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1. Introduction and main results

The present paper is concerned with asymptotic estimates of the eigenvalue vari-

ation under either removal of small sets from the domain or operator variations

due to moving poles of singular coefficients. More precisely, in the first part of the

paper we will investigate the relation between the order of vanishing of a Dirichlet

eigenfunction at a point and the leading term of the asymptotic expansion of the

Dirichlet eigenvalue variation, as a removed compact set concentrates at that point.

In the second part of the paper we will consider Aharonov–Bohm operators with

two poles lying on the symmetry axis of an axially-symmetric domain and study

the asymptotic behaviour of eigenvalues as the poles move coalescing into a fixed

point. A spectral equivalence between this class of Aharonov–Bohm operators

and the Dirichlet Laplacian will be established, once the poles’ joining segment

has been removed. Thus sharp expansions for the Aharonov–Bohm operators will

be derived from those obtained in the first part of the paper.

1.1. Eigenvalue variation estimates under removal of small capacity sets. It

is well-known that the spectrum of the Dirichlet Laplacian on a bounded domain

� � R
n does not change when a zero capacity compact set is removed from�, see

e.g. [28]. In the first part of the present paper we are interested in spectral stability

of the Dirichlet Laplacian and estimates of the eigenvalue variations when the

domain is perturbed by removing sets of small capacity: we mean the possibility

that, ifK � � is a compact set, theN -th Dirichlet eigenvalue �N .�nK/ in�nK
may be close to �N .�/ if (and only if) the capacity ofK in� is close to zero. The

seminal work [28] excited much interest and now a wide literature deals with this

topic, showing that a perturbation theory can be developed in this situation.

We consider a bounded, connected open set� � R
n. LetK � � be a compact

set. The (condenser) capacity of K in � is defined as

Cap�.K/ D inf

² Z

�

jrf j2W f 2 H 1
0 .�/ and f � �K 2 H 1

0 .� nK/
³

; (1)

where �K is a fixed smooth function such that supp �K � � and �K � 1 in a

neighborhood of K. By a compactness argument, the infimum (1) is achieved by

a function VK 2 H 1
0 .�/ such that VK ��K 2 H 1

0 .�nK/ (see e.g. [14, Section 2]),

so that

Cap�.K/ D
Z

�

jrVKj2 dx; (2)
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where VK (capacitary potential) is the unique solution of the Dirichlet problem

8

ˆ

ˆ

<

ˆ

ˆ

:

��VK D 0 in � nK;
VK D 0 on @�;

VK D 1 on K:

(3)

By saying that VK solves (3) we mean that VK 2 H 1
0 .�/, VK � �K 2 H 1

0 .� nK/,
and

Z

�nK

rVK � r' dx D 0 for all ' 2 H 1
0 .� nK/:

In [14], Courtois proves spectral stability under removal of small capacity sets in

a very general context; furthermore, [14] shows that, when K � � is a compact

set with Cap�.K/ close to zero, then the function

�N .� nK/ � �N .�/ (4)

is even differentiable with respect to Cap�.K/. More precisely, in [14] the follow-

ing result is established.

Theorem 1.1. [14, Theorem 1.2] Let X be a compact Riemannian manifold. Let

� WD �N D : : : D �N Ck�1 be a Dirichlet eigenvalue of X with multiplicity k.

There exist a function r WRC ! R
C such that limt!0 r.t/ D 0 and a positive

constant "N , such that, for any compact set A of X , if CapX .A/ � "N , then

j�N Cj .X n A/ � �N Cj � CapX .A/ � �A.u
2
N Cj /j � CapX.A/ � r.CapX .A// (5)

where �A is a finite positive probability measure supported in A defined as the

renormalized singular part of�VA and ¹uN ; : : : ; uN Ck�1º is an orthonormal ba-

sis of the eigenspace of �which diagonalises the quadratic form�A.u
2/ according

to the increasing order of its eigenvalues.

We mention that, in the particular case of A concentrating to a point (see

Definition 1.2) estimate (5) is proved by Flucher in [17, Theorem 6]. Theo-

rem 1.1 above provides a sharp asymptotic expansion of �N Cj .X n A/ � �N Cj

as CapX.A/ ! 0 if �A.u
2
N Cj / 6! 0, but in general it reduces just to estimate the

difference �N Cj .X n A/ � �N Cj without giving its sharp vanishing order when

�A.u
2
N Cj / ! 0. A sharp asymptotic expansion of the eigenvalue variation in the

case of �A.u
2
N Cj / vanishing requires a more precise estimate than (5). In this

regard, scanning through the proof of Theorem 1.1 given in [14] (see also [17, The-

orem 7]), one realizes that when the eigenvalue �N .�/ is simple the significant
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quantity is instead the uN -capacity defined below, uN being an (L2-normalized)

eigenfunction related to �N .�/. Indeed, this can better describe the expansion of

eigenvalues’ variation, as stated in Theorem 1.4 below.

For every u 2 H 1
0 .�/, we defined the u-capacity as

Cap�.K; u/ D inf

² Z

�

jrf j2W f 2 H 1
0 .�/ and f � u 2 H 1

0 .� nK/
³

: (6)

We note that when u D 1 in a neighborhood of K, then we recover the defi-

nition (1) of the condenser capacity. Definition (6) can be extended to H 1
loc.�/

functions, just defining, for any u 2 H 1
loc.�/, Cap�.K; u/ WD Cap�.K; �Ku/ with

�K as in (1).

The infimum in (6) is achieved by a function VK;u which is the unique solution

of the Dirichlet problem

8

ˆ

ˆ

<

ˆ

ˆ

:

��VK;u D 0 in � nK;
VK;u D 0 on @�;

VK;u D u on K;

(7)

in such a way that

Cap�.K; u/ D
Z

�

jrVK;uj2 dx: (8)

By saying that VK;u solves (7) we mean that VK;u 2 H 1
0 .�/, VK;u�u 2 H 1

0 .�nK/,
and

Z

�nK

rVK;u � r' dx D 0 for all ' 2 H 1
0 .� nK/: (9)

We refer to [14, Section 2] for description of the properties of the u-capacity and to

[6, Section 2] for the specific case of the u1-capacity (which is also called Dirichlet

capacity). For our purposes, it is important to observe the continuity properties of

the f -capacity for family of concentrating compact sets described in the remark

below.

Definition 1.2. Let ¹K"º">0 be a family of compact sets contained in �. We say

that K" is concentrating to a compact set K � � if for every open set U � �

such that U � K there exists "U > 0 such that U � K" for every " < "U .
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We observe that the above defined property of concentration of sets alone is

not sufficient to provide a classical notion of convergence of sets. However, if

the family ¹K"º">0 satisfies further properties, such as monotonicity with respect

to inclusion or zero capacity for the limit set, then continuity properties of the

capacity for concentration sets allow recovering classical notions of convergence

of sets, as observed below.

Remark 1.3. Let ¹K"º">0 be a family of compact sets contained in � concen-

trating to a compact set K � � such that one of the two following conditions

hold:

(i) Cap�.K/ D 0;

(ii) K D
T

">0K" where K" is decreasing as " ! 0 (i.e. K"1
� K"2

if "1 > "2).

Then, for all f 2 H 1
0 .�/, we have that VK";f ! VK;f strongly in H 1

0 .�/ and

lim"!0C Cap�.K"; f / D Cap�.K; f /; in particular, VK"
! VK in H 1

0 .�/ and

lim"!0C Cap�.K"/ D Cap�.K/.

The proof in the case of assumption (ii) can be found in [14, Proposition 2.4];

for case (i) we refer to Proposition B.1 in the appendix.

From Remark 1.3 it follows that, if ¹K"º">0 is a family of compact sets concen-

trating to a compact set K � � satisfying either (i) or (ii), then � nK" converge

to � nK in the sense of Mosco, i.e. the following two properties hold:

(i) the weak limit points inH 1.Rn/ of every family of functions u" 2H 1
0 .�nK"/

belong to H 1
0 .� nK/;

(ii) for every u 2 H 1
0 .� nK/, there exists a family of functions u" 2H 1

0 .� nK"/

such that u" ! u in H 1.Rn/,

see [15, 24]. In the present paper, the notion of concentrating sets will always be

used together with conditions (i) or (ii) of Remark 1.3, and hence in cases in which

it implies Mosco convegence of the complementary sets.

The following result is essentially contained in the intermediate steps which are

developed in [14] to prove estimate (5). It provides a sharp asymptotic expansion

of (4) in terms of the uN -capacity when the eigenvalue �N .�/ is simple. We

observe that the derivation of (5) for non simple eigenvalues requires an estimate

of the remaining term in the asymptotic expansion uniformly with respect to all

eigenfunctions: this is performed in [14] in terms of the condenser capacity. On

the other hand, for a simple eigenvalue, the intermediate estimates obtained in

[14, formulas (31) and (50)] in terms of the uN -capacity are enough to obtain the

following sharp asymptotic expansion.
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Theorem 1.4. Let �N .�/ be a simple eigenvalue of the Dirichlet Laplacian in a

bounded, connected, and open set � � R
n and let uN be an L2.�/-normalized

eigenfunction associated to �N .�/. Let .K"/">0 be a family of compact sets

contained in � concentrating to a compact set K with Cap�.K/ D 0. Then

�N .� nK"/ D �N .�/C Cap�.K"; uN /C o .Cap�.K"; uN // ; as " ! 0:

As already mentioned, the proof of Theorem 1.4 is contained in the proof of [14,

Theorem 1.2], which is based on a method of approximation of small eigenvalues

introduced in [13] (see also [14, Proposition 3.1]). Nevertheless, for the sake of

clarity and completeness, we present an alternative proof in the appendix, which

relies on the use of the spectral theorem to estimate the eigenvalue variation.

As observed in [14, Proposition 2.8], for every eigenfunction u of the Dirichlet

Laplacian in �, we have that Cap�.K"; u/ D O.Cap�.K"// as " ! 0. This

in particular means that Theorem 1.4 is sharper than Theorem 1.1 since even the

remaining term is estimated in terms of the uN -capacity.

We mention that estimates from above and below (but not sharp asymptotic

expansions) of the eigenvalue variation in terms of the u1-capacity were obtained

in [6], in the case of a compact Riemannian manifold with boundary with a small

subset removed.

Motivated by Theorems 1.1 and 1.4, we devote the first part of the present paper

to the derivation of the asymptotics of the key quantity Cap�.K"; uN / (which

tends continuously to 0 as K" concentrates to a compact zero-capacity set, as

observed in Remark 1.3) with the goal of writing the sharp asymptotic expansion

of (4) in some relevant examples. In particular we address the case of compact

sets concentrating to a point, which has indeed zero capacity in any dimension

greater than or equal to 2. We will show that the asymptotics of Cap�.K"; uN /

depends on the limit point, more precisely on the order of vanishing of uN at that

point.

As a first remark in this direction, if the eigenfunction uN does not vanish at the

limit point, then the uN -capacity is in fact asymptotic to the condenser capacity

(up to a constant).

Proposition 1.5. Let � � R
n be a bounded connected open set with n � 2, let

u 2 H 1
0 .�/ \ C 2.�/ and .K"/">0 be a family of compact sets contained in �

concentrating to a point x0 2 � such that u.x0/ ¤ 0. Then

Cap�.K"; u/ D u2.x0/Cap�.K"/C o.Cap�.K"//; as " ! 0: (10)
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In view of Proposition 1.5, if the eigenfunction u does not vanish at x0, then

the u-capacity is asymptotic to the condenser capacity and the problem of sharp

asymptotics of the eigenvalue variation (4) for K concentrating at x0 is reduced

to the study of the behaviour of Cap�.K/. In dimension 2 we succeed in proving

the following sharp asymptotic expansion of the condenser capacity of generic

compact connected sets concentrating to a point in terms of their diameter.

Proposition 1.6. Let � be a bounded connected open set � � R
2. Let .K"/">0

be a family of compact connected sets contained in � concentrating to a point

x0 2 �. Let ı" D diamK", so that ı" ! 0C as " ! 0C. Then

Cap�.K"/ D 2�

j log.ı"/j
CO

� 1

log2.ı"/

�

; as " ! 0C:

The proof of Proposition 1.6 is based on Steiner symmetrization methods

together with a conformal change of coordinates (see Section 2.2). This allows

us to work in terms of elliptic coordinates which fit the special geometry of the

problem very well. This particular strategy seems to be more difficult in higher

dimensions. Moreover, we stress that, in dimension n � 3, any compact set

contained in a regular manifold of dimension n�2 has zero capacity (see [18]), so

that one cannot obtain a lower bound on the capacity only in terms of the diameter.

As a consequence of Theorem 1.4, Propositions 1.5 and 1.6, we deduce the fol-

lowing sharp asymptotic expansion of the eigenvalue variation (4) as the removed

connected compact set K concentrates to a point in dimension n D 2.

Theorem 1.7. Let �N .�/ be a simple eigenvalue of the Dirichlet Laplacian in

a bounded, connected, open set � � R
2 with the L2.�/-normalized associated

eigenfunction uN . Let .K"/">0 be a family of compact connected sets contained

in � concentrating to a point x0 2 � such that uN .x0/ ¤ 0. Then

�N .� nK"/ � �N .�/ D u2
N .x0/

2�

j log ı"j
C o

� 1

j log ı"j

�

; as " ! 0:

It is worthwhile mentioning that there is a rich literature dealing with the as-

ymptotic expansion of the eigenvalues when small sets are removed from the do-

main, in particular when the removed set is a tubular neighborhood of a submani-

fold. Theorem 1.7 above has the following counterpart in [14, Theorem 1.4], which

provides the asymptotic expansion for �N .� nK"/��N .�/ whenK" is a tubular

neighborhood of a closed submanifold Y of codimension p � 2.
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Theorem 1.8. [14, Theorem 1.4] Let � WD �N D : : : D �N Ck�1 be an eigenvalue

of X with multiplicity k. Let ¹uN ; : : : ; uN Ck�1º be an orthonormal basis of the

eigenspace of � which diagonalises the quadratic form
R

Y
u2 according to the

increasing order of its eigenvalues. Then, if K" is a tubular neighborhood of a

closed submanifold Y of codimension p � 2, we have for j D 0; 1; : : : ; k � 1

�N Cj .X nK"/ � �N Cj D �p."/

Z

Y

u2
N Cj C o.�p."//

where �p."/ D 2�
j log "j

if p D 2 and �p."/ D .p � 2/.Vol.Y //p�1"p�2 if p � 3.

Theorem 1.8 generalizes preexisting results obtained for simple eigenvalues by

Ozawa [27] when K is a point and � is a smooth bounded domain in R
2 and by

Chavel and Feldman for any codimension p [12]. Concerning the case in which

K is a point, it is worthwhile citing also [7], which provides the whole asymptotic

expansion for (4). We highlight that, in the case n D 2 and for simple limit

eigenvalues, Theorem 1.7 holds for general families of compact sets concentrating

at a point, which are not required to have necessarily the special form of decreasing

neighborhoods of the limit point. The validity of the asymptotic expansion for

general families of removed compact sets finds applications in the analysis of

spectral stability for magnetic Aharonov–Bohm operators with two coalescing

points; this case requires the possibility of choosing as K" a nodal line of a

magnetic eigenfunction joining the poles, see Section 3.3 and [3].

When the limit eigenfunction uN vanishes on the limit compact set, both

Theorems 1.8 and 1.7 reduces to be just an estimate of the vanishing rate of the

eigenvalue variation, without giving any sharp information on the leading term

of the expansion. Nevertheless, in view of Theorem 1.4, a sharp asymptotics

for simple eigenvalues can be obtained once the asymptotics of Cap�.K"; uN /

is computed, as we will do at least for special shapes of concentrating compact

sets (i.e. segments and disks) in dimension 2.

Let u be an eigenfunction of the Dirichlet Laplacian in �, with � being a

bounded, connected open set inR
2 containing 0. It is well-known that u 2 C1.�/

and there exist k 2 N [ ¹0º, ˇ 2 R n ¹0º and ˛ 2 Œ0; �/ such that

r�ku.r.cos t; sin t // �! ˇ sin.˛ � kt/; (11)

in C 1;� .Œ0; 2��/ as r ! 0C for any � 2 .0; 1/ (see e.g. [16]). In this case we say

that u has a zero of order k at 0. We note that (11) implies that, if k D 0, u

does not vanish near 0 whereas, if k � 1, the nodal set of u near 0 consists of 2k

regular half-curves meeting at 0 with equal angles; the minimal slope of tangents

to such half-curves is equal to ˛
k
. We also observe that, if k D 0 in (11), then

ˇ sin˛ D u.0/.
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The following result provides the asymptotics of the u-capacity in the case of

segments concentrating at a point.

Theorem 1.9. Let s" D Œ�"; "� � ¹0º. For u being an L2.�/-normalized eigen-

function of the Dirichlet Laplacian in an open, bounded, connected set � � R
2

containing 0, let k 2 N [ ¹0º, ˇ 2 R n ¹0º, and ˛ 2 Œ0; �/ be as in (11).

(i) If ˛ ¤ 0, then

Cap�.s"; u/ D

8

ˆ

<

ˆ

:

2�

j log "j u
2.0/ .1C o.1// if k D 0;

"2k � ˇ2 sin2 ˛ Ck.1C o.1// if k � 1;

(12)

as " ! 0C, Ck being a positive constant depending on k (see (22)).

(ii) If ˛ D 0, then Cap� .s"; u/ D O."2kC2/ as " ! 0C.

Combining Theorem 1.4 with Theorem 1.9 we obtain the following result.

Theorem 1.10. Let �N .�/ be a simple eigenvalue of the Dirichlet Laplacian in an

open, bounded, connected set � � R
2 containing 0, with the L2.�/-normalized

associated eigenfunction uN . Let k 2 N [ ¹0º, ˇ 2 R n ¹0º, and ˛ 2 Œ0; �/ be as

in expansion (11) for uN . For " > 0 small, let s" D Œ�"; "�� ¹0º. Then

�N .� n s"/ � �N .�/ D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

2�

j log "j u
2
N .0/ .1C o.1// if k D 0; ˛ ¤ 0;

"2k � ˇ2 sin2 ˛ Ck.1C o.1// if k � 1; ˛ ¤ 0;

O."2kC2/ if ˛ D 0;

as " ! 0C.

Remark 1.11. We observe that the condition ˛ D 0 means the segment s" to be

tangent to a nodal line of the limit eigenfunctionuN . Hence Theorem 1.10 provides

sharp asymptotics of �N .�n s"/ if the segment is transversal to nodal lines of uN ,

whereas it gives just an estimate on the vanishing order of �N .� n s"/ � �N .�/

when the segment is tangent to a nodal line. In this case we expect that the

vanishing order will depend on the precision of the approximation between the

nodal line and the segment (e.g. if the nodal line is straight, we have trivially that

the Cap� .s"; u/ is zero and �N .� n s"/ � �N .�/ D 0).

Remark 1.12. In the case k D 1, i.e. if 0 is a regular point in the nodal set of uN ,

we have that ˇ2 D jruN .0/j2, hence the asymptotic expansion in Theorem 1.10

has the form

�N .� n s"/ � �N .�/ D "2 � jruN .0/j2 sin2 ˛ C1.1C o.1//; as " ! 0:
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Another relevant example in which Cap�.K"; u/ can be sharply estimated in

terms of the vanishing order of u is given by small disks concentrating at a zero

point of u.

Theorem 1.13. Let B" D xB.0; "/ D
®

.x1; x2/ 2 R2W
q

x2
1 C x2

2 � "
¯

. For u

being an L2.�/-normalized eigenfunction of the Dirichlet Laplacian in an open,

bounded, connected set � � R
2 containing 0, let k 2 N [ ¹0º, ˇ 2 R n ¹0º and

˛ 2 Œ0; �/ be as in (11). Then

Cap�.B"; u/ D

8

ˆ

<

ˆ

:

2�

j log "j u
2.0/ .1C o.1// if k D 0;

2k � "2k ˇ2.1C o.1// if k � 1;

(13)

as " ! 0C.

Combining Theorem 1.4 and Theorem 1.13, we obtain the following result.

Theorem 1.14. Let �N .�/ be a simple eigenvalue of the Dirichlet Laplacian in an

open, bounded, connected set � � R
2 containing 0 with the L2.�/-normalized

associated eigenfunction uN . Let k 2 N [ ¹0º, ˇ 2 R n ¹0º, and ˛ 2 Œ0; �/ be as

in expansion (11) for uN . Then

�N .� n B"/ � �N .�/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

2�

j log "j u
2
N .0/ .1C o.1// if k D 0;

2k � "2k ˇ2 .1C o.1// if k � 1;

as " ! 0C.

Remark 1.15. In the special case k D 1, that is to say if 0 is a regular point in the

nodal set of uN , Theorem 1.14 gives the asymptotic expansion

�N .� n B"/ � �N .�/ D 2 � "2 jruN .0/j2.1C o.1//; as " ! 0:

1.2. Aharonov–Bohm potentials with varying poles. The special attention de-

voted to planar domains in the first part of the paper is well understood in the

context of the applications given in the second part to the problem of spec-

tral stability for Aharonov–Bohm potentials with varying poles. For any point

a D .a1; a2/ 2 R
2, the so-called Aharonov–Bohm magnetic potential with pole a

and circulation 1=2 is defined for x D .x1; x2/ 2 R
2 n ¹aº as

Aa.x/ D 1

2

� �.x2 � a2/

.x1 � a1/2 C .x2 � a2/2
;

x1 � a1

.x1 � a1/2 C .x2 � a2/2

�

:
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The set of papers [1, 2, 4, 9, 25] deals with the dependence on the pole a of the

spectrum of Schrödinger operators with Aharonov–Bohm vector potentials, i.e. of

operators .ir C Aa/
2 acting on functions uWR2 ! C as

.ir C Aa/
2u D ��uC 2iAa � ruC jAaj2u:

In particular, the aforementioned set of papers provides a complete picture of sharp

asymptotics for simple eigenvalues when the pole a is moving in x�.

The very special features which circulation 1=2 presents are widely exposed in

Section 3 and can be summarized in the fact that eigenfunctions do present nodal

lines ending at the pole a. If the circulation is not a half-integer, the Aharonov–

Bohm operator acts on complex-valued functions without any hidden symmetry so

that the notion of nodal lines does not make sense a priori; hence the approach used

here (and based on isospectrality with the Laplacian on the domain with nodal

lines removed) does not work. Spectral stability for Aharonov–Bohm operators

with moving poles and not half-integer circulation is investigated in [5].

Of course, one can consider even potentials which are sum of different po-

tentials of this type with poles located at different points in the domain, being the

differential Schrödinger operator defined analogously. Concerning this, in [23] the

author proves continuity of eigenvalues for Schrödinger operators with different

Aharonov–Bohm potentials even in the case of coalescing poles. As an application

of the results proved in the first part of the present paper, in section 3 we begin to

tackle the problem of coalescing poles, looking for sharp asymptotics for simple

eigenvalues. In this direction, we obtain Theorem 1.16 below under a symmetry

assumption on the domain.

Let � WR2 ! R
2, �.x1; x2/ D .x1;�x2/. We observe that, if uN is an

eigenfunction of the Dirichlet Laplacian on an open set� such that 0 2 � D �.�/

and if the eigenvalue associated to uN is simple, then the nodal set of uN is

necessarily symmetric with respect to the x1-axis; in particular the x1-axis must be

tangent either to a nodal line of uN or to the bisector between two nodal lines. This

implies that, if k 2 N [ ¹0º, ˇ 2 R n ¹0º, and ˛ 2 Œ0; �/ are as in expansion (11)

for uN , then

either ˛ D 0 or ˛ D �

2
: (14)

In particular, if the x1-axis is not tangent to any nodal line of uN , expansion (11)

takes the form

r�ku.r.cos t; sin t // �! ˇ cos.kt/; as r ! 0C (15)

in C 1;� .Œ0; 2��/ for some ˇ ¤ 0 and k 2 N [ ¹0º.
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Theorem 1.16. Let � be an open, bounded, and connected set in R
2 satisfying

�.�/ D � and 0 2 �. Let �N .�/ be a simple eigenvalue of the Dirichlet

Laplacian on � and uN be an L2.�/-normalized eigenfunction associated to

�N .�/ such that the x1-axis is not tangent to any nodal line of uN . Let k 2 N[¹0º
and ˇ 2 R n ¹0º be as in expansion (15) for uN .

For a > 0 small, let a� D .�a; 0/ and aC D .a; 0/ be the poles of the following

Aharonov–Bohm potential

Aa�;aC.x/ WD �Aa�.x/C AaC.x/ D �1
2

.�x2; x1 C a/

.x1 C a/2 C x2
2

C 1

2

.�x2; x1 � a/

.x1 � a/2 C x2
2

and let �a
N be the N -th eigenvalue for .ir C Aa�;aC/2. Then

�a
N � �N .�/ D

8

ˆ

<

ˆ

:

2�

j log aj juN .0/j2 .1C o.1// if k D 0;

a2k � ˇ2 Ck.1C o.1// if k � 1;

as a ! 0C, being Ck a positive constant depending only on k (see (22)).

We observe that, in view of (14), Theorem 1.16 considers the case of poles

moving along the bisector between two nodal lines of the limit eigenfunction uN .

The main idea behind the proof of Theorem 1.16 is the spectral equivalence

between the Aharonov–Bohm operator in an axially symmetric domain and the

Dirichlet Laplacian in the domain obtained by removing either the segment joining

the poles or its complement in the axis. Such isospectrality result is established in

section 3.3 and extends the isospectrality result proved in [8] for a single pole to

the case of two poles. Once the spectral equivalence is established, Theorem 1.16

follows as an application of Theorem 1.10.

A weakening of the symmetry assumption required in Theorem 1.16 above

presents some significant additional difficulties due to the general shape of nodal

lines of eigenfunctions (i.e. they are not necessarily a straight segment); this

problem is treated in [3] in the case k D 0.

Let us also mention that Aharonov–Bohm operators of the type studied in the

present paper are connected to spectral minimal partitions in the sense of [21],

as illustrated in [8, 26]. More precisely, it was shown in [20] that a minimal k-

partition consists of the nodal domains of the k-th eigenfunction of an Aharonov–

Bohm operator. The corresponding vector potential is known explicitly, given the

minimal partition, and has half-integer circulation around a multiple point in the

boundary of the partition, if the order of multiplicity is odd. The changes in the

minimal partitions when the domain is deformed have been numerically studied
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in [8] for rectangles and in [10] for flat rectangular tori. In the first case, the results

show a triple point in the boundary of the partition moving to the boundary of the

domain. In the second case, they show pairs of triple points merging into a point

of order four. The analysis in [4, 25] is relevant to the first situation, while [3] and

the present paper are one step towards understanding the second one.

2. u-capacity

We devote this section to explicit calculations of u-capacity in several situations.

2.1. General compact sets concentrating away from zeros. In this subsection,

we present the case of general domains which are concentrating to a point away

from zeros of the eigenfunction u and prove the asymptotic relation, stated in

Proposition 1.5, between the u-capacity and the condenser capacity. In order to

derive such asymptotics we first state the following lemma, which essentially

rewrites [14, formula (53)] in a form which is more convenient for our purposes.

Lemma 2.1. Let� be a bounded, connected open set inR
n and letK be a compact

set in �. Let � be any smooth function such that supp � � � and � � 1 in a

neighborhood of K. If u 2 H 1
0 .�/ \ C 2.�/ then

Cap�.K; u/ D L.u;K/�
Z

�

VK;uVK�.�u/ dx � 2
Z

�

VK;urVK � r.�u/ dx (16)

where L.u;K/ satisfies

.min
x2K

u2.x//Cap�.K/ � L.u;K/ � .max
x2K

u2.x//Cap�.K/: (17)

Proof. Let us first assume that K is a regular compact set, meaning that K is the

closure of an open smooth set. Then

Z

�

jrVK;uj2 dx D
Z

�nK

jrVK;uj2 dx C
Z

K

jruj2 dx

D
Z

@.�nK/

VK;u@�VK;u d� C
Z

@K

u@�ud� �
Z

K

u�udx

D
Z

@.�nK/

VKu@�VK;u d� C
Z

@K

u@�ud� �
Z

K

u�.�u/ dx:
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On the other hand
Z

@.�nK/

VKu@�VK;u d� D
Z

@.�nK/

VK.�u/@�VK;u d� D
Z

�nK

r .VK�u/ � rVK;u dx

D
Z

�nK

�urVK � rVK;u dx C
Z

�nK

VKr.�u/ � rVK;u dx

D
Z

@.�nK/

uVK;u@�VK d��
Z

�nK

VK;urVK � r.�u/ dx

C
Z

@.�nK/

VKVK;u@�.�u/ d� �
Z

�nK

VKVK;u�.�u/ dx

�
Z

�nK

VK;urVK � r.�u/ dx

D
Z

@.�nK/

u2@�VK d� �
Z

@K

u@�ud� �
Z

�nK

VKVK;u�.�u/ dx

� 2

Z

�nK

VK;urVK � r.�u/ dx:

Hence we obtain that, if K is regular, then

Cap�.K; u/ D
Z

@.�nK/

u2@�VK d� �
Z

�

VKVK;u�.�u/ dx

� 2
Z

�

VK;urVK � r.�u/ dx: (18)

If K is a generic compact set, then there exists a decreasing family of regular

compact sets ¹K"º">0 concentrating at K such that K D
T

">0K". If � 2 C1
c .�/

is any smooth function such that � � 1 in a neighborhood of K, then � � 1 also

in a neighborhood of K" for " sufficiently small. Writing (18) for K" and � and

passing to the limit, in view of Remark 1.3 (case (ii)) we obtain that

Cap�.K; u/ D L.u;K/ �
Z

�

VKVK;u�.�u/ dx�2
Z

�

VK;urVK � r.�u/ dx

with L.u;K/ D lim"!0C

R

@.�nK"/ u
2@�VK"

d� . By the Hopf Lemma, @�VK"

is positive on @K", being � the exterior normal vector to � n K". Moreover,
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by integration by parts, we have that
R

@K"
j@�VK"

j d� D Cap�.K"/. Hence

.min
K"

u2/Cap�.K"/ � min
@K"

u2

Z

@K"

j@�VK" j d�

�
Z

@.�nK"/

u2@�VK"
d�

� max
@K"

u2

Z

@K"

j@�VK" j d�

� .max
K"

u2/Cap�.K"/:

By Remark 1.3 (case (ii)) and continuity of u, passing to the limit in the above

estimate yields (17), thus completing the proof. �

From Lemma 2.1 we derive Proposition 1.5.

Proof of Proposition 1.5. Let � 2 C1
c .�/ be a smooth function such that � � 1

in a neighborhood of x0, so that (16) can be written for K" and � for " sufficiently

small. The fact that K" concentrates to x0 as " ! 0 and the continuity of u imply

that

lim
"!0

min
K"

u2 D lim
"!0

max
K"

u2 D u2.x0/;

so that L.u;K"/ D u2.x0/Cap�.K"/C o.Cap�.K"// as " ! 0C. From Cauchy–

Schwarz inequality and Corollary A.2 we deduce that

ˇ

ˇ

ˇ

ˇ

Z

�

VK"
VK";u�.�u/ dx

ˇ

ˇ

ˇ

ˇ

� k�.�u/kL1.�/kVK"
kL2.�/kVK";ukL2.�/

D o .Cap�.K"// ;

as " ! 0C. According to Cauchy–Schwarz inequality and Corollary A.2,

ˇ

ˇ

ˇ

ˇ

Z

�

VK";uN
rVK"

� r.�u/ dx
ˇ

ˇ

ˇ

ˇ

� kr.�u/kL1.�/ krVK"kL2.�/ kVK";uN
kL2.�/

D o .Cap�.K"// ;

as " ! 0C. Equation (10) then follows from (16). �
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2.2. Capacities in dimension 2. In this subsection we present some explicit

computations for capacities of compact sets concentrating to a point in a planar

domain.

To this aim, we first derive the following estimate of the h-capacity in terms of

the vanishing order of the function h at the concentration point of compact sets.

Lemma 2.2. Let� � R
n be a bounded connected open set with n � 2 and 0 2 �

and let ¹K"º">0 be a family of compact sets contained in � such that, for some

C > 0 and " sufficiently small,

K" � xB.0; C"/:

Let h 2 H 1.�/ be such that h.x/ D O.jxjkC1/ and jrh.x/j D O.jxjk/ as jxj ! 0

for some k 2 N [ ¹0º. Then

Cap�.K"; h/ D O."2kCn/ as " ! 0:

Proof. By monotonicity of the h-capacity, it is enough to prove that

Cap�.
xB.0; C"/; h/ D O."2kCn/ as " ! 0:

To do this, let us fix a smooth function 'WRn ! R supported in B.0; 2/ and equal

to 1 on xB.0; 1/. Let us define

'".x/ WD '
� x

C"

�

and h" WD '"h:

The function h" coincides with h on xB.0; C"/, so we have, by definition of the

capacity,

Cap�.
xB.0; C"/; h/ �

Z

�

jrh"j2 dx:

On the other hand, for any x 2 �,

jrh".x/j2 � 2 .'2
" .x/ jrh.x/j2 C h2.x/ jr'".x/j2/

D 2
�

'2
� x

C"

�

jrh.x/j2 C 1

C 2"2
h2.x/

ˇ

ˇ

ˇr'
� x

C"

�ˇ

ˇ

ˇ

2�

:

Since jrhj D O.jxjk/ as jxj ! 0 and h" is supported in B.0; 2C"/, then we have

krh"kL1.�/ � const "k . Therefore

Z

�

jrh"j2 dx D O."2kCn/;

which proves the claim. �



Spectral stability 17

In order to derive sharp asymptotics in both cases of condenser capacities of

generic compact sets and of u-capacities of segments, a key tool is the following

computation of capacity of segments in ellipses. For L > 0 and " > 0, we denote

as

E".L/ D
°

.x1; x2/ 2 R
2W x2

1

L2 C "2
C x2

2

L2
< 1

±

(19)

the interior of the ellipse centered at 0 with major semi-axis of length
p
L2 C "2

and minor semi-axis of length L. Furthermore, for every " > 0 we denote as

s" D Œ�"; "� � ¹0º (20)

the segment of length 2" and center 0 on the x1-axis.

Lemma 2.3. Let k 2 N[ ¹0º and let Pk be a homogeneous polynomial of degree

k � 0, i.e

Pk.x1; x2/ D
k

X

j D0

cjx1
k�jx2

j (21)

for some c0; c1; : : : ; ck 2 R. Then, for every L > 0,

Cap
E".L/.s"; Pk/ D

8

ˆ

<

ˆ

:

2�

j log "j c
2
0

�

1CO
� 1

j log "j

��

if k D 0;

"2k c2
0 �Ck.1C o.1// if k � 1;

as " ! 0C, where

Ck D
k

X

j D1

j jAj;k j2; being Aj;k D 1

�

2�
Z

0

.cos �/k cos.j�/ d�: (22)

Remark 2.4. We notice that, if k � 1, then there exists at least a j 2 ¹1; 2; : : : ; kº
such that Aj;k ¤ 0, so that Ck D

Pk
j D1 j jAj;kj2 ¤ 0 if k � 1.

Remark 2.5. As a particular case of Lemma 2.3 when k D 0 and c0 D 1 (so that

Pk � 1), we obtain that the condenser capacity of the segment in the ellipse is

given by

Cap
E".L/.s"/ D 2�

j log "j

�

1CO
� 1

j log "j

��

as " ! 0C: (23)

Proof of Lemma 2.3. We define the elliptic coordinates .�; �/ (see for instance

[30]) by
´

x1 D " cosh.�/ cos.�/;

x2 D " sinh.�/ sin.�/;
� � 0; 0 � � < 2�:
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Let us note that, in these coordinates, the segment s" is defined by � D 0, whereas

E" is defined by 0 � � < �" and @E" is described by the condition � D �", with

" sinh.�"/ D L , that is to say

�" D argsinh
�L

"

�

D log
�L

"
C

r

1C L2

"2

�

: (24)

A direct computation shows that the mapping ˆW .�; �/ 7! .x1; x2/ has a Jacobian

matrix of the form

J.ˆ/.�; �/ D h.�; �/O.�; �/;

with O.�; �/ an orthonormal matrix and h.�; �/ > 0 in R
2 n s" satisfying

h2.�; �/ D "2.cosh2 � � cos2 �/:

If we evaluate the homogeneous polynomial Pk in the new set of coordinates on

the segment s" D ¹.�; �/W � D 0º, we end up with Qk.�; �/ D Pk.ˆ.0; �// D
c0"

k.cos�/k. LetW be the Dirichlet potential of Pk in elliptic coordinates, that is

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

��W D 0 in .0; �"/ � .0; 2�/;
W D 0 on � D �";

W D c0 "
k.cos�/k on � D 0;

W.�; 0/ D W.�; 2�/ for all � 2 .0; �"/:

Let us consider the Fourier expansion of W in elliptic coordinates:

1

"k
W.�; �/ D a0.�/

2
C

X

j �1

.aj .�/ cos.j�/C bj .�/ sin.j�//

where

aj .�/ D 1

�

2�
Z

0

1

"k
W.�; �/ cos.j�/ d�; bj .�/ D 1

�

2�
Z

0

1

"k
W.�; �/ sin.j�/ d�;

from which we see that bj .0/ D 0 for any j and aj .0/ D 0 for all j > k. Therefore

we have

0 D ��.�;�/W

D "k a
00
0.�/

2
C "k

X

j �1

..a00
j .�/ � j 2aj .�// cos.j�/C .b00

j .�/ � j 2bj .�// sin.j�//
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and imposing the boundary conditions for � 2 .0; �"/ we obtain

a0.�/D a0.0/
�

1� �

�"

�

; (25)

aj .�/D aj .0/
� ej�

1� e2j�"
C e�j�

1� e�2j�"

�

for j � 1; (26)

bj .�/D 0 for j � 0: (27)

In this way

1

"k
W.�; �/ D a0.�/

2
C

k
X

j D1

aj .�/ cos.j�/

and then by Parseval’s identity

“

.0;�"/�.0;2�/

jrW j2

D "2k �

2

�"
Z

0

ja0
0.�/j2 d� C "2k�

k
X

j D1

�"
Z

0

.ja0
j .�/j2 C j 2jaj .�/j2/ d�:

(28)

Let us now compute every term of the latter expression. First we have

�"
Z

0

ja0
0.�/j2 d� D 1

�"
ja0.0/j2: (29)

Secondly, for j � 1 we have

�"
Z

0

ja0
j .�/j2 d� D j 2jaj .0/j2

�"
Z

0

� ej�

1 � e2j�"
� e�j�

1 � e�2j�"

�2

d�

D j

2
jaj .0/j2

� �1
1 � e2j�"

C 1

1� e�2j�"

� 4j �"

.1� e2j�"/.1� e�2j�"/

�

D j

2
jaj .0/j2

� e�2j�" � e2j�" � 4j�"

.1� e2j�"/.1� e�2j�"/

�

D j

2
jaj .0/j2.1C o.1// as " ! 0:

(30)
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Finally we have

�"
Z

0

jaj .�/j2 d� D jaj .0/j2
�"

Z

0

� ej�

1 � e2j�"
C e�j�

1 � e�2j�"

�2

d�

D jaj .0/j2
1

2j

� �1
1� e2j�"

C 1

1 � e�2j�"
C 4j�"

.1� e2j�"/.1� e�2j�"/

�

D jaj .0/j2
1

2j
.1C o.1// as " ! 0:

(31)

Plugging (29), (30), and (31) into (28) we obtain
“

.0;�"/�.0;2�/

jrW j2

D "2k �

2

1

�"
ja0.0/j2 C "2k�

k
X

j D1

j jaj .0/j2.1C o.1// as " ! 0:

(32)

We note that for k D 0 there holds a0.0/ D 2c0, whereas aj .0/ D 0 for j � 1.

Moreover, a simple calculation shows

1

�"
D 1

j log "j CO
� 1

j log "j2
�

as " ! 0C. On the other hand, if k � 1, then there exists at least a j 2 ¹1; 2; : : : ; kº
such that aj .0/ ¤ 0.

We then conclude that

Cap
E".L/.s"; Pk/ D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

2�

j log "jc
2
0

�

1CO
� 1

j log "j
��

if k D 0;

"2k �
�

k
X

j D1

j jaj .0/j2
�

.1C o.1// if k � 1;

thus completing the proof. �

2.2.1. Condenser capacity in dimension 2. We first consider generic compact

connected sets and prove the sharp asymptotic expansion of the condenser capac-

ity in terms of their diameter, as stated in Proposition 1.6.

Proof of Proposition 1.6. Let a"; b" 2 K" be such that jb" � a"j D ı". We denote

by m" the middle point of a" and b", i.e. m" D 1
2
.a" C b"/. Note that m" ! x0 as

" ! 0.
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Let us first derive an upper bound for Cap�.K"/. There exists R > 0 such

that B.m"; R/ � � and B.x0; R/ � � for " sufficiently small. According to the

monotonicity properties of the capacity, we have

Cap�.K"/ � CapB.m";R/
xB.m"; ı"/ D CapB.0;R/

xB.0; ı"/:

It is easy to compute CapB.0;R/
xB.0; ı"/. Indeed, the radial function V defined as

V.x/ D f .jxj/ with

f .r/ D

8

ˆ

<

ˆ

:

1 if r � ı";

log.r=R/

log.ı"=R/
if ı" < r � R;

belongs to H 1
0 .B.0; R//, is harmonic in B.0; R/ n B.0; ı"/ and equal to 1 on

B.0; ı"/. Hence V is a capacitary potential and

CapB.0;R/
xB.0; ı"/ D

Z

B.0;R/

jrV j2 dx D 2�

R
Z

ı"

dr

r log2.ı"=R/
D 2�

log.R=ı"/
:

We therefore have

Cap�.K"/ � 2�

log.R=ı"/
: (33)

To find a lower bound for Cap�.K"/ is a more delicate issue. Since� is bounded,

there exists a length L such that � � zE", where zE" is the interior of the ellipse

centered at m", whose major semi-axis has length
q

L2 C 1
4
ı2

" and belongs to

the straight line D" passing through a" and b", and whose minor semi-axis has

length L. By monotonicity of the capacity,

CapzE"
.K"/ � Cap�.K"/:

We now claim that, if Qs" denotes the segment of extremities a" and b",

CapzE"
.Qs"/ � CapzE"

.K"/: (34)

To prove claim (34), we first consider a regular connected compact set zK" such

that K" � zK" � zE". Since zK" is regular, we have that its capacitary potential

V zK"
is continuous in zE". For every x 2 R2, let us denote as Sx the straight line

perpendicular toD" passing through x. Let us consider the Steiner symmetrization

of V zK"
with respect to the line D" (see e.g. [11]), i.e.

V �
zK"
.x/ D inf¹t > 0WH1.¹y 2 SxWV zK"

.y/ > tº/ � 2 dist.x;D"/º;

where H
1 is the 1-dimensional Hausdorff measure.
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Since zK" is connected and a"; b" 2 zK", we have that Sx \ zK" ¤ ; for

every x 2 Qs". It follows that, for every x 2 Qs", supSx\zE"
V zK"

D 1; then

H
1.¹y 2 SxWV zK"

.y/ > tº/ D 0 if and only if t � 1. It follows that V �
zK"

.x/ D 1

for every x 2 Qs". Then

CapzE"
.Qs"/ �

Z

zE"

jrV �
zK"

j2 dx:

Since Steiner symmetrization decreases the Dirichlet energy, we obtain also that
Z

zE"

jrV �
zK"

j2 dx �
Z

zE"

jrV zK"
j2 dx D CapzE"

. zK"/

thus concluding that CapzE"
.Qs"/ � CapzE"

. zK"/. Finally, to obtain (34) it is enough

to approximate K" by regular connected compact sets and invoke Remark 1.3 (ii).

Since a roto-translation transforms zE" into Eı"=2 and Qs" into sı"=2 (see the

notations introduced in (19) and (20)), from (23) it follows that

CapzE"
.Qs"/ D Cap

Eı"=2
.sı"=2/ D 2�

j log ı"j

�

1CO
� 1

j log ı"j

��

as " ! 0C:

Putting the above inequalities and computations together, we get

Cap�.K"/ � 2�

j log ı"j

�

1CO
� 1

j log ı"j

��

as " ! 0C: (35)

Putting together Equations (33) and (35), we obtain

2�

j log ı"j

�

1CO
� 1

j log ı"j

��

� Cap�.K"/ � 2�

log.R=ı"/
: (36)

Observing that

2�

log.R=ı"/
D 2�

j log ı"j

�

1CO
� 1

j log ı"j

��

as ı" ! 0C, we conclude the proof. �

2.2.2. u-capacity for segments concentrating to a point in dimension 2. We

now compute the u-capacity for the special shape of segments of length 2" cen-

tered at 0; for this particular shape we are able to consider even the case when

the limit point is a zero of the eigenfunction u. The interest in computing the

u-capacity of segments with coalescing extremities is motivated by the remark-

able application to eigenvalue asymptotics for Aharonov–Bohm operators with

two poles presented in Section 3.
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The following proposition gives the asymptotics for h-capacity of concentrat-

ing segments in a planar domain when h is a homogeneous polynomial.

Proposition 2.6. Let � � R
2 be a bounded connected open set with 0 2 �. For

" > 0 small, let s" be as in (20) and Pk be a homogeneous polynomial of degree

k � 0 as in (21) for some c0; c1; : : : ; ck 2 R. Then

Cap�.s"; Pk/ D

8

ˆ

<

ˆ

:

2�

j log "j c
2
0

�

1CO
� 1

j log "j

��

if k D 0;

"2k c2
0 �Ck.1C o.1// if k � 1;

(37)

as " ! 0C, with Ck as in (22).

Proof. Since � is open and bounded, there exist L2 > L1 > 0 such that, for "

sufficiently small, s" � E".L1/ � � � E".L2/, with E".L1/;E".L2/ being as

in (19). By monotonicity of the capacity,

Cap
E".L2/.s"; Pk/ � Cap�.s"; Pk/ � Cap

E".L1/.s"; Pk/:

The conclusion then follows from Lemma 2.3. �

The following proposition gives, for every sufficiently smooth function u, a

sharp relation between the asymptotics of Cap�.s"; u/ and the order of vanishing

of u at 0 2 �.

Proposition 2.7. Let � � R2 be an open, bounded, connected set with 0 2 �

and let k 2 N [ ¹0º. Let us assume that u 2 C kC1
loc .�/ n ¹0º has vanishing order

at 0 equal to k, i.e. the Taylor polynomial of u of order k and center 0 has degree

k and is non-zero and k-homogeneous, namely is of the form

Pk.x1; x2/ D
k

X

j D0

cjx1
k�jx2

j

for some c0; c1; : : : ; ck 2 R, .c0; c1; : : : ; ck/ ¤ .0; 0; : : : ; 0/.

(i) If c0 ¤ 0, then

Cap�.s"; u/ D

8

ˆ

<

ˆ

:

2�

j log "j u
2.0/.1C o.1//; if k D 0;

"2k c2
0 �Ck.1C o.1//; if k � 1;

(38)

as " ! 0C, Ck being defined in (22).

(ii) If c0 D 0, then Cap� .s"; u/ D O."2kC2/ as " ! 0C.
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Proof. From the Taylor formula, we can write u as u D Pk C h for some

h 2 C kC1
loc .�/ satisfying

h.x/ D O.jxjkC1/ and jrh.x/j D O.jxjk/ as jxj ! 0C:

We denote by V , W0, andW the capacitary potentials associated to the capacities

Cap� .s"; u/, Cap� .s"; Pk/, and Cap� .s"; h/ respectively. By linearity of the

Dirichlet problem, V D W0 CW . Therefore we have that

Cap� .s"; u/ D
Z

�

jrV j2 dx

D
Z

�

jrW0j2 dx C 2

Z

�

rW0 � rW dx C
Z

�

jrW j2 dx:

By Lemma 2.2 we have that, as " ! 0C,
Z

�

jrW j2 dx D O."2kC2/

and
ˇ

ˇ

ˇ

ˇ

Z

�

rW0 � rW dx

ˇ

ˇ

ˇ

ˇ

� krW0kL2.�/ krW kL2.�/ D
p

Cap� .s"; Pk/O."
kC1/:

Hence

Cap� .s"; u/ D Cap� .s"; Pk/C
p

Cap� .s"; Pk/O."
kC1/CO."2kC2/; (39)

as " ! 0C. In view of Proposition 2.6 and (39), we have that, if c0 ¤ 0,

Cap� .s"; u/ D Cap� .s"; Pk/ .1C o.1//

as " ! 0C, from which estimate (38) follows thanks to Proposition 2.6.

On the other hand, if c0 D0, then Proposition 2.6 implies that Cap�.s";Pk/D0,

hence from (39) it follows that Cap� .s"; u/ D O."2kC2/ as " ! 0C. �

The proof of Theorem 1.9 (and consequently of Theorem 1.10) now follows as

a particular case of Proposition 2.7.

Proof of Theorems 1.9 and 1.10. From the fact that u 2 C1.�/ and (11) it follows

that the Taylor polynomial of the function uwith center 0 and order k is harmonic,

k-homogeneous, and has degree k; more precisely it has the form

Pk.r cos t; r sin t / D ˇrk sin.˛ � kt/:
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Since it can be also written as Pk.x1; x2/ D
Pk

j D0 cjx1
k�jx2

j for some real

constants c0; c1; : : : ; ck , we have then that necessarily c0 D ˇ sin˛. The proof of

Theorem 1.9 then follows from Proposition 2.7. Finally, the proof of Theorem 1.10

is a direct consequence of Theorems 1.4 and 1.9. �

2.2.3. u-capacity for small disks concentrating to a point in dimension 2. We

conclude this section with a proof of Theorem 1.13. As in the proof of Theorem 1.9,

we rely on explicit computation of the u-capacity in a special case. The following

result is the counterpart, in the case of the disks, of Lemma 2.3, which was stated

for segments.

Lemma 2.8. Let k 2 N, k � 1, and let Pk be a homogeneous polynomial of

degree k. Let us define the Fourier coefficients

aj;k D 1

�

2�
Z

0

Pk.cos t; sin t / cos.jt/ dt for j 2 ¹0; 1 : : : ; kº

and

bj;k D 1

�

2�
Z

0

Pk.cos t; sin t / sin.jt/ dt for j 2 ¹1 : : : ; kº:

Then, for every R > 0,

CapB.0;R/.B"; Pk/ D � D.Pk/ "
2k.1C o.1//

as " ! 0C, where B" D xB.0; "/ and D.Pk/ is a constant depending only on the

coefficients of the polynomial Pk given by

D.Pk/ D
k a2

0;k

4
C

k
X

j D1

.k C j /2

2k
.a2

j;k C b2
j;k/: (40)

Proof. Let us denote by V the Dirichlet potential of Pk and by W its expression

in polar coordinates, that is to say

V.r cos t; r sin t / D W.r; t/ for .r; t / 2 .0; R/� .0; 2 �/.

By definition of the Fourier coefficients,

Pk.r cos t; r sin t / D rk a0;k

2
C

k
X

j D1

rk .aj;k cos.jt/C bj;k sin.jt// (41)
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for all .r; t / 2 .0;C1/ � .0; 2 �/. For all x 2 B", V.x/ D Pk.x/, and therefore,

using polar coordinates,

Z

B.0;"/

jrV.x/j2 dx D
"

Z

0

r2k�2

�

2�
Z

0

k2
�a0;k

2
C

k
X

j D1

aj;k cos.jt/C bj;k sin.jt/
�2

C
�

k
X

j D1

j bj;k cos.jt/ � j aj;k sin.jt/
�2

�

r dr:

By Parseval’s identity, we obtain

Z

B.0;"/

jrV.x/j2 dx D "2k

2k

�k2 � a2
0;k

2
C

k
X

j D1

� .k2 C j 2/ .a2
j;k C b2

j;k/
�

: (42)

Let us now determine V in the open set B.0; R/ n B", that is to say W.r; t/ for

r 2 ."; R/. The function W satisfies the boundary value problem

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

1

r

@

@r

�

r
@

@r
W

�

C 1

r2

@2

@t2
W D 0 in ."; R/� .0; 2 �/;

W.R; t/ D 0 for all t 2 .0; 2 �/;
W."; t / D Pk." cos t; " sin t / for all t 2 .0; 2 �/;
W.r; 0/ D W.r; 2�/ for all r 2 ."; R/:

(43)

To solve problem (43), we expand W in Fourier series with respect to the vari-

able t :

W.r; t/ D a0.r/

2
C

X

j �1

aj .r/ cos.jt/C bj .r/ sin.jt/;

for .r; t / 2 ."; R/� .0; 2 �/. Then

�1

r

@

@r

�

r
@

@r
W

�

C 1

r2

@2

@t2
W

�

.r; t / D 1

2r
.r a0

0.r//
0

C
k

X

j D1

�1

r

�

r a0
j .r/

�0 � j 2

r2
aj .r/

�

cos.jt/

C
�1

r

�

r b0
j .r/

�0 � j 2

r2
bj .r/

�

sin.jt/;

so that

.r a0
0.r//

0 D 0 in ."; R/;
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and, for j � 1,

r .r a0
j .r//

0 � j 2aj .r/ D 0 and r .r b0
j .r//

0 � j 2bj .r/ D 0:

Taking into account the boundary conditions in (43), we find

a0.r/ D a0;k "
k

log
� r

R

�

log
� "

R

� ;

and, for j 2 ¹1; : : : ; kº,

aj .r/ D aj;k"
k

�R

r

�j

�
� r

R

�j

�R

"

�j

�
� "

R

�j
and bj .r/ D bj;k"

k

�R

r

�j

�
� r

R

�j

�R

"

�j

�
� "

R

�j
;

while, for j � k C 1, aj .r/ D 0 and bj .r/ D 0. Using polar coordinates and

Parseval’s identity as above, we find

Z

B.0;R/nB"

jrV.x/j2 dx D
R

Z

"

��

2
ja0

0.r/j2 C �

k
X

j D1

�

ja0
j .r/j2 C j 2

r2
jaj .r/j2

C jb0
j .r/j2 C j 2

r2
jbj .r/j2

��

r dr:

We have

R
Z

"

�

2
ja0

0.r/j2 r dr D
� a2

0;k "
2k

2 log2
�R

"

�

R
Z

"

dr

r
D
� a2

0;k "
2k

2 log
�R

"

�

:

For j 2 ¹1; : : : ; kº, an integration by parts gives us

R
Z

"

�

r ja0
j .r/j2 C j 2

r
jaj .r/j2

�

dr

D Œr aj .r/ a
0
j .r/�

R
" �

R
Z

"

�

.r a0
j .r//

0 � j 2

r
aj .r/

�

aj .r/ dr

D �" aj ."/ a
0
j ."/:

Using the expression computed for aj .r/, we find

R
Z

"

�

r ja0
j .r/j2 C j 2

r
jaj .r/j2

�

dr D j a2
j;k "

2k
1C

� "

R

�2j

1�
� "

R

�2j
:
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The exact same computation gives us

R
Z

"

�

r jb0
j .r/j2 C j 2

r
jbj .r/j2

�

dr D j b2
j;k "

2k
1C

� "

R

�2j

1 �
� "

R

�2j
;

so that

Z

B.0;R/nB"

jrV.x/j2 dx D
� a2

0;k "
2k

2 log
�R

"

�

C � "2k

k
X

j D1

j .a2
j;k C b2

j;k/
1C

� "

R

�2j

1�
� "

R

�2j
: (44)

Combining (42) and (44), we get

CapB.0;R/.B"; Pk/

D � "2k
�k a2

0;k

4
C

k
X

j D1

�k2 C j 2

2k
C j

�

.a2
j;k C b2

j;k/CO
� 1

jlog."/j

��

;

and finally

CapB.0;R/.B"; Pk/ D �
�

k
a2

0;k

4
C

k
X

j D1

.k C j /2

2k
.a2

j;k C b2
j;k/

�

"2k .1C o.1//;

as " ! 0C. �

Remark 2.9. Since the polynomial Pk in Lemma 2.8 is of degree k � 1, it is non

zero, and therefore D.Pk/ > 0.

We can now find the asymptotics of the Pk-capacity for small balls concentrat-

ing at a point in any open set. This is the analogue of Proposition 2.6 for segments.

Proposition 2.10. Let� � R
2 be a bounded connected open set with 0 2 �. For

" > 0 small, let B" D xB.0; "/ and Pk be a homogeneous polynomial of degree

k � 0. Then

Cap�.B"; Pk/ D

8

ˆ

<

ˆ

:

2�c2
0

j log "j

�

1CO
� 1

j log "j
�

�

if k D 0 and Pk � c0;

� D.Pk/ "
2k.1C o.1// if k � 1;

(45)

as " ! 0C, where D.Pk/ is the constant defined in (40).
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Proof. If k D 0, i.e. if Pk � c0, then Cap�.B"; Pk/ D c2
0 Cap�B" and the

conclusion follows from Proposition 1.6.

For k � 1, let us fix two radii 0 < R1 < R2 such that

B.0; R1/ � � � B.0; R2/:

By monotonicity of the capacity we have

CapB.0;R2/.B"; Pk/ � Cap�.B"; Pk/ � CapB.0;R1/.s"; Pk/:

We apply Lemma 2.8 to CapB.0;R1/.B"; Pk/ and CapB.0;R1/.B"; Pk/ and ob-

tain (45). �

The following proposition is the analogue for disks of Proposition 2.7 for

segments.

Proposition 2.11. Let � � R
2 be an open, bounded, connected set with 0 2 �

and let k 2 N [ ¹0º. Let us assume that u 2 C kC1
loc .�/ n ¹0º has vanishing order

at 0 equal to k, i.e. the Taylor polynomial of u of order k and center 0 has degree

k and is non-zero and k-homogeneous. Then

Cap�.B"; u/ D

8

ˆ

<

ˆ

:

2�

j log "j u
2.0/.1C o.1// if k D 0;

� D.Pk/ "
2k.1C o.1// if k � 1;

as " ! 0C, D.Pk/ being defined in (40).

Proof. The proof follows by repeating the same arguments as in Proposition 2.7

and using Proposition 2.10 instead of Proposition 2.6. �

Proof of Theorems 1.13 and 1.14. Arguing as in the proof of Theorem 1.9, from the

fact that u 2 C1.�/ and (11) we deduce that the Taylor polynomial of the function

u with center 0 and order k is harmonic, k-homogeneous, and has degree k; more

precisely it has the form

Pk.r cos t; r sin t / D ˇrk sin.˛ � kt/:

Then, for k � 1, the Fourier coefficients aj;k and bj;k appearing in Lemma 2.8 are

zero for j ¤ k and

ak;k D
´

2ˇ sin˛; if k D 0;

ˇ sin˛; if k � 1;
and bk;k D �ˇ cos˛:

From (40) it follows that, for k � 1, D.Pk/ D 2kˇ2. Then the asymptotics stated

in (13) follows from Proposition 2.11.

The proof of Theorem 1.14 follows directly from Theorems 1.4 and 1.13. �
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3. Asymptotic expansion for coalescing poles of Aharonov–Bohm operators

In this section we study Aharonov–Bohm operators on domains having one axis

of symmetry. More specifically, let us define the reflection � WR2 ! R
2 by

�.x1; x2/ D .x1;�x2/;

and let us consider �, an open, bounded, and connected set in R
2 satisfying

�.�/ D �. Let us consider a Schrödinger operator with a purely magnetic

potential of Aharonov–Bohm type, with two poles on the axis of symmetry

R WD ¹.x1; x2/ 2 R
2W x2 D 0º;

each with a half-integer flux.

More precisely, let us fix two points a� D .a�
1 ; 0/ and aC D .aC

1 ; 0/ in R, with

a�
1 < aC

1 . We consider the vector field Aa�;aC defined on the doubly punctured

plane RP.a�; aC/ WD R
2 n ¹a�; aCº by

Aa�;aC.x/ WD � 1

2

1

.x1 � a�
1 /

2 C x2
2

.�x2; x1 � a�
1 /

C 1

2

1

.x1 � aC
1 /

2 C x2
2

.�x2; x1 � aC
1 /:

Let us note that, if we write, for any x D .x1; x2/ 2 RP.a�; aC/,

Aa�;aC.x1; x2/ D .A1.x1; x2/; A2.x1; x2//;

we have

Aa�;aC.x1;�x2/ D .�A1.x1; x2/; A2.x1; x2//:

Equivalently, we have, for any x 2 RP.a�; aC/,

Aa�;aC.�.x// D �Aa�;aC.x/S

where S is a 2 � 2 symmetry matrix:

S WD
�

1 0

0 �1

�

: (46)

We work in the complex Hilbert spaceL2.�/ of complex valued square integrable

functions on �, with the scalar product defined by

hu; vi WD
Z

�

u Nv dx
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for u and v in L2.�/. Our operator is the Friedrichs extension of the differential

operator

.ir C Aa�;aC/2;

acting on C1
c . R�.a�; aC//, the space of smooth functions with compact support

in the doubly punctured domain R�.a�; aC/ WD � n ¹a�; aCº. We denote it by

HA
a�;aC

. By construction, it is a positive and self-adjoint operator. Furthermore,

it has compact resolvent, as a consequence of [23, Corollary 2.5]. Its spectrum

therefore consists of a sequence of real positive eigenvalues tending to C1, which

we denote by .�k.a
�; aC//k�1.

3.1. Gauge transformations. We now construct suitable gauge transformations,

in order to remove the magnetic potential. We use the notation

I.a�; aC/ WD Œa�
1 ; a

C
1 � � ¹0º

to denote the closed segment joining the two poles.

Lemma 3.1. There exists a unique C1-function 'a� ;aC defined on the domain

R
2 n I.a�; aC/ such that

r'a�;aC D Aa�;aC on R
2 n I.a�; aC/

and

'a�;aC.x1; 0/D 0 for all x1 2 .aC
1 ;C1/:

Furthermore, 'a�;aC satisfies 'a�;aC ı � D �'a�;aC .

Proof. We define �0WR2 n ..�1; 0�� ¹0º/ ! R by

�0.x/ WD 2 arctan
� x2

x1 C
q

x2
1 C x2

2

�

;

and

'a� ;aC.x/ WD 1

2
�0.x � aC/ � 1

2
�0.x � a�/;

as illustrated on Figure 1.
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Figure 1. Geometric interpretation of �0 and 'a�;aC .

A simple computation shows that 'a�;aC has a unique smooth extension to

R
2 n I.a�; aC/, with all the desired properties. Uniqueness follows from the

connectedness of R2 n I.a�; aC/. �

Lemma 3.2. There exists a unique smooth function  a�;aC W RP.a�; aC/ ! C

satisfying

(i) j a�;aC j � 1 on RP.a�; aC/;

(ii)
r a�;aC

i a�;aC

D 2Aa�;aC on RP.a�; aC/;

(iii)  a�;aC.x1; 0/ D �1 for all x1 2 .a�
1 ; a

C
1 /.

Furthermore,  a�;aC satisfies  a�;aC ı � D  a�;aC .
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Proof. For all x 2 R
2nI.a�; aC/, we set a�;aC.x/ D e

2i'
a�;aC.x/, where 'a�;aC

is the function defined in Lemma 3.1. This function is smooth on R
2 n I.a�; aC/

and, for all x 2 R
2 n I.a�; aC/,

r a�;aC.x/ D 2ie
2i'

a�;aC .x/r'a�;aC.x/ D 2i a�;aC.x/Aa�;aC.x/;

and thus
r a�;aC.x/

i a�;aC.x/
D 2r'a�;aC.x/ D 2Aa�;aC.x/:

On the other hand, for all x1 2 .a�
1 ; a

C
1 /,

lim
�!0;�>0

 a�;aC.x1; �/ D ei� D �1

and

lim
�!0;�>0

 a�;aC.x1;��/ D e�i� D �1:

This implies that  a�;aC admits a continuous extension to RP.a�; aC/, which we

also denote by  a�;aC . Since r a�;aC D 2i a�;aCAa�;aC on R
2 n I.a�; aC/,

with Aa�;aC smooth on RP.a�; aC/, we obtain that  a�;aC is of class C 1 on
RP.a�; aC/, and then that  a�;aC is smooth by a bootstrap argument.

Let us now prove uniqueness. Let us assume that Q is a function satisfying

conditions (i–iii). Then, we deduce from (ii) that

r
� Q 
 a�;aC

�

D
Q 

 a�;aC

�r Q 
Q 

�
r a�;aC

 a�;aC

�

D
Q 

 a�;aC

.2iAa�;aC � 2iAa�;aC/

D 0

on RP.a�; aC/. There exists therefore c 2 C such that Q D c a�;aC on RP.a�; aC/,

and condition (iii) tells us that c D 1, thus proving uniqueness.

Finally, since 'a�;aC ı � D �'a�;aC , we conclude that

 a�;aC ı � D  a�;aC : �

To simplify notation, in the following sections, we do not write explicitly the

dependence on a� and aC, except for the eigenvalues, but the objects considered

depend on the position of the two poles (so we will write HA for HA
a�;aC

, R� for

R�.a�; aC/, etc.).
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3.2. Conjugation and symmetry

Definition 3.3. Let us define the antilinear, antiunitary operator K on L2.�/ by

Ku WD  Nu, where  is the gauge function defined in Lemma 3.2. We say that a

function u 2 L2.�/ is K-real if Ku D u. We denote by L2
K.�/ the set of K-real

functions.

Lemma 3.4. If u and v are in L2
K.�/, hu; vi 2 R.

Proof. We have

hu; vi D
Z

�

u Nv dx

D
Z

�

N u Nv dx

D
Z

�

 Nu Nv dx

D
Z

�

Nuv dx

D hu; vi: �

Remark 3.5. The setL2
K.�/ is not a subspace of the complex vector spaceL2.�/,

because multiplication by a complex number does not preserve K-real functions.

However, multiplication by a real number does preserve these functions, and

therefore L2
K.�/ is a real vector space. Moreover, Lemma 3.4 shows that the

restriction to L2
K.�/ of the complex scalar product on L2.�/ is a real scalar

product. Therefore, L2
K.�/ is a real Hilbert space.

Lemma 3.6. The antilinear operatorK preserves the domain ofHA, and we have

HA ıK D K ıHA.

Proof. Let us begin by considering u 2 C1
c . R�/. We have

.ir C A/.Ku/ D .ir C A/. Nu/ D i r NuC  NuAC i Nur :

Since r D 2i A, we obtain

.ir C A/.Ku/ D i r Nu�  NuA D � .ir C A/u:
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As a consequence, for any v 2 C1
c . R�/,

Z

�

HAKu Nv dx D
Z

�

.ir C A/.Ku/ � .ir C A/v dx

D �
Z

�

 .ir C A/u � .ir C A/v dx

D
Z

�

.ir C A/.Kv/ � .ir C A/udx

D
Z

�

Kv .ir C A/2udx

D
Z

�

 Nv .ir C A/2udx

D
Z

�

KHAu Nv dx:

We therefore have HAKu D KHAu for all u 2 C1
c . R�/. The conclusion follows

by density. �

We deduce from Lemma 3.6 that the eigenspaces of HA are stable under the

action of K. This implies that we can find a basis of L2.�/ formed by K-real

eigenfunctions of HA. We also interpret this in another way: L2
K.�/ is stable

under the action ofHA and the restriction ofHA to L2
K.�/ has the same spectrum

as HA.

We now want to study the consequence of the fact that � is symmetric with

respect to R on the operator HA. We therefore define the antiunitary antilinear

operator †, acting on L2.�/, by †u WD Nu ı � .

Lemma 3.7. The antilinear operator† preserves the domain ofHA, and we have

HA ı† D † ıHA. Furthermore, † ıK D K ı†.

Proof. The second point is clear: if u 2 L2.�/,

.†K/u.x/ D .Ku/ .�.x//

D  .�.x//u.�.x//

D  .x/u.�.x//

D .K†/u.x/:
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To prove the first point, we begin by considering u 2 C1
c . R�/. Recalling that S is

defined in (46), we have

.ir C A/.†u/ D ir. Nu ı �/C . Nu/ ı �A

D .i.r Nu/ ı �/S � .. NuA/ ı �/S

D �..ir C A/u ı �/S:

For any v 2 C1
c . R�/, we have

Z

�

.HA†u/ Nv dx D
Z

�

.ir C A/.†u/ � .ir C A/v dx

D
Z

�

�..ir C A/u ı �/S � .ir C A/v dx:

After the change of variable x D �.y/, and using the fact that S is symmetric, we

find

Z

�

.HA†u/ Nv dx D
Z

�

.ir C A/u � �..ir C A/v ı �/S dy

D
Z

�

.ir C A/u � .ir C A/.†v/ dy

D
Z

�

HAu†v dy

D
Z

�

HAu .v ı �/ dy:

We now do the reverse change of variable y D �.x/, thus obtaining

Z

�

.HA†u/ Nv dx D
Z

�

.HAu ı �/ Nv dx D
Z

�

.†HAu/ Nv dx:

We therefore have HA†u D †HAu for all u 2 C1
c . R�/. The conclusion follows

by density. �
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The second point of Lemma 3.7 implies that L2
K.�/ is stable under the action

of †. If we write

L2
K;†.�/ WD L2

K.�/ \ ker.† � Id/

and

L2
K;a†.�/ WD L2

K.�/ \ ker.†C Id/;

we observe that every function u 2 L2
K.�/ can be decomposed as

u D 1

2
.uC Nu ı �/C 1

2
.u� Nu ı �/; (47)

so that we have the orthogonal decomposition

L2
K.�/ D L2

K;†.�/˚ L2
K;a†.�/: (48)

The first point of Lemma 3.7 implies that HA leaves the spaces L2
K;† and L2

K;a†

invariant. We can therefore define the operators HA;† and HA;a†, restrictions of

HA to L2
K;†.�/ and L2

K;a†.�/ respectively. The spectrum of HA is the union

(counted with multiplicities) of the spectra of HA;† and HA;a†.

3.3. Spectral equivalence to the Laplace operator with mixed boundary

conditions. Let L2
R;� .�/ be the real Hilbert space consisting of the real val-

ued L2-functions u on � such that u ı � D u. Let us consider the opera-

tor HNDN on L2
R;� .�/ defined as the Friedrichs extension of the differential

operator �� acting on the domain ¹u 2 C1
c .� n I;R/Wu ı � D uº, the

space of real valued smooth functions with compact support in � n I symmet-

ric with respect to the axis x2 D 0. The domain of HNDN is then given by

¹u 2 H 1
0 .� n I/Wu ı � D u and �

ˇ

ˇ

�nI
u 2 L2

R;�.�/º, being �
ˇ

ˇ

�nI
the distri-

butional Laplacian in � n I. HNDN is a symmetric, positive, and self-adjoint

operator on L2
R;� .�/. We denote by .�NDN

k
.aC; a�//k�1 its eigenvalues.

In a similar way, we consider the operator HDND on L2
R;�.�/ defined as the

Friedrichs extension of �� acting on ¹u 2C1
c .� n .R n I/;R/Wu ı � D uº. The

domain of HDND is then given by

¹u2H 1
0 .� n .R n I//Wu ı �Du and �

ˇ

ˇ

�n.RnI/
u 2 L2

R;�.�/º;

where �
ˇ

ˇ

�n.RnI/
the distributional Laplacian in � n .R n I/. The operator HDND

is self-adjoint and positive on L2
R;� .�/. We denote by .�DND

k
.aC; a�//k�1 its

eigenvalues.
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Remark 3.8. Let us consider the upper-half domain associated with �

�uh WD �\ ¹.x1; x2/ 2 R
2W x2 > 0º:

We have that @�uh WD �uh [ �0, with �uh WD @� \ ¹.x1; x2/ 2 R
2W x2 > 0º and

�0 WD x� \ R. We additionally define �0
c D �0 \ I.

We notice that, if � has smooth boundary, then the operator HNDN can be

identified with the Neumann–Dirichlet–Neumann Laplacian on �uh denoted by

��NDN and defined as the Laplacian on �uh with Dirichlet boundary condition

on �uh [ �0
c and Neumann boundary condition on �0 n �0

c , see Figure 2(a).

In a similar way, if � has smooth boundary, then the operator HDND can be

identified with the Dirichlet–Neumann–Dirichlet Laplacian ��DND defined as

the Laplacian on �uh with Dirichlet boundary condition on �uh [ .�0 n �0
c / and

Neumann boundary condition on �0
c , see Figure 2(b).

(a) Neumann–Dirichlet–Neumann boundary conditions

(b) Dirichlet–Neumann–Dirichlet boundary conditions

Figure 2. Eigenvalue problems with mixed boundary conditions in �uh.
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The main result of this section is the following equivalence of HNDN with

HA;† and of HDND with HA;a†.

Proposition 3.9. The operator HNDN is unitarily equivalent to HA;† and the

operator HDND is unitarily equivalent to HA;a†.

Before proving Proposition 3.9, we observe that a direct consequence of Propo-

sition 3.9 combined with the discussion in §3.2 is the following isospectrality re-

sult.

Corollary 3.10. The sequence .�k.a
C; a�// is the union, counted with multiplic-

ities, of the sequences .�NDN
k

.aC; a�//k�1 and .�DND
k

.aC; a�//k�1.

We divide the proof of Proposition 3.9 into two lemmas. The first gives

information on the nodal set of functions in L2
K;†.�/ or L2

K;a†.�/.

Lemma 3.11. If u 2 L2
K;†.�/ \ C. R�/, then u � 0 on � \ I. On the other hand,

if u 2 L2
K;a†.�/ \ C. R�/, then u � 0 on .�\ R/ n I.

Proof. Since Ku D u, we have Nu.x1; 0/ D u.x1; 0/ if x1 < a�
1 or x1 > aC

1 , and

Nu.x1; 0/ D �u.x1; 0/ and if x1 2 .a�
1 ; a

C
1 /.

If †u D u, Nu.x1; 0/ D u.x1; 0/ for all x1, and therefore u.x1; 0/ D 0 if

x1 2 .a�
1 ; a

C
1 /. In the case where †u D �u, Nu.x1; 0/ D �u.x1; 0/ for all x1,

and therefore u.x1; 0/ D 0 if x1 < a
�
1 or x1 > a

C
1 . �

The second Lemma gives a unitary operator of similarity, and proves the two

isospectrality results of Proposition 3.9.

Lemma 3.12. If u 2 L2.�/, we define

U�u WD e�i'u; Ua�u WD
´

e�i'u in �uh;

�e�i'u in � n�uh

where ' is the function defined in Lemma 3.1. We have the following properties:

(i) U� defines a one-to-one and unitary mapping fromL2
K;†.�/ to L2

R;� .�/ and

Ua� defines a one-to-one and unitary mapping from L2
K;a†.�/ to L2

R;� .�/;

(ii) U� maps the domain of HA;† to the domain of HNDN and U� ı HA;† D
HNDN ı U� ;

(iii) Ua� maps the domain of HA;a† to the domain of HDND and Ua� ıHA;a† D
HDND ı Ua� .
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Proof. Let us first check that for all u 2 L2
K.�/, U�u D U�u and Ua�u D Ua;�u.

Indeed, for x 2 �,

e�i'.x/u.x/ D e�i'.x/e2i'.x/ Nu.x/ D e�i'.x/.Ku/.x/ D e�i'.x/u.x/:

If u 2 L2
K;†.�/, then U�u.�.x// D e�i'.�.x//u.�.x// D ei'.x/u.x/ D U�u.x/ D

U�u.x/ so that U�u 2 L2
R;�.�/. If u 2 L2

K;a†.�/, then Ua�u.�.x// D Ua�u.x/

so that Ua�u 2 L2
R;� .�/.

Furthermore, if u 2 L2
K.�/ then jU�uj D juj and jUa�uj D juj, therefore

Z

�

juj2 dx D
Z

�

jU�uj2 dx D
Z

�

jUa�uj2 dx:

Finally, if v 2 L2
R;� .�/, a direct computation shows that the function u† defined

on � by

u†.x/ WD ei'.x/v.x/

is in L2
K;†.�/ and that U�u† D v. This shows that U� defines a one-to-one map

from L2
K;†.�/ to L2

R;� .�/. In the same way, the function ua† defined on � by

ua†.x/ WD ei'.x/v.x/ for x 2 �uh

and

ua†.x/ WD �ei'.x/v.x/ for x 2 �\ ¹.x1; x2/ 2 R
2W x2 < 0º

is in L2
K;a†.�/ and Ua�ua† D v. This shows that Ua� defines a one-to-one map

from L2
K;a†.�/ to L2

R;�.�/. We have proved point (i).

To prove point (ii), let us begin by considering u 2 C1
c . R�/ \ L2

K;†.�/.

According to Lemma 3.11, u � 0 on � \ I. Then U�u 2 H 1
0 .� n I/ (for this

it is crucial that u vanishes on I since e�i' jumps across I) and

.ir/.U�u/ D ir.e�i'u/ D e�i'.ir C r'/u D e�i'.ir C A/u in � n I:

We observe that any function u in the domain of the operator HA;† can be

approximated in the form domain norm by functions in C1
c . R�/ \ L2

K;†.�/. To

this aim, we can first take a sequence of functions un 2 C1
c . R�/ converging to u

in the form domain norm; then we take the sequence

vn D 1

4
.un C un ı � CK.un C un ı �//

which stays in C1
c . R�/ \ L2

K;†.�/ and converges to u in the form domain norm

thanks to the validity of the Hardy type inequality (see [22])

kAwkL2.�/ � C.a;�/k.ir C A/wkL2.�/

which holds for every w 2 C1
c . R�/ and for some C.a;�/ > 0 depending on a

and �.
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Then we conclude that, for every u in the domain of the operator HA;†,

U�u 2 H 1
0 .� n I/ and

.ir/.U�u/ D e�i'.ir C A/u in � n I:

Furthermore, for every w 2 C1
c .� n I/

Z

�nI

r.U�u/ � rw dx D
Z

R�

.ir C A/u � .ir C A/.ei'w/dx: (49)

Since u is in the domain of the Friedrichs extension of the differential operator

.ir C A/2, we conclude that
ˇ

ˇ

ˇ

ˇ

Z

�nI

r.U�u/ � rw dx
ˇ

ˇ

ˇ

ˇ

� constkwkL2.�/

for every w 2 C1
c .� n I/, thus implying that U�u stays in the domain of HNDN .

Moreover, by density and (49) we conclude that

U�.HNDNu/ D e�i'.ir C A/2u

completing the proof of (ii).

The proof of (iii) can be obtained in a similar way, observing that any function

u 2 C1
c . R�/\L2

A;a†.�/ vanishes on RnI; henceUa�u 2 H 1
0 .�n .RnI// (for this

it is crucial that u vanishes on R n I since sign.x2/e
�i' jumps across R n I). �

3.4. Proof of Theorem 1.16. Combining the isospectrality result of Corol-

lary 3.10 with Theorem 1.10 we can now prove Theorem 1.16.

Proof of Theorem 1.16. It is known from [23] that �a
N ! �N .�/; in particular

the continuity result of [23] implies that, since �N .�/ is simple, then also �a
N is

simple. It is not restrictive to assume that uN is real valued. We can show that,

for all a > 0 small, there exists ua
N eigenfunction of .ir C Aa�;aC/2 associated

to �a
N such that

ua
N �! uN in C 2

loc.� n ¹0º;C/ (50)

as a ! 0C. Indeed, the results of [23, Section 3] imply that, for all a > 0 small,

we can choose ua
N so that ua

N ! uN in L2.�/ as a ! 0C. Let us also note

that for any r > 0 the family of operators .ir C Aa�;aC/2 is uniformly elliptic in

� n B.0; r/ for a > 0 small enough. The statement (50) then follows by elliptic

regularity theory. Moreover it is possible to choose ua
N 2 L2

K
a�;aC

.�/; indeed,

if ua
N 62 L2

K
a�;aC

.�/, we can take 1
2
.ua

N C Ka�;aC.ua
N // which is a Ka�;aC-real

eigenfunction for �a
N still converging to uN (notice that 1

2
.ua

N CKa�;aC.ua
N // 6� 0

for a small enough since it converges to uN 6� 0).
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The orthogonal decomposition (47) and the simplicity of �a
N imply that ei-

ther ua
N 2 L2

K;†.�/ (and then, by Lemma 3.11, ua
N � 0 on Œ�a; a� � ¹0º) or

ua
N 2 L2

K;a†.�/ (and then ua
N � 0 on .R n .�a; a// � ¹0º). If ua

N � 0 on

.Rn .�a; a//�¹0º, then (50) would imply that uN � 0 on R�¹0º thus contradict-

ing the assumption that the x1-axis is not tangent to any nodal line of uN . Hence

we have that necessarily ua
N 2 L2

K;†.�/. Then �a
N is an eigenvalue ofHA

a�;aC ;†

and, by Proposition 3.9, of HNDN . Therefore

�a
N D �N .� n .Œ�a; a�� ¹0º//

and the conclusion follows applying Theorem 1.10. �

Appendices

A. Proof of Theorem 1.4

Since our setting is a little different from [14] (which considers manifolds without

boundary) and Theorem 1.4 is quite hidden in the arguments of [14], we think it

is worthwhile giving in this appendix a proof of Theorem 1.4. Our approach is

different from the one used in [14]. It relies on the spectral theorem to estimate

how closely approximate eigenvalues and eigenfunctions approach the true ones.

Let us begin with the following crucial estimate, which is the analogue of [14,

Lemma 3.2].

Lemma A.1. Let � � R
n be a bounded, connected, and open set. If .K"/">0 is

a family of compact sets contained in � concentrating to a compact set K with

Cap�K D 0, then for every f 2 H 1
0 .�/

Z

�

jVK";f j2 dx D o.Cap�.K"; f // as " ! 0;

where VK";f is defined in (7).

Proof. Let us assume by contradiction that there exist a sequence "n ! 0 and a

constant C > 0 such that
Z

�

jVK"n ;f j2 dx � 1

C
Cap�.K"n

; f /:

We set

Wn WD 1

kVK"n ;f kL2.�/

VK"n ;f :
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We have

kWnkL2.�/ D 1

and

krWnk2
L2.�/

D 1

kVK"n ;f k2
L2.�/

Cap�.K"n
; f / � C:

By weak compactness of the unit ball ofH 1
0 .�/ and compactness of the inclusion

H 1
0 .�/ � L2.�/, there exists an increasing sequence of integers .nk/k�1 and

a function W 2 H 1
0 .�/ such that .Wnk

/k�1 converges to W when k goes to

C1, weakly in H 1
0 .�/ and strongly in L2.�/. We have that kW kL2.�/ D 1 and

�W D 0 in� nK in a weak sense. This last equation implies thatW is harmonic

in � (since Cap�K D 0), and therefore that W is identically 0. We have reached

a contradiction and proved the lemma. �

Corollary A.2. If .K"/">0 is a family of compact sets contained in� concentrat-

ing to a compact setK � �with Cap�K D 0, then, for any f 2 H 1
0 .�/\L1.�/,

Z

�

jVK";f j2 dx D o.Cap�.K"// as " ! 0:

Proof. By the maximum principle for harmonic functions in � nK" we have that

jVK";f j � .max
�

jf j/VK"
:

Hence
R

� jVK";f j2 dx � .max� jf j/2
R

� jVK"
j2dx and the conclusion follows

from Lemma A.1 (with f D �K). �

We are now in position to prove Theorem 1.4.

Proof of Theorem 1.4. For " > 0, we denote by ��" the Dirichlet Laplacian

on � n K". More precisely, ��" is the self-adjoint operator obtained from the

restriction of the quadratic form

q.u/ D
Z

�

jruj2 dx

to H 1
0 .� nK"/ through the Friedrichs’ extension procedure (see for instance [29,

Theorem X.23]).
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To simplify notation, we write �" D �N .� n K"/, c" D Cap�.K"; uN /,

V" D VK";uN
, and we denote by q both the quadratic form defined above and the

associated bilinear form. We write  " D uN � V". Let us note that by definition

of the potential V",  " is the orthogonal projection of uN on H 1
0 .� n K"/, in the

space H 1
0 .�/ endowed with the scalar product q. For any ' 2 H 1

0 .� nK"/,

q. "; '/ � �N .�/h "; 'iL2.�/ D q.uN ; '/ � �N .�/h "; 'iL2.�/

D �N .�/huN ; 'iL2.�/ � �N .�/h "; 'iL2.�/

D �N .�/hV"; 'iL2.�/:

This means that  " is in the domain of the operator ��" and that

.��" � �N .�// " D �N .�/V": (51)

According to Lemma A.1, kV"kL2.�/ D o.c
1=2
" / as " ! 0C, so that

k.��" � �N .�// "kL2.�/ D o.c1=2
" /

as " ! 0C. From the spectral theorem (see for instance [19, Proposition 8.20]),

we get

dist .�N .�/; �.��"// �
k.��" � �N .�// "kL2.�/

k "kL2.�/

D o.c1=2
" /; as " ! 0C;

where �.��"/ is the spectrum of the self-adjoint operator ��". We recall that

�" ! �N .�/ as " ! 0C: this is an immediate corollary of [28, Theorem 2.3].

Since �N .�/ is assumed to be simple, �" is simple for " > 0 small enough, and

j�" � �N .�/j D o.c1=2
" / as " ! 0C:

Let us now denote by …" the orthogonal projection from L2.�/ onto the one-

dimensional eigenspace associated with �", and let us write Qu" WD  " � …" ".

We have

.��" � �"/…" " D 0;

and therefore

.��" � �"/ Qu" D .��" � �"/ ":

Since

k.��" � �"/  "kL2.�/ � j�N .�/ � �"j k "kL2.�/ C k.��" � �N .�// "kL2.�/ ;

we obtain

k.��" � �"/ Qu"kL2.�/ D o.c1=2
" / as " ! 0C:
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Let us denote by K" the closed subspace Im.I � …"/ D ker.…"/, and by T"

the restriction of the operator ��" to K". The operator T" is self-adjoint, with

spectrum �.T"/ D �.��"/ n ¹�"º. Furthermore, since �j .� n K"/ ! �j .�/ for

all j � 1 as " ! 0C, and since �N .�/ is simple, there exists some ı > 0 such

that dist.�"; �.T"// � ı for " > 0 small enough. Using the spectral theorem for

the operator T", we get

dist .�"; �.T"// k Qu"kL2.�/ � k.T" � �"/ Qu"kL2.�/ ;

and therefore

k " �…" "kL2.�/ �
k.T" � �"/ Qu"kL2.�/

ı
D o.c1=2

" / as " ! 0C:

Consequently, we have

kuN �…" "kL2.�/ � kV"kL2.�/ C k " �…" "k D o.c1=2
" /;

and therefore

k…" "kL2.�/ D 1C o.c1=2
" / as " ! 0C:

This implies in particular that …" " is non-zero for " > 0 small enough, so that

we can define

u" D …" "

k…" "kL2.�/

;

an L2.�/-normalized eigenfunction of ��" associated with �". A simple com-

putation shows that

ku" �  "kL2.�/ D o.c1=2
" /

and

ku" � uN kL2.�/ D o.c1=2
" /

as " ! 0C. Taking the scalar product of equation (51) with u", we obtain

.�" � �N .�//hu";  "iL2.�/

D �N .�/huN ; V"iL2.�/ C �N .�/hu" � uN ; V"iL2.�/

D �N .�/huN ; V"iL2.�/ C o .c"/ as " ! 0C:

(52)

On the other hand, since  " and V" are q-orthogonal, we have

c" D q.V"/ D q.uN �  "; V"/ D q.uN ; V"/ D �N .�/huN ; V"iL2.�/; (53)

using for the last equality the fact that uN is an eigenfunction of the Dirichlet

Laplacian in� associated with the eigenvalue �N .�/. Reinjecting (53) into (52),

we finally obtain

�" � �N .�/ D c" C o.c"/

hu";  "i
D c".1C o.1//;

as " ! 0C. �
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B. Continuity of the u-capacity

In this appendix, we establish a continuity result for the u-capacity with respect

to concentration at zero capacity sets.

Proposition B.1. If ¹K"º">0 is a family of compact sets contained in � � R
n

concentrating to a compact set K � � with Cap�.K/ D 0, then, for every

u 2 H 1
0 .�/, we have that VK";u ! VK;u D 0 strongly in H 1

0 .�/ and that

lim"!0C Cap�.K"; u/ D Cap�.K; u/ D 0.

Proof. Testing equation (9) for VK";u with ' D VK";u � u we obtain

0 D
Z

�nK"

rVK";u � r.VK";u � u/ dx

D
Z

�

rVK";u � r.VK";u � u/ dx

D
Z

�

jrVK";uj2 dx �
Z

�

rVK";u � rudx:

(54)

SinceVK";u attains the minimum defining Cap�.K"; u/, then
R

� jrVK";uj2dx�
R

� jruj2 dx, so that ¹VK";uº">0 is bounded in H 1
0 .�/. Hence, along a sequence

"k ! 0C, VK"k
;u * V weakly in H 1

0 .�/ for some V 2 H 1
0 .�/. Since

Cap�.K/ D 0, we have that H 1
0 .�/ D H 1

0 .� n K/ (see [14, Proposition 2.1]),

hence u � V 2 H 1
0 .� n K/. Moreover, for every ' 2 C1

c .� n K/, we have that

' 2 C1
c .� n K"/ for " sufficiently small, hence, passing to the limit in (9) for

VK"k
;u as k ! C1, we obtain that

Z

�

rV � r' dx D 0:

Hence
R

�
rV � r' dx D 0 for every ' 2 H 1

0 .� n K/ D H 1
0 .�/. It follows that

V D VK;u D 0. Moreover, passing to the limit in (54), we obtain that

lim
k!C1

Cap�.K"k
; u/ D lim

k!C1

Z

�

jrVK"k
;uj2 dx

D lim
k!C1

Z

�

rVK"k
;u � rudx

D
Z

�

rV � rudx

D 0:
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We conclude that Cap�.K"k
; u/ ! 0 and VK"k

;u ! 0 strongly in H 1
0 .�/ as

k ! C1. Since such limits do not depend on the subsequence, we reach the

conclusion. �
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