77] specifies the basic

security principles for PINs and PIN entry devices (e.g., PIN pads). For

example, to mitigate the shoulder surfing attacks [27, 54], the standard in-

dicates that i) PIN digits must not be displayed on a screen, and ii) the

duration and type of feedback sound emitted must be the same for each key.

Consequently, as a compromise between security and usability, PIN entry

systems display a fixed symbol (e.g., a dot) to represent a digit being pressed

and provide the same audio feedback (i.e., same tone, same duration) for all

1https://sdw.ecb.europa.eu/reports.do?node=1000001407
2https://www.hsbc.com.hk/help/cybersecurity-and-fraud/atm-scams/
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keys. Thus, the combination of security mechanisms enforced by standards

and the common precaution measures taken by users should provide suffi-

cient protection. Unfortunately, the attackers also improve their approaches

over time and consider more sophisticated attacks.

The security of ATM and PoS devices is of great concern as millions of

such devices are used [48]. Resourceful attackers that succeed in attack-

ing even a small percentage of those devices can cause significant damage

considering costs and public perception. This problem is especially pro-

nounced as last years brought significant developments in the attack tech-

niques [14, 36, 97]. At the same time, attacking ATM or PoS devices is

not easy, especially if considering realistic settings. Most of the state-of-

the-art attacks can be defeated by a careful user covering the PIN that is

entered. Recent results that consider thermal cameras are also difficult to

succeed, depending on the keypad type and the time users spend operat-

ing the device. The attacker can also use timing or acoustic attacks to

infer information about the entered digits, but they are not as effective as

the state-of-the-art attacks since they require additional information such

as thermal residues [36], making it challenging to apply realistically such

attacks.

This work proposes a novel attack aiming to reconstruct PINs entered

by victims that cover the typing hand by the other hand. More precisely,

we leverage the advances in the deep learning domain to develop an attack

predicting what PIN is entered based on the position of the user’s hand

and the movements while pressing the keys. Our attack gives high accuracy

rates even in the cases when the user perfectly covers the typing hand.

What is more, our attack reaches higher accuracy values than previous works

that needed to consider several sources of the information at the same time

(timing, sound, and thermal signatures) [36].

Our attack considers a profiling setting where the attacker has access

to a PIN pad that is identical (or at least similar) to the one used by the

victim. Then, we build a profiling model that can predict what digit is

entered on the target device. This is the first attack on PIN mechanisms

that works even when the PIN is covered while being entered to the best of

our knowledge. Our attack demonstrates that the ATM and PoS security

mechanisms are insufficient, and we must provide novel defenses to mitigate

attackers. We made our code and datasets publicly available at https:

//spritz.math.unipd.it/projects/HandMeYourPIN.

Main contributions

• We propose a novel attack to infer PINs from videos of users covering

the typing hand with their non-typing hand.
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• We demonstrate that our attack can reconstruct 30% of 5-digit PINs

and 41% of 4-digit PINs within three attempts, showing that hiding

the PIN while typing is insufficient to ensure proper protection.

• We evaluate our attack via extensive experiments, collecting videos of

5 800 5-digit PINs entered in a simulated ATM by 58 participants. We

conduct a study to assess humans’ accuracy in inferring covered PINs

from videos. We show that our attack outperforms humans, achieving

a four-fold improvement on reconstructing 5-digits PINs within three

attempts.

• We pre-process our dataset, and we make it publicly available to the

research community. We hope this is beneficial to understand the

problem better and propose possible solutions.

• We discuss several countermeasures that would make the attack more

difficult to conduct. We perform an analysis on the attack performance

when covering the PIN pad (coverage 25%, 50%, 75%, and 100%) and

show that attacks are possible even when using this countermeasure.

3.1 Threat Model

The attack is performed when a victim interacts with a generic ATM key-

pad and types the PIN. The ATM is equipped with a PIN pad that emits a

feedback sound when a key is pressed. The feedback sound is the same for

all the keys of the PIN pad. The ATM is equipped with a monitor where

obfuscated symbols appear when users enter a PIN to mask the entered

digits. We do not assume that the ATM or its PIN pad have been compro-

mised during the attack. Our approach can be considered an alternative to

card-skimmer attacks since we consider a different source of information to

retrieve the PIN. Usually, card-skimming attacks rely on fake PIN pads that

directly record the entered digits [121], while our approach infers the PINs

from a video.

3.1.1 Attacker

The attacker is a malicious user aiming to steal the victim’s secret PIN. The

attacker can place a hidden camera near the ATM to record the PIN pad.

We make no assumptions about the type of camera used by the attacker

except that it records in the visible spectrum 3. We assume that the camera

can easily be hidden close to the ATM while keeping a direct view of the

3We will use cheap and easily-concealable video sensing equipment, where standard
RGB cameras fit such requirements.
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PIN pad (i.e., a pinhole camera if the attacker has access to the ATM 4

or any standard camera placed outside the ATM chassis). We also do not

assume any specific position for the camera, but we discuss various cam-

era placements’ advantages. We primarily consider the scenario where the

attacker uses only one camera, but we also discuss the attack performance

when using multiple cameras.

The attack may take place together with different card stealing ap-

proaches: i) card skimming both on chip [29] or magnetic stripe [121] (cur-

rently, the two payment-enabling technologies work together [45]), ii) ex-

ploiting a relay attack on a contactless card [65], and iii) physically stealing

the victim’s card.

We assume a profiling side-channel attack where the side-channel infor-

mation comes from the video of the victim’s hand while entering the PIN.

More precisely, side-channel information is the position of the victim’s hand

and the hand movements (both moving the hand/fingers to reach different

keypads or movements observable due to muscle movements while a certain

keypad is pressed). The attacker can record a number of PINs entered on

a copy of the ATM device and train a profiling model to predict what key

is pressed. The attacker can retrieve the timestamps when the victim has

typed the single keys on the keypad and can do so by listening to the audio

of the video recording. There are two different types of sound clues that the

attacker can exploit: the first one is the feedback sound made by the key-

pad when a key is pressed [36], the second one is the sound of the physical

button of the keypad that is pressed. External noise does not prevent the

attacker from extracting the keypresses, as the camera is close enough to

the keypad. As such, the sound can still be identified in the audio track.

If, for any reason, the attacker has no way to retrieve the timestamps from

the recorded audio (or if there is no audio at all), it is possible to place the

camera to record both the keypad and the screen of the ATM [14]. This

allows the attacker to extract the keypresses’ timing by looking at the PIN

masking symbols appearing on the screen. Common masking symbols are

usually dots and asterisks. The attacker can use any method to build a

profiling model to predict what keys are pressed. We consider the top three

predictions as a measure of success since most ATMs will allow entering the

PIN three times before blocking the card. Finally, we do not assume that

the PIN has any specific structure (pattern) that could be used to improve

the attack performance further.

4 https://www.sperrywest.com/cameras/
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3.1.2 Victim

We assume that the victim adopts basic countermeasures against card-

skimming attacks, such as covering the hand while entering the PIN. The

attacker does not need to be there when the victim types the PIN, as the

attacker can freely access the camera’s recorded video, either remotely or at

a different time.

3.2 Attack Approach

Our attack assumes that the attacker has access to a training device and

controls the PIN selection. Additionally, the attacker knows the layout of a

target device and will select the training device to be similar. The attacker

does not know the specific person to be attacked or the PIN for the attacked

device.

3.2.1 Attack Phases

We can divide the attack into three phases: Phase A – Training, Phase B

– Video Recording, and Phase C – PIN Inference. Figure 3.1 shows the

required steps for the attack.

Phase A – Training

The attacker selects an ATM as the target of the attack. Next, the

attacker sets up a replica of the target ATM. This replica does not have

to be a faithful copy of the original, as our model takes in as input a crop

around the keypad of the ATM. Therefore, the attacker must use a keypad

similar to the one on the target ATM. The best situation is when the

attacker can retrieve the same PIN pad model. Alternatively, the attacker

can also use PIN pads that differ slightly (e.g., the key spacing can vary by

a few millimeters). Note that the layout of ATM PIN pads has to follow

the ISO 9564 standard [77]. The attacker uses the ATM replica to build

the training set, simulating the victim’s behavior while entering the PIN

(i.e., covering the typing hand). The attacker must enter sequences of PINs

on the replica PIN pad, including all ten digits (i.e., all the digits must

be included in the training set). Without losing generality, the attacker

can use a USB PIN pad that logs the keys pressed and the corresponding

timestamps. The attacker uses this information to segment the videos

and labels them. Leveraging the logs, the attacker builds a training set

containing, for each key pressed, a sequence of frames and the corresponding
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Figure 3.1: The attack step-by-step. The data collection process does not
necessarily need to happen before the attacker steals the victim’s PIN. Still,
it is a required step of the attack.

label (digits). Finally, the attacker trains the predictive model on the

collected training set. For a detailed discussion on the implemented model,

we refer readers to Section 3.3.5.

Phase B – Video Recording

The attacker hides a camera near the target ATM to record the PIN

pad. There are multiple places where the camera can be placed, and

depending on this, the attack can be easier or more challenging to succeed.

The camera records the victim while entering the PIN and covering the
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PIN pad with the non-typing hand. The attacker retrieves the recorded

video from the remote camera.

Phase C – PIN Inference

The attacker’s goal is to infer the victim’s PIN based on the video

recorded during the PIN entering. First, the attacker retrieves the times-

tamps from the recorded video. The attacker can use both the pressed keys’

feedback sound or the masking symbols appearing on the screen while the

victim enters the PIN to perform this task. Leveraging the timestamps, the

attacker performs the same procedure as in Phase A to generate an attack

set. Differing from the training set, the attack set contains a sequence of

frames for each victim key pressed but no information about the related

label. The adversary detects in the attack set the frames corresponding to a

PIN entry, and splits the video into N sub-sequences where N represents the

number of digits composing the PIN. For each sub-sequence, the adversary

applies the model trained in Phase A. The model provides the probability

of each class (i.e., the ten possible digits) to be the one corresponding to

the input sub-sequence. Exploiting the N sub-sequences predictions, the

attacker builds a rank of PINs in the descending order of their probabilities.

In particular, the probability of a PIN corresponds to the product of the

predicted probabilities of its digits.

3.2.2 Attack Settings

We consider three realistic attack scenarios:

1. Single PIN pad scenario: the attacker knows the model of the tar-

get PIN pad and obtains a copy of it to carry out the training phase.

While this scenario may seem unrealistic, we note it is not difficult to

obtain a specific keypad copy. Indeed, the attacker can easily obtain

information about the ATM to be attacked and then buy the keypad

with the same layout. Naturally, there can be certain differences con-

cerning how sensitive the keypad is (for instance, due to usage, pads

can become somewhat more difficult to press), but our experiments

indicate such differences are not substantial enough to pose issues for

deep learning models.

2. PIN pad independent scenario: this is the most challenging sce-

nario. The attacker does not know or cannot retrieve the model of

the target PIN pad. The training phase is performed on a PIN pad

with similar characteristics to the target (e.g., shape, distance between

keys, keys layout, and the sensitivity of keys).
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3. Mixed scenario: as for the Single PIN scenario, the attacker knows

the target PIN pad model. In this case, the training is performed on

two PIN pads: a copy of the target and at least one PIN pad with

similar characteristics. Considering several keypads in the training

set makes sense when 1) the attacker is not certain about the keypad

model, 2) the attacker assumes that the keypad will behave differently

due to environmental conditions, 3) the attacker aims to attack multi-

ple types of keypads (ATMs) with the same machine learning model,

and 4) for any reason, the attacker did not manage to obtain enough

training examples with a single keypad. We also note that using more

keypads in the training set makes the training process more difficult

and reduces the chances to overfit (i.e., we can consider different key-

pads as one keypad with noise, having the regularization effect [28]).

3.2.3 Camera Positions

Since our threat model allows the arbitrary position of the camera, we dis-

cuss several representative scenarios. We consider positions at the top of

the ATM preferable for the attacker as lower positions of the camera result

in no visibility of the hand pressing the keys if the other hand is covering it.

We also consider settings at the front side of the chassis as they give better

visibility for the attacker and are significantly more difficult for the victim

to notice the camera.

Then, without loss of generality, we can discuss three main positions for

the camera to provide good results. The camera can be positioned in the top

left, center, or right corner. If the camera is positioned in the right corner

and the person entering the PIN is right-handed, it will be easier to observe

the entered digits. The same happens for the camera in the left corner and

the left-handed person. However, if the camera is in the center position, it

does not favor any specific setting, making it the most general setting, but

it also makes it somewhat more challenging to conduct the attack than the

left/right position and left/right-handed persons. We will concentrate on

the top center position of the camera mounted on the chassis’s front side.

3.3 Experimental Setting

To assess the feasibility of our attack on all the scenarios described in Sec-

tion 3.2, we collected two datasets containing videos of people covering their

typing hands while entering PINs. This section first illustrates the differ-

ences between the considered PIN pads and then describes our data collec-
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tion procedure. Finally, the adopted video pre-processing, the setup used

to run the experiments, and the implemented deep learning models are pre-

sented.

3.3.1 Devices under Test

We performed two separated data collection campaigns on two different real-

world ATM metal PIN pads: DAVO LIN Model D-8201 F 5 (Figure 3.2a)

and Model D-8203 B 6 (Figure 3.2b). In particular, we report the following

differences between the two PIN pads:

• Model D-8201 F has a dimension of 100 mm x 100 mm, while Model

D-8203 B has a metal surface of 92 mm x 88 mm and is contoured by

rubber protection.

• The horizontal key spacing is 1 mm larger between each key in Model

D-8203 B.

• The keys of Model D-8203 B are harder to press and slightly taller

than Model D-8201 F.

• For usability reasons, both the PIN pads emit a specific feedback sound

(the same for all keys) when a key is pressed. The frequencies of the

feedback sounds are 2 900 Hz for Model D-8201 F and 2 500 Hz for

Model D-8203 B.

For the data collection, we embedded the PIN pad into a simulated ATM

(see Figure 3.3). We chose the simulated ATM’s size based on a real-world

ATM [74]. In particular, the simulated ATM has a width of 60 cm, a height

of 64 cm, and a depth of 40 cm. At 15 cm of height from the frame’s base,

we inserted a shelf to position the PIN pad and the monitor. The height

of the PIN pad from the ground is 110 cm. We used three Logitech HD

C922 Pro webcams anchored on the ATM’s chassis to perform the video

recording. A central webcam was placed 30 cm above the PIN pad, while

the other two webcams were placed on the two top corners of the chassis

42 cm away from the PIN pad. The camera’s maximum resolution is 1 080p

with an acquisition rate of 30 fps. We recorded the videos with a resolution

of 720p and an acquisition rate of 30 fps.

5https://www.davochina.com/4x4-ip65-waterproof-industrial-metal-keypad-stainless-
steel-keyboard-for-access-control-atm-terminal-vending-machine-p00103p1.html

6https://www.davochina.com/4x4-ip65-stainless-steel-numeric-metal-keypad-with-
waterproof-silicone-cover-p00126p1.html
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(a) DAVO LIN Model D-8201 F (b) DAVO LIN Model D-8203 B

Figure 3.2: The PIN pads used in the data collection.

3.3.2 Data Collection

The first data collection involved 40 participants (age 38.23±11.43, 24 male

and 16 female). The second data collection involved 18 participants (age

29.50 ± 5.74, ten male and eight female). Both collections include right-

hand participants only. All the participants gave their approval to collect

and use the data by signing informed consent. All the data have been

anonymized and used by the authors of this paper for research purposes

only. Participants were asked to stand in front of the test ATM and cover the

typing hand while entering the PIN during the experiment. The participants

were left free to type as they pleased. The goal is to emulate an ATM user

that is hiding the PIN, preventing possible shoulder-surfing attacks. Each

participant typed 100 5-digits PINs randomly generated, divided into four

sequences of 25 PINs. This split into four sequences has been performed

to include short breaks in the experiments and prevent the participants

from getting tired. The PINs were showed one at a time on the ATM

screen: once a PIN has been entered on the PIN pad, the user had to press

the enter button to move to the next PIN. We recorded a total of 5 800

random 5-digit PINs, resulting in a balanced dataset per digit. Since our

study aims to reconstruct the PIN from the video sequence, regardless of

the user’s typing behavior and familiarity with the PIN or the PIN pad,

we decided to randomize PINs rather than asking users to enter the same

PIN multiple times. This approach generalizes the attack, which can be

applied to mnemonic PINs and One-time Passwords (OTPs). Moreover, we

collected the environmental audio (exploiting the webcam microphone) and

the keylogs of the PIN pad through the USB interface during the experiment.
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In particular, for each digit entered, we collect both the key down and key

up events. We synchronized the video recordings with the timestamp of the

key events. This information was collected to build the ground truth for

the conducted experiments. The dataset is available at https://spritz.

math.unipd.it/projects/HandMeYourPIN.

Figure 3.3: Our experimental setup. The cameras are visible but they can
be hidden into the frame of an ATM. In all other aspects, we reproduced a
common ATM layout in detail.

3.3.3 Pre-processing Video

Once the data acquisition phase is done, we need to pre-process the videos.

For each video frame, we applied the following steps: i) convert the video

frames to grayscale; ii) normalize the input so that all pixel values lie in

the range [0, 1]; iii) crop the frames by centering the PIN pad, cutting off

the irrelevant part of the background; (iv) resize the image to 250 x 250

pixels. After these steps, we applied a segmentation on each PIN video to

obtain sub-sequences of frames corresponding to a single keypress (e.g., 5

sub-sequences for a 5-digit PIN). We extracted the keypress’s timestamp

from the recorded feedback sound of the PIN pad following the procedure

explained in [36]. In particular, we filtered the audio signal using a band-pass

filter, centered on the specific frequency of the feedback sound (i.e., 2 900 Hz
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for Model D-8201 F and 2 500 Hz for Model D-8203 B). By identifying the

peaks of the filtered signal, we could detect the timestamp of the target key

(TK). This allowed us to extract a set of frames in each TK neighborhood.

For each TK, the maximum number of frames (full-neighborhood) consists

of all the frames ranging from the key preceding the TK to the key following

the TK. If the TK corresponds to the first digit of the PIN, we consider

only the frames between the TK and the next keypress. Analogously, if the

TK corresponds to the last digit of the PIN, the frames considered are only

those between the TK and its previous keypress. Since our model requires

all input samples to have the same length, we decided to keep 11 frames

for each sample. This value corresponds to the average number of frames

in the full-neighborhood after removing the outliers over 3σ. To keep the

TK at the center of the frames’ sequence, we decided to consider five frames

preceding the target keypress and five frames succeeding it, for a total of 11

frames per sample (including the target frame). There are three borderline

cases: the TK is the first digit in the sequence, the TK is the last digit in

the sequence, and the full-neighborhood has less than 11 frames. We apply

black frame padding to keep the TK at the center of the sequence for these

cases. In particular, if the TK is the first digit of the pin, five black frames

are added at the head of the sequence, while if TK is the last digit of the

PIN, we add five black frames at the end of the sequence. Finally, if there

are not 11 frames in a sequence, we pad both the head and the tail (so that

the TK is at the center).

3.3.4 Machine Learning Setup

For our experiments, we used a machine equipped with a CPU Intel(R)

Xeon(R) E5-2670 2.60GHz, 128GB of RAM, and three Tesla K20m where

each GPU has 5 Gb of RAM. To implement the machine learning models,

we used Keras 2.3.0-tf (Tensorflow 2.2.0) and Python 3.8.6.

3.3.5 Prediction Models

Our approach aims to predict which key has been pressed on a PIN pad,

exploiting only the video of a user covering the typing hand with the other

hand. Since we deal with sequences of images, we implemented a model

using Convolutional Neural Networks (CNNs) [92] and a Long Short-Term

Memory (LSTM) [72]. The CNNs perform spatial feature extraction for

each frame of a sequence, while the LSTM exploits these features to extract

temporal patterns for the whole sequence of frames. The output of the

LSTM passes through a multilayer perceptron (MLP) and a final Softmax
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activation function layer with ten units (as there are ten digits). This model

is known in the literature as Long-term Recurrent Convolutional Network

(LRCN) [51]. In Keras [86], such architecture can be implemented using the

TimeDistributed wrapper throughout all the CNNs layers, which causes the

same convolutional filters to be applied to all the timesteps (i.e., the frames)

of the input sequence.

We split our dataset into train, validation, and test sets. Each set’s size

depends on the attack scenario and is discussed in detail in Section 3.4. We

explored different hyperparameters by using the randomized grid search.

Based on a preliminary assessment, we set the ranges for specific hyper-

parameters (i.e., we limit the upper value for specific hyperparameters) to

speed up the search. In particular, for the CNNs, we tested [3x3, 6x6, 9x9]

kernel sizes. We also varied the number of convolutional layers in the range

[1, . . ., 4]. In the following dropout layer, we varied the dropout rates in the

range [0.01, 0.05, 0.1, 0.2]. For the LSTM architecture, we varied the number

of layers in the range [1, . . ., 3], and the unit size in [32, 64, 128, 256]. We also

assessed our network’s performance using a Gated recurrent unit (GRU) in-

stead of the LSTM. Finally, we examined the number of layers for the MLP

in the range 1 to 4 and the number of units in the range 16, 32, 64, 128. We

tried two types of architectures for MLP: i) all the layers have the same num-

ber of units, ii) layers with decreasing number of units (funnel architecture),

with every next layer having half the units of the previous one.

After a tuning phase, we selected a structure consisting of four con-

volutional layers (Conv2D in Keras) with ReLU activation functions, each

followed by a pooling layer (MaxPooling2D in Keras). Three convolutional

layers have a filter size of 3x3, and one (the second one) has a filter size of

9x9. Each pooling layer has a filter size of 2x2. The number of filters in the

convolutional layers doubles at each layer, starting from 32 filters in the first

layer, ending up at 256 filters in the fourth layer. We added a dropout layer

(dropout rate 0.1) after the last pooling layer to prevent overfitting. The

output is then flattened, preserving the temporal dimension to provide a

sequence of temporal features to the following LSTM. A single layer LSTM

with 128 units resulted in the best validation with a hyperbolic tangent ac-

tivation function. Finally, for the MLP, we used four fully connected layers,

with 64 units each, followed by the Softmax activation layer with ten units

(i.e., the number of classes we want to predict). We used the categorical

cross-entropy loss function and the stochastic gradient descent (SGD) opti-

mizer. Finally, we set the model to evaluate the accuracy metric. We set the

batch size to 16 and the learning rate to 0.1. We tested for 70 epochs since

we found that the model always converged within this number of epochs. In
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Appendix A.1, we provide additional details. Our experiments indicate that

the classification task we conduct is relatively difficult, and one needs to use

sophisticated deep learning architecture for good results. Still, we note that

the architecture we use is in line with the state-of-the-art results for hand

tracking problem [76, 90]. Finally, we observed significant changes in the

performance depending on the specific hyperparameter choice, indicating a

need for detailed tuning for the respective tasks.

In a real-world context, it might not be possible to reproduce pre-

cisely the experimental conditions (e.g., the camera might be rotated/tilted

slightly concerning the PIN pad, or the distance to the PIN pad might not

be the same). Thus, we also used data augmentation to generate synthetic

measurements (20% of the training dataset) that cover more scenarios to

account for such issues. In particular, we used the following video-based

transformations:

• rotation for a maximum of 7 deg both clockwise and counterclockwise;

• horizontal shift for a maximum of 10% of the width;

• vertical shift for a maximum of 10% of the height;

• zoom between 0.9 and 1.1.

Synthetic samples were generated by randomly combining the transforma-

tion techniques listed above. We emphasize that data augmentation is also

helpful as it makes the predictive model adaptable to different types of

ATMs.

3.4 Experimental Results

In this section, we evaluate the performance of our approach for the three

attack scenarios described in Section 3.1. We adopted a user-independent

split strategy since, in a realistic context, the attacker does not have labeled

videos of victims entering PINs. In this way, we guarantee that videos from

a participant appear only once among the three sets. Moreover, since we

are interested in evaluating the PINs reconstruction accuracy, we removed

all non-5-digit sequences entered by mistake by participants (i.e., the ”en-

ter“ key was pressed after a sequence longer or shorter than 5-digits.) The

removed non-5-digits sequences account for 2.2% of the total PINs entered.

We conducted the experiments on both 4-digits and 5-digits PINs. To ex-

periment on 4-digit PINs, we removed the last digit of each 5-digit sequence

in our dataset.

We define that a PIN is covered when there is no direct view of the en-

tered keys and their surrounding. Still, we observed that some participants
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failed to obtain a satisfactory coverage level with the non-typing hand de-

spite our instruction before starting the data collection. Since this study

aims to infer covered PINs, we decided to exclude the videos of participants

that entered badly covered PINs from the validation and test sets. In this

way, the validation and test sets consist of videos of covered entered PINs,

while the training is composed of videos containing both covered and badly

covered PINs. Note that badly covered PINs are still difficult to “read” by

simply looking at the video, so we consider such data useful in building a

training set. For the test set, we aim for the most difficult scenario where

PINs are properly covered. Under these assumptions, we ”blacklisted“ 16

participants that badly covered the PIN pad: 14 for the first data collec-

tion and two for the second data collection. These participants have been

excluded from validation and test sets described in the below scenarios 7.

In Figure 3.4, we provide an example of a badly covered PIN and a covered

PIN.

To obtain a further indication of the quality of coverage and the difficulty

of reconstructing a PIN by a human, we surveyed a random sub-sample of

videos of covered PINs (Section 3.6). Finally, there is a question of how to

predict the PIN that is not guessed correctly from the first attempt. Since

we consider each digit independently, we consider a mechanism where our

best guess comprises of individual best guesses (for each digit). If that PIN is

incorrect, we consider the digit where the two best guesses have the smallest

difference. We change that digit to the second-best guess in our PIN, and

we try again. The same procedure is repeated for the third attempt if the

second PIN is wrong.

1. Single PIN pad scenario. To evaluate the scenario where the adver-

sary knows the target PIN pad model and owns a copy, we considered

only the first data collection composed of 40 participants. We applied

a user-independent split of the dataset in training, validation, and test

sets with the proportions 80/10/10%.

2. PIN pad independent scenario. In this scenario, the adversary

trains the machine learning model on a PIN pad with a similar lay-

out to the target one. This scenario occurs when the attacker cannot

obtain the same PIN pad model to collect data. Under these assump-

tions, we used for training and validation the first collected dataset

(composed of 40 participants). We included the videos from 35 par-

ticipants in the training set and the remaining 5 participants’ videos

in the validation set. We used the second collected dataset as the test

7Results are in Appendix A.3
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(a) Badly covered PIN that we excluded
from the validation and test tests.

(b) Covered PIN, where there is no direct
view of the pressed key and the surround-
ing digits.

Figure 3.4: Badly covered vs. covered PINs.

(a) True digit
= 7
Pred = 7
(0.999), 4
(0.000), 8
(0.000)

(b) True digit
= 3
Pred = 3
(0.979), 2
(0.012), 6
(0.005)

(c) True digit
= 6
Pred = 6
(0.819), 9
(0.170), 8
(0.009)

(d) True digit
= 3
Pred = 3
(0.809), 2
(0.092), 5
(0.069)

(e) True digit
= 3
Pred = 2
(0.329), 3
(0.315), 6
(0.185)

Figure 3.5: PIN 73633 entered by a user in our test set in the Single PIN pad
scenario. Our algorithm suggests 73632 as the most probable PIN (prob-
ability = 21.32%), 73633 as the second most probable PIN (probability =
20.43%), and 73636 as the third most probable PIN (probability = 11.96%).
The algorithm predicts the correct PIN in the second attempt.
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set. We included only the videos of 16 out of 18 participants of the

second data collection in the test set since two were in the group that

badly covered the PIN pad.

3. Mixed scenario. This scenario corresponds to how the attacker owns

both a copy of the target PIN pad and a PIN pad similar to the target

one. In this case, we merged the two collected datasets and applied

a user-independent split in training, validation, and test sets with the

proportions 80/10/10%.

We begin the discussion on results by providing an example of a suc-

cessful PIN attack in Figure 3.5. We consider the 5-digit PIN case and the

Single PIN pad scenario. We provide an image for each digit. We give the

top three digits and the corresponding accuracy values. Notice how the first

and second digits are predicted correctly with high probabilities. This hap-

pens as the person sets the hand to allow an easy start of typing. Already

for the third digit, we observe a significant drop in the accuracy value for

the best prediction. Still, the value is significantly larger than the second-

best prediction, so there are no issues in getting the correct prediction. This

trend continues for the fourth digit and gets very pronounced for the last

(fifth) digit. Indeed, the best guess is not correct anymore, but the second-

best guess is correct (the difference in probability between those two guesses

equals 0.014).

For all three scenarios, Figure 3.6 shows the results for the single key

accuracy, while Figure 3.7 reports the results considering 5-digit and 4-digit

PINs. Considering the single key accuracy (averaged over all digits), notice

that even in the most difficult PIN pad independent scenario, our Top-3

accuracy reaches 63.8%, which is significantly higher than the result one

would reach with random guessing (30%). At the same time, the results for

the Single PIN pad scenario and the Mixed scenario are rather similar, and

the Top-3 accuracy reaches up to 88.7%. Interestingly, we observe somewhat

better results for Top-2 and Top-3 accuracy for Single PIN pad scenario than

the Mixed scenario, which is the opposite of the results for 4-digit and 5-digit

settings. We hypothesize this happens as we consider independent digits as

naturally, the best results happen when the training and test are done on

the same device. On the other hand, the Mixed scenario gives slightly better

results for the PIN reconstruction scenarios as we need to consider a sequence

of PINs with the movement between digits. Then, having different devices

in the training set allows (slightly) better generalization.

In Figure 3.7a, we observe that the most difficult case is when the at-

tacker does not have access to the same keypad as used by the victim. There,

the accuracy for the Top-3 case equals 11.4%. Having access to the same
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type of keypad improves accuracy in Top-3 to more than 20%. Finally,

considering the Mixed scenario, we can improve the accuracy for Top-3 to

almost 30% (29.7%). Next, in Figure 3.7b, we present results for 4-digit

PINs. The results are significantly better than for the 5-digit scenario. The

lowest accuracy happens for the Top-1 PIN pad independent scenario setting

and it equals 10.6% (cf. 6.7% for the 5-digit scenario). The highest accuracy

reaches 41.1% for the Top-3 accuracy in the Mixed scenario.

Single
PIN pad

PIN pad
Independent

Mixed
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Top-1 Top-2 Top-3

Figure 3.6: Single key accuracy of our algorithm for the three considered
attack scenarios. Top-N means that we guessed the digit within the N
attempts.

In Figure 3.8, we depict detailed results for the digit 1. We selected this

digit since heat maps for others look similar and exhibit similar dispersion.

First, in Figure 3.8a, we show the PIN pad layout. Figure 3.8b gives results

for the Single PIN pad scenario. Notice that the heat map indicates that

guess 1 is the most likely one with 67% probability. The digits 4 and 3

are recognized as the second and third best guess, respectively. Still, their

probability is significantly lower. For the PIN pad independent scenario, we

observe that the probabilities are more spread over all digits, which comes

at the expense of a lower prediction probability for the correct digit. The

second and third best guesses maintain the probabilities, indicating that

Top-3 guesses are sufficient to guess a large number of PINs in the most

difficult scenario. Finally, Figure 3.8d gives results for the Mixed scenario,

where we see that the best guess is on the level with the Single PIN pad

scenario. Interestingly, now the second and third best guesses are swapped
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Attacker Information
Source

4-digit PINs
TOP-N Accuracy (%)

KT OD TT Our Attack TOP-1 TOP-2 TOP-3

0.01 0.02 0.03
§ 0.10 0.20 0.30

§ 0.02 0.35 0.72
§ § 3.02 3.72 4.36

§ 3.76 7.52 11.28
§ § 15.54 27.79 33.63

§ 29.61 37.06 41.12

Table 3.1: Comparison of our attack with other unobtrusive attacks on ATM
PIN pads. Note that we need to extract the frame for our attack, while for
KT, one needs to use the timestamp, which is more precise information.

compared to the previous scenarios. All the other digits have 0 or negligible

probability of being the correct digit. Appendix A.2 provides additional

results for the key accuracy.

Based on our results, we provide several observations that we believe

generalize beyond these experiments:

• Covering the PIN pad with the other hand is not sufficient to defend

against deep learning-based attacks.

• Portability aspect (keypad differences) is quite significant, and the

attacker should obtain the same type of keypad for a high probability

of success in attack.

• There are three prevailing ways how users cover the typing hand:

raised hand not touching the surface, hand resting on fingers and ver-

tically covering the PIN pad, and hand resting on the side of the palm.

The examples of all three covering strategies are shown in Figure 3.9.

Finally, Table 3.1 provides a comparison between our attack and several

unobtrusive attacks on 4-digit PINs from the literature [36]. We divided the

attacks according to the information that the attacker has: keystroke timing

(KT), one digit of the victim’s PIN (OD), and the thermal trace (TT) left

on the PIN pad by the victim [3]. From the results, it is clear that our

attack performs the best for all considered TOP-N accuracies.

Appendix A.3 provides experiments where we: i) resize the images, ii)

consider different camera positions, iii) consider setup without data aug-

mentation, and iv) consider the training set that includes the blacklisted

participants. Finally, we also provide experiments for the frame detection

error (when the feedback sound is not properly synchronized).
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(a) 5-digit PINs.
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(b) 4-digit PINs.

Figure 3.7: PIN accuracy of our algorithm in the three considered attack
scenarios. Top-N means that we guessed the PIN within the N attempts.
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(a) Layout of a generic PIN pad.
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(b) Single PIN pad scenario.

0.48 0.14 0.07
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(c) PIN pad independent scenario.

0.67 0.17 0
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(d) Mixed scenario.

Figure 3.8: Digit 1 predictions heat maps for the three considered attack
scenarios.
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(a) Side: hand resting on
the side of the palm.

(b) Over: raised hand not
touching the surface.

(c) Top: hand resting on
fingers and vertically cov-
ering the PIN pad.

Figure 3.9: Different covering strategies using the non-typing hand.

3.5 Countermeasures

Different countermeasures could make the attack more difficult to succeed.

For instance:

1. Longer PINs. This countermeasure would make the attack more dif-

ficult, as evident from the comparison for 4- and 5-digits PINs. This

countermeasure would be relatively easy to support from a technical

perspective. At the same time, it would have usability drawbacks as

longer PINs take more time to type and are more difficult to remember.

2. Virtual and randomized keypad. Instead of using a mechanical key-

pad, one could consider using a touchscreen where the digits are ran-

domized. More and more ATMs (but not PoS) have this feature, so

implementing it would not be too difficult. Unfortunately, we believe

this would seriously damage the usability aspect as people are accus-

tomed to digits occurring in the natural sequence, and any changes

would probably result in wrongly entered PINs.

3. Screen protectors. On many ATMs, there are already various types of

screen protectors that occlude the typing hand. To maintain usability,

many screen protectors are short and will not cover the whole typing

hand. Making the screen protectors larger would impair usability as

it will become more difficult for the user to read the keypad. This

countermeasure is potentially not easy to deploy as it requires physical

changes to the ATMs.

Next, we analyze how a PIN shield could affect the performance of our

attack. We simulated the presence of the shield by applying a black patch

to cover the PIN pad. In Table 3.2 we report the performance of our attack
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Coverage Key PIN TOP-3
percentage accuracy accuracy

25% 0.54 0.22
50% 0.55 0.22
75% 0.50 0.17
100% 0.33 0.01

Table 3.2: PIN shield experiments.

in the Mixed scenario, applying four different levels of coverage (Figure A.5,

Appendix A.3). The coverage of the PIN pad is larger than the percentage

shown in Figure A.5 since the coverage given by the non-typing hand is not

included in the given percentage. The results show that our attack remains

effective even when 75% of the PIN pad is covered, while the performance

decays significantly beyond this level of coverage. As such, it becomes clear

that our deep learning attack uses information about the whole hand posi-

tion and movement, and not only the tip of the fingers. Since the last row of

the PIN pad has only one number (0), 100% coverage has poor attack results

not only because of hiding all the numbers on the keypad but due to hid-

ing of proximal interphalangeal, metacarpophalangeal, and carpometacarpal

joints of the fingers. Thus, only PIN shields that offer full PIN pad coverage

can be considered effective countermeasures to our attack.

We provide additional results with different covering strategies (Side,

Over, and Top) in Appendix A.3. Those results again show that covering

the PIN pad from the Side gives insufficient protection. On the other hand,

using the Over strategy significantly decreases the key accuracy and PIN

accuracy.

3.6 Deep Learning vs Humans

If an attacker has direct visibility of the PIN pad, reconstructing a PIN from

a video can be considered a trivial task. One of the classic countermeasures

to the so-called shoulder-surfing attacks is to cover the hand entering the PIN

with the non-typing hand. In this way, the victim obstructs the attacker by

removing the direct visibility of the keypad. We designed a questionnaire

to evaluate how much the covering with the non-typing hand effectively

prevents the PIN reconstruction.
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3.6.1 Methodology

The questionnaire consists of 30 videos of people entering 5-digit PINs by

covering the PIN pad with the non-typing hand as we noticed that for longer

questionnaires, the participants’ attention significantly goes down toward

the end. For each video, the participants had to indicate the three most

likely PINs in their opinion.

To assess human and model performance on both the PIN pads, we de-

cided to use the test set of the Mixed scenario (i.e., the only one including

both PIN pads). Since the test set was balanced in terms of samples per

user, we randomly selected five PINs for each of the six users in the test

set. We extracted 30 videos corresponding to the selected PINs from our

dataset. We kept the original resolution of 720p and the original audio track

containing the feedback sound emitted by the PIN pad for each video. The

feedback sound helps the participants to recognize when a digit is entered.

To avoid bias in the answers, we randomized the order of the videos in the

questionnaire. Moreover, the participants were free to modify all their an-

swers until the final submission. We did not apply any particular restriction

to the participants during the filling of the questionnaire. In particular,

there were no time restrictions to complete the task. The participants could

freely apply the strategy they prefer to infer the PIN (e.g., write down the

digits, pausing the video, restart the video any number of times, use the

slow-motion option). Finally, we provided the users with the layout of the

PIN pad.

To evaluate if people with specific knowledge about the task achieve a

better performance, we pre-trained a group of participants. Specifically, we

provided participants with a new set of 20 videos of users typing PINs by

covering the PIN pad with the non-typing hand and the corresponding typed

PIN. To make the training more effective, we decided to provide participants

with videos of users included in the questionnaire (none of the videos are

present in both training and questionnaire). Additionally, the questionnaire

had suggestions on what to pay special attention. For a participant to be

considered trained, the complete viewing of all 20 videos is required. In

addition, trained participants could also watch the training videos while

filling the questionnaire.

3.6.2 Evaluation and Discussion

A total of 78 distinct participants took part in our questionnaire experiment.

In particular, 45 participants (14 female age 34.1 ± 10.4 years and 31 male

age 29.7± 8.3 years) completed the experiment without any training, while
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33 participants (10 female age 29.1± 3.3 and 23 male age 29.3± 5.6) com-

pleted the experiment after the training session. None of the questionnaire

participants took part in the two data collections described in Section 3.3.2.

The proposed questionnaire’s goal is twofold: i) investigate how effective

the hand coverage is in preventing a PIN from being inferred by a human,

and ii) compare the performance of our deep learning approach with that

of a human. Although the coverage of the PIN pad provides an obstacle to

the immediate identification of the typed PIN, a human can exploit various

information (both local and global) to reduce the probability space about

where to look for the entered PIN:

• Knowing the keys’ spatial positioning thanks to the given layout of

the target PIN pad.

• Understanding which finger pressed the key from the movements of

the hand.

• Evaluating the topological distance between two consecutive keys from

the feedback sound emitted by the PIN pad. Specifically, two topo-

logically close keys have temporally close sound feedback [36].

• Excluding keys based on the non-typing hand coverage.

• Guessing the finger position based on the hand displacement between

the insertion of a key and the next one.

• Deducing the fingers’ position of the covered hand.

Although a human can exploit this information, the PIN pad coverage

still partially prevents PIN reconstruction. In particular, the participants

in our questionnaire could reconstruct on average (of both trained and non-

trained humans) only 4.49% of the PINs entered in the videos on the first

attempt and 7.92% within three attempts. The performance increasing be-

tween Top-1 and Top-3 accuracy suggests a certain ability in estimating the

neighborhood of the keys pressed. This ability is also highlighted in Fig-

ure 3.11a, where the probability distribution shows how the error decreases

with the increase of the topological distance from the target key. The heat

maps for other keys look similar and exhibit similar dispersion.

Unlike humans, our algorithm focuses on target key classification and

then reconstructs the entire PIN sequence. To compare the model’s perfor-

mance to that of humans on the same task, we evaluated our algorithm’s

accuracy on the videos included in the questionnaire. Recall that the ques-

tionnaire’s videos are a sub-sample of the Mixed scenario test set, and

therefore were not used in the model training phase. As reported in Fig-

ure 3.10, our model performs better than humans in all Top-N accuracy

scenarios. To evaluate if our algorithm performance and humans’ perfor-

mance in reconstructing 5-digit PINs are statistically different, we applied
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Figure 3.10: Comparison between human (non-trained and trained) and
deep learning model performance in the sub-set of videos included in the
questionnaire. Top-N means that participants guessed the PIN within the
N attempts.

a series of Chi-square tests [105]. The Chi-square test resulted significant

for all Top-1 (χ2 = 14.19, p < 0.001), Top-2 (χ2 = 15.84, p < 0.001), and

Top-3 (χ2 = 21.37, p < 0.001) accuracy values for non-trained humans. In

particular, our model outperforms humans showing a four-fold improvement

in reconstructing a PIN in three attempts. Similarly, for trained humans,

the Chi-square test resulted significant for all Top-1 (χ2 = 16.12, p < 0.001),

Top-2 (χ2 = 20.83, p < 0.001), and Top-3 (χ2 = 28.88, p < 0.001) accuracy

values.

This result comes from the difference in performance in the classification

of single keys. The human average accuracy (considering both human data

collections) on single key classification equals 0.351, approximately half com-

pared to the model key accuracy of 0.687. The comparison of Figures 3.11b

and 3.11a shows how the error in identifying a digit is significantly higher

for humans, justifying why the increase in Top-2 and Top-3 PIN accuracy

is greater for our algorithm. Finally, comparing trained and non-trained

humans, the Chi-square test reported no significant differences with p > 0.1

for all Top-1, Top-2, and Top-3 accuracy values. This means that training

does not improve a human’s ability to identify a PIN within three attempts.

Potentially, either a longer training could be required, or additional feed-

back from an expert should be provided to improve the performance. Ap-
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pendix A.2 provides additional results for the comparison between our deep

learning model and human performance.
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Figure 3.11: Digit 4 predictions heat maps for the videos included in the
questionnaire. We report an example from non-trained humans, since the
heat maps for both non-trained and trained human are similar.

3.7 Related work

Side-channel attacks specifically target the information gained by the imple-

mentation of a system [101]. Most of the time, these attacks exploit channels

like sound [64], timing [88], power consumption [87], and electromagnetic

emanations [25] to learn the system’s secrets in use. In [88], the authors

managed to crack RSA keys by carefully timing the operations performed

by the key-generating algorithm. Another example of a timing attack is re-

ported in [125], where the authors measured the timing between keystrokes

in interactive SSH sessions in an attempt to retrieve the typed passwords.

Human behavior can also be defined as a side-channel of a system, es-

pecially if the analyzed behavior directly results from the system’s require-

ments. In [17], the authors analyzed the hand movements of people typing

on a keyboard and, by using basic computer vision techniques, they tried to

reconstruct the text being typed. In [124], the authors again analyzed the

finger motion during the PIN-entry process on smartphones. They showed

that 50% of the 4-digit PINs could be retrieved in just one attempt. Different

from our work, where the target of the attack is a physical PIN pad, in [124],
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the attackers could also exploit more information. In particular, the users

typed the PIN using only one finger, and the attacker knew the finger the

users are typing. The different contexts and assumptions make the works

substantially different. In [128], the authors presented a side-channel attack

on tablets, consisting of analyzing the backside movements of the tablet it-

self to infer what is being typed by the victim. To do so, they selected some

peculiar features of the backside of the tablets (e.g., logos, side-buttons) and

analyzed their movement throughout the frames to understand what area

of the virtual keyboard is being pressed. Similarly, in [143], the authors

presented an attack to infer the pattern lock of mobile devices from videos.

Different from our approach, in [143], the attacker required a vision of the

user’s fingertip while drawing the pattern and a part of the device.

PIN and PIN pad attacks represent a branch of side-channel attacks that

exploit information leakage from keyboards and numeric keyboards (i.e., PIN

pads) to infer what the victim has typed (e.g., passwords or PINs). In this

context, some works focused on exploiting the heat transferred from the

hand to the keypad when the victim enters the PIN or password [84, 108].

The attacker points a thermal camera to the keypad as soon as the victim

has finished entering the PIN. The thermal image shows which keys have

been pressed and even highlights the order in which the victim pressed them.

The main advantage of this attack is that it does not require the attacker

to do anything while the victim is typing the PIN. On the other hand, the

attacker must act quickly (i.e., within seconds) for a higher success rate as

the heat on the keypad rapidly fades away. Another drawback of the attack is

that its effectiveness depends on the keypad’s material (e.g., metal PIN pads

completely nullify the attack because of their high thermal conductivity).

Timing attacks against PINs represent another type of side-channel at-

tack against this authentication method. In the scenario presented in [14],

the attacker recorded the screen of an ATM while the victim is entering the

PIN. When analyzing the recorded video, the attacker exploited the PIN

masking symbols appearing on the ATM screen to extract timing informa-

tion about the keystrokes. The attacker used predictive models to infer

which keys were most likely typed by the victim, starting from the deduced

inter-keystroke timing. In [36], the authors used the ATM’s sound whenever

a button is pressed. ATM’s sound must be independent of which button

is being pressed (i.e., a generic feedback sound). This consideration means

that one feedback sound will not help the attacker. However, the sound

gives enough information to extract a timestamp of the keys being pressed.

Moreover, in [36, 97], the authors showed how combining timing, acoustic,

and thermal information can significantly reduce the number of attempts to
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guess a PIN (e.g., 34% of 4-digits PINs are recovered in three attempts).

These attacks need to be reevaluated from a feasibility perspective in a real-

world setting. In particular, as shown in [84], the heat signature is dissipated

abruptly by metal PIN pads. The lack of this information limits the per-

formance of the attacks presented in [36, 97], reducing the probability of

guessing a 4-digit PIN in 3 attempts to 5%.

Our work shows several advantages over the state-of-the-art in ATM

PIN inference. To the best of our knowledge, we are the first to investigate

the security of hand covering protection methods for ATM’s PIN entering.

Further, our method shows a significant improvement in reconstructing the

PIN compared to previous work on metal PIN pads, reaching 41% of success

in reconstructing 4-digit PINs in three attempts (and correctly guessing every

third PIN in the first guess).

3.8 Summary

This paper proposed a deep learning attack on PIN mechanisms reaching

high accuracy even when the user covers the PIN to be entered. Our attack

leverages the information from the hand position but also hand movements

while entering the PIN. Our attack works in the profiling setup where the

attacker uses a copy of the keypad to train the deep learning model and

then attacks a different device while the victim is entering the PIN. For a

4-digit PIN, our attack reaches an accuracy of more than 40%, making it

practically applicable and more powerful than the attacks from the related

works.

Our data collection phase involved 58 persons, and our questionnaire

involved 78 participants. While this required a significant effort and several

months of data acquisition, one could still consider the datasets too small to

allow general conclusions. Next, our analysis considered only two types of

keypads. While most keypads do not have significant differences, including

more keypad models in our analysis would be interesting. Additionally, there

are several potential sources of bias in our data collection phase. While we

managed to get a relatively good male and female participants ratio, we

notice that data is skewed from several perspectives. Unfortunately, this

was not possible to avoid as the participation was voluntary 8.

1. Our dataset has users ranging from 24 to 50 years. While this provides

good variety, it would be good if it included older people. Still, we do

8The 2021 COVID-19 situation made data acquisition more challenging as participants
needed to be in our lab during the data acquisition.
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not expect any difficulties in running our attack. We consider it even

somewhat easier as we noticed older people make more significant hand

position adjustments when entering the PIN.

2. Our analysis includes only right-handed persons. We do not expect

any issues due to the dataset’s limitations as we use a camera posi-

tioned in the center. Still, we expect the attack to be more difficult

when attacking left-handed persons if the training set does not con-

tain such examples. Finally, from the real-world practicality, there

are approximately 90% of right-handed persons vs. 10% left-handed

persons [115], so our attack generalizes for the dominant part of the

population.

3. All participants were Caucasians. We expect our attack will have diffi-

culties working for people from other races. Still, this can be alleviated

by expanding the training set to include more racial diversity.

Possible future work includes:

1. In our data collection phase, we allowed the users to select their cov-

ering strategies. Based on the current results, it would be interesting

to explore if modifications in how the user covers the PIN would allow

more protection.

2. We noted several potential sources of bias in our data collection phase.

Including participants from other races and left-handed persons would

allow us to make more general conclusions.

3. To avoid the need that the attacker should have different keypads,

it would be beneficial to assess whether some more straightforward

solution like a paper copy of the keypad would suffice (at the expense

of losing information about the keypress sensitivity).

4. It would be interesting to investigate if it is possible to extract the

timestamp directly from the video (when a person clicks a button,

there is a specific movement).
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Chapter 4

We Can Hear Your PIN Drop: An

Acoustic Side-Channel Attack on

ATM PIN Pads

The Automatic Teller Machines Industry Association estimates that over 300

million ATMs are deployed worldwide [12]. In the US alone, over 10 billion

ATM transactions are performed every year [111]. ATMs have now become

an indispensable part of the self-service banking ecosystem. An ATM typ-

ically uses a unique physical card (which a customer possesses) along with

a PIN (which a customer remembers) to form a two-factor authentication

system, wherein the card uniquely identifies the customer account and the

PIN identifies the customer.

In recent years, there have been many attacks aimed at PINs and at

information encoded on ATM cards. Such attacks are broadly referred to as

skimming operations [132], whereby criminals usually install a card-reader-

like device to trick customers into placing (or inserting) their cards and copy

the information. This is often done in tandem with installing a video camera

on the ATM (or in its vicinity) at an angle that allows the criminal to record

PIN entry [122]. Recently studied attacks on PINs (e.g., [14, 36, 140]) went

one step further and showed that the attacker does not even have to see

the PIN. These side-channel attacks use a recording device (e.g., a video

camera [14], a microphone [36], or a thermal camera [140]) placed near the

ATM to collect information and use it to infer customers’ PINs.

In this chapter, we present a new side-channel PinDrop attack on ATM

PIN entry. It consists of two steps: (1) the attacker builds an acoustic profile
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(a signature of click sounds) for each key on the target PIN pad, and (2)

at PIN entry time, the attacker records audio emitted by each pressed key

and compares them to the acoustic profile to infer the actual keys pressed,

thereby learning the PIN. These two steps can be carried out in any order.

Intended Contributions The main contributions of this work are:

1. We describe a novel attack targeting PINs: PinDrop, based on acous-

tic emanations from commodity ATM PIN pads. We demonstrate

that PinDrop reconstructs up to 94% of 5-digit PINs and 96% of 4-

digit PINs within three attempts. We show that the threat posed by

PinDrop is higher compared to state-of-the-art acoustic side-channel

attacks on ATM PIN pads [36, 97, 114].

2. We evaluate PinDrop via extensive experiments, collecting acoustic

emanations for 5,800 5-digit PINs entered in a simulated ATM (though

using real PIN pads) by 58 distinct participants. The resulting dataset

is publicly available1 to the research community. We believe it will be

useful in studying the problem further and developing countermea-

sures.

3. We analyze the performance of PinDrop with two recording distances:

0.3 and 2 meters away from the PIN pad. At the distances of 0.3

and 2 meters, up to 96% and 57% (respectively) of 4-digit PINs were

correctly learned in three attempts.

4. We demonstrate the feasibility of PinDrop on two commercially avail-

able ATM PIN pad models. The success rate of PIN guessing on both

pads is about the same for each distance.

5. We analyze the impact of training set size on the performance of

PinDrop. We evaluated two important factors: the number of at-

tackers participating in the Profiling Step, and the number of digits

collected by each attacker. We showed that including training sam-

ples from multiple attackers is an effective strategy for appreciably

improving attack success rate.

Organization: Section 4.1 discusses related work. ext, Section 4.2 de-

scribes PinDrop attack in detail. Then, Section 4.3 presents the design of

our experiments and Section 4.4 discusses the results.

1Dataset link: https://spritz.math.unipd.it/projects/PINDrop
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4.1 Related Work

This section overviews attacks based on acoustic emanations from user input

devices. We first consider attacks targeting keyboards, followed by those tar-

geting PIN pads. For a comprehensive discussion of keyboard side-channel

attacks, we refer to [107].

Attacks on generic keyboards. The first extensive study on key-

board acoustic eavesdropping was conducted by Asonov and Agrawal [11].

It showed that each key can be identified by the unique sound that it emits

when pressed. This work investigated the reasons for this behavior, demon-

strating that it can be attributed to the placement of keys on the keyboard

plastic plate. In particular, when different keys are pressed, the plate pro-

duces emits sounds with different timbers.

Subsequent efforts to infer key sequences from acoustic emanations are

based on two types of approaches: (i) extraction of features that allow ex-

ploiting the uniqueness of acoustic emissions of pressed keys, and (ii) extrac-

tion of temporal information. The former tries to distinguish among keys by

their characteristic sound, and relies on either supervised [11, 68, 70, 104] and

unsupervised [22, 150] machine learning models, depending on the specific

attack scenario. Supervised models exploit features, notably Fast Fourier

Transform (FFT) coefficients and their derivatives, such as Mel-frequency

cepstral coefficients (MFCCs). Supervised algorithms generally achieve bet-

ter performance in identifying keystrokes. On the other hand, these models

have a greater dependence on the keyboard used in training and the users’

typing style. A further weakness of supervised algorithms is the need to

collect a labeled dataset to be used as a training set. Indeed, the ground

truth collection is not a trivial task and could significantly affect the at-

tack’s effectiveness. One possible solution is discussed in [8, 39]. which take

advantage of the audio recorded during a VoIP call to collect a ground truth

dataset directly. In this scenario, the attacker can exploit the text typed by

the victim in a shared medium (e.g., in the VoIP chat or an email sent to

the attacker during the call) to label the keystroke sound.

Unsupervised methods are used to group collected samples into unlabeled

clusters. The label-cluster association is made by exploiting the characteris-

tics of the input language. In particular, Zhuang et al. [150] perform labeling

using letter frequency, while Berger et al. [22] make an association by select-

ing words from a dictionary that match specific constraints. Unsupervised

approaches overcome the need for a ground-truth dataset. However, the

scenarios where these attacks can be applied are limited by the strong as-
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sumptions on input text and therefore their performance drastically declines

on random letter sequences.

The second approach involves the extraction of temporal features of

pressed keystrokes. To this end, many efforts focused on analyzing the Time

Difference of Arrival (TDoA) information. They use one [96] or more [148]

microphones positioned around the input device.

Pin Pad-focused Attacks. PIN pads are numeric keypads specifically

designed for Point-of-Sale (PoS) terminals and ATMs, They facilitate users

to enter their Personal Identification Numbers (PINs). Attacks on PIN

pads tend to be different from those on regular keyboards. For instance,

it is rather challenging to apply unsupervised techniques with PIN pads

since the assumptions about the victim’s language are no longer applicable.

However, the other types of attacks, such as those based on the uniqueness

of the acoustic emission and those based on the temporal information are

usually applicable. PIN pads also prompt a new set of assumptions, usually

dictated by the specific conditions under which they operate. This paves

the way to new and more efficient side-channel attack scenarios. Below, we

briefly discuss these attacks.

[14] demonstrates how to obtain PIN information by exploiting inter-

keystroke timings. This information is leaked by recording the timing of

appearance of masking symbols (usually, asterisks) on the screen while the

victim is entering the PIN. On a related note, [36], shows how inter-keystroke

timing information can be inferred with higher accuracy from the feedback

sound emitted by the PIN pad when a key is pressed. It also shows that com-

bining multiple side-channel information (e.g., inter-keystroke timing and

thermal residue) can significantly improve the probability of reconstructing

a 4-digit PIN. Similarly, [97], proposes an user-independent attack based on

inter-keystroke timing on a plastic PIN pad.

PIN pad acoustic emanations can also be used to improve security of

PIN-based authentication systems. For example, [114] shows that inter-

keystroke features obtained from PIN pad-emitted audio, can be used as

an additional layer of authentication. The same work also showed how to

perform a close-by attack (i.e., with the microphone placed a few centimeters

from the PIN pad) on an arbitrary subset of keys. Exploiting the inter-

keystroke features on this subset, a 60% accuracy in the identification of

the pressed key can be reached. Acoustic information is also used in [47],

where a Point-of-Sale (PoS) terminal is tampered with by inserting multiple

microphones into it. This allows identifying the pressed key position using

triangulation, reaching the average accuracy of 88% for a single key, on three
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PoS models. Although very effective, this approach requires full physical

access to the PoS, thus reducing the attack’s applicability and scalability.

4.2 PinDrop Attack

Assumptions: We assume that the victim interacts with a generic ATM,

performing PIN-based authentication. The ATM is equipped with a PIN

pad that emits a feedback sound when a key is pressed. The feedback

sound (as perceived by the human ATM users) is the same for all keys.

The attacker aims to learn the victim’s PIN by placing a microphone near

the ATM to record acoustic emanations of the PIN pad. The microphone

stores recorded audio. How the microphone stores that audio is not relevant

for PinDrop, i.e., it can be stored locally or off-loaded to a remote site.

PinDrop attack relies only on that recorded audio.

Preliminaries: To set up PinDrop, the attacker must select a target ATM

and hide a microphone nearby. The exact placement of the microphone can

vary, though in the PinDrop setting the maximum distance form the PIN

pad is 2 meters (just over 6′):

1. Concealed on the attacker’s body, in case of a real-time attack. Albeit,

strictly speaking, concealment is not required, since a regular smart-

phone microphone can be used, and it need not be hidden from view

(as it is unlikely to arouse suspicion).

2. On any surface (walls, floor, ceiling) near the ATM. In this case, it

might be in plain sight, especially, if its size and shape are inconspic-

uous enough not to be noticeable. It could also be partially hidden

from view (e.g., behind a column or a light fixture), or even within

or behind some normal-looking object, e.g., a vent, a light-switch or a

garbage can.

As shown in Figure 4.1, PinDrop consists of four phases: 1) PIN Recording

(Section 4.2.1), 2) Data Processing (Section 4.2.2), 3) Model Generation

(Section 4.2.3), and 4) PIN Inference (Section 4.2.4),

4.2.1 PIN Recording

The goal of this this phase is to come up with two datasets (training and

attack) with audio recordings of entered PINs. This takes two steps:

A.1 Audio Recording using a microphone placed near the ATM.
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A.1) Audio Recording

A.2) PIN Extraction
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Figure 4.1: PinDrop attack phases.

A.2 PIN Extraction, i.e., isolation of the sequences of feedback sounds

emitted by the PIN pad, given the knowledge of the number of digits

in the PIN, e.g., the beginning and the end of the 6-digit PIN entry.

To build the training set, the attacker must enter a set of PIN sequences

on the target PIN pad. The sequences must be representative of all ten

numeric keys. Once this step is completed, the attacker has a table of

entered PINs and their corresponding audio. The attack set consists of the

audio recordings entered by the victim.

4.2.2 Data Processing

This phase is conducted on the data entered by both the attacker and the

victim. It also consists of two steps: segmentation of the PIN audio signal

into individual key-press sounds, and extraction of corresponding features.

B.1 Segmentation: The attacker uses the feedback sound emitted by

the PIN pad as a signal that a key has been pressed. This can be

achieved via the characteristic frequency of the feedback sound, as in

[36]. The attacker segments the signal, using time windows centered

at the detected key-press. The window size is chosen to comprise the

entire audio segment related to a single key-press.

B.2 Feature Extraction: The attacker extracts features descriptive of a

key-press sound. Prior results show that short-term power spectrum

can be used for this type of a classification problem. In particular, [39]

shows that mel-frequency cepstral coefficients (MFCC) [99] achieve the

best performances for discriminating among the sounds of different

keys. This step yields two feature sets: (1) a labeled training, and an

(2) unlabeled attacker.
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4.2.3 Model Generation

This phase is applied to the labeled training set in order to train a classifier.

C.1 Down-sampling: Since we make no assumptions about how often a

victim uses a specific digit in the PIN, it may be necessary to under-

sample the data by classes before proceeding with training. The under-

sampling leads to a balanced dataset and mitigates over-fitting.

C.2 Model Training. The attacker trains a multi-class classifier to pre-

dict the digit based on its emitted key-press sound. The class labels

output by the classifier are the keys (digits) of the PIN pad. Together

with the predicted digit, classifiers also output the prediction proba-

bility of each class.

4.2.4 PIN Inference

In this phase, the attacker utilizes the trained classifier to guess a victim’s

PIN. The output is a sequence of all possible PINs ordered by probability.

This ordering allows the attacker to minimize the number of attempts to

guess the PIN. In a real-life setting, ATM cards are usually blocked after

three failed attempts. This phase involves two steps:

D.1 Prediction: The attacker reconstructs the PIN entered by the victim

applying the classifier trained in the previous phase to the attack set.

As input to the classifier, the attacker feeds the features of a single

key of the victim’s PIN. This is repeated for each digit of the PIN.

D.2 PIN Ranking. The classifier yields a probability for each digit to be

the one actually pressed by the victim. Combining the probability set

of each input, the attacker builds a ranking of the most likely PINs.

The probability assigned to a PIN is the product of the probability of

each digit in that PIN.

4.3 Experimental Setting

To assess the feasibility of PinDrop, we collected a large dataset of keystroke

sounds, as detailed in this section.

4.3.1 Data collection

We performed two separate data collection efforts on two commercially

available (commodity) metal PIN pads: DAVO LIN Model D-8201 F (Fig-
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ure 4.3a) 2 and Model D-8203 B(Figure 4.3b) 3. For clarity’s sake, we refer

to D-8201 F as PAD-1 and D-8203 B as PAD-2. For usability reasons, both

pads emit a specific feedback sound (the same for all keys) when any key is

pressed. In all experiments, we embedded each PIN pad into a simulated

ATM (Figure 4.2a).

(a) The simulated ATM.

ATM

2 m

0.3 m

(b) The testbed configuration used in the ex-
periments.

Figure 4.2: PinDrop experimental setup: The photo on the left shows the
ATM layout. The figure on the right show the position of the microphone
with respect to the ATM and the victim: the closer one at 0.3m is placed
over the PIN pad, while the farther one at 2m is placed in front of the ATM,
and behind the victim.

The simulated ATM size is based on a real ATM [74]. It is 0.6m wide,

0.64m high, and 0.4m deep. At 0.15m above the ATM base, we inserted a

shelf upon which we placed the PIN pad and the monitor. The keyboard

is 1.1m above the ground. To record keystroke sounds, we used the micro-

phones of two Logitech HD C920 Pro webcams: one placed on the ATM’s

chassis 0.3m above the PIN pad, and another microphone – 2m in front of

the ATM, as shown in Figure 4.2b.

The first data collection effort involved 38 participants (23 male and 15

female, average age 38.97±11.36), while the second involved 20 participants

(11 male and 9 female, average age 29.50± 5.74). Together, that makes the

total of 58 participants who entered 5, 800 5-digit PINs. We used both these

2https://www.davochina.com/4x4-ip65-waterproof-industrial-metal-keypad-stainless-
steel-keyboard-for-access-control-atm-terminal-vending-machine-p00103p1.html

3https://www.davochina.com/4x4-ip65-stainless-steel-numeric-metal-keypad-with-
waterproof-silicone-cover-p00126p1.html
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(a) PAD-1: DAVO LIN Model D-8201
F

(b) PAD-2: DAVO LIN Model D-8203
B

Figure 4.3: Two commodity metal PIN pads we used.

data collections to obtain datasets of 4-digit PINs by removing the last key

entered by the participants from each 5-digit PIN.

During the experiments, participants were asked to stand in front of the

simulated ATM, and remain silent for the duration. A participant’s task

consisted of typing 100 5-digits PINs randomly generated, divided into four

batches of 25 PINs. This split was made to allow for short breaks betwen

batches in order to lower fatigue. PINs were displayed one at a time on

the ATM screen: once a PIN is entered, the participant presses the Enter

button to proceed to the next PIN.

Regardless of the individual’s typing behavior and familiarity (or lack

thereof) with a given PIN or the PIN pad, we decided to randomize the

order of PINs, rather than ask users to enter the same PIN multiple times.

This approach generalizes the PinDrop attack, which is actually applicable

to both mnemonic PINs and One Time Passwords (OTPs).

We also collected the key logs of the PIN pad via the USB interface. In

particular, for each pressed key, we collected both the ”key-down” (press)

and ”key-up” (release) events. Moreover, we synchronized the recordings

with the timestamp of these key events. All recordings were done with a

sampling frequency of 44, 100Hz and then saved in the 32-bit WAV format.

4.3.2 Classification Methods

To identify the key pressed by the victim, we experimented with four well-

known and popular classifiers: Support Vector Classification (SVC), k Near-

est Neighbors (KNN), Random Forests (RF), and Logistic Regression (LR).

We applied a repeated nested crossfold validation to evaluate the per-

formance of our approach. The pipeline varies on the number of attackers

(i.e., a single attacker or a group) included in the training set.
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In the outer loop, we randomly selected the attacker(s) among the par-

ticipants in the dataset. This procedure was repeated 10 times generating

10 groups of attackers. The inner loop consists of a k-fold cross-validation,

where k depends on the number of attackers. If the training set contains

samples from a singke attacker, we used 5-fold cross-validation, since a user-

independent split is not applicable. If samples from at least two attackers are

present in the training set, we use a k-fold cross-validation user-independent

where k is the number of attackers.

We varied hyper-parameters by using the grid search on all four consid-

ered classifiers. For SVC, we considered a linear kernel and varied C among:

[10−2, 10−1, 100, 101, 102]. For KNN, we varied the number of neighbors to

among: [1, . . ., 20]. For RF, we considered from 10 to 100 estimators (steps

of 10 and extremes included) and a max depth from 6 to 31 (steps of 5 and

extremes included). Finally, LR was evaluated for li and l2 penalties, with

C ranging from 10−4 to 104.

4.4 Experimental Results

We evaluate PinDrop in different scenarios, showing its performance in the

different conditions in which the attacker may find himself. Section 4.4.1

describes how we evaluate different classifiers and consequently selected the

best for our purpose. Sections 4.4.2 and 4.4.3 report the results for our

algorithms on the key classification task and PIN classification task, respec-

tively. Finally, Section 4.4.4 compares the performance of PinDrop with

the results obtained in the state-of-the-art.

4.4.1 Model evaluation

To assess the performance of our classifiers, we evaluate different attack

scenarios. In particular, we considered two settings: (i) number of distinct

attackers and (ii) the number of digits entered by each attacker. We varied

the number of attackers included in the training set between 1 and 10. This

range has been selected to reflect a realistic attack scenarios. We varied the

number of digits entered by each attacker in increments of 100, i.e., 100,

200, 300, 400, or 500.

The performance of our attack was evaluated on all possible combina-

tions between the number of attackers and the number of digits entered by

each attacker.

To select the best classifier, we compared the PINs validation accuracy of

all the classifiers across different scenarios (i.e., PIN pads, and distances) and
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PAD-1 PAD-2
Distance 0.3 m Distance 2 m Distance 0.3 m Distance 2 m

SVC 0.90±0.04 0.35±0.12 0.86±0.06 0.21±0.07

LR 0.92±0.04 0.40±0.11 0.85±0.06 0.19±0.04

KNN 0.65±0.07 0.13±0.07 0.17±0.05 0.02±0.01

RF 0.78±0.07 0.10±0.06 0.31±0.06 0.02±0.00

Table 4.1: PIN accuracies on the validation set for the investigated classi-
fiers. The training set includes samples from five distinct attackers. The
results show that for PAD-1 the best performing model is the Logistic Re-
gression (LR), while for PAD-2 the best model is the SVC.

settings (i.e., number of digits per attacker, and number of attackers). SVC

and LR achieved comparable performance, outperforming KNN and RF. In

particular, LR achieved higher validation accuracy on PAD-1, while SVC

showed better performance on PAD-2. In Table 4.1, we report a comparison

of the validation accuracies for all the investigated classifiers, considering

five attackers that train the classifiers with 500 digits each (i.e., training

size = 2500 digits).

4.4.2 Single Key Inference

We report the LR classifier performance for the PAD-1 and the SVC classi-

fier performance for the PAD-2 based on the validation results. In Figure 4.4

we show single key accuracy comparison for all the considered settings (i.e.,

the number of attackers and the number of digits entered by each attacker)

in our four scenarios. Each graphic depicts how the accuracy varies in the

considered scenario as the number of entered keys included in the training

set varies. Further, each graphic shows five curves representing the num-

ber of digits entered by the attackers, while the bullets of a curve represent

the number of attackers included in the training set. The bullets have an

increasing value from left to right: the first bullet (from left) of each curve

indicates that only one attacker has been included in training, the second

indicates two attackers were included in training, and so on. Therefore, the

number of numeric keys included in the training set varies according to the

number of attackers and the number of digits entered by each attacker.

We note that the accuracy is significantly affected by the training set’s

size (i.e., entered keys in training) and the distance.

Interestingly, with the same number of entered keys in training, the

accuracy improves due to the number of attackers. For example, if we set

the number of entered keys in training at 400, we can see that in all scenarios,

the accuracy obtained by four attackers typing 100 keys each (i.e., 20 5-digit

PINs per attacker) is significantly higher than a single attacker typing 400
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keys (i.e., 80 5-digits PINs). This may depend on the variability of the

data used to train the classifiers. Each person has a slightly different typing

style [114] (e.g., pressure strength, typing speed), and adding more attackers

would introduce higher variance in the training set and helps our classifiers

to generalize and improve their classification performance over a test set.
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(a) PAD-1, 0.3m
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Figure 4.4: Key accuracy on the testing set for the best classifiers.

Furthermore, we analyzed how our classifiers mis-classify the true key to

investigate how spatial locality interferes in the classifiers’ predictions. In

Figure 4.5, we report an example for the digit “3” for all the four scenarios

(a similar behavior is shown by all the other keys).

Interestingly, we note a different distribution of classification errors be-

tween PAD-1 and PAD-2. In the first case, the error is uniformly distributed

over all digits, whereas in the second case, a higher concentration of errors

is prominent around the true digit (i.e., digits 2, 5, and 6).
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4.4.3 PIN inference

In a realistic context, an attacker generally has three attempts to guess the

victim’s PIN (i.e., the max number of incorrect PIN entries allowed before

blocking the card). In this section, we report on the performance of our ap-

proach in PIN reconstruction in TOP 3-accuracy, i.e., only the three most

probable PIN predictions. In Figure 4.6 we show the performance of the

classifiers in the reconstruction of 4-digit and 5-digit PINs according to the

different settings (i.e., PIN pad and distances). Further, similar to Fig-

ure 4.4, each graphic reports the performance for all possible combinations

of the settings.

The results show that the effectiveness of the attack in each scenario. In

particular, at 0.3m away, we can reconstruct correctly within three attempts

up to 94% 4-digit PINs for PAD-1 and up to 96% PINs for PAD-2. Although

the performance worsens by increasing the distance at which the microphone

is placed, PinDrop manages to reconstruct within three attempts up to 57%

of the 4-digit PINs for PAD-1 and up to 50% for PAD-2 at 2m away. At

0.3m, the accuracy graphs reach a plateau at around 1500 digits in training.

On the contrary, at 2m, the accuracy seems not to reach the plateau even

with a training of 10 attackers and 500 digits per attacker (i.e., 5000 digits

in training). This behavior is particularly marked in PAD-2, where the

increase appears almost linear also with a high number of digits in training.

This could be partially due to the classifier used in the specific scenario (i.e.,

LR for PAD-1 and SVC for PAD-2 ) in addition to the physical differences

between the two PIN pads.

Comparing the performance on two PIN pads (fixing the number of

attackers and entered keys per attacker), the accuracy on PAD-1 appears

generally higher than the one on PAD-2. This applies to both distances.

The number of attackers significantly affects performance with the same

number of entered keys in training. For example, in PAD-1 at 0.3m, the

threshold of 80% of 4-digit PINs reconstructed in three attempts is reached

with three attackers whom enter 100 digits each (i.e., 300 total digits), or

two attackers whom enter at least 200 digits each (i.e., at least 400 total

digits).

4.4.4 Comparison with the state-of-the-art

To evaluate PinDrop, we compare its with that of state-of-the-art attacks

exploiting acoustic emanations of PIN pads [36, 47, 97, 114]. Table 4.2

summarizes the results (with 10 attackers entering 500 digit each) in terms

of key accuracy and PIN reconstruction accuracy within three attempts.
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Both [97] and [36], exploit inter-keystroke timing. Although in [97] the

distance at which the acoustic information is collected is unspecified, such

attacks can be carried out from a distance over one meter, as demonstrated

in [36]. The distance significantly decreases the risk of the attacker be-

ing detected. However, the reported performance is rather poor, since the

PINs correctly reconstructed within three attempts were less than 1% for

both attacks. However, from a greater distance (i.e., 2m) PinDrop outper-

form [36, 97] achieving the accuracy of 44% and 54% on 5-digit and 4-digit

PINs, respectively.

Most effective attacks are those carried from a significantly shorter dis-

tance. In particular, [114] records acoustic emanations with a microphone

placed at 0.05m from the PIN pad. This work obtains 60% key accuracy

on a sub-set of keys (i.e., 6 on 10). Since we can not estimate the real ac-

curacy considering all the 10 digits we decided for fairness, to leave this

upper-bound. Under this assumption, we derived that this attack may

achieve 4-digit and 5-digit PIN accuracies of 27.36% and 16.42%, respec-

tively. Comparing these results with the performance of PinDrop, we can

see how PinDrop achieves better accuracy for both 0.3m and 2m.

The last method we consider was proposed by De Souza [47]. This attack

assumes that two microphones are placed inside a PoS under the PIN pad.

Unlike other methods, it uses the time of arrival of the acoustic signals.

The performance achieved by the De Souza is slightly better to PinDrop
from 2m. However, PinDrop has better performance from 0.3m (i.e., a 26%

increase in 4-digit PINs and a 33% increase in 5-digit PINs). Moreover,

PinDrop differs from [47] in that it does not require physical tampering

with the device, even if the attack is performed from 0.3m away.

4.5 Potential Countermeasures & Future Work

The relatively high accuracy of PinDrop highlights its danger and the im-

portance of robust countermeasures. Barring wholesale replacement of PINs

with other login means, we consider the following possibilities:

• Noise reduction: This idea is simple, though challenging to deploy. It

consists of masking the noise emitted by the PIN pad by covering it

with soundproofing material. This approach could help in reducing

the effectiveness of longer-range attack.

• On-screen PIN pad : An effective countermeasure could be to virtual-

ize the PIN pad using a touch screen. (This is in fact already done

on some ATMs). This countermeasure would also allow dynamic re-

arrangement of digits, making it much more challenging to implement
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Key 4-digit PINs 5-digit PINs Recording
Accuracy Distance

Liu [97] NA 0.26% * 0.11% * NA

Cardaioli [36] NA 0.72% NA 1.50m

Panda [114] 60.00% 27.36% ** 16.42% ** ∼ 0.05m

De Souza [47] 87.60% 68.40% ** 59.92% ** 0.00m***

PinDrop 95.84% 94.64% 92.79% 0.30m

PinDrop 74.58% 53.75% 43.99% 2.00m
* Performance derived from the proportion of human-chosen PINs and the
accuracy of each PIN strength level reported in the paper.
** Performance estimated from reported key accuracy, assuming the prediction
error to be equally distributed.
*** Multiple microphones are integrated in the device.

Table 4.2: Comparison between PinDrop and the state-of-the-art results on
single key accuracy and percentage of guessed PINs within three attempts.
If the score cannot be derived from the reference paper, we report N/A.

PinDrop-like attacks. On the other hand, on-screen keypads are gen-

erally less user-friendly and can pose a problem for visually impaired

users;

• Feedback distortion: If removing the characteristic sound emitted by

each key is not possible, an alternative is to add noise that does not

allow individual keys to be profiled. By emitting a masking sound at

each key-press, PinDrop can be made more difficult, especially, its

training phase;

• Personal PIN pad : Another possible countermeasure is to use a trusted

device, such as a smartphone, to replace the physical PIN pad. The

PIN could then be transmitted to the ATM using a wireless medium

(e.g., NFC);

• Behavioral biometrics layer : An additional layer of security might be

possibly via behavioral biometrics. One possibility is to involve user

authentication based on keystroke dynamics. While this method can

yield a high rate of false positives, it is completely transparent to the

user (until or unless, a false positive occurs).

Possible future directions range from improving applicability of PinDrop to

exploring its effectiveness on other kinds of PIN pads. An interesting di-

rection might be to apply more sophisticated (e.g., parabolic) microphones.

Such a microphone could significantly extend the effective recording dis-

tance of PinDrop. Another direction is looking at PinDrop in the context
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of screen-based PIN pads that are fairly common on modern ATMs. This

setting is more complicated due to lack of physical keys the sound of which

can be profiled. However, it would be interesting to study whether sounds

emitted by the touchscreen still allow the attacker to infer information about

keys pressed.

4.6 Summary

In this chapter, we demonstrated PinDrop, a highly accurate acoustic side-

channel attack on PIN pads. It takes advantage of acoustic emanations

produced by ATM users entering their PINs into the commodity ATM’s

metal PIN pads. These emanations can be surreptitiously recorded and

used to accurately profile all PIN pad keys, which allows PinDrop to yield

the victim’s PIN with high probability. Specifically, this work shows that

PinDrop is effective when applied from a very short (and perhaps not always

realistic) distance away from the PIN pad (0.3m) as well as from a rather

safe and inconspicuous distance (2m).

We demonstrated effectiveness and robustness of PinDrop by conducting

extensive experiments that involved a total of 58 participants and two com-

modity (commercially available) metal ATM PIN pads. We experimented

with PinDrop in several configurations, showing how its performance can

be optimized based on the training set size and the number of attackers.

PinDrop’s accuracy reaches 93% and 95% in reconstructing 5-and 4-digit

PINs, respectively, within three attempts, from 0.3 meters away. Also, at

2m away, PinDrop outperforms state-of-the-art results, reaching over 44%

accuracy. This translates into an average accuracy improvement of 44% and

53% in 5- and 4-digit PINs, respectively. We believe that, due to its real-

world applicability and performance, this work significantly advances the

state-of-the-art in acoustic side-channel attacks.
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(a) Generic PIN pad lay-
out.
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Figure 4.5: Digit “3” prediction heat maps for the four considered attack
scenarios. We reported the results for the experiment with 5 attackers and
500 digits entered per attacker.
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(a) PAD-1 and microphone placed at 0.3m
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(b) PAD-1 and microphone placed at 2m
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(c) PAD-2 and microphone placed at 0.3m
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(d) PAD-2 and microphone placed at 2m

Figure 4.6: 5-digit PINs inference performance within 3 attempts for the
best classifiers.
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Chapter 5

Eathentication: A Chewing-based

Authentication Method

In the last decades, technological devices have become a real part of hu-

man life. These devices contain sensitive information like photos, message,

bank applications. Therefore, authentication methods assumed a funda-

mental role, since they guarantee security and privacy to the actions we

take. Among the most common authentication methods, we find passwords,

PINs, and pattern. However, also, biometrics are regularly used, such as fin-

gerprint and face recognition methods. In particular, smart devices widely

used biometrics since they combine excellent levels of security and usability.

However biometrics, still have some lacks: they require users to physically

interact with the smartphone every time the authentication is needed. To

remedy this problem, one of the techniques adopted is the use of wearable

devices (smartwatches, headphones, etc.) as trust devices. This technique

allows a user to unlock his smartphone without the need to continuously

authenticate (under certain conditions). Thanks to these features, the us-

ability of our smartphones can be significantly improved. However, there are

still substantial limitations, since wearable devices do not generally provide

biometric authentication methods such as smartphones. This lack is funda-

mental since it limits the usability of wearable in some daily life scenario.

For example, it often happens that users need services provided by their

smartphones, but they cannot because they have their hands busy (e.g.,

during a queue at the airport with many suitcases or while driving since

this is a really common scenario). In many of these cases, people wear their
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earphones, a device that many of us always use. If the earphones had an

authentication method capable of recognizing their legitimate owner, new

possible scenarios would open. A user could use a voice command to be

recognized by their earphones. After the recognition, he can use again the

voice commands to get access to all services of his smartphone – all this

without having used his hands.

We propose Eathentication, a novel behavioral biometric authentication

method that exploits earphones, a daily used device [2]. Our purpose is

to provide an easy-to-use authentication method with a non-invasive inter-

action and economical device. In Eathentication, we consider as a unique

behavior factor the ear channel movement during the chewing. A relation

between the movement of the ear channel and the action of chewing exists

thanks to the Temporomandibular Joint (TMJ) – two joints connecting the

jawbone to the skull. TMJ is closely related to the external auditory canal

and only separated from it by a thin layer of tympanic bone [5, 118]. A par-

ticular type of stimulation like talking, chewing, swallowing, yawning, laugh-

ing, coughing, breathing, eyelid reflex has ear response [117]. Furthermore,

the relationship between the TMJ and temporal bone is confirmed [130].

In this work, we demonstrate our authentication method implement-

ing a cheap and modified earphones. We believe that our method could

improve smartphone usability, since it allows implicit authentication using

earphones, a common device. We think this might have practical usage in

several scenarios. Therefore, we submitted a patent application (IT patent

n.102020000001192) for our method.

Contribution of our work In this chapter, we descibe the following con-

tributions:

• To the best of our knowledge, we are the first to propose an authenti-

cation method based on external ear channel movements recognition

during eating. We called this method Eathentication.

• To confirm our intuition, we designed and printed a cheap 3D proto-

type of modified earphones, integrating the sensors necessary to per-

form Eathentication. During our experiments, we collected data using

this prototype, showing how it is possible to create a working and

cheap prototype.

• We evaluate Eathentication designing an experiment where we asked

participants to eat different types of food. To assess the feasibility of

using Eathentication without eating food, we also collected data asking
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participants to empty chew during the recording session. Our results

show how Eathentication can be used as an authentication method,

achieving good performance.

Organization This chapter is organized as follows: Section 5.1 discusses

previous work; Section 5.2 introduces the model we choose for our authenti-

cation method; Section 5.3 describe the modified earphones we used for our

experiments; Section 5.4 reports the data collection procedure we followed,

the experiments we performed on these data and the results we obtained, in

Section 5.5 we summarize our work and discuss the future possibility.

5.1 Related work

Nowadays people are increasingly connected and they continuously use

smart devices to access their online services. One of the most important

aspects for a smartphone is to provide transparency, usability, and security

authentication. A way to obtain these properties is to use biometric authen-

tication methods. These kind of metrics exploit human characteristics [58]

to provide safe and usable access technique [126, 136]. In general, biomet-

rics method can be classified respectively into two main categories: physical

biometrics and behavioral biometrics. The first is based on users physio-

logical features like fingerprint [33, 78, 79], ECG [26], face recognition [24],

hand geometry [120]. Instead, the second is based on behavioral features,

which involve human characteristics of everyday life like gesture [44], voice

ID, mouse use characteristics, keystroke dynamics [20, 145], gait recogni-

tion [50] and signature verification [75].

About ear biometrics, nowadays there are several works focused on

various features of the ear. An example is the recognition of ear shape.

In [2, 41, 55, 116], authentication systems based on the recognition of the

shape of the ear are widely introduced. The authors also described the

datasets available in the literature. In [109, 110], Nanni propose a multi-

matcher system based on a local approach. The image of the ear is di-

vided into several windows and local features are extracted from each of

them. Only the most discriminant window is kept to recognize a specific

ear. In [80], Jamil proposed a technique that significantly reduce the prob-

lems related to the shape recognition with different lighting levels. This

survey [32, 55] reports open questions and research directions for ear shape

recognition. In [32] Burge describes some open issues like hair occlusion, low

lighting levels, and changing of the ear shape over time. In [142] Yan reports
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recognition problems related to the presence of earrings on the ear. Another

important features for ear recognition is the acoustic proprieties of the ear

channel. In [6], authors show how the acoustic properties of the outer flap

of the ear can be exploited as a biometrics. Takayuki,in [9], propose instead

an authentication method based on the ear reflection of the acoustic signal

to recognize the ear shape. In [49], Derawi proposes a mapping and ranking

of existing acoustic ear recognition systems.

Unlike physical biometrics, ear-based behavioral biometrics is still an

undiscovered field. In [130] the authors propose a method to recognize hu-

man activities – like sleep, run, etc. – based on external ear channel move-

ments. However, to the best of our knowledge, we are the first to propose

a behavioral authentication method based on ear movements recognition

during eating activity.

5.2 Our solution: Eathentication

To identify Eathentication use cases, we begin defining the model we

adopted. Section 5.2.1 describes our assumption about the use of Eathenti-

cation. Section 5.2.2 then detailed presents our authentication method.

5.2.1 High level description

Our method is based on the assumption that the ear movement produced

during chewing might be used as a biometric measure. We consider a chew-

ing movement to start when the user begins the first chewing and to end

with the swallow.

The model we adopt to describe Eathentication system is depicted in

Figure 5.1. During the training and the authentication phases, we assume

the user to wear our modified earphones (described in Section 5.3) – here-

after referred as earphones. The earphones is connected with the auth-device

(authentication device). Our Eathentication algorithm, able to authenti-

cate a user, is assumed to be installed on the auth-device. Furthermore, the

user has different types of food available to be used for the registration.

Eathentication aims to authenticate a target user based on his ear channel

movements while chewing. If a user is recognized as legitimate, the Eathen-

tication algorithm grants access to the auth-device.

To authenticate a user, the Eathentication algorithm must first carry

out a training session on that specific user. During this training session,

the target user wears the earphones and eats the provided food or empty

chew. The auth-device collects the movements of the ears produced while the
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Chewing
stimuli

Target
user

Auth-
Device

(wearing our modified
earphones)

Biscuit

Gummy
bear

Cracker

Empty
chew

Figure 5.1: Eathentication model. In this scenario, a user tries to authen-
ticate itself on a smartphone. First, the user eat or perform a stimulus.
Consequently, the application on the smartphone evaluate if the user is le-
gitimate or not.

user is chewing – hereafter referred as chewing-recordings. The Eathentication

algorithm uses these chewing-recordings (from both this user and other users)

to learn how to distinguish between the target user and every other user

(even unknowns ones). To successfully authenticate, the user must eat the

same kind of food eaten during the training phase or perform the same

empty chew movement.

Figure 5.2 depicts the procedure to generate a trained Eathentication

classifier able to recognize that specific user. We defined this procedure

using the three phases described below.

Phase A – Data collection: During this phase, the target user wears

the earphones, and the auth-device collects the chewing-recordings for the train-

ing phase. As described in Section 5.4.1, the target user collect the data

during an eating session explicitly performed to recognize his eating behav-

ior. We then join these data with a dataset of previously collected chewing-

recordings from other users.

Phase B – Data processing: Starting from the collected data, in this

phase, we extract the features used to train the machine learning model.

Phase C – Model generation: This phase selects the most relevant

features from the previous extracted ones. We then train a model able to

authenticate the target user based on the selected features.
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A.1) User chewing
recording

A.2) Data assembling B.3) Moving average
calculation
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quantile 0.2,
kurtosis, etc.]

B.4) Features
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Phase  A
Data  collection

B.2) Segmentation

Phase  B
Data processing
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C.2) Model training

Trained model
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[sigma1,
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Chewing
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User wearing our
modified earphones

(SVM and KNN)

Figure 5.2: Eathentication processing steps: the chewing data collection
(Phase A), the extracting of meaningful features (Phase B), and the model
training process (Phase C).

5.2.2 Authentication description

Since Eathentication is an authentication method, we trained a binary ma-

chine learning classifier able to distinguish between a target user (the au-

thorized one) and all other users (the unauthorized ones). This kind of

choice is typical for machine learning-based authentication methods [53]. In

this scenario, the Eathentication algorithm already knows the identity of the

authorized user. After a user provides the secret information (the chewing-

recordings in our case), the system answers with a binary decision: accepted

if the user is recognized as the authorized one or rejected otherwise.

We now describe in more details all three phases and their different

steps. Throughout the rest of the section, we refer to the phases and steps

presented in Figure 5.2.

Phase A – Data collection This section describes in details the data

collection phase. Below, we describe the data collection process:

A.1 User chewing recording. During this step, the target user wears the

earphones. He eats different kind of food or empty chew by following

the specific procedure described in Section 5.4.2. The collected chewing-

recordings include data from the start of the first chew until the moment

of swallowing. Because our earphones provides two different signals at

the same time – one per ear –, chewing-recordings are always collected in

pairs – keeping separated the signals and keeping information about

their alignment.
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A.2 Data assembling. In this step, a pre-collected dataset populated

with several chewing-recordings from other users is joined with the data

collected in the previous step. To make Eathentication as accurate as

possible, this preliminary dataset should contain a wide range of users

with the most disparate eating style. The obtained dataset is used

as input for the following phase. Note that the data assembling step

may be performed both in this moment or after the step B.4 – using

a pre-collected dataset already converted into features. However, we

place this step here to make it clear to the reader that both the data

from the target user and other users are processed in the same way.

Phase B – Data processing This phase aims to extract meaningful

features for the machine learning algorithm. In order to achieve better

results we applied some filter and transformation to the original chewing-

recordings. Below is a detailed explanation for each step.

B.1 Pre-processing. Raw collected data contains information which neg-

atively affects the machine learning procedure by introducing bias or

noise. First, we subtract from each chewing-recording its average value.

Since, the data we collected are distances, the their average values rep-

resents the average distance from our earphones and the ear channel

surface. Keeping this information in our chewing-recordings negatively

bias the classifiers, since the average distance may change among dif-

ferent session. Finally, we also normalize the outlier values which may

be caused by sudden movements of the earphones or the ear channel

(e.g., swallow, head movements, but also shock to the earphones).

B.2 Segmentation. We perform data segmentation according to the fol-

lowing observation: the waveform of a chew presents a peak corre-

sponding to the maximum opening of the mouth. Based on this as-

sumption, we developed an algorithm able to detect this peak and

extract the corresponding chew. In Section 5.4.2, we report the de-

tailed description of the algorithm we used to extract chews.

This step divides a single chewing-recording into many chews. This opti-

mization speeds up the time required to authenticate a user since the

classifier learns to distinguish users based on single chews.

B.3 Moving average calculation. This step calculates the moving aver-

age of every chewing-recordings. As shown in [130], this transformation

emphasizes users’ specific chews property, allowing to extract useful

features.
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B.4 Features extraction. This step extract from the moving average sev-

eral well-known features. The complete list of these features includes:

mean, kurtosis, 0.2 quantile, 0.4 quantile, 0.6 quantile, 0.8 quantile,

variance, skewness, sigma 1, sigma 2, sigma 3.

Phase C – Model generation In this phase, we trained a supervised

machine learning model on the features extracted from both the legitimate

user and many other illegitimate user. This phase is divided into two steps:

C.1 Features selection. To recognize the most relevant features for our

specific purpose, we run the select K-Best algorithm on the features of

the dataset. This method, provided by the library Scikit-Learn, select

the best features according to the indicated metric (we used ANOVA

F-value). We calculate the most frequently kept features among all

the users of the dataset. Most kept features are quantile 0.8, quantile

0.2, sigma 3, quantile 0.6, sigma 1, variance, sigma 2, and quantile 0.4.

C.2 Model training. This step consists in training a binary supervised

machine learning model able to distinguish between the legitimate user

and all other illegitimate users. As a supervised model, we selected

the support vector machine classifier, which shows better results com-

pared to other tested classifiers – including linear regression, K-nearest

neighbors, and random forest. The output of this phase is a trained

model able to recognize if a chewing-recording comes from the authorized

user or another (even unknown) unauthorized user. The complete pro-

cedure we followed is described in Section 5.4.2.

5.3 Prototype implementation

In this section, we describe our earphones prototype. We use this earphones

to collect the dataset used in Section 5.4 to evaluate Eathentication.

We design our prototype using a 3D computer graphics application –

a virtual rendering of the produced model is showed in Figure 5.3a and

Figure 5.3b. To define the shape of our prototype earphones, we took in-

spiration from the shape of other commercial earphones. We selected this

particular shape to optimize the stability of the device, however Eathenti-

cation is not bound to use this specific shape in order to operate. Unlike a

commercial earphones, our prototype does not have a speaker. In fact, in

the location where the speaker is usually present, we embedded an infrared

LED. We used this sensor to collect data on the external ear canal move-

ments. As sensor we used a Kodenshi reflective sensor combining a GaAs
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(a) Front perspective (b) Side perspective (c) Printed earphones
with IR sensor

Figure 5.3: Our built earphones.

IRED with a high-sensitivity photo-transistor. Our need to place the sensor

where the speaker is usually positioned should not be considered a obstacle

to include our method in future commercial earphones. In fact, there are

sensors much smaller than the one we used, which could be integrated into

normal earphones without particular problems. We printed our earphones

using a 3D printer. In Figure 5.3c, we show the printed earphones used for

our experiments.

Note, that the prototype we build use the same sensor proposed by [130].

However, we keep the hardware as simple as possible to show that is possible

to monitor the ear channel movement with a cheap device.

5.3.1 Technical characteristics

Our earphones uses a sensor able to measure its distance from a specific

surface. Precisely, the sensor consists of an infrared LED and a photo-

transistor. The light emitted by the Diode is reflected from the adjacent

surface (the external ear channel) to the junction of the photo-transistor.

The distance is measured based on the variation of the light intensity using

an Arduino Uno. Collected data consist of integer values that vary on a

scale from 0 to 1023 Volts. In this representation, higher values mean lower

distances.

The sampling frequency of the device is 100 Hz. We chose this value since

higher sampling may create artifacts in the collected data – the Arduino

we used may not be able to handle higher frequencies. Furthermore, we

empirically observe that higher frequencies do not provide more information

than those already collected at 100 Hz.
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5.4 Evaluation

To show the effectiveness of Eathentication, we collected many chewing-

recordings in a novel dataset. Section 5.4.1 presents the procedure we follow

to collect our dataset. Section 5.4.2 describes then how we conducted the ex-

periments to show the effectiveness of Eathentication. Finally, Section 5.4.3

shows and describe the results we obtained from our experiments.

5.4.1 Dataset

We carried out data collection in a laboratory. We standardized the proce-

dure to be used to minimize any possible disturbance. During a registration

session, we provided three kinds of food to each participant. The user per-

forms all the experiments sitting on a chair and wearing our earphones.

Before to start the data collection, we always asked the participants to fol-

low these indications:

• Keep the posture homogeneous on the chair;

• Breathe through the nose while chewing;

• Minimize movements;

• Chew in the most natural way for their specific behavior – considering

both chewing strength and speed.

Our procedure consists of two sessions:

• Session one. The participant performs a resting state registration.

This session is necessary to stabilize the earphones inside the partic-

ipant’s ear. When a user wears an earphones, it takes a few seconds

before reaching a position of stability within the ear. This settling

process varies according to the specific physiology of the ear of the

participant. During this session, the earphones signal is continuous

checked. Once the earphones has reshaped the ear and found a stable

position, the signal stabilizes on a specific level. The maximum time

required for the signal stabilization never went beyond 30 seconds.

• Session two. This session consists of four steps during which the

participant eats the provided food or performs a chewing movement.

The first step is the only one that does not include food eating: the

participants performs an empty chewing movement for a fixed time of

15 seconds. The next three steps consist in eating 1 potion of food
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each – in order crackers, biscuit, gummy bears. For these three steps,

the registration starts with the first chewing and terminates with the

food swallowing. To complete the whole session two, the users repeat

all four steps for three times: this means that for each step, we collect

three distinct chewing-recordings per session.

For each participant, we repeat the above procedure 3 times - repeating

each time both the two sessions. Between one session and the next, we have

always waited at least 24 hours. We used this convention to collect data

distributed over a medium-long period. This condition allows investigating

the performance of Eathentication regardless of the variations that chewing

may undergo this amount of time.

We collected data from 23 distinct participants, for a total amount of

828 chewing-recordings– 23 users that perform four chewing steps for three

times (a session), repeated for three times. The dataset we collected is

sensible bigger compared to the previous work that used similar recording

devices [130].

Participants We recruited a total of 23 unique participants for our

study. To provide results that as general as possible, we have collected data

between people as diverse as possible. We randomly selected participants

among graduate students and middle-aged people. All participants were

healthy and never had serious health problems related to the ear canal or

the masticatory system. Out of 23 participants, 6 were female, and 17 were

male. The youngest was 24 years old at the time of the experiments, while

the oldest was 64. Participants come from two continents and five distinct

countries.

5.4.2 Experimental Setup

Once we collected our dataset, we evaluated the performance of Eathentica-

tion following the procedure described in phases B and C (Section 5.2.2).

However, to evaluate the effectiveness of Eathentication for each participant,

we repeated phase C considering each participant, one at a time, as the tar-

get user. To develop the authentication algorithm described below, we used

Python 3 and its libraries.

As described in step B.2, we developed an algorithm to extract the indi-

vidual chews performed by participants. The implemented algorithm works

as described below. The first step consists in filtering the user’s collected

data. We analyzed all our dataset, and we identified the range of frequencies

corresponding to all possible variant of chews performed by our participant.

Obtained results showed a range between 0.5 and 1.5 Hz. We used this
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range to apply a band-pass filter to every chewing-recording, thus obtaining a

more defined chewing wave. Once filtered all chewing-recordings, we summed

together all right and left channels – this operation is valid since the left

and right channels are synchronized. The purpose of this operation is to

minimize the influence on the final signal of any noise present on one single

channel. We then identify every chew based on the position of its peak.

Finally, we extracted each chew as a window of 110 sample (55 before the

peak and 55 after the peak). Note that windows are extracted from the

original data – the chewing-recordings without band-pass filter and from both

the left and right channels.

To define the best window size, we conducted a preliminary experiment.

We used the same procedure we are going to describe in the next paragraph

of this section; however, we repeated the procedure several times using each

time a different window size. Figure 5.4, shows the performances of Eathen-

tication for each window size. We finally selected 110 as window size since

it is a good trade-off between the FAR and FAR scores. Besides, 110 is ap-

proximately equal to the two sigma value for the average of all the chews we

have detected. This value is therefore a good upper bound for the maximum

size of most of the chews of our dataset.
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Figure 5.4: Results for a preliminary experiment conducted using different
windows size during the Segmentation step (B.2).

Once phase B is complete, we have a dataset of features for each identified

chew. We continue with phase C, but repeating it for each participant in

the dataset and each time considering the current participant as the target

user (the user to be considered as the authorized user). For each users we

did the follow procedure.

First, we generate new labels for the current target user since the prob-

lem we need to solve is a binary problem. Therefore, the samples of the

target user will receive the label 1, while the samples of the other users
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will receive the label 0. Once generated the binary dataset and extracted

the most significant features, we start the evaluation process. Note that,

unlike in phase C, which returns a trained model, during the evaluation,

we used a nested five-fold cross-validation. This technique returns the av-

erage results achieved by the tested model over five runs. Moreover, since

we aim to train a machine learning model to authenticate chewing-recordings

also from unknown users (users never saw in the training set), we define a

user-independent k-fold cross-validation. This technique divides the dataset

ensuring that training set and test set never contain chewing-recordings from

the same users (except for the target user). Within each cycle of our k-fold

cross-validation, we used a grid search to optimize the hyper-parameters of

the machine learning model. Since the grid search further splits the training

set into a training set and a validation set, we used another time our inde-

pendent k-fold cross-validation (still of size five) to assure the two sets to be

user-independent. Moreover, since the training set is highly unbalanced, at

each cycle of the grid search k-fold, we balanced the training set. Note that

balancing is not applied to validation sets and training sets, as it is realistic

to test the classifier in unbalanced conditions. Once obtained the best clas-

sifier from the grid search, we evaluate it on the test set by calculating the

False Acceptance Rate (FAR) and the False Rejection Rate (FRR) scores.

FAR and FRR are two commonly used metrics for biometrics methods [53].

We calculate the final result for the current target user as the average of

the five results obtained from the nested cross-validation. Once obtained

the average results from the nested cross-validation, the evaluation on the

single user is completed.

Once repeated the above procedure for each user of the dataset, we

obtain the average performances of Eathentication for every user.

5.4.3 Results

In this section, we describe the experiments we conducted and we comment

the obtained results.

5.4.3.1 Eathentication Performances

Hereafter, we reports and comments the results we obtained by training

four machine learning models as described in Section 5.4.2. These machine

learning models are support vector machine (SVM), K-Nearest Neighbors

(KNN), Logistic Regression and Random Forest. In Table 5.1, we report the

results we obtained for the SVM and KNN classifiers, as the other two meth-

ods did not show interesting results. Our results show that the SVM and
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KNN classifiers achieve comparable performances for both the investigated

metric. In follow experiments, we will reports results for the SVM model,

since is achieve similar or better results, compared to the KNN model.

Table 5.1: Performances achieved by Eathentication for the nested five-fold
cross-validation.

Classifier FAR FRR

SVM 0.041± 0.016 0.128± 0.043
KNN 0.046± 0.016 0.119± 0.053

5.4.3.2 Intuition Assessment

With this experiment we want to show how Eathentication performance

changes according to the number of users involved in the train-test process.

Similarly to Frank in [61], to evaluate this experiment, we generated a pool

of sub-datasets, starting from our complete dataset. These sub-datasets

are generated by randomly kept n users from the complete dataset, with

n ∈ {4, ..., 23}. This process generates a total of 20 sub-datasets with an

increasing number of users.

We evaluated the performances of Eathentication applying the proce-

dure described in 5.4.2. However, we repeated the whole procedure for all

the sub-datasets we considered. Figure 5.5 shows the results we obtained

for each considered sub-datasets size. We performed the experiment using

the SVM model. Moreover, since the random choice of the users may pro-

foundly influence results, we repeated the experiment 50 times. Therefore,

in Figure 5.5, the results for each size corresponds to the average perfor-

mance on 50 random sub-dataset of that size. For both considered metrics,

scores and their standard deviations tend to stabilize on specific values as

the number of considered users grow. For the FAR metric, achieved results

drop-down with the increase in the size of the dataset. For datasets with 20

or more users, the FAR scores start to stabilize achieving an average value

of 0.047 and a stable variance of 0.05. For the FRR metric, the achieved

results grow with the increase in the size of the dataset. Similarly to the

FAR metric, for datasets with 19 or more users, the FRR scores start to

stabilize achieving an average value of 0.15 and a stable variance of 0.10.

Based on this experiment, we state that our authentication method can still

achieve good performance even if trained on a higher number of users.
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Figure 5.5: Results achieved by Eathentication on sub-datasets of different
sizes. The size of the sub-dataset refers to the number of distinct users.

5.4.3.3 Multiple chews Study

In this section, we evaluate the performances of Eathentication by vary-

ing the number of chews used to classify a user. The procedure used to

train the SVM model and to classify the single chew is the same described

in 5.4.2. However, this time the user’s classification (as a target user or

not) is no longer based on an individual chew, but on n distinct chews with

n ∈ {1, ..., 5}. In case of ambiguity (same number of negative and positive

classifications), we preferred safety over usability by rejecting the user. We

performed this experiment using the SVM model.

Figure 5.6 shows obtained results. As, expected for both FAR and the

FRR metrics performances improves. For FRR the improvement is quite

sensible, passing from 0.128± 0.043 with a single chew to 0.04± 0.027 with

only two chews.
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Figure 5.6: Results achieved by Eathentication considering more than one
chewing in the classification process.
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5.4.3.4 Foods Study

In this section, we show and describe the performances of Eathentication

for each stimulus. This comparison takes place according to two different

scenarios. In the first scenario, we consider a single classifier trained on the

whole dataset. This scenario corresponds to the experiments conducted in

Section 5.4.3.1. However, this time we divide the samples of the test set in

four groups (each one containing only a specific stimulus), and we calculate

the performance for each group independently. In the second scenario, we

consider four distinct classifiers trained and tested each one on a different

stimulus. The training procedure is the same used with one single classifier

on the whole dataset.

In Figure 5.7, we show the performance for the first scenario, while in

Figure 5.8 the performance for the second one. Compared with the perfor-

mances reported in Table 5.1, the FAR metric generally shows good results

in both scenarios. The variance for FAR remains stable in all cases and,

in the second scenario, performance improves slightly. Contrarily, for the

FRR metric, the results are different between the two scenarios. For the

first scenario (one classifier), the FRRs are almost the same as Table 5.1

for Empty chew, crackers and biscuits – results get worse only the gummy

bear stimulus. Instead, in the second scenario (four distinct classifiers), the

performances drop for all stimuli and in particular for empty chew.
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Figure 5.7: SVM performances training one classifier on all stimuli (the same
experiments performed in Section 5.4.3.1). We divided the results to show
the performances for each stimulus.

These results are significant, as they give us a way to understand how

Eathentication works. The first thing to consider is that the performance is

much worse for the second scenario (four classifiers). This result indicates

that the used machine learning model generalizes better when trained on

different stimuli. Another interesting observation is related to the results
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Figure 5.8: SVM performances training four distinct classifiers – one on each
stimulus.

achieved by empty chew. This stimulus has the most significant difference

in performance between the two scenarios. The low performances achieved

in the second scenario can be explained based on the nature of this partic-

ular stimulus. Since chewing empty requires less effort than chewing food,

the movements of the ear canal are also weaker. As consequences of this

physical effect, the data we collected are negatively influenced. In Table 5.2,

we reported the average variance of the features we extracted. As clearly

visible, the variance for empty chew stimulus is much lower than the others.

Therefore the classifier trained only on the empty chew stimulus, achieved

worse results since the variance of the training data is not enough to well

generalize. For the first scenario, we can instead justify the excellent perfor-

mance, obtained on empty chew, based on our first consideration. Indeed, as

previously deduced, the machine learning model generalizes better if trained

on different types of stimuli. Therefore, for this scenario, the model probably

well recognizes users also for empty chew based on other stimuli.

Table 5.2: Average features variance for all the stimuli considered in our
dataset.

Stimulus Features variance

Empty chew 9.37× 10−5

Cracker 3.84× 10−4

Biscuit 1.94× 10−4

Gummy bear 2.01× 10−4

In conclusion, we can say that Eathentication performs well on the single

stimulus in at least one of the two scenarios. This result is essential for the

empty chew stimulus, that is the most relevant for a usable authentication

system. Therefore, this result shows how it is possible to train our method
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on four stimuli and obtain a classifier capable of authenticating a user based

on his empty chew. For the second scenario, its performances are not yet

sufficient to guarantee an excellent authentication method. However, one

possible solution could be to improve the hardware of our earphones. On the

market, there are better sensors compared to that one we used. Therefore,

at a higher cost, it may be possible to obtain a dataset of better quality.

5.5 Summary

In this chapter, we present Eathentication, the first method that explores the

external ear channel during chewing to authenticates people. Eathentication

takes advantage of LED proximity sensors placed on a modified earphones to

recognize ear channel behavior. The authentication procedure we proposed

is based on a supervised machine learning model.

During our experiments, we collected data from 23 participants. We used

four well-distinct chewing stimuli – three different foods and one empty

chew movement. To show the effectiveness of Eathentication with users

never seen during the training phase, we conducted all experiments using

user-independent test sets. Results show that Eathentication can effectively

authenticate people based on their chewing behavior on the investigated

stimuli. We experimented with different dataset sizes. We show that the

performance of Eathentication tend to stabilize on the achieved results as

the number of users considered increases. Among the investigated machine

learning models, SVM and KNN achieved better results. The SVM classi-

fier achieved, on average, a FAR score of 0.041 ± 0.016 and an FRR score

of 0.128 ± 0.043. We also investigated the results for multi chew authenti-

cation showing that the FRR performances significantly improves with just

two chew: SVM achieves under 0.039 of FRR with two chews. Finally, we

investigated also the performance of Eathentication for each single stimu-

lus. The most important results is that Eathentication can achieve excellent

performances when it authenticates a user based on an empty chew (the

training set must contain all stimuli). This features is very important, since

it shows that Eathentication can effectively exploits the most usable stimulus

(empty chew) to authenticate users.

5.5.1 Future Work

As future work, we first plain to extend our dataset by introducing new kind

of stimuli and applying new machine learning model. Integrate new kind of

stimuli would be interested, since it will be then possible to investigate the
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performance of Eathentication in a stimulus independent test. Moreover, it

would be also interesting to collect data in a more realistic scenario (e.g,

when participants are engaged in other activities). If the this experiment

were promising, it would be possible to authenticate users based on stimuli

that have never been seen during the training phase. About the evaluation

of the authentication method performance, a new important metric that we

can consider is the one described in the work by Eberz et al.in [53]. In this

work, the authors propose an additional metric to evaluate the error dis-

tribution of an authentication method. Thanks to the new data collections

containing more data and of a more heterogeneous nature, we will calcu-

late this additional metric, thus obtaining a more accurate definition of our

method’s safety level. Regarding possible new machine learning models to

investigated, during our experiments we only took into account binary ma-

chine learning models. Other possibility may come from one class machine

learning models, which are of particular interest for authentication meth-

ods. Possible example for these type of classifiers are SVM One Class and

Autoencoders artificial neural network.
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Chapter 6

TAMBUS: A Novel Authentication

Method Through Covert Channels

for Securing Industrial Networks

Modbus is a network protocol that enables communication between clients

and servers in Cyber-Physical Systems (CPSs), in particular for industrial

networks. Modicon (now Schneider Electric) developed this protocol in 1979

to communicate with its Programmable Logic Controllers (PLCs). Modbus

is a de facto standard [52], and many different vendors still use it for its ease

of use [18]. However, Modbus provides no security against unauthorized com-

mands or interception of data, and consequently, the safety of facilities is

at risk. Stuxnet [56], one of the most famous modern attacks on Industrial

Control Systems (ICSs), taught the world that attacks on ICSs are possible

and that they can also remain silent and undetected for a long time. More

recent attacks, such as the attack against the Ukrainian power grid [38] in

2015, the Shanoon malware that infected Saudi Aramco in 2012 [31], or

the leakage of data from NASA [4] in 2019, demonstrate that security on

CPSs is a critical research field nowadays. The introduction of modern de-

vices (e.g., Industrial IoT sensors) in legacy environments and the remote

access to the operational network disrupts the assumption of isolated indus-

trial systems. Due to these changes in the operational scenarios and to be

compatible with the newer introduced protocols, a new version of Modbus,

named Modbus/TCP , replaced the original one. Modbus/TCP , like its pre-

decessor, is a plain text protocol and it provides no security features like

authenticity and integrity (TCP may provide integrity, but a man in the
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middle attack (MITM) may modify the a packet in each moment). This

lack of security makes Modbus/TCP an extremely vulnerable protocol. In

this work we focus on Modbus/TCP which over time has almost replaced

the original Modbus.

Due to the implicit security issues (replay attack, MITM attack, etc.),

many researchers tried to create secure versions of Modbus/TCP . Devel-

oped proposals focused on two possible types of solutions: encrypting each

Modbus/TCP packet in a secure protocol (e.g., using TLS) or using covert

channels to hide authentication information. However, these methods have

implicit gaps which make their implementation difficult or even impractical

in real cases. Indeed, previously proposed methods require to modify the

Modbus/TCP protocol (with high costs to update the facilities devices), or

alternatively they propose security by obscurity covert channels which can

be easily bypassed.

In this work, we propose TAMBUS , an authentication method that al-

lows trusted devices to verify the authenticity of industrial clients and servers

and the integrity of the network traffic in Modbus/TCP . TAMBUS differs

from the previously proposed methods since it is not a security by obscu-

rity method and does not modify the original protocol. TAMBUS still uses

covert channels but with a different purpose. In previous approaches, covert

channels were the only way to provide security: the system’s strength was

that the attacker did not know there was a security system. If this coverage

fails, the system becomes easily vulnerable. On the contrary, as it has been

structured, TAMBUS continues to provide the same security level regardless

of whether an attacker is aware of his presence and its architecture. The pur-

pose of the covert channels in TAMBUS is that they do not contribute to the

system’s security, but they solely provide an alternative data transport chan-

nel. Thus, they ensure full backward compatibility with the Modbus/TCP

protocol. Therefore, in TAMBUS the software present in the already in-

stalled devices (e.g., clients and servers) does not undergo any modification.

These features are fundamental, as they justify the use of TAMBUS instead

of a modern ICS protocol (e.g., OPC UA). Indeed, the transition to modern

and safe protocols implies substantial upgrade costs (due to code rewriting,

and device replacement) and it is often not justifiable in the face of possible

security issues. Conversely, TAMBUS , which does not modify the existent

code and guarantees a high-security level, can be a trade-off between facing

huge upgrade costs and using an old unsafe technology. To provide these

features, TAMBUS accepts a compromise between security and backward

compatibility. Instead of providing a fully encrypted protocol, it improves

the security of Modbus/TCP with an additional level of protection.
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TAMBUS is not intended as a protocol to use when even modifying a

single bit in a flow of packets can cause serious consequences to an ICS.

However, it is essential to note that the probability of performing an attack,

without being successfully detected by TAMBUS , is low. Attacks usually

require the modification of several packages, and, as explained in Section 6.7,

the probability of modifying n packages decreases exponentially with the

increase of n. This makes it extremely difficult for an attacker to manage

complex attacks (i.e., which require modifying multiple packets), as an alarm

will be launched in the very first moments of the attack.

TAMBUS architecture adds new devices that embed unique codes to

Modbus/TCP packets through secure covert channels. These codes allow

data authentication and payload integrity information. In order to ensure

the non-reproducibility and freshness of the generated codes, TAMBUS pre-

shares a key and a counter between the novel added devices. However,

unlike the previous proposed methods, TAMBUS generates the secret codes

not only based on secret keys and counters, but also based on the content

of packets, guaranteeing their integrity. The main benefit of using covert

channels for TAMBUS is that they do not introduce protocol modifications

or traffic overheads (i.e., extra bits or messages). Moreover, TAMBUS just

needs the installation of three type of inexpensive devices, providing a low-

cost method to secure a network.

Contribution of our work In this chapter, we discuss the following con-

tributions:

• We propose TAMBUS , an authentication method that allows trusted

devices to verify the authenticity of industrial clients and servers and

the integrity of the network traffic in Modbus/TCP . TAMBUS exploits

two covert channels to send a secret message on the Modbus/TCP

transactions, without modifying the Modbus/TCP protocol and with-

out adding traffic overheads. Moreover, TAMBUS is not implemented

with a security by obscurity method;

• We evaluate the effectiveness and the performances of TAMBUS

through the implementation of an industrial testbed including a real

Wago PLC. Our results show that the used covert channels do not

affect the regular Modbus/TCP functionality. Moreover, we show that

the bit error ratios are always lower than 0.0012%, on the number of

sent packets, for the timing-based covert channel on our testbed.

Organization In Section 6.1 we overview the state-of-the-art on methods
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to securing the Modbus/TCP protocol. Next, in Section 6.3, we present the

system model and the threat model for various attack scenarios. In Sec-

tion 6.4, we present TAMBUS . Section 6.5 describes the developed methods

and Section 6.6 the proposed implementation for these methods. In Sec-

tion 6.8 we show the evaluation of the proposed method obtained using our

testbed. Finally, in Section 6.9, we summarize this chapter and we propose

possible future works.

6.1 Related work

CPS networks were initially developed with the concept of isolated networks,

without connections beyond the production area where they operated. How-

ever, in the last years, this principle has become more unstable due to the

interconnection of new technologies with legacy devices, paving the way for

a series of possible attacks. Cyber-attacks against Modbus/TCP networks

is an already well-investigated field. In [73] Huitsing proposed a taxon-

omy for the most famous attacks against the Modbus/TCP protocol. Many

works [4, 31, 38, 56] provided reports and analysis of actual modern attacks

against real ICSs.

Due to the catastrophic consequences that a cyber-attack could cause,

researches attempted different ways to secure these protocols. One first at-

tempt is dated 2009, when Fovino [60] proposed a new secure version of Mod-

bus. The proposed new protocol satisfied traditional security requirements

such as confidentiality, non-repudiation, and integrity. Enforcing security on

the protocol is achieved by adding new SHA2 hashing function and RSA-

based signature scheme to the original Modbus/TCP frame. In [59, 71, 141]

researchers proposed similar techniques, always aiming to improve Mod-

bus/TCP by changing the standard protocol. In 2018, the Modbus Orga-

nization (a group of independent users which promote Modbus) proposed a

novel standard called Modbus Secure, which blend the old protocol with TLS

to create a secure new one. All these proposals assume to modify the origi-

nal Modbus/TCP protocol, but they consequently require the substitution of

old devices with new compatible ones, which involves an expensive upgrade

process. As previously mentioned, TAMBUS is much cheaper than this so-

lution. Migrating to a new secure protocol, such as Modbus Secure, requires

to change the PLCs intended to secure. Such devices are very expensive, for

instance, our test PLC (WAGO 881) is a relatively small one, and it costs

approximately €700. Conversely, TAMBUS uses cheaper devices, such as

Raspberry Pi 3 B with a cost of €40 with additional €40 to install a TPM,

and approximately in the same quantity of the PLCs intended to secure in
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the previous solution. TAMBUS could also be implemented with less pow-

erful devices due to its light computational burden, therefore a Raspberry

Pi Zero worth €20 could be used instead.

The reader might think that the introduction of cryptography in Mod-

bus/TCP can be obtained by adding two simple devices (between client and

server) that encapsulate the protocol in an encrypted connection. Theoret-

ically, this would be possible as the client and the server would send and

receive regular Modbus/TCP traffic, however, such modification may im-

ply several problems in a legacy environment. One problem could be the

compatibility with the previously installed monitoring systems. Some com-

panies make indeed use of passive ICS monitoring systems (e.g., as reported

in [112]) and Intrusion Detection System (IDS). These solutions analyze

the Modbus/TCP traffic by monitoring some core nodes in the network. If

we assume to encrypt the Modbus/TCP traffic, we must also consider to

update all already installed monitoring systems to keep them running. Fur-

thermore, allowing these devices to decode the Modbus/TCP implies sharing

the cryptography keys. Passive monitoring systems can be in exposed loca-

tions where they are exposed to physical attacks. Sharing the secret keys

would therefore significantly increase the attack surface for an attacker, who

could try to steal the secret keys. With these keys the attacker will be able

to modify the encrypted Modbus/TCP traffic. Contrary, TAMBUS is com-

pletely transparent for a legacy environment, since it uses a covert channel

to transmit extra security information in a legitimate Modbus/TCP packet.

Therefore, even if TAMBUS transmits the Modbus/TCP packets in clear,

on the other hand the modified Modbus/TCP packets are still readable by

each monitoring system without any further changes. TAMBUS has there-

fore two essential advantages compared to the use of cryptography. First, it

avoids spreading the cryptography keys on third non-secure devices, reduc-

ing the surface for an attacker. Second, even though the economic costs for

the introduction of new devices would be the same, TAMBUS is more eco-

nomical, compared to the use of cryptography, in the sense that it does not

need to update existing monitoring systems, nor to manage the distribution

and maintenance of the cryptographic keys also on these devices.

This obstacles have pushed the research to investigate covert channels in

order to authenticate the Modbus/TCP transactions without modifying the

original protocol. One of the first solutions appears in 2011, when [129] pro-

posed a new scheme of authentication which exploits a timing-based covert

channel. Conversely, storage-based covert channels in network protocols

usually exploit unused header fields. Zander et al. in [146] collect sev-

eral methods to transmit information, for example through unused header
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bits, checksum fields or header extensions and padding. Among these, we

illustrated the ones used in literature for Modbus/TCP . Similar work in

2014 [94] presented a storage-based covert channel to transmit hidden in-

formation using extra ad-hoc Modbus/TCP request. The communication

occurs by pre-sharing a mapping of the addresses contained in the Modbus

read requests (which are always between 0 and 9999) to the ASCII table. To

communicate a single ASCII character, the client requests the address asso-

ciated with that specific character. [93] gave an inspiring proposal, in which

the authors proposed a storage-based covert channel to add more security to

Modbus/TCP . The proposed scheme leverages least significant bits (LSBs)

contained in read and write messages as a covert channel. The limitation

of the method is that there is an explicit trade-off between the bandwidth

and the stealth of the channel. Subsequent studies have shown that timing-

based and storage-based covert channels can be used together in order to

increase the security against possible attackers. In [131], the authors pro-

pose using storage-based and timing-based covert channels to provide some

level of authentication to Modbus/TCP messages. The scheme assumes a

client to send the server, through the covert channel, a lightweight CRC

hash of the message that they want to authenticate. Upon reception of the

CRC, the server decodes it and compares it with the reconstructed CRC of

the received message to determine its authenticity. However, the authors do

not provide any concrete implementation of this methodology.

In the current state of the art, no research accomplishes to introduce

authentication and integrity control in Modbus/TCP without changing the

original protocol. Indeed, methods that require protocol modifications are

difficult to implement due to the enormous upgrade costs involved and prob-

lems related to IDSs and other software exploiting the plain text payload of

a Modbus/TCP packet.

6.2 Background

In this section, we describe the Modbus/TCP protocol to provide the reader

with the essential information to understand how this protocol works.

6.2.1 Modbus/TCP protocol

Modbus is a protocol developed by Modicon in 1979 to communicate with

its Programmable logic controllers (PLCs). Modbus/TCP was developed in

1999 and, by design choice like its predecessor Modbus, is a plain-text proto-

col as its use was intended for in-industry networks. Modbus/TCP follows a
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Figure 6.1: Encapsulation of a Modbus/TCP frame in a TCP packet. The
represented frame corresponds to a Modbus/TCP request.

master-slave architecture: several slaves, also called servers, are connected

with one master, also called client. A client, such as a Human Machine

Interface (HMI), always starts the communication and sends requests to the

server. Modbus/TCP servers correspond to PLCs, the actual devices ca-

pable of measuring and controlling the environment by using sensors and

managing physical processes. The server sends responses to the correspond-

ing requests of the clients. We will refer to a complete traffic flow, composed

of a request and the corresponding response, as a Modbus/TCP transaction.

The Modbus/TCP frame is encapsulated inside the payload of TCP. The

frame contains the MBAP Header (Transaction ID, Protocol ID, Length

and Unit ID), the Function Code, and a Data. The Data field content

varies based on the type of Modbus/TCP packet (see 6.2.2). The Protocol

Identifier (Protocol ID) is filled with 16 bits of zeros (0) to indicate that the

frame is a Modbus/TCP frame. Figure 6.1 depicts the TCP packet and the

encapsulated Modbus Frame.

A Modbus/TCP server provides a client with four different object types

to store and read data. In turn, we divide these objects into two sub-

categories: inputs and outputs. The inputs can be digital (Discrete Inputs)

and analog (Input Registers), and they are used by a server to store the

values read from sensors into the local memory. The outputs can also be

digital (Coils) and analog (Holding Registers). Coils are used to open or

close a digital switch, while Holding Registers are used to vary an analog

135



Stefano Cecconello Authentication methods: Novel attacks and defenses

Table 6.1: Modbus/TCP object data types. The listed types of objects
corresponds to the four primary types existing on a Modbus/TCP server.

Object-type Access Size

Coil Read-write 1 bit

Discrete input Read-only 1 bit

Input register Read-only 16 bits

Holding register Read-write 16 bits

output value within a range. All available object types are reported in

Table 6.1.

Hence, two different macro-operations are possible for a client: read and

write. There are different read and write operations, and they differ based

on the type of object they are operating with. Usually, clients continually

perform read requests at a fixed time interval (polling) to obtain data from

sensors and display them on control monitors. Conversely, write requests

are performed occasionally, when it is necessary to actuate something in the

physical process.

6.2.2 Supported types in Modbus/TCP

The PLCs save the object types in 16-bits registers on the server. Mod-

bus/TCP allows saving data in one or more registers using two types:

floating-point (16, 32, and 64 bits) and integer (8, 16, 32 bit). Data types

bigger than 16 bits are saved in two or more adjacent registers. Data types

smaller than 16 bits are saved in a single register but padded with initial

zeros. It is important to understand that a client, in order to correctly de-

code the values contained in one or more registers, has to be aware of the

interpretation to associate with those specific registers. In a single request

a client can request up to 61 floating-point values (32-bit per value). The

values of the requested registers are all contained (and maintain the same

order) in the Data field of the corresponding Modbus/TCP response, and

bytes are transmitted in big-endian order: the most significant byte first and

the least significant byte last.

6.3 System model and threat model

In this section, we describe the system (Sec. 6.3.1) and the threat model

(Sec. 6.3.2) for an ICS that operates with Modbus/TCP .
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6.3.1 System Model

The system model we used is depicted in Figure 6.2. We assume that the

considered ICS follows the rules given by the Purdue Enterprise Reference

Architecture model (or simply Purdue model) [139]. The Purdue model

divides the ICS architecture into six levels and five zones, as shown in Fig-

ure B.1 in Appendix.

The IT network (the Enterprise Zone, where services and applications

connected to Internet live) has no direct communication with the ICS envi-

ronment (Manufacturing and Area Zone), and usually the access to the ICS

environment is managed through a Demilitarized Zone (DMZ). Level 2 sys-

tems include manufacturing operations equipment for the production area,

such as HMIs or control room workstations. Level 1 includes process con-

trol equipment that receives input from sensors or that sends data to process

devices. In this level PLCs exist. Finally, level 0 includes the sensors and

instrumentation that are directly connected and control the manufacturing

process.

As showed in Figure 6.2, in our system model we consider only the

first three levels, hereafter named as Client Area (Level 2/3), Server Area

(Level 1), and Process (Level 0). Without loss of generality, we also assume

the presence of three different switches in our system model. For sake of

simplicity, we named these three switches respectively: “C.A. Switch” for the

switch of the Client Area, “S.A. Switch” for the switch of the Server Area,

and simply “Switch” a generic switch available anywhere on the network

between the Client Area and the Server Area.

We assume the presence of three different types of switches in our sys-

tem model. For the sake of simplicity, we named two of these three switches

respectively: “C.A. Switch” for the switch of the Client Area, and “S.A.

Switch” for the switch of the Server Area. Moreover, the Client and the

Server Areas could be connected by an indefinite amount of switches (re-

ported as WAN in Figure 6.2), since the facilities are geographically dis-

tributed. Without loss of generality, in rest of the chapter, we refer to the

WAN network simply as “Switch”: a generic switch available anywhere on

the network between the Client Area and the Server Area.

The context that we consider in this work is a typical ICS scenario.

The system could be made up to thousands of devices, and we assume that

they are not installed in the same physical area since the facility could be

geographically distributed. We assume that the installed devices are legacy

devices, and replacing them with new equipment is not possible. These

types of devices operate with Modbus/TCP as the transmission protocol.
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Figure 6.2: System model. We assume the system model to follow the rules
provided by the Purdue Model. Continuous and dotted arrows describe an
example of a Modbus/TCP transaction by showing the path followed by
requests and responses packets

.

These legacy device may be updated with different information (such as

firmware version, time clock), and they do not need to be synced in any way.

Moreover, no internet connection is available because of the division of the

manufacturing zone from the enterprise security zone. In fact, as explained

in the Purdue Model, a DMZ separates the levels 3 and 4; thus, excluding

the possibility of remote attacks. In addition to legacy devices, also modern

ones could be installed in the facility and they have to be compatible with

Modbus/TCP protocol. To conclude, we state that the considered system

model describes an actual ICS without loss of generality.

6.3.2 Threat model

We consider an adversary who aims to infiltrate the Modbus/TCP network

and launches stealthy attacks without being detected. We assume that the

adversary can passively monitor all ongoing Modbus/TCP transmissions, to

acquire full knowledge of the ordinary transactions of the network. Fur-

thermore, he is aware of the authentication method and he can observe the

authentication messages that are being transmitted. There are two ways

to acquire unauthorized access to the Modbus/TCP network: 1) compro-

mise/control remotely an already plugged-in device, such as an HMI; 2) plug

an external malicious device into one of the existing switches. We consider
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that the adversary has access to all these pieces of information because he is

an insider of the facility. More specifically, the insider can be any employee

except a security officer. We expect companies that are security-aware to

have basic physical protection around their PLCs (e.g., the PLC should be

in a locked rack or a closed room). Under this condition, physical attacks

are not among the possibilities available to the general employee, which only

has the two above described ways to obtain unauthorized access.

In our threat model, we assume that an attacker has access to a compro-

mised device (e.g., HMI) linked to a switch between the Client Area and the

Server Area. Three types of attacks are possible: A) Man in the middle; B)

Replay attack; C) Injection attack. A man in the middle attack allows an

adversary to intercept packets along with the network and modify any field

of the Modbus/TCP frame. Then, the replay attack allows an adversary

to record network traffic and re-transmit it on the network in a later time.

This attack lets the attacker to suspend the real transmission of packets

and to send back recorded traffic, pretending to be authentic. In the injec-

tion attack, an adversary can forge and inject Modbus/TCP messages with

arbitrary fields, such as Transaction ID, Function Code and Data.

We assume that the system is not leveraging other security techniques to

prevent attacks such as man in the middle. These techniques, as described

in [127], could be MAC address locking, static tables or ARPwatch.

Malicious Request
Malicious Response

Request path
Response path

Legend:

Client

C.A.
Switch

Server

S.A.
SwitchSwitch

HMI       

(a) Man in the middle

Client

C.A.
Switch

Server

S.A.
Switch

Switch

HMI       

(b) Replay attack

Client

C.A.
Switch

Server

S.A.
SwitchSwitch

HMI       

(c) Injection attack

Figure 6.3: Threat model. There are three possible attacks applicable to
the Modbus/TCP network. All these attacks assume the attacker to be
connected to a generic switch along the network (where Modbus/TCP is
vulnerable)
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6.4 TAMBUS

In this section we introduce TAMBUS . In Section 6.4.1 we introduce the

new devices added by TAMBUS to a standard Modbus/TCP network. In

Section 6.4.2 we describe how TAMBUS authenticates the previous devices

and verify the integrity of their packets.

6.4.1 TAMBUS architecture

Figure 6.4 depicts the architecture of TAMBUS based on the system model

presented in Figure 6.2. The main modules of TAMBUS are implemented

in the Client Area (Level 2 ) and the Server Area (Level 1 ) of the industrial

network. We also implemented the Process Level (Level 0 ) by using an

emulated sensor on the real PLC server. We removed Level 0 from Figure 6.4

as it is not necessary to understand the TAMBUS architecture.

Request path

Response path

Legend:
Secure AreaTC Embedder

TC Verifier

C.A.
SwitchMonitor

Server

Level 2/3 - Client Area Level 1/2 - Server Area

Switch S.A.
Switch

Probe
Client

Client

Probe
Server

Figure 6.4: Illustration of TAMBUS architecture. This figure highlights the
three new devices.

TAMBUS defines three innovative network nodes conceived to imple-

ment security in legacy industrial networks: the Monitor, the Probe Client,

and the Probe Server. These nodes send and receive the TAMBUS code,

which is necessary to authenticate packets and verify their integrity. The

nodes can assume one or two roles among TC Embedder (TAMBUS code

Embedder) and TC Verifier (TAMBUS code Verifier), which we define as

follows:

• TC Embedder (with dashed borders in Figure 6.4): the i-th TC

Embedder, with i ∈ {1, ..., n}, is appointed to embed the TAMBUS

code in the received packets (transmitted from the device it is directly

linked to) by using its own key Ki and counter Ci;
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• TC Verifier (with dotted borders in Figure 6.4): it authenticates the

i-th TC Embedder, with i ∈ {1, ..., n}. The TC Verifier checks the

integrity of the packets, sent by the TC Embedder, by verifying the

transmitted TAMBUS code. The verification procedure is done by

using the key Ki and the counter Ci (that the TC Verifier already

owns by system design) of the i-th TC Embedder.

We consider n as the total number of TC Embedders.

We present the three nodes in the following:

• Monitor: is a device that acts as a passive IDS. It is connected to the

Client Area Switch by the mirroring port. In this way, the Monitor

can access all packets from and to the Clients of its Client area. The

Monitor assumes the role of TC Verifier for the Probe Server;

• Probe Client: is a device connected between a Client and the Client

Area Switch. The Probe Client assumes the role of TC Embedder for

the requests sent by the linked Client;

• Probe Server: is a device connected between a Server and the Server

Area Switch. It can hold two roles: TC Verifier for all Probe Clients

which communicate with its Server and TC Embedder for the re-

sponses sent by its Server.

We assume that all the connections inside the Client Area and Server

Area (in light grey in Figure 6.4) are trusted and an adversary cannot com-

promise those devices. Moreover, we assume the new devices to be installed

by trusted parties, to prevent potential tampering and compromises.

The TAMBUS architecture keeps the TAMBUS codes of requests and

responses independent from each other. Consequently, if a specific scenario

just needs to make the responses secure, the actual implementation of the

system requires only the couple Monitor-Probe Server. Conversely, to make

the requests secure requires only the couple Probe Client-Probe Server. For

the reason that they are independent, it is possible to join the two scenarios

by including all three devices. The joint scenario makes both the requests

and the responses secure and all three the devices are included in the system.

6.4.2 TAMBUS code generation and verification scheme

Similar to [144], we assume that a key (K) is pre-shared, and stored in

a trusted platform module (TPM) [113]. It is important to note that the

TPM is required only on the new devices (the TC embedders and TC veri-

fiers). The TPM is not required to be available on the legacy devices of the
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network, since these devices do not store any keys in the TAMBUS archi-

tecture. An example of cheap new device may be a Raspberry Pi equipped

with a TPM module. TPM module is vulnerable to the TPM-fail attack.

However, we do not consider this attack a possible threat since it requires

or a fast network or physical access to the TPM. About fast networks, this

is not the case for the involved Modbus network. About physical access we

already state in Section 6.3 that the Client area should be restricted to ac-

cess. Moreover, over the last months, firmware resistant to TPM-fail attack

have been released 1.

A key is always shared between two devices: a TC Embedder and the

corresponding TC Verifier. The keys cannot be configured during the pro-

duction of the devices, but they require to be installed by authorized parties

during the securing process of the facility.

In Figure 6.5, we depict how the new devices introduced by TAMBUS

interact during the Request scenario (Figure 6.5a) and the Response scenario

(Figure 6.5b). We used a different pattern for the border of the rectangle

only for the devices that play an active role in their specific scenario: dashed

borders represents the TC Embedders, instead dotted borders are for the

TC Verifiers. Note that a device playing one role in a specific scenario can

play the opposite role or even no role in the opposite scenario. Inside every

TC Embedder and TC Verifier device, we reported the elements involved

in the TAMBUS code Generation and Verification: keys (Kx), counters

(Cx), and processed packets (Dmx). For instance, in Figure 6.5a (Request

Scenario) the Probe Server contains the same three elements used also by

the Probe Client 1 to generate the TAMBUS code. The Probe Server pre-

shares the key and the counter with the Probe Client 1. The counters

are always synchronized between the devices, since their increase always

happen together. The request packet, thanks which the TAMBUS code is

transmitted, transits form the Probe Client 1 to the Probe Server using

the normal Modbus/TCP network. We explain the implementations of the

proposed covert channels in Section 6.5.

In the following we describe the TAMBUS code generation and verifica-

tion scheme step by step:

• Packet generation: A Sender Device generates a Modbus/TCP

packet and sends it to a specific Destination Device;

• TAMBUS code generation: The TC Embedder intercepts the

packet and generates the corresponding TAMBUS code using its own

1Refer to https://tpm.fail/ for details.
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Figure 6.5: Illustration of TAMBUS architecture showing keys and counters
management for the Request and Response scenarios.
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key (K) and counter (C). After the TAMBUS code generation, the

local counter C is incremented. Once the TC Embedder creates the

TAMBUS code, it sends the packet and the respective TAMBUS code

to the original Destination Device: the first using the standard Mod-

bus/TCP channel and the second by using the specific implemented

TAMBUS covert channel;

• TAMBUS code Verification: The TC Verifier receives the packet

(by the standard Modbus/TCP channel) and the corresponding TAM-

BUS code (by the TAMBUS covert channel). The TC Verifier recog-

nizes which Sender Device generated the message by using its static

IP (provided by the TCP level of the Modbus/TCP protocol). Using

a preexisting map between a Sender Device and the corresponding TC

Embedder, the TC Verifier recognizes which TC Embedder generated

the TAMBUS code. Hence, the TC Verifier recomputes the TAMBUS

code by using the local copies of the key (K) and the counter (C) of

the recognized TC Embedder. After the verification process, the local

copy of the counter C is incremented to stay synchronized with the

counter of the TC Embedder.

Note that the operation of TAMBUS is not tied in any way to the use

of static IP. It can work if the IPs are dynamic thanks to a simple shared

table containing all the dynamic associations. However, the latter scenario

is considered extremely rare, since ICSs widely use static IPs.

TAMBUS leverages two covert channels, storage-based and timing-

based, to send the a TAMBUS code for both Modbus/TCP requests and

responses. TAMBUS is fully functional with the use of storage-based covert

channel. However, in this work we also investigated a solution offered by the

timing-based method, as this can sometimes be useful for some particular

use cases. These covert channels can be implemented singularly or jointly.

Likewise, the packet verification procedures for requests and responses are

independent. Consequently, according to specific needs, they can be imple-

mented both or singularly. Considering only a single packet, TAMBUS is

able to guarantee the transmitter to be trusted with a certain confidence (see

Section 6.7 for a detailed explanation). This property can be successfully

exploited to create a secure Modbus/TCP protocol, in that Modbus/TCP is

used in situation where polling request are continuously performed to read

data from PLC servers. In this contest, the probability of an attacker to

successfully modify a large amount of packets decreases with the number of

packets to modify. We will carefully describe the security details of TAM-

BUS in the next sections.
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Here below, we describe the parameters used by TAMBUS to define

the TAMBUS code generation and verification scheme. We consider n as

the total number of TC Embedders. The parameters used by TAMBUS to

generate the TAMBUS code are summarized as follows:

• The key Ki with i ∈ {1, ..., n} is a pre-shared key saved in the i-th TC

Embedder. A copy of the same key is also present on the corresponding

TC Verifier;

• The local counter Ci with i ∈ {1, ..., n} is an incremental value kept

independently on each device. The counter is initialized and updated

using the same rules on every pair of TC Embedder and TC Verifier.

The counter is incremented each time the TC Embedder and the TC

Verifier respectively generate and verify a TAMBUS code.

The local counters are independently updated by the TC Embedder and

TC Verifier, so a de-synchronization of counters is possible. The counter

size may vary depending on the number of operation per second. However,

a 64-bit integer should always be more than enough to avoid security issues

due to counter restart. More details are provided in the next sections where

we give a re-synchronization procedure.

6.4.2.1 TAMBUS code generation

We define D as the TCP payload (corresponding to the entire Modbus/TCP

frame). Starting from D we define a generic Dm, a modified payload gen-

erated from D. The specific rules used to generate Dm will be introduced

in Section 6.5. We compute the HMAC, which generate an authentication

message Am based on Ki, Ci, but also on the message content Dm:

Am = HMAC(Ki||Ci, Dm),

where HMAC function is the Hash-based message authentication code algo-

rithm and || is the bit concatenation operator. Implementations of TAMBUS

are free to use whichever hashing algorithm for HMAC and sizes of keys that

are considered strong enough to achieve the desired system security.

Am is usually hundreds of bits long but the TAMBUS codes used by

TAMBUS require a fixed and low amount of bits. We define a general

function that reduces the size of Am to the desired number of bits. We

name this function Reducing Function (RF ) and we define it as follows:

Tambus code = RF(Am).
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The output of this function is the TAMBUS code, which is transmitted

through the covert channel. For the specific definitions of the variable Dm

and the function RF we refer to the Section 6.5, in which we detailed explain

the used covert channels.

6.4.3 Initialization and counter Re-Synchronization

The initialization procedure for TAMBUS is quite simple. The TAMBUS

devices must be connected to the original Modbus/TCP network as ex-

plained in Figure 6.4 – this is the only scenario in which TAMBUS requires

to disconnect the Client and the Server from the working network. The TC

Embedder and TC Verifier must be already initialized with the respective

keys and the counters must be aligned. If the TC Verifier is an already

installed Monitor, a new key must be added in order to allow the verifica-

tion process for the new TC Embedder. Moreover, the counters must be

initialized with the same random number on both the TC Embedder and

the TC Verifier. After these steps, TAMBUS is ready to embed and verify

TAMBUS codes.

We also consider possible situations when the counters (of a pair TC

Embedder/TC Verifier) may go out of synchronization. This may happen

in two different scenarios: first when an attacker is introducing or removing

Modbus/TCP packets, second when an error occurs on the network or on

TAMBUS devices (e.g., unexpected power outages). The first scenario con-

sists of the usual way of operating of TAMBUS . When the attacker injects

or replies one or more packets, TAMBUS goes out of sync. The consequence

is that an alarm is raised, and the attack is correctly detected and notified

to the security staff. At this point, the threat is handled by security experts.

They will manage the attack in a way that protects the integrity and secu-

rity of the ICS. About the second scenario, we precise that Modbus/TCP

is based on TCP, which is a connection-oriented protocol. Consequently,

the TC Embedders and TC Verifiers (which have access to all the packets

passing through the network) are able to identify if Modbus/TCP failed to

send a packet and so they can autonomously realign their counter if needed.

Therefore, we can state that if TAMBUS detects a de-synchronization, it

can assume that an attack is ongoing. Indeed, de-synchronization due to

random factors are almost completely excluded thanks to the TCP proto-

col.

In any case, if it is necessary to realign the counters of TAMBUS , it is not

possible to reset the devices by shutting them down, because ICSs require

continuous availability (shutdowns are planned months or years in advance).
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To realign them, it is possible to re-synchronize the counters by using pre-

defined Modbus/TCP requests (irrelevant for non-TAMBUS devices). To

accomplish this safely, each device has an additional maintenance key and

a list of infinite maintenance counters (unique for each device) that are

generated thanks to a dedicated hashing function. These specific requests

indicate to the involved devices to use the next maintenance counter as

the counter used by TAMBUS . However, the procedure just mentioned is

outside the scope of this work. The reader should also note that even if

TAMBUS devices are de-synchronized, the traffic is not blocked in any way

and the system continues functioning normally. This transparent behavior

by TAMBUS is necessary, as stopping packets could produce even more

serious problems than an attack itself.

6.5 Covert channels

In this section, we describe the overall functioning of the proposed covert

channels applied to a Modbus/TCP network. We refer to the next chapter

for the individual implementations of the covert channels. In Section 6.5.1

we describe the storage-based covert channel, while in Section 6.5.2 the

timing-based covert channel.

6.5.1 Storage-based covert channel

The storage-based covert channel exploits the Modbus/TCP frame to trans-

mit information between two devices. TAMBUS works using a minimum of

1 dedicated bit of the Modbus/TCP frame as covert channel. In Figure 6.6

we show a scheme of a storage-based covert channel. The depicted scheme

describes the procedure explained in 6.6.1, but it could be generalized by

considering a different portion of the Modbus/TCP frame. The TC Em-

bedder intercepts the packet P and replaces one or more bits of the TCP

payload with a TAMBUS code. To generate the TAMBUS code, the TC

Embedder generates Am and considers Dm as D minus the bits reserved

for the covert channel. After that, by using a reducing function, it obtains

the TAMBUS code. Finally, the TC Embedder embeds the TAMBUS code

into the reserved bits for the covert channel and sends it to the Destination

Device. We call MP the modified packet.

The packet reaches the TC Verifier, which verifies if the TAMBUS code

is authentic. To infer the TAMBUS code, the TC Verifier generates Am

by using the local copy of the key K and the counter C, and Dm. The TC

Verifier considers Dm as D minus the bits reserved for the covert channel
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Figure 6.6: Storage-based covert channel authentication procedure.

(exactly the same considered by the TC Embedder). After the generation of

Am, the TC Verifier calculates the TAMBUS code by using the same reduc-

ing function used by the TC Embedder. Finally, it compares the calculated

TAMBUS code with the one embedded in MP and checks if they are equal.

If it detects a mismatch, it raises an alarm to inform the facility staff of a

possible ongoing malicious attack.

6.5.2 Timing-based covert channel

In this scenario, the TC Embedder intercepts the packet P and it transmits

a TAMBUS code by modulating timing events. In Figure 6.7 we show a

scheme of a timing-based covert channel. To generate the TAMBUS code,

the TC Embedder calculates Am and it considers Dm as the entire payload

D. After that, by using a reducing function, it generates the TAMBUS code

as a 1-bit version of Am, which only possible values are 0 and 1. Note that the

reducing function is not the same used on the storage-based covert channel,

since the timing-based and storage-based are completely independent and

do not share information.

The TC Embedder, through the timing-based covert channel, transmits

a Tambus code = 1 by waiting a certain amount of time before sending the

packet P to its Destination Device. Conversely, it transmits a Tambus code

= 0 by re-transmitting it without waiting.

We define the waiting time as WT and its value is empirically defined

based on the network characteristics (transmission medium, number of con-
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nected devices, distance between the devices). To summarize, TAMBUS is

configured as follows:

• TAMBUS code = 0 → no waiting;

• TAMBUS code = 1 → waiting time (WT ).

We empirically define the value of WT by balancing two factors: it has

to be big enough to minimize the detection of wrong TAMBUS codes, but

it has also to be small enough to not introduce a significant delay on the

network.

The TC Verifier, to recover the TAMBUS code transmitted through

the covert channel, registers two different timestamps. The timestamps

registered will be different based on the type of authentication (responses

or requests). We call ∆ the difference between the two timestamps and we

define it as follows:

∆ = T2 − T1. (6.1)

Where T1 and T2 are respectively the first and the second timestamp

registered by the TC Verifier. We set a threshold TH that the TC Verifier

uses to infer the TAMBUS code transmitted by the TC Embedder. The TC
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Verifier computes the TAMBUS code as follows:

Tambus code =

{
0 if ∆ ≤ T
1 if ∆ > T.

The threshold TH is empirically defined by considering several parameters,

such as the minimum and maximum ∆ registered on the network. Theoret-

ically, the value of TH should be inside a specific range: between the maxi-

mum possible ∆ registered on packets with TAMBUS code = 0 (no waiting

time) and the minimum possible ∆ registered on packets with TAMBUS

code = 1 (waiting time = ST). We discuss in detail how to set the value of

WT and TH in the Section 6.8.2.1.

Finally, the TC Verifier generates Am by using the key K and counter C

related to the TC Embedder, and considers Dm as the entire payload D of

the packet P to verify. After the generation of Am, the TC Verifier calcu-

lates the TAMBUS code by using the same RF used by the TC Embedder.

Finally, it compares the calculated TAMBUS code with the one transmitted

with the covert channel (obtained by comparing ∆ with the threshold TH)

and checks if they are equal. If it detects a mismatch, it raises an alarm to

inform the facility staff of a possible ongoing malicious attack.

6.6 Implementation

In this section, we describe how we applied the storage-based and timing-

based covert channels. We separately show how these two covert channels

operate for the response packets (Section 6.6.1) and the request packets

(Section 6.6.2).

6.6.1 Covert channels for responses

6.6.1.1 Storage-based covert channel for responses

This covert channel exploits a particular property of the floating-point values

to transmit one (or even more) bit using the normal Modbus/TCP channel.

For this reason, in this scenario we make the following assumption: the type

of the last two registers contained in the response packet must be floating-

point (Modbus/TCP saves 32-bit floating-point using two 16-bit registers).

The memory, on Modbus/TCP servers, is organized in big-endian [106] and

it is possible to know in a deterministic way that the second register contains

the LSB. This assumption is acceptable because in Modbus/TCP is realistic

to assume that a response packet contains at least a floating-point number.
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This happens because the PLC Servers collect data from industrial sensors,

so it is ordinary that the PLCs save them as floating-point numbers. More-

over, despite our assumption, if a floating-point value is not present, then

we assert that our method is still usable, but it would be more intrusive and

its level of effective applicability may change from case to case (i.e., mod-

ifying integers). However, this scenario is outside the scope of this covert

channel method. If any data type can be modified, the Protocol Identifier

can be used to transfer data (exactly as the storage-based covert channel for

requests 6.6.2.1).

In this scenario, the Probe Server as the TC Embedder intercepts the

response packets and modifies the LSB, of the last floating-point value of

these packets, to send a 1-bit TAMBUS code to the Monitor (i.e., the TC

Verifier). In this context, we define the parameter Dm, used to generate Am,

as the complete payload D of the response packet minus the last bit of D

itself. The reader should note that (as explained in 6.2 and considering our

assumption) the last bit of a Modbus/TCP response is precisely the LSB of

the last floating-point value contained in it (that is the value we want to

exploit for our covert channel).

In this scenario, TAMBUS allows to transmit one bit through the covert

channel. For this reason, the TAMBUS code must be 1-bit long and we

defined the Reducing Function to create a condensed 1-bit version of Am.

Hence, the Probe Server (as TC Embedder) replaces the last bit of the inter-

cepted response with the TAMBUS code returned by the Reducing Function

(number 1 in Figure 6.8a). Note that the replaced bit is the one that was

discarded when creating Dm from D. We call MR the modified response

packet.

The Probe Server sends backMR to the Client. When the packet reaches

the C.A. Switch, the Monitor receives a copy of MR and checks if the

TAMBUS code is valid (number 2 in Figure 6.8a). To infer the TAMBUS

code, the Monitor generates Am by using the key K, the counter C and Pm.

The Monitor considers Dm as the payload D of MR minus the last bit of MR

itself (exactly as we defined earlier Dm defined from D). At this point, the

Dm defined on the Monitor (i.e., the TC Verifier) must be exactly the same

Dm defined on the Probe Server (i.e., the TC Embedder). Consequently, the

generated Am on the Monitor must be exactly the same of Am contained in

the Probe Server. Finally, the Monitor computes the TAMBUS code using

the same Reducing Function used by the Probe Server, and compares it with

the corresponding TAMBUS code sent by the Probe Server in the last bit

of MR. If the computed TAMBUS code does not match with the last bit
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of MR, the Monitor raises an alarm to inform the facility staff of a possible

ongoing malicious attack.

We propose the LSB as storage-based covert channel for responses since it

has two main advantages compared to the implementation used on requests,

explained in 6.6.2.1. First, TAMBUS introduces an error so small in the

modified floating-point that it can be ignored by the applications on the

Client. This error is equal to the machine epsilon relative to the modified

floating-point number – i.e., 1.19× 10−5% in the case of a common floating-

point 32 bits. Second, a change in the LSB is not directly noticeable by a

possible attacker, and therefore it will be more difficult for him to understand

whether a system is protected or not by TAMBUS . TAMBUS cannot use

the LSB in three cases: when any floating-point value is available (and

it is not possible modifying any data); when a response does not include

return values (e.g, in write requests); when even the introduction of a small

machine epsilon error can not be tolerated by the system. In all these

cases, TAMBUS makes the responses secure by using the Protocol Identifier

(exactly as explained in 6.6.2.1).

6.6.1.2 Timing-based covert channel for responses

The Monitor saves the arrival timestamp of a request in the C.A. Switch

(number 1 in Figure 6.8b). The Probe Server intercepts the response packet

(number 2 in Figure 6.8b). It calculates Am and generates the TAMBUS

code from that. Then, it transmits the TAMBUS code to the Monitor by

following the rules explained in 6.5.2 (hence waiting or non waiting before

sending back the packet). Then, the Monitor saves the arrival timestamp

of the response in the C.A. Switch (number 3 in Figure 6.8b). To recover

the TAMBUS code transmitted through the covert channel, the Monitor

computes the difference between the two collected timestamps. Therefore,

in this scenario we define ∆ based on Equation (6.1). The Monitor uses as

T1 and T2 the arrival collected timestamps of the request and the response

respectively.

These operations are possible because the Monitor, thanks to the mir-

roring port, can observe all the traffic passing in the C.A. Switch. Note that

the monitor does not receive a packet at the same time it passes through

the C.A. Switch. This happens because the packet is cloned thanks to the

mirroring port and it has to reach physically the Monitor. This phenomenon

could bring some delay in the measurement of ∆, but it does not affect the

process.
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Figure 6.8: Implementation of the covert channels for the response packets.
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Finally, the Monitor compares the TAMBUS code generated from Am

and the one recovered from the covert channel to check if they are equal.

6.6.2 Covert channels for requests

In this section, we describe how TAMBUS exploits the storage-based and

timing-based covert channels to send TAMBUS codes in the request packets.

6.6.2.1 Storage-based covert channel for requests

In Modbus/TCP , two different types of requests exist: read and write. Read

requests contain the address and the number of the registers, or coils, re-

quested by the Client. Conversely, write requests contain the values to

write in the Server and the memory address location in which the Server

saves them. Hence, read requests do not contain floating-point values and

TAMBUS cannot modify the values of write requests because they are criti-

cal (i.e., directly connected with the industrial process). For this reason, the

request storage-based covert channel, differently from the response storage-

based version, can not take advantage a floating-point value to hide a TAM-

BUS code.

We considered different possibilities and evaluated which was the best

field in which TAMBUS could transmit the TAMBUS code. It is possible

leveraging the following fields: address, function code, word count, protocol

identifier and the payload which contains data. Several of them (address,

function code, data) introduced assumptions on the TAMBUS architecture

and consequently we discarded them. The word count field is exploitable

without introducing assumptions, but it is available only on read and “mul-

tiple write” requests. The only modifiable field, that is in common between

all type of Modbus/TCP requests and does not introduce assumptions, is

the protocol identifier. This field is 16-bit long and it is filled entirely with

zeros to state that the packet is a Modbus/TCP frame. TAMBUS use this

field to transmit the TAMBUS code and restores it to 16-bits of zeros before

the request arrives at the Server.

In this scenario, the Probe Client, as TC Embedder, intercepts the re-

sponse packets and modifies the protocol identifier field to send a 16-bit

TAMBUS code to the Probe Server (i.e., the TC Verifier). In this context,

we define the parameter Pm, used to generate Am, as the complete payload

P of the response minus the 16 bits of the protocol identifier field.

Thus, TAMBUS allows to transmit 16 bits through the covert channel.

For this reason, the TAMBUS code must be 16 bits long and we defined the

Reducing Function to create a condensed 16-bits version of Am. Hence, the
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Probe Client (as TC Embedder) replaces the bits of the protocol identifier

of the intercepted response with the TAMBUS code returned by the Reduc-

ing Function (number 1 in Figure 6.9a). Note that the replaced bits are

the ones discarded when creating Dm from D. We call MR the modified

request packet.

The Probe Client sends MR to the Server. The packet is intercepted by

the Probe Server, that checks if the TAMBUS code is valid (number 2 in

Figure 6.9a). To infer the TAMBUS code, the Probe Server generates Am

by using the key K, the counter C and Dm. The Probe Server considers

Dm as the modified payload MR minus the 16 bits of the protocol identifier

(exactly as we defined earlier Dm starting from D). At this point, the Dm

defined on the Probe Server (i.e., the TC Verifier) must be exactly the same

Dm defined on the Probe Client (i.e., the TC Embedder). Consequently, the

generated Am on the Probe Server must be exactly the same of Am contained

in the Probe Client. Finally, the Probe Server computes the TAMBUS code

using the same Reducing Function used by the Probe Client, and compares

it with the corresponding TAMBUS code sent by the Probe Server in the

protocol identifier of MR. If the computed TAMBUS code does not match

with the protocol identifier of MR, the Probe Server raises an alarm to

inform the facility staff of a possible ongoing malicious attack. After the

Verification process, the Probe Server restores all the bits of the protocol

identifier to 16 zeros, to ensure the correctness of the Modbus/TCP frame.

In fact, the Server would reject the packet if the protocol identifier is not

set to 16 zeros.

6.6.2.2 Timing-based covert channel for requests

Firstly, the Probe Client intercepts the request packet (number 1 in Fig-

ure 6.9b). It calculates Am and generates the TAMBUS code from that.

Then, it transmits the TAMBUS code by following the rules explained

in 6.5.2.

The Probe Server, to obtain information to generate the TAMBUS code,

registers two timestamps: the arrival timestamp of the request number X

(number 2 in Figure 6.9b) and the arrival timestamp of request number

X + 1 (number 3 in Figure 6.9b). We define ∆ based on Equation (6.1)

and using as T1 and T2 respectively the arrival timestamps of the request

and the response in the Probe Server.

The value of ∆ is compared to the threshold TH and the comparison

determines the value of the TAMBUS code.
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Figure 6.9: Implementation of the covert channels for the request packets.
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6.6.3 Possible options for TAMBUS

To reduce the number of new devices and to maximize the cost-benefit ratio,

it is possible to choose between different variants of TAMBUS , based on the

necessities of the facility. For example, we can limit the use of TAMBUS

only to those clients allowed to send write requests (e.g., “Write Single Coil”,

“Write Single Holding Register”), so discarding merely visualization HMIs

and clients used only to collect data. A company could target only write

requests because they are the most dangerous ones since an unauthorized re-

quest could turn on/off machinery and cause disastrous consequences. Turn-

ing to the use of TAMBUS only for responses, we have two different options

for the TC Verifier: using a Monitor or using a Probe Client. The work

carried out by the Monitor could be performed, with any modification, by

each Probe Client. Using a Monitor is preferable because it can be the

TC Verifier for all the Clients attached to the C.A. Switch; on the other

hand, using a Probe Client would require a new device for each installed

Client. Moreover, the Monitor is a not intrusive device, and it behaves as

a passive IDS, while the Probe Client requires adding a new device in the

middle of already existing cable connections. The use of a Probe Client

could be recommendable if TAMBUS is already implemented for requests

on the Client.

6.7 Security Discussion

Compared to existing Modbus/TCP authentication methods, TAMBUS pro-

vides for the first time two essential features together in the same method:

first, no changes are made to the Modbus/TCP protocol and second, the

method is implemented in a provable secure design (while other proposed

methods only provide the first features in security by obscurity design).

TAMBUS can detect attacks that modify packets or that create new ones

(man in the middle, replay, and injection) with an high degree of confi-

dence. Moreover, the features provided by TAMBUS are independent from

Modbus/TCP . Hence, TAMBUS could theoretically be applied to all un-

encrypted protocols: the assumption to have a Float value or an unused

header field remains for the storage-based covert channel, but there are no

limitations for the timing-based version.

Detecting Man in the middle: in the man in the middle attack, the

adversary has access to one of the non-secure switches on the network. It

intercepts, modifies, and sends again the packet to its Destination Device.

Since the adversary has no access to the key (K) to generate the TAMBUS
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code, by modifying at least one bit of the packet, it invalidates the TAMBUS

code transmitted through the covert channel.

Detecting Replay Attack: an attacker has infiltrated into the net-

work and is interrupting legitimate traffic, attempting to send previously

transmitted messages. Its hope is to transmit traffic that embed a valid

storage-based TAMBUS code. However, such attempt will be detected by

TAMBUS due to the use of the counter C. This attack causes the de-

synchronization between the counters of the TC Embedder and TC Verifier,

and after the threat resolution, the staff has to initialize them again. We

should also consider the possibility that the counter reaches the maximum

values and restarts from zero. However, this possibility does not apply to

realistic cases of Modbus/TCP . By using a 64-bit counter and considering

an extremely high frequency of operations per second (e.g. 1000), it results

that the time taken for the counter to return to zero would be far greater

than the useful life of the PLC.

Detecting Injection Attack: an attacker has infiltrated into the net-

work and it transmits fake requests to the Server. When the Probe Server

receives the fake request, it recognizes that the request comes from a client

which is not part of the group of legitimate clients. Consequently, the Probe

Server raises an alarm. We do not consider the injection of fake responses

since a Client accepts responses only if it made the corresponding requests.

This attack causes the de-synchronization between the counters of the TC

Embedder and TC Verifier, and after the threat resolution, the staff has to

initialize them again.

TAMBUS allows adding to Modbus/TCP an additional security level

able to detect attacks with high statistical confidence. TAMBUS cannot,

therefore, be considered a solution in specific cases where it is necessary to

provide the guarantee that not even a single bit in a long flow of packets

has been modified. For instance, it is not the case in power or nuclear

plants, where a single modification in a packet could lead to explosions

and serious damages to the infrastructure. TAMBUS can be successfully

used in all those cases in which an attack would require the modification of

multiple messages to seriously damage a system. For instance, facilities with

high security requirements would not use TAMBUS , but they would rather

prefer more sophisticated and expensive protections. Therefore, TAMBUS

is advisable to companies that want to increase the security level of their

infrastructures while keeping the costs low.

For the sake of clarity, we remind the reader that Modbus/TCP contin-

uously performs requests at regular intervals since it is used as a polling

protocol. This implies that TAMBUS continually add TAMBUS codes
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to the transmitted Modbus/TCP responses. If an attacker aims to sup-

ply fake measurements of a sensor to a Client, it should modify a stream

of several packets. The probability of guessing a sequence of n packet is

P (response sequence) = 1
2n . However, according to the needs of the facil-

ity, TAMBUS security may be improved by using additional available bits

in the Modbus/TCP frame. For instance, it is possible to use more bits than

only the single LSB, since in several circumstances the sensibility of sensors

do not go beyond 10−3. Moreover, if the security is a main concern, it is also

possible using the 16 bits of the protocol identifier as in the request scenario

described below. Therefore, an attack that aims to continuously modify the

level of a sensor is not practicable in a real scenario.

The assumption of a stream of packets cannot be used for the Mod-

bus/TCP requests. Indeed, even a single malicious Modbus/TCP request

may have catastrophic effects on a facility. However, the number of bits

available for a TAMBUS code in a request is 16, this means that an at-

tacker has a possibility on 65.636 to guess the right TAMBUS code for a

single packet. It is possible to further decrease the chances of a success-

ful attack on the requests by adding the timing-based covert channel. In

the joined scenario the probability is one more than 4 billions of attempts.

TAMBUS is resistant to different types of attacks directed towards the de-

vices added to the Modbus/TCP system. Indeed, the devices introduced

in the system do not need an IP address on the Modbus/TCP network.

This feature, combined with the prerequisite that the additional devices are

not physically reachable, since they are within a secure area, makes really

difficult to attack TAMBUS with both direct and remote attacks.

6.8 Evaluation

In this section, we provide the results of our experiments. We first describe

in Section 6.8.1 the common approach used in the experiments, while in

Section 6.8.2 we provide the actual results collected on our testbed.

6.8.1 Experiments on testbed

We evaluated the covert channels by running several experiments with the

testbed in Figure B.2. During our tests, the Client is continuously sending

requests to the Server. When it receives a response, it waits 50 ms be-

fore performing the next request. Since the scope of our experiments was

not to optimize the implemented solution in term of performance, but to

demonstrate the effectiveness of our method, we implemented TAMBUS us-
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ing the Python language. During our experiments, we intercepted packets

using Linux iptables and netFilterQueues, while we sniffed packets using the

Python module scapy. To determine the impact of TAMBUS , we measured

separately the time necessary to route and to modify a packet on 50.000 Mod-

bus/TCP transactions. The collected measurements show that the Python

implementation takes on average 19 ms to filter, intercept, modify, and re-

send a packet. This amount of time is composed by: 8 ms to intercept

and filter the packet, 1 ms to modify the packet (i.e., the implementation

of TAMBUS ), and 10 ms to manage the packet payload (e.g., type conver-

sions). Therefore, measurements show that TAMBUS , by itself, introduces

a minimal overhead in a normal Modbus/TCP protocol. To implement the

HMAC function we used a SHA-256 and a 32 byte key. The time of 1 ms

spent to modify a packet is really important, since it allows us to compare

TAMBUS with alternative methods. Indeed, the remaining 18 ms would be

common to all possible alternatives, and only the time spent to elaborate the

original packet is meaningful. Moreover, an optimized version of our script

(e.g., based on C++), would certainly decrease the total execution time of

our method, thus providing performance even better of the one presented in

this section.

6.8.2 Covert Channels results and performance analysis

6.8.2.1 Evaluation of Timing-based Covert Channel

We evaluate the timing-based covert channel in two different scenarios. In

the first one we considered the feasibility of implementing this covert channel

on the proposed testbed. In the second one, we investigate the impact of

external network traffic on the performance of the covert channel. In both

scenarios, we evaluate the timing-based covert channel by performing two

different experiments: one for requests and one for responses.

In the first scenario, we define the threshold TH and the waiting time

WT based on the values of ∆ recorded in the testbed. To define ∆ we

use the Equation (6.1). Note that, different values of TH and WT bring

to different performances on the timing-based covert channel. For this rea-

son, we conducted the experiments using two pairs TH/ST (respectively

TH1/ST1 and TH2/ST2) to highlight the impact of such parameters. Note

that, we calculate two thresholds for each experiment – two for the requests

experiment and two for the responses experiment.

In both the experiments, we followed the below procedure:
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Table 6.2: Error obtained transmitting the TAMBUS code with the Timing-
based covert channel. We collected 100k packets for every experiments.

Methods 0→1 1→0 Total TH Waiting
error (%) error (%) error (%) (ms) Time (ms)

a) Request 99.95 6.2e-4 6.1e-4 1.2e-3 20.90 9.92
b) Request 99.99 6.0e-5 1.8e-4 2.2e-4 25.90 17.05
c) Response 99.95 3.0e-4 8.4e-4 1.2e-3 19.09 9.78
d) Response 99.99 2.4e-4 1.4e-4 3.8e-4 20.90 13.10

1. We run 50K requests without leveraging the timing-based covert chan-

nel, and we calculate all the values of ∆ (i.e., one value of ∆ for each

request).

2. Once obtained the values of ∆, we calculate the thresholds TH1 and

TH2 respectively as the 99.95 and the 99.99 percentile of the collected

values. We define L1 and L2 respectively as the 0.05 and 0.01 percentile

of the collected values of ∆. Finally, we define the waiting time ST1
and ST2 as TH1 − L1 and TH2 − L2 respectively.

3. We run two different experiments by including the timing-based covert

channel, both made up of 500K requests. As parameters we used the

pair TH1/ST1 for one of the experiment, TH2/ST2 for the other.

In Figure 6.10, we show the results for the timing-based covert channel

on requests (6.10a and 6.10b) and responses (6.10c and 6.10d). We colored in

blue the packets carrying 0 as TAMBUS code and in red the packets trans-

mitting a 1 as TAMBUS code. We represent the position of the threshold

TH with a green vertical line.

In Table 6.2, we report the detailed performances collected during the

same experiments of the graphs of Figure 6.10. The total percentage of er-

ror is never greater than 10−3 as the order of magnitude. The first column

indicates the type of Modbus/TCP message (request or response) and the

percentile considered to generate TH and WT . We also report the letter of

the corresponding graph in Figure 6.10. The second column shows the per-

centage of packets transmitting a TAMBUS code 0 but incorrectly classified

by the TC Verifier as TAMBUS code 1 (late packets). Conversely, the third

column shows the percentage of packets transmitting a TAMBUS code 1

but erroneously classified by the TC Verifier as TAMBUS code 0 (advance

packets).

We evaluate TAMBUS using two different pairs TH/ST to show that

it is possible to choose between different security levels of TAMBUS , based
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Figure 6.10: Distribution of values of ∆ for packets transmitting TAMBUS
code = 0 (in blue) and TAMBUS code = 1 (in red). The green vertical line
represents the used threshold TH.
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on the necessity. A higher threshold would bring a lower error rate but a

higher average delay. Conversely, a lower threshold would bring an higher

error rate but a lower average delay. For instance, by choosing a threshold

using the 99.95 percentile, a company allows the existence (in mean) of 0.05%

of possible wrong packets over a certain amount of time. An high error rate

means that, over a certain amount of time, an adversary has more chances

to modify some packets without being noticed by TAMBUS . However, the

timing-based covert channel is a statistical method and can detect anomalies

if the percentage of errors goes above the chosen one.

The results of the first scenario show low error rates, demonstrating that

the timing-based covert channel can effectively be implemented. However,

even if the results in Table 6.2 evaluate a realistic situation, they do not

consider any external traffic on the testbed. For this reason, in the second

scenario, we performed two new experiments to test the timing-based covert

channel in a more realist traffic scenario. To do this, we repeat the previous

experiments adding to the testbed 10 extra clients (a single device simulates

all of them). All extra clients perform requests every 50 ms to the Server.

We perform the experiment only for the 99.99 percentile since this value get

a lower bound on the performance of the timing-based covert channel. In

Figure 6.11, we show the results of our experiment. We represented in green

the time performance of a normal TAMBUS execution without extra clients

(i.e., the same data of Figure 6.10b and Figure 6.10d), while in orange we

represented the time performance with 10 extra clients. We observe that

TAMBUS performances are still good: the new values for the waiting times

are respectively 21.68 ms for the requests and 13.36 ms for the responses.

Compared with the waiting time found in the first experiment (for requests

and responses with percentile 99.99), the waiting time increases only of 4.63

ms for the requests and 0.26 ms for the responses. We can state that the

greater values of the waiting times are due to the more significant workload

on the TC Verifiers, which causes a higher variance of the collected ∆ values.

The TC Verifiers have to filter and check more packets, and this operation

could influence the accuracy in the calculation of the arrival times, increasing

so the variance of ∆. We have also found that the error percentage remains

stable on the order of 10−4 for both the experiments: respectively 6.0×10−4

for the response scenario and 4.36× 10−4 for the request scenario.

An important factor for the applicability of the timing-based covert chan-

nel is the average jitter of the network in which it is implemented. A complex

ICS could have an average jitter higher of that one found in our testbed. To

have further confirmation on the usability of the timing-based covert chan-

nel, we compared our threshold values with the maximum delay detected by
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Figure 6.11: Distribution of values of ∆ for the packets transmitted in a
Modbus/TCP network with only one Client (in green) and with 10 extra
devices performing requests in the same network (in yellow). We represent
the respective thresholds using the same colors.

Joelianto et al. in [82]. The results obtained by this previous work showed,

on three different network topologies, a maximum delay of 16 ms. This value

has the same order of magnitude of the thresholds that we found in our ex-

periments with extra devices. Based on these results, we can assume that

the timing-based method is implementable in most Modbus/TCP systems

having a reasonable traffic load.

6.8.2.2 Evaluation of Storage-based Covert Channel

We evaluate the storage-based covert channel by performing three differ-

ent experiments: one for requests, one for responses and one with both of

them together. The TC Embedders intercept the packets and embed the

TAMBUS code into the Modbus/TCP frame. As expected, in all the exper-

iments the TC Verifier never encounters a TAMBUS code error. We

also evaluate the storage-based covert channel timing performances. Results

showed that responses take on average 20.04 ms to arrive at the destination,

while requests take 38.97 ms. As reported in 6.8.1, about 18 ms of delay

are introduced by the packet interception procedure (requests packets are

intercepted twice). These results shows that generating the TAMBUS code

and inserting it into the Modbus/TCP packet takes on average only 2 ms.

Every security system that intercepts and modify packets introduce a timing

overhead that could be not irrelevant for real-time systems. For this reason,

the security staff has to decide the security method based on the necessities
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of the facility. However, this problem affects every procedure that intercepts

packets and it is not imputable to TAMBUS .

6.9 Summary

In this chapter, we presented TAMBUS , a method to provide authentication

and packet integrity for Modbus/TCP . TAMBUS is the first method to

provide at the same time the following features: (i) it is not a security by

obscurity method, and (ii) it is compatible with legacy industrial devices.

TAMBUS takes advantage of a storage-based and a timing-based covert

channels to transmit authentication and integrity information between the

Modbus/TCP clients and servers. This enhances the security features of

Modbus/TCP , making it resistant to man in the middle, replay, and injection

attacks with high statistical confidence.

We tested TAMBUS in a real testbed including an actual Wago PLC. We

implemented both the storage-based and timing-based covert channels and

tested them in separated experiments. For each experiment, we collected

100K packets. We also tested the timing-based covert channel in a scenario

which included realistic external traffic on the Modbus/TCP network. To

show the effectiveness of TAMBUS , we implemented and tested three differ-

ent attacks against TAMBUS . Results show that TAMBUS can effectively

protect Modbus/TCP by providing authentication and integrity of the pack-

ets. The timing-based covert channel achieved good results, obtaining an

error rate on the TAMBUS code transmission never bigger than 10−3%. For

the experiments with a single client we got a maximum delay of 17.05 ms,

while for the experiment including 10 extra clients the delay was of 21.68

ms. Since these delay are of the same order of magnitude as the maximum

delay found by [82], we conclude that the timing-based covert channel can be

implemented in most systems having a reasonable traffic load. The results

for the experiments on the storage-based covert channel showed that this

method correctly transmits the TAMBUS code without errors. Finally, the

experiments showed that TAMBUS is an effective method to add a security

layer to Modbus/TCP with a low-cost approach.
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Chapter 7

Conclusion and Future Work

Computer authentication methods have grown tremendously over the last

60 years. These have developed from elementary methods over the decades,

arriving today at biometrics and behavioral methods. Parallel to this de-

velopment, the security authentication methods have also undergone many

changes over the years: if we have never stopped improving them, it is also

true that new techniques continuously arise to violate their security. In

this thesis, we focus on the security of authentication methods. In Part I,

we worked on possible novel attacks against the existing methods, while in

Part II we developed novel authentication methods.

7.1 Summary of Contributions

In this section, we summarize the contributions of our work presented in

this thesis.

7.1.1 Attack against existing authentication methods

In Part I, we investigate several attacks against the security of computer

authentication systems. Over the years, research in this area has seen the

development of many different kinds of attacks. This thesis focused on

studying attacks to steal passwords by exploiting weaknesses in standard

input methods. Our goal is to emphasize existing vulnerabilities and propose

possible solutions to improve the security of these methods.
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• Eavesdropping on keyboards: In Chapter 2, we investigate the secu-

rity of Voice-over-IP (VoIP) against keyboard eavesdropping attacks.

Nowadays, millions of people perform VoIP calls using their computer;

However, people ignore the drawbacks of transmitting information

along with their voice, such as keystroke sounds–as such sound can

reveal what someone is typing on a keyboard. To this end, we present

and assess a new keyboard acoustic eavesdropping attack that involves

VoIP, called Skype & Type attack (S&T). Unlike previous attacks, S&T

assumes a weak adversary model that is very practical in many real-

world settings. We designed our experiments to recover standard and

random texts (such as randomly generated passwords or PINs) typed

during a VoIP call with the victim. We evaluate S&T over Skype,

a very popular VoIP software, and we show it remains accurate in

different attack scenarios. We showed it could significantly speed up

brute force attacks on passwords and that it can be combined with

textual information to recognize words with very high accuracy. We

also focused on different experiments settings: we showed that our

attack works well with different common and inexpensive recording

devices and on a great variety of typing styles and speed and is robust

to VoIP-related issues (low bandwidth and human voice). Finally, we

proposed a transparent countermeasure that does not severely impact

the quality of the voice during the call and can disrupt the spectral

features needed by S&T.

• Inferring ATM PINs of Users Typing with a Covered Hand : In Chap-

ter 3, we worked on keyboard eavesdropping security, with a particular

focus on ATM PIN pad security. We proposed a novel attack to recon-

struct PINs entered by victims covering the typing hand with the other

hand. Our experiments showed that our method has high accuracy in

reconstructing PINs within three attempts. In particular, our results

showed that the proposed method outperforms humans, showing the

effectiveness of such an approach. To evaluate our attack, we built a

simulated ATM, thanks to which we collected 5800 5-digits PINs by

58 distinct participants. This dataset has been made publicly avail-

able, allowing the research community to study the problem further.

Finally, we propose possible countermeasures against our attack and

evaluate some of these.

• Acoustic Side-Channel Attack on ATM PIN Pads: In Chapter 4,

we focused on ATM PIN pad acoustic eavesdropping attack (called

PinDrop). Like the previous attack, this aims to reconstruct the PINs
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entered by a victim on an ATM PIN pad. However, this attack ex-

ploits a completely different technique based on recognizing the unique

keypress sound emitted by a key when pressed. After collecting data

with our testbed, we showed how this attack is effective. In particular,

we show how our attack works, even placing the recording microphone

at a significant distance from the target PIN pad. Furthermore, to

evaluate our attack in the most realistic conditions, we evaluated the

robustness of our algorithm in the presence of noise, showing how per-

formance remains high.

7.1.2 Novel authentication methods

In Part II, we investigated novel authentication methods. In particular,

our research aims twofold: (i) to propose user-friendly and secure methods

that can easily be adapted to users’ needs, and (ii) to propose solutions

applicable in a real-world context to increase the security of legacy systems.

We presented a novel behavioral authentication based on the ear channel

movement recognition during chewing for the former. For the latter, we

presented a backward protocol compatible with MODBUS that increases

legacy CPS systems’ security by leveraging two covert channels.

• Eathentication: To the best of our knowledge, our work presented in

Chapter 5, is the first study that proposes a behavioral authentication

method based on external ear channel movements recognition during

eating. We called this method Eathentication. To this end, we de-

signed and printed a cheap 3D prototype of modified earphones, and

we integrated the sensors necessary to authenticate a user. To evalu-

ate our method, we collected a dataset using our modified earphones

prototype: we asked participants to eat different types of food and

to empty-chew during the recording session. Eathentication achieved

good performance showing how it can be effectively used as an au-

thentication method.

• Security network for ICS : In Chapter 6, we presented TAMBUS a

novel authentication method backward compatible with Modbus/TCP .

To do so, TAMBUS improves Modbus/TCP security by exploiting

trusted devices that verify the authenticity of industrial clients and

servers and the integrity of the network traffic. We build an industrial

testbed, including a real Wago PLC, to evaluate the effectiveness of our

method. Thanks to this testbed, we showed that our method works

without modifying the Modbus/TCP protocol and without adding traf-
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fic overheads. Therefore, TAMBUS can guarantee a high security level

for Modbus/TCP without affecting its regular functionality.

7.2 Lessons Learned

Thanks to the attacks we developed, we were able to study the principal

vulnerabilities of the authentication systems analyzed. Despite their high

level of usability, Pin-based systems are particularly vulnerable to different

kinds of attacks. In particular, the research we conducted showed that the

typical countermeasures applied by users are not as effective in preventing

threats as one might think (e.g., covering with one hand while typing).

Therefore, we suggest changing user habits or possibly implementing new

countermeasures when possible. Thanks to our attack on VoIP call software,

we investigated the security of our personal and business communication

methods. It turns out that user privacy and security can be at risk by the

careless use of these technologies. Therefore, it is desirable that the user is

aware of these vulnerabilities and instructed to take simple countermeasures

to protect himself.

We also investigated a new user-friendly biometrics authentication sys-

tem. For this study, we demonstrate how the analysis of the auditory channel

(while the user performs specific tasks) resulted in an effective method to

ensure a secure and non-invasive access method. From the point of view

of device authentication, we proposed a new method to secure an outdated

authentication protocol. The techniques we developed give a new authenti-

cation method fully backward compatible with dated systems and at a very

competitive cost compared to a complete facility upgrade.

7.3 Future Work

This section presents possible future directions of our research contribution

presented in this thesis.

7.3.1 Attack against existing authentication methods

Despite in Chapter 2 we proposed a high effective countermeasure against

our keyboard eavesdropping attack, it still might impact the VoIP call qual-

ity. As a future direction, we plan to conduct new experiments to validate

our initial claim that voice is not affected by our countermeasure. Another

interesting research direction might consider adversarial machine learning:

leveraging these techniques, we might create a new effective countermeasure
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technique that generates the minimum possible loss of quality for the VoIP

call. For our attack introduced in Chapter 3, plans include the extension

of our dataset to test the performance of our algorithm in new conditions.

Thanks to this novel data collection, we will also evaluate how to improve

the covering strategies. Other improvements for our attack concern the PIN

pad reproduction to simplify the data collection and the investigation of the

possibility to extract the timestamps without using the acoustic informa-

tion. Extending our attack described in Chapter 4, an interesting extension

regards the use of new kinds of microphones. In particular, we will evaluate

if a parabolic microphone can be used to perform the attack: this would sig-

nificantly increase the maximum recording distance. Finally, it would also

be interesting to evaluate the performance of our attack on different PIN

pads (e.g., touch screen PIN pads).

7.3.2 Novel authentication methods

Extending our work described in Chapter 5, we will collect new datasets

by introducing novel kinds of stimuli. This extension will allow us to de-

fine more user-friendly procedures to train our authentication method, like

authentication procedures based on new stimuli never seen in training. We

will also evaluate new machine learning models on the dataset. In partic-

ular, we plan to investigate two new kinds of machine learning algorithms:

one-class models that use a different paradigm to authenticate a user and

autoencoders that require much more data to be trained and that may fur-

ther improve our authentication performance. As a future direction of our

authentication protocol proposed in Chapter 6, we will investigate its ef-

fectiveness in more realistic contexts. Indeed, even if our testbed included

a real PLC, we plan to test our timing-based covert channel in more com-

plex MODBUS networks. Possibility in this direction may include renting

more sophisticated testbeds or collaborating with facilities to directly inte-

grate our authentication system in controlled environments where it will be

possible to test it.
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[92] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.

Gradient-based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998.
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Chapter A

Hand Me Your PIN

A.1 Neural Networks Additional Info

In Figure A.1, we show the training and validation accuracy for the three

models selected after the random grid search. In the Mixed scenario, the

validation accuracy grows faster than in PIN pad independent scenario and

Single PIN pad scenario, reaching faster the plateau. Indeed, in the Mixed

scenario, the validation accuracy stabilizes after 20 epochs, while we require

more than 35 epochs for the other scenarios. This difference can be linked

to a larger training size and a higher variance in the samples since the Mixed

scenario is the only one to include videos from both PIN pads in the training

phase.

0 10 20 30 40 50 60 70
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Training accuracy Validation accuracy

(a) Single PIN pad scenario.
We included 4 participants
in validation, corresponding
to 400 digits.
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(b) PIN pad independent sce-
nario, We included 5 partic-
ipants in validation, corre-
sponding to 500 digits.
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(c) Mixed scenario. We in-
cluded 6 participants in vali-
dation, corresponding to 600
digits.

Figure A.1: Training and validation accuracy for our three scenarios.
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Next, we report some statistics about the training execution times for

the three scenarios we consider.

• Single PIN pad scenario: the training set is composed of 32 partici-

pants, corresponding to 16 000 samples of 11 frames each. Our model

takes 1 577 seconds to complete an epoch (i.e., approximately 34 hours

to complete the entire training phase).

• PIN pad independent scenario: the training set is composed of 35

participants, corresponding to 17 500 samples of 11 frames each. Our

model takes 1 598 seconds to complete an epoch (i.e., approximately

34 hours to complete the entire training phase).

• Mixed scenario: the training set is composed of 46 participants, cor-

responding to 23 000 samples of 11 frames each. Our model takes

2 240 seconds to complete an epoch (i.e., approximately 46 hours to

complete the entire training phase).

A.2 Key Accuracy Analysis

In this section, we provide further analysis on the key accuracy for our

attack. Figure A.2 highlights that the accuracy on a single key is worse in the

PIN pad independent scenario. Although the performance is considerably

lower than the other two scenarios in Top-1 accuracy, it is interesting that

the error dispersion affects the keys topologically close to the target one.

In Figure A.3, we compare our model and human performance on the

key classification task. The misclassification error and the dispersion result

are significantly lower for our algorithm. Moreover, it can be noticed how

the four keys on which humans perform the best match those in the corners

of our keypad (i.e., 1, 3, 7, and 9).
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Figure A.2: Confusion matrices of key predictions (predicted labels) vs. true
values (true labels) for our three scenarios.
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(a) Recalculated confusion matrix for our
algorithm (Mixed scenario).
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Figure A.3: Confusion matrix comparison between our algorithm and hu-
mans.

A.3 Additional Experiments

To gain further insight into how coverage can affect the attack performance,

we grouped the tested users by the coverage strategy:

• Side: The non-typing hand rests on the side of the palm and is angled

to cover the keys of the PIN pad (40% of users applied this covering

strategy).

• Over: The non-typing hand is raised completely off the surface, cover-

ing the PIN pad both with the entire back of the hand and the fingers

(43% of users applied this covering strategy).

• Top: The fingers of the non-typing hand rest on the top of the PIN

pad, and the back of the hand is used for the coverage (17% of users

applied this covering strategy).

(a) Left-corner camera. (b) Center camera. (c) Right-corner camera.

Figure A.4: Same video frame recorded by three cameras.
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Covering Scenario Key PIN TOP-3
strategy accuracy accuracy

Single 0.64 0.30
Side Independent 0.42 0.12

Mixed 0.77 0.53
Single 0.52 0.12

Over Independent 0.31 0.10
Mixed 0.46 0.07
Single NA NA

Top Independent 0.41 0.13
Mixed NA NA

Table A.1: Performance of our attack for different covering strategies in
Single PIN pad, PIN pad independent, and Mixed scenarios. Top covering
participants were present in the PIN pad independent scenario only, as for
the others, no data were available (NA).

In Table A.1, we report key and PIN TOP-3 accuracies for our approach.

Clearly, Side covering strategy provides the least protection and should be

avoided. At the same time, the Over and Top covering strategies provide

much better protection. Interestingly, we see that with the Over covering

strategy, the Mixed scenario reaches lower accuracy than the Single PIN

pad scenario. We postulate this happens as this covering strategy makes it

less “natural” for the user to type, deceiving the deep learning algorithm.

Further attack improvements could be made with datasets having examples

of one covering strategy only. For the Top covering strategy, there were no

data for two out of three scenarios (denoted NA in Table A.1).

For the PIN shield countermeasure, we depict various levels of hiding in

Figure A.5. There, 25% denotes that the first row of the PIN pad is covered

(simulated with a black patch), 50% first two rows, 75% first three rows,

and finally, 100% all four rows of the PIN pad are covered. Note that we do

not include the covering with the other hand into these percentages.

Table A.2 provides results for several additional attack configurations.

First, we performed two experiments simulating a lower camera quality or a

larger camera distance from the PIN pad. For this purpose, we reduced the

model input resolution from 250 x 250 to 125 x 125 and to 64 x 64. Results

show that our model maintains an accuracy higher than 20%, even when

halving the input resolution (i.e., doubling the camera distance). However,

this is not to be considered as a physical limitation for our attack since if the

attacker places a camera outside the ATM chassis, it is possible to use an

optical zoom. Further, many pinhole cameras can record with a resolution
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(a) 25% of PIN pad surface covered (i.e.,
digits form 1 to 3).

(b) 50% of PIN pad surface covered (i.e.,
digits form 1 to 6).

(c) 75% of PIN pad surface covered (i.e.,
digits form 1 to 9).

(d) 100% of PIN pad surface covered (i.e.,
no digit is visible).

Figure A.5: PIN pad shield configurations.
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Experiment Key PIN TOP-3
accuracy accuracy

Input resolution 125 x 125 0.55 0.23
Input resolution 64 x 64 0.47 0.15

Left-corner camera 0.46 0.10
Right-corner camera 0.62 0.31

Multi-camera training 0.53 0.22

No data augmentation 0.44 0.11
Blacklisted excluded in training 0.54 0.18

Table A.2: Additional attack configurations and results in the Mixed sce-
nario.

up to 1 080p 1, which is higher than the resolution we used to collect our

dataset (720p).

Next, we investigated the accuracy of our attack leveraging different

camera positions. In particular, we performed two experiments training

and testing our model with the left-corner and the right-corner cameras,

respectively. Figure A.4 shows the camera views used in our experiments.

The results give a significant difference in performance if the camera is on

the right or the left. This is because the participants in our experiment

were right-handed, and therefore filming from the right had worse coverage

of the PIN pad and typing hand. In contrast, the typing hand and the PIN

pad were almost completely covered using shots from the left, significantly

reducing the model’s performance. We also evaluated whether using video

from all three cameras in training (the experiment “multi-camera training“

in Table A.2) could improve the accuracy of our model when compared with

videos recorded from the center camera only. The results show a drop in

performance, which we attribute to the higher variance in the data provided

as input to the model.

Finally, we report the results of our model without data augmentation

and without including the blacklisted users in the training set. In both

configurations, the performance of our model drops, showing that reducing

the training size is penalized heavily. Note that even in the worst case of a

camera placed on the left corner (i.e., the one with less visibility), our model

still performs better than an average human.

In this thesis, we used the feedback sound emitted by the PIN pad as a

detection system for the frames containing a keystroke. To evaluate the im-

1https://www.dsecctv.com/Prod telecamere spioncino porta AHD.htm
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Frame error Key PIN TOP-3
confidence (p < 0.01) accuracy accuracy

3 0.60 0.29
5 0.59 0.26
10 0.54 0.16
15 0.49 0.12
20 0.12 0.06

Table A.3: Performance of our attack in the Mixed scenario assuming dif-
ferent levels of frame detection error.

pact of other frame detection systems, we conducted an experiment varying

the frame extraction precision. We simulated the detection error by adding

Gaussian noise with mean zero to the ground truth (i.e., the frame position

in the video). In Table A.3, we report the single key and the PIN TOP-3

accuracies for the Mixed scenario, simulating five levels of the frame detec-

tion error. Compared to the results obtained using the audio feedback (key

accuracy 0.61, 5-digits PIN Top-3 accuracy 0.30), we see that our model

works well even with small/medium levels of frame detection error (i.e.,

less than five frames). In particular, for a frame error confidence of three

(i.e., when the frames are detected through the appearance on the screen

of the masked symbols [36]), the performance drops only 1% both for key

and TOP-3 PIN accuracies. Contrarily, when the detection error becomes

high (i.e., more than 15 frames), the performance of our model decreases

significantly. This happens since the frames considered by the model do not

contain information related to the target key, as they are too temporally

shifted. Naturally, if the attacker recognizes a situation like this, it would

be possible to mitigate the effect of detection error by not using the feedback

sound but observing the appearance of “*” symbols on the screen.
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Chapter B

TAMBUS

B.1 Purdue Model

We design TAMBUS based on the Purdue Model. Figure B.1 depicts the

Purdue model as defined by the standard ISA-99.

B.2 Experimental Testbed

The testbed that we used for our experiments includes a real industrial PLC

and several Raspberry Pis. We used a Wago 750-881 controller. This device

mounts an ARM microprocessor and uses WAGO-I/O-PRO V2.3, based

on CODESYS V2.3, as programming environment. We decided to use a

PLC from this vendor because Wago PLCs are very popular for small-to-

medium installations, as Keliris states in [85]. Furthermore, the major part

of the projects available on the web are written for Wago PLCs. Also, we

considered experiments taken with a real testbed more accurate and precise

than experiments run on a simulated environment (e.g., Mininet). We run a

simulated physical process on the Wago PLC since the values, transmitted

by the PLC, do not affect the operation of TAMBUS .

B.2.1 Testbed components

• Hardware information:

– Switch: TP-Link TL-SG108E Switch Smart Managed, 8 Ports

RJ45 Gigabit;
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Level 5: Enterprise

Level 3: Site Manufacturing Operations and Control

Level 4: Site Business Planning and Logistics

Level 2: Area Supervisory Control

Level 0: Process
Level 1: Basic Control

Demilitarized Zone

Safety Zone

Manufacturing Zone

Area Zone

Enterprise Zone

Figure B.1: Purdue Model overview.

– Client: Raspberry Pi, model 3 B;

– Probe Client: Raspberry Pi, model 3 B;

– Server: Wago PLC 750-881;

– Probe Server: Raspberry Pi, model 3 B;

– Monitor: Raspberry Pi, model 3 B;

– All the connections are made with Ethernet cables cat.5e, 3 me-

ters.

• Software information for Raspberry Pis:

– Raspbian Stretch Lite, minimal image based on Debian Stretch;

– Version: April 2019;

– Release date: 2019-04-08;

– Kernel version: 4.14;
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Figure B.2: Real testbed with Wago PLC. Top: four Raspberry Pi devices
used as Client, Probe Client, Monitor and Probe Server. Middle: TP-Link
switch. Bottom: Wago 750-881 PLC used as Server.

In Figure B.2 we show the actual testbed that we implemented. In the

top of the figure there are four Raspberry Pis (the red ones), in the middle

there is the TP-Link switch (the black device) and at the bottom there is

the Wago PLC (the grey device).
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