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ABSTRACT 

The following thesis investigates multiple methods to monitor seminatural grasslands managed by 

humans, and it mainly focuses on grasslands. These biomes are among the most widespread in the 

world, almost covering 40% of terrestrial surface and are characterized by a rich multifunctionality. 

Among semi-natural grasslands, pastures and meadows play important roles in agriculture by 

supporting livestock systems with habitat and feeds. Grassland functionality is based on soil, which 

hosts complex microbial communities able to drive and regulate nutrient cycles such as N and C. 

Local disturbance, such as animal grazing and fertilization, can influence the soil microbial 

communities with implications on ecosystem functions. However, the relations among local 

disturbances and soil microbial communities are still largely unexplored. This thesis aims to 

investigate the feasibility of integration between methods used to characterize grazing patterns and 

soil microbial communities in order to build an integrate approach for monitoring grasslands. 

This thesis is articulated with three contributions based on the application of GPS telemetry combined 

with remote sensing and molecular analysis to monitor highlands grasslands. The first contribution 

tests the effects of vegetation abundance, derived from satellite imagery (NDVI index), slope and 

farmer conduction on grazing patterns of lactating cows in alpine pastures through GPS telemetry 

and remote sensing. The second contribution is also based on GPS telemetry and remote sensing, and 

it extends the approaches of the first one, considering the differences among multiple behaviours and 

parities and between local and common breeds in lactating cows at a larger alpine pasture. The third 

contribution tests the effect of difference in terms of soil microbial communities between highland 

grasslands managed as pasture or meadow in a European context through the application of real time 

PCR and sequencing. 

Results of the first contribution revealed significant avoidance of the steepest slopes and preference 

for high vegetated grassland areas by the cows and a significant effect of the farmer conduction, 

necessary to increase the use of marginal areas. The second contribution confirmed the avoidance of 

the steepest slopes and the preference for grassland areas but revealed a significant difference between 

local and common dairy breeds as a function of parity where younger individuals of local breed 

moved faster and used steeper slope than common breed and older individuals. It also confirmed a 

diurnal activity pattern of grazing, resting a dn walking, with grazing being predominant during the 

day, but remarkably present also during the early night. Results of the third contribution revealed a 

significant effect of pH to shape both taxonomic and functional profiles of soil microbial 

communities, while management of pasture and meadow induced dissimilarity only in terms of OTU 
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lists, highlighting likely functional redundancy and uncoupling between taxonomic biodiversity and 

functional diversity. Thus, the results presented in this thesis confirmed the promising application of 

GPS telemetry-remote sensing and real time PCR-sequencing for monitoring grassland as all methods 

were able to detect variability at fine scales. The integration of methods can provide useful tools for 

monitoring the multifunctionality of grasslands and assessing impacts of human management at 

different temporal and spatial scales. 
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RIASSUNTO 

La seguente tesi indaga molteplici metodi per monitorare le praterie seminaturali gestite dall'uomo, 

concentrandosi principalmente sui pascoli. Questi biomi sono tra i più diffusi al mondo, ricoprendo 

quasi il 40% della superficie terrestre, e sono caratterizzati da una ricca multifunzionalità. Tra le 

praterie seminaturali, i pascoli e i prati svolgono un ruolo importante in agricoltura, supportando i 

sistemi zootecnici con habitat e risorse alimentari. La funzionalità dei pascoli si basa sul suolo, che 

ospita comunità microbiche complesse in grado di guidare e regolare i cicli dei nutrienti come quelli 

del N e C. I disturbi locali, come il pascolo e la fertilizzazione, possono influenzare le comunità 

microbiche del suolo con implicazioni sulle funzioni dell'ecosistema. Tuttavia, le relazioni tra disturbi 

locali e comunità microbiche del suolo sono ancora in gran parte inesplorate. Questa tesi cerca di 

investigare la fattibilità dell'integrazione tra i metodi utilizzati per caratterizzare i modelli di pascolo 

e le comunità microbiche del suolo, al fine di costruire un approccio integrato per il monitoraggio 

delle praterie. 

La tesi si articola in tre contributi basati sull'applicazione della telemetria GPS combinata con il 

telerilevamento e le analisi molecolari per monitorare le praterie degli altopiani. Il primo contributo 

verifica gli effetti dell'abbondanza della vegetazione, derivata da immagini satellitari (indice NDVI), 

della pendenza e della conduzione degli allevatori sui pattern di pascolo delle vacche in lattazione nei 

pascoli alpini attraverso la telemetria GPS e il telerilevamento. Il secondo contributo, anch'esso basato 

sulla telemetria GPS e sul telerilevamento, estende gli approcci del primo, considerando le differenze 

tra comportamenti multipli, età e tra razze locali e comuni nelle vacche in lattazione in un pascolo 

alpino più esteso. Il terzo contributo verifica l'effetto delle differenze in termini di comunità 

microbiche del suolo tra le praterie di altopiano gestite a pascolo o a prato in un contesto europeo 

attraverso l'applicazione della RealTimePCR e del sequenziamento. 

I risultati del primo contributo hanno rivelato da parte delle vacche un significativo evitamento delle 

pendenze più ripide insieme una preferenza per le aree erbose con abbondante vegetazione e un 

significativo effetto della conduzione degli allevatori, necessaria per aumentare l'utilizzo delle aree 

marginali. Il secondo contributo ha confermato l'evitamento delle pendenze più ripide e la preferenza 

per le aree erbose, ma ha rivelato una differenza significativa tra le razze da latte locali e comuni in 

funzione dell’età, mostrando che gli individui più giovani della razza locale si muovevano più 

velocemente e utilizzavano pendenze più ripide rispetto alla razza comune e agli individui più anziani. 

È stato inoltre confermato un pattern di attività diurna di pascolamento, riposo e camminata, con il 

pascolamento predominante durante il giorno, ma notevolmente presente anche nelle prime ore della 
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notte. I risultati del terzo contributo hanno rivelato un effetto significativo del pH nel modellare sia i 

profili tassonomici che funzionali delle comunità microbiche del suolo, mentre la gestione a pascolo 

e a prato ha indotto una dissimilarità solo in termini di liste di OTU, evidenziando una probabile 

ridondanza funzionale e un disaccoppiamento tra biodiversità tassonomica e diversità funzionale. I 

risultati presentati in questa tesi hanno quindi confermato la promettente applicazione della 

combinazione tra telemetria GPS-remote sensing e di quella tra RealTime PCR-sequenziamento per 

il monitoraggio dei pascoli, poiché tutti i metodi sono stati in grado di rilevare la variabilità a scala 

fine. L'integrazione dei metodi può fornire strumenti utili per monitorare la multifunzionalità delle 

praterie e valutare gli impatti della gestione umana a diverse scale temporali e spaziali. 
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1 - GENERAL INTRODUCTION 
 

1.1 - GRASSLANDS AND THEIR MULTIPLE FUNCTIONS 
 

Grasslands are among the most widespread ecosystems in the world covering more than 37% of the 

global surface excluding Antarctica and Greenland (Zhong et al., 2015, Zhao et al. 2020, Bai and 

Cotrufo 2022). These ecosystems are present at all latitudes (Fig.1) and include all herbaceous 

vegetation types. Grasslands can be classified into three macro categories: natural, semi-natural and 

improved or intensive (Hejcman et al. 2013; Squires et al. 2018; Mencel et al. 2022). Natural 

grasslands include those that thrive without direct human intervention and are predetermined by wild 

herbivores and environments (Hejcman et al. 2013),as the North American prairies, the South 

American pampas, the African savannas, the tundra, and the Eurasian steppes (Bengtsson et al. 2019; 

Zhao et al. 2020). Semi-natural grasslands include those that have been formed by long-term human 

activity for agricultural purposes in previously woody areas and are extent managed as pastures or 

meadows (Veen et al. 2009; Lemaire et al. 2011; Hejcman et al. 2013; Bengtsson et al. 2019). 

Improved or intensive grasslands correspond to those managed intensively by sowing and high 

fertiliser inputs, used for productive forage grasses and legumes in modern agriculture (Hejcman et 

al. 2013). A further classification of grasslands is based on the type of vegetation in function of the 

terrestrial ecoregions identifying nine macro categories (Alpine grassland, Boreal grassland, Tropical 

montane grassland, Tropical freshwater grassland, Tropical lowland grassland, Mediterranean 

grassland, Temperate grassland, Cool semi-desert grassland and Warm semi-desert grassland - Dixon 

et al. 2014). Grasslands, in particular those natural and semi-natural, are also crucial for the global 

biodiversity as they are among the most species-rich ecosystems (Veen et al. 2009; Lemaire et al. 

2011; Squires et al. 2018; Petermann and Buzhdygan 2021). Grasslands host a wide diversity of plant 

communities (Gibson 2009; Lemaire et al. 2011): for example, mountain grasslands can host until 89 

plant species per square metre, among which many are endemic and often endangered (Petermann 

and Buzhdygan 2021). They also are source of habitats for various wildlife species throughout the 

world (Gibson 2009), as the wild herbivores (Veen et al. 2009; Fynn et al. 2016) or the multiple bird 

(Askins et al. 2007; Aldabe 2018) and insect species associated with meadows and pastures (Bignal 

and McCracken 1996; Kuussaari et al. 2007; Girardello et al. 2009; Jerrentrup et al. 2016). Thanks to 

the synergies between their biodiversity and functions, grasslands provide all types of ecosystem 

services (provisioning, cultural, supporting and regulating services): so benefits which meet the 

human needs (Daily 2003). In terms of provisioning services, grasslands are sources of feed and raw 

materials when are managed as pasture with animal grazing or meadow with mowing by humans 
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(Zhao et al. 2020; Petermann and Buzhdygan 2021). Possible raw materials provided by grassland, 

such as plant compounds used as drugs, derive directly from precious and wide genetic pools of 

grassland, which is part of their provisioning services (Zhao et al. 2021). In terms of cultural services, 

grasslands are part of cultural landscapes, as products of long-term human activities (Hejcman et al. 

2013): suited to tourism (Thiene and Scarpa 2008; Zhao et al. 2020) and tied to rural heritage as 

summer transhumance (Sturaro et al. 2013; Zendri et al. 2016; Zhao et al. 2020). In terms of 

supporting services, grasslands support wildlife presence with their habitats (Askins et al. 2007) and 

the primary production through photosynthesis (Bengtsson et al. 2019). In terms of regulating 

ecosystems services, grasslands may play fundamental roles in erosion control (Bengtsson et al. 

2019), water and nutrient cycling, carbon sequestration and climate cooling (Bengtsson et al. 2019; 

Zhao et al. 2020; Bai and Cotrufo 2022).  

Figure 1. Global distribution of grasslands and croplands extracted from CCI-LC 2019 (Climate Change 

Initiative-Land Cover) products by the European Space Agency CCI projects (http://maps.elie.ucl.ac.be/CCI) 

with a resolution of 300 m per pixel. 

 

Among all the regulating services provided by grasslands, one of the most relevant is carbon storage. 

Grasslands are among the biggest carbon sinks: their contribution to terrestrial carbon storage is about 

34%, one third of total (Bai and Cotrufo 2022). Vegetation is the main driver of carbon sequestration 

through photosynthesis (Yang et al. 2019), which converts the atmospheric carbon into plant tissue 

or molecules pumped into the soil as exudates. Carbon is stored for about 90% into the soil as root 

biomass and soil organic carbon (SOC), which includes a broad spectrum of chemical molecules such 

as aliphatic compounds or root exudates (Bai and Cotrufo 2022). SOC presents two main fractions: 

the particulate organic matter (POM) and the mineral-associated organic matter (MAOM). The 

former derives from residues of plants and microbes, so it is characterised by large polymers with 
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light molecular weight (Lavallee et al. 2020; Cotrufo and Lavallee 2022). The latter derives from 

small molecules, leached from plant as root exudates or residues, and associated to mineral or 

assimilated by microbial biomass (Lavallee et al. 2020; Cotrufo and Lavallee 2022). The nature of 

the two SOC factions leads to different contributions to carbon sequestration in terms of time with 

longer contributions for MAOMs than POMs (Bai and Cotrufo 2022). The carbon sequestration 

capacity of grassland soils is limited and depends on vegetation (Yang et al. 2019), climatic conditions 

(Cheng et al. 2011; Wu et al. 2021), and management (Byrnes et al. 2018; Eze et al. 2018). High 

vegetation diversity allows the introduction of carbon in various input forms so enhancing SOC 

storage and promoting both abundance and biodiversity of microbial communities (Yang et al. 2019; 

Prommer et al. 2020). Different climatic conditions, as increase of temperature and precipitation, can 

have direct impacts on vegetation, thus indirectly changing the SOC storage capacity, and on 

microbial communities, with increase or decrease of carbon respiration rates and storage (Cotrufo 

and Lavallee, 2022). Management practices and their intensity, as for example livestock grazing loads 

and fertilisation rates, can change the vegetation and the ratio between C and N with implication on 

the SOC storage (Byrnes et al. 2018; Eze et al. 2018). Currently, it is estimated that about 80% of 

European grasslands do not reach the SOC saturation, being still able to store further carbon (Bai and 

Cotrufo  2022). 

Grasslands play a crucial role for agriculture and more generally for the global food supply (O’Mara 

2012), supporting the livelihoods of about 1 billion people (Suttie et al. 2005). In fact, agricultural 

lands are covered by grasslands for about 70% at a global scale (Lemaire et al. 2011; Mencel et al. 

2022) and the 34% at a European scale (Schils et al. 2022). Moreover, hosting various pollinators and 

different insect species useful for the control of phytophages, they provide ecosystem services which 

are essential for agricultural systems, as and pollination (Holland et al. 2017) and pest control 

(Honigova et al. 2012, Holland et al. 2017). Focusing on livestock systems, especially those based on 

ruminants, grasslands are essential for two main services: provisioning of feed requirements for 

ruminants and supporting grazing systems.  

Ruminants can convert grass from pastures and meadows into edible food for humans without 

competition with them (Smith et al. 2013). Meat and milk from ruminants are fundamental into the 

global food supply (Smith et al. 2013). Among the livestock systems based on ruminants, those most 

related to grasslands in terms of surface occupied are the extensive pastoral systems, which are mainly 

prevalent in dry regions where agriculture is confined to marginal areas and represent from 36 to 47% 

of total grasslands (Kruska et al., 2003; Bouwman et al., 2005), providing globally 5% of milk and 

about 7% of beef and 12% of sheep meat productions (FAO, 2009). In contrast to extensive systems, 
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the intensive systems occupy about 4% of global grasslands, but carry high densities of highly 

productive animals (Boval and Dixon, 2012), so contributing to 7% of milk and about 17% of beef 

and sheep meatproductions (FAO, 2009). Between extensive and intensive systems, the mixed crop-

livestock systems, which involve interaction between livestock and crops (Sere et al. 1996), comprise 

about 13% of total grasslands and contribute significantly to global feedstuffs with 30% of milk and 

sheep meat and about 20% of beef meat (FAO, 2009; Herrero et al., 2010). Globally, forage from 

grasslands contributes to 35-75% of beef cattle diets and 45-95% of sheep and goat diets (Bouwman 

et al. 2005).  

Grasslands are currently in decline, which started during the 18th century due to the conversion into 

arable land to meet the growing food demand (Hejcman et al. 2013; Bengtsson et al. 2019; Ridding 

et al. 2020) and is currently mainly caused by man through several interconnected processes (Bardgett 

et al. 2021), that have been summarized in the following impacts: intensification and abandonment 

of grasslands, desertification and climate change. The intensification of semi-natural and improved 

grassland management to increase the provisioning services induces the fragmentation of 

(semi)natural ecosystems (Andrade et al. 2015; Aune et al. 2018; Wilsey et al. 2018), while the 

abandonment of seminatural grassland causes the afforestation or reforestation (Aune et al. 2018; 

Volkò et al. 2018; Bohner et al. 2020).  The change of local management of grasslands, such as 

overgrazing, can also induce the desertification (Archer et al. 2017; Shukla et al. 2019; Burrel et al. 

2020) which is magnified by climate change through the increase of temperatures and drought 

(Archer et al. 2017; Shukla et al. 2019; Burrel et al. 2020). Also, the artificial afforestation and 

reforestation to mitigate climate change threat grasslands, reducing their surface (Posclod and Wallis 

DeVries 2002; Veldman et al. 2015). The decline of grasslands also involves the degradation of their 

vegetation biodiversity due to the nutrient enrichment by fertilisation or atmospheric deposition due 

to human activities (Stevens et al. 2004; Bullock et al. 2011), and by invasion of exotic species 

(Bardgett et al. 2021; Gaskin et al. 2021). 
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GRASSLANDS IN THE EUROPEAN ALPS 
 

Grasslands, including lowland, sub-alpine and alpine grasslands occupy 17.4% of the European land 

(Fig. 2, adapted from Eurostat 2021). Alpine grasslands are those present above the upper limit of 

tree growth in mountain areas (Hejcman et al. 2013), while sub-alpine grasslands are extended below 

this limit (García-González 2008). These grasslands are therefore found at different elevations in the 

Pyrenees, Carpathians, and Scandinavian Mountains, central Apennines (García-González 2008), and 

European Alps, where occupy about 17% of the surface.  These alpine and subalpine grasslands are 

characterised by species adapted to harsh environments as open stands, and animal species of high 

conservation value (García-González 2008; Marini et al. 2011). For example, alpine and subalpine 

grasslands are the main or the foraging habitat for various avian species, such as the alpine accentor 

Prunella collaris, the wheatear Oenanthe oenanthe, the skylark Alauda arvensis, the linnet Carduelis 

cannabina, the eurasian dotterel Charadrius morinellus and the golden eagle Aquila chrysaetos 

(Laiolo et al. 2004; García-González 2008; Pedrini and Sergio 2010). They are also essential habitats 

for wild herbivores such as chamois Rupicapra rupicapra, ibex Capra ibex, and marmot Marmota 

marmota (García-González 2008; Toïgo et al. 2020; Anderwald et al. 2021). Subalpine grasslands 

are fundamental components of mixed and extensive ruminant farming systems in the Alpine Arc, 

for the forage production of meadows and pastures in permanent farms which is often associated with 

the seasonal transhumance to summer farms (Sturaro et al., 2013a; Zendri et al. 2016; Pornaro et al., 

2021), which has been practised since prehistoric times (Mack et al. 2013). Meadows are seminatural 

grasslands mowed to provide forage and usually allow the use of vehicles thank to their gentle slopes 

(Eriksson 2020). Summer farms are temporary units located at high elevations (Sturaro et al. 2013b), 

where domesticated herbivores, such as cattle and sheep and goat, are brought from the valley bottoms 

or lowland areas during the summer for grazing on alpine and sub-alpine seminatural grasslands 

which are managed as temporary pastures. Continuation of extensive management practices of 

permanent farm and summer farm meadows and pastures is fundamental for the conservation of these 

their grasslands, which are part of the cultural landscape (Thiene and Scarpa, 2008) allowing to 

maintain tradition and cultural heritage (Baudry and Thenail 2004; Kianicka et al. 2010; Erikssone 

2011) and support livestock biodiversity (Sturaro et al. 2013a). Thanks to their characteristic (low 

agriculture input associated with high species and habitat diversity), alpine and subalpine grasslands 

are part of the High Nature Value farmland (HNV) and their conservation is actively supported by 

European Common Agricultural Policy (CAP; Paracchini et al. 2008).  These grasslands have been 

used since the Middle Ages for producing hay as meadows and grazing cattle as pastures, but from 

the 19th century they have been abandoned or converted into croplands due to the intensification of 
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agricultural practices and the depopulation of the mountain valleys (Strijker 2005; Garcìa-Martìnez 

et al. 2009; Bernués et al. 2011; Hejcman et al. 2013; Laiolo et al. 2004; Squires et al. 2018; Volkò 

et al. 2018). Other current threats to alpine and subalpine grasslands are the overgrazing, which 

reduces the local biodiversity (García-González 2008), construction of infrastructures and by climate 

change, which induces perturbations through global warming (García-González 2008; Ernakovich et 

al., 2014).  

 

 
 

Figure 2. European distribution of grassland and cropland of Alpine region extracted from CCI-LC 2019  
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1.2 - POTENTIAL FUNCTIONS OF SOIL MICROBIAL COMMUNITIES 
 

Soil is essential for all terrestrial ecosystems as a dynamic and heterogeneous environmental 

component, which hosts multiple communities of animals, plants, and microorganisms. The most 

populated part of a soil coincides with the topsoil, which is the shallow layers down to a depth of 15 

cm (Paul 2014). The topsoil is characterized by a consistent presence of roots and hosts both 

microfauna/flora (size from 1 to 100 μm), mesofauna (size from 100 μm to 2 mm) and macrofauna 

(size over 2 mm). The soil microbial communities are concentrated into the microbial hotspots, spaces 

on the order of micrometres, where important ecosystem processes take place (Paul 2014; Kuzyakov 

and Blagodatskaya 2015). The microbial hotspots consist of rhizosphere, the volume occupied by 

living roots, drilosphere, ithe volume of biopores formed by the passage of animals through the soil, 

and detritosphere, which derives from the rhizosphere as result of the decomposition of roots by 

decomposers, such as fungi (Paul 2014; Kuzyakov and Blagodatskaya 2015).  

The microbial communities are the basis for the ecosystem nutrient cycles, such as carbon and 

nitrogen (Zhou et al., 2012; Cavicchioli et al., 2019), which are constituted by enzyme-catalysed 

reactions performed by various guilds through their metabolic pathways (Rocca et al., 2015; Louca 

et al., 2018; Dong et al., 2020). These communities include eukaryotes, such as fungi, and 

prokaryotes, such as Archaea and Bacteria, and are strongly influenced by the soil physicochemical 

proprieties, in particular pH, moisture, soil organic carbon (SOC), and C/N ratio (Qu et al., 2016; 

Bahram et al., 2018; Fierer, 2017; Kuypers et al., 2018). They are also tied to the plant and animal 

communities both at the surface and within the soil itself through positive and negative impacts 

(Bardgett and Wardle 2003; Bezemer et al. 2006; Mendes et al., 2015; Delgado-Baquerizo et al., 

2016; Du et al., 2019; Yin et al., 2020). Plants have a crucial role for the soil microbial communities 

thanks to their root systems, through which they can modify soil properties such as the amount of 

water, the presence of hotspots, the chemistry of the litter with their root exudates (Bardgett and 

Wardle 2003; Mendes et al., 2015; Delgado-Baquerizo et al., 2016; Li et al., 2016). Plants can also 

modify local microclimate conditions reducing the surface temperature limiting the direct income 

radiation (Oke 2002; D’odorico et al. 2013). Some plant species also promote certain microbial OTUs 

through close co-evolution processes (Qu et al., 2016). The increase/loss of plant biomass both above 

and below the soil can ultimately be considered as an increase/reduction in available energy for 

microbial growth and other biological activities (Northup et al., 1999; Song et al., 2016) with impacts 

on both the density and composition of the soil community (Aldezabal et al., 2015). Animals can 

influence microbial communities building new hotspots and modifying the vegetation by selective 

predation and changing soil conditions by trampling and nutrient enrichment by their excreta 
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(Lemaire et al. 2011; Zhao et al., 2017). The effects of animal presence on microbial communities 

are discussed in the paragraph below. 

1.3 - GRAZING PATTERNS 
 

Grazing is one of the most common management practices of semi-natural grasslands around the 

world (Tälle et al. 2016). Although various livestock species, namely cattle, sheep and goat, horses, 

camelids are involved, I will focus in my thesis on dairy cattle, which is the most common livestock 

category in grazing systems of the Italian Alps (Sturaro et al., 2013b; Zener et al, 2013). 

Understanding livestock grazing patterns is a crucial point to develop sustainable productive 

management of pastures while avoiding negative impacts on grasslands provisioning and non-

provsionoing ecosystem services. Overgrazing is a threat for grasslands as it causes variation of 

vegetation, soil campaction, erosion and changes in nutrient conditions with negative consequences 

on the ecosystem (Chang et al. 2021; Bai and Cotrufo, 2022). For example, over-grazed grasslands 

can become sources instead of sinks of carbon (Chang et al. 2021; Bai and Cotrufo, 2022). Grazing 

patterns of livestock depend on multiple factors, which involve environmental conditions and animal 

characteristics (Rivero et al. 2021). Main environmental conditions determining grazing patterns are 

terrain morphology and particularly slope (Kaufmann et al. 2013; Zhong et al., 2016; Pittarello et al. 

2021; Rivero et al. 2021), spatial distribution of shade, shelter, and water sources (Probo et al. 2014, 

Rivero et al. 2021), and climate conditions, in particular temperature (Caton and Olson 2016; Liao et 

al. 2017; Rivero et al. 2021). Animal characteristics significant for grazing patterns variability depend 

on the species, then on the breed and then on individual features such as age. Grazing species differ 

in mouth morphology and digestive physiology, which bring to distinct grazing patterns (Rook et al., 

2004; Lemaire et al. 2011). Cattle are characterised by non-selective grazing and tend to tear up 

vegetation (Rook et al., 2004; Lemaire et al. 2011). Horses are selective toward grasses, avoiding 

dicotyledons, and practise sparse grazing because of the use of incisors, tending to leave patches of 

undisturbed vegetation (Rook et al., 2004; Lemaire et al. 2011). Sheep tend to be very selective toward 

dicotyledons if left free to graze, and they leave the turf sparse as equines (Rook et al., 2004; Lemaire 

et al. 2011). Finally, goats appear to be more selective toward shrub and tree species, especially young 

ones, than grass (Rook et al., 2004). The grazing patterns of cows are influenced by their breed. Local 

breeds appear more suitable to harsh environments than highly productive breeds (Isselstein et al. 

2007; Bailey et al. 2010; Spiegal et al. 2019; Pauler et al. 2020; Rivero et al. 2021). Breeds tend to 

differ in selection of plant species (Hessle et al. 2014; Koczura et al. 2019; Spiegal et al. 2019; Pauler 

et al. 2020) and slope (Raniolo et al. 2022), time spent on distinct behaviours and activity budgets, 

and eventually in growth rate and/or milk production (Hessle et al. 2008; Spiegal et al. 2019; Pauler 
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et al. 2020),.Another individual factor able to influence grazing patterns is the age, as younger 

individuals tend to be smaller and have less demanding nutritional requirements than mature 

individuals, while being able to move more easily across difficult terrain (Wyffels et al. 2020). 

Moreover, resource selection of young individuals can be less influenced by previous experiences, 

with consequent effects on grazing patterns (Dunn et al. 1988; Bailey et al. 2001; Walburger et al. 

2009).  

Grazing patterns are controlled by The grazing system adopted by farmers aim to control livestock 

grazing patterns. Continuous grazing systems are the most extensive ones, as the control of grazing 

patterns is minimised by leaving livestock free to graze without spatial andf temporal restrictions 

within the (usually large) pasture area. Typically, these systems have low but long-term stocking 

rates, and require only minimal infrastructure and labour. However, continuous grazing systems tend 

to increase livestock movement costs and the use of pasture can result heterogeneous with 

undergrazed and overgrazed patches, which can gradually reduce the forage value of the grassland 

and promote shrub and tree encroachment (Kothmann 2009). Rotational systems are the most 

intensive and controlled ones, as animals graze a sequence of small paddocks for a short period. These 

systems limit the animals’ selectivity but tend to preserve the forage value of the pasture and enhance 

the livestock productivity with their high but short-term stocking rates. However, they are expensive 

in terms of labour and infrastructure investments and can have different impacts on grassland 

biodiversity and nutrient cycling (Kothmann 2009; Probo et al. 2013; 2014; Perotti et al. 2018).  

1.4 - GRAZING IMPACT ON SOIL MICROORGANISMS 
 

Livestock grazing operates both directly and indirectly on grasslands soil microbial communities 

through defoliation, trampling and nutrient enrichment, which impact on plants, nutrients availability, 

and ecological successions (Lemaire et al. 2011; Zhao et al., 2017). Through these three actions, 

grazing can impact on ecosystem functions, for example varying the rate of soil respiration through 

the nutrient enrichment from animal excreta and the change of oxygen content due to compaction 

from trampling (Zhao et al., 2017). The effects of grazing depend on its intensity (Aldezabal et al., 

2015; Zhao et al., 2017), which can be characterised in terms of stocking rate as animals per area 

considering the time spent and stocking density as ratio between the number of livestock units and 

the area (Lemaire et al. 2011, Allen et al. 2011). 

Defoliation results from the predation of plants by herbivores, which reduces the aerial biomass of 

plants so decreasing the input of plant organic matter for litter (Bardgett et al. 1998). Defoliation 

intensity varies according to the livestock species and grazing patterns, which depend on multiple 
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factors as described in the previous paragraph. Defoliation can locally change floristic composition 

with cascading effects: for example, Aldezabal et al. (2015) observed that the absence of grazing 

increased graminoids, such as Poaceae and Cyperaceae, and reduced forbes, such as Fabaceae (). This 

increase in graminaceous species brought to a loss in litter quality as the C/N ratio increased. The 

C/N ratio is an indicator for litter decomposition: a high ratio results in a more pronounced presence 

of lignin, which is difficult to be degraded by microorganisms. Instead, the presence of forbs, 

promoted by extensive grazing, increased litter decomposition by lowering the C/N ratio thanks to a 

higher nitrogen supply. Defoliation can impact not only on the quality of vegetation cover and litter, 

but also on their quantities due to the extraction of biomass. Vegetation cover and the litter layer 

increase water infiltration, buffer temperature fluctuations, and reduce evaporation rates, allowing the 

soil to hold more moisture for longer following a rainfall (Chen et al., 2016). This improves microbial 

activity resulting in increased stability of soil aggregates and better support for plant development 

(Teague et al., 2011). In pastures, a high presence of herbaceous species with a high root density, 

with the consequent plant and microbial activity support an efficient assimilation of nitrogen, capable 

of reducing nitrogen leaching (Hackl et al., 1999). Defoliation can also induce plants to compensative 

development of the hypogeal part, promoting the structure of root systems and the release of exudates 

wich are beneficial for the development of soil microbial biomass (Hamilton III et al. 2008; Zhao et 

al., 2017). However, intensive grazing can bring to a substantial loss of photosynthetic tissues and 

subsequent reduction of carbon inputs to the roots (Aldezabal et al., 2015). This results in reduced 

production of root exudates with negative impacts on microbial communities (Zhao et al., 2017). 

Another effect of defoliation is the fluctuation of local soil temperature due to a reduction in 

vegetation cover and the consequent increased exposure to direct radiative flux (Aldezabal et al., 

2015). This phenomenon can increase soil temperature during the day with consequences for 

microbial functions (Aldezabal et al., 2015). Temperature is an environmental parameter able to 

directly influence soil microbial community, changing the rate of enzymatic reactions (Davidson and 

Janssens 2006; Frey et al. 2008; Butemschoen et al. 2011). Reducing vegetation cover can also 

increase erosion of the soil more exposed to abiotic and biotic agents, with possible negative impacts 

on the primary productivity of the ecosystem and its resilience (Teague et al., 2011).  

Animal trampling causes soil compaction affecting root development, pore presence and availability 

of oxygen and water (Qu et al., 2016). These implications have direct effects on the microbial 

communities by changing microbial hotspots, such as pores and the rhizosphere, but mainly by 

varying the concentration of molecular oxygen, which determines the oxidizing conditions of the soil. 

Oxidising conditions influence the nutrient bioavailability and the microbiological OTUs, favouring 

those able to use different electron acceptors such as nitrate (Li et al., 2016). In addition, trampling 



21 

 

can induce changes on the local plant communities (Aldezabal et al., 2015) with consequences on the 

production of root exudates, which play a key role in the composition of soil microbial communities 

(Qu et al., 2016). 

Animal excreta are labile substrates able to increase both microbial metabolic activities and microbial 

biomass (Chen et al., 2016). Grazing herbivores through their excreta are part of grassland nutrient 

cycles, reintroducing nutrients such as carbon, nitrogen, and phosphorus. However, animal excreta 

not only change nutrient availability of soil, but also its chemical condition. During the hydrolysis of 

urea to ammonia (NH3), urine tends to increase soil pH through the release of hydroxyl anions (OH). 

Ammonia tends to be converted to ammonium ion (NH4
+) through the acquisition of a proton or ion 

H+: this reaction increases the concentration of inorganic nitrogen and pH (Prieto et al., 2011). 

Animal excreta chane also the spatial availability of nutrients and depostion of faeces and urine can 

create local hotspots for specific microbial guilds and their processes, such as nitrifiers and denitrifiers 

with increases in nitrification and denitrification rates (Zhong et al., 2015). Animals through their 

excreta can also alter soil microbial endemisms, introducing external OTUs with possible effects on 

microbial communities (Nandakafle et al., 2017). 

Grazing effects on microbial communities and ecosystems functioning can be exacerbated by climate 

change, which can increase soil erosion, alter vegetation with variation of temperature and rain 

precipitation and increase enzymatic reaction through warming (Bai and Cotrufo 2022). Thus, 

assessing possible interactions between grazing impacts and climate change on microbial 

communities plays an important role to develop new practices for improving ecosystem functioning 

and resilience.  

1.5 - APPROCHES USED TO STUDY GRAZING PATTERNS: GPS TELEMETRY AND 
REMOTE SENSING 
 

Global Positioning System (GPS) technology is one of the most frequently used satellite applications 

for real-time tracking, i.e,  the monitoring of position. GPS is based on the transmission of radio 

signals (electromagnetic waves characterised by frequency between 0 and 300 GHz) between a 

network of 24 satellites and a receiver on the earth's surface. The radio signal is transmitted by each 

satellite and then processed by the receiver to obtain the location, which is a point value defined 

through longitude and latitude at a specific time. GPS systems are the most widespread of the global 

navigation satellite systems (GNSS), in addition to Russia's GLONASS and the more recent Europe's 

Galileo (Li et al., 2015). The GPS system is managed by the U.S. government, but it is freely 

accessible, as the other two mentioned above. The accuracy of GPS locations is affected by multiple 
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factors, including the relative position and number of available satellites for the receiver, the presence 

of sky-viewing obstacles such as tree canopies or rock walls, weather conditions, and finally the 

quality and type of receiver (Sager-Fradkin et al., 2007; Zweifel-Schielly and Suter, 2007; Hansen 

and Riggs 2008). In general, receivers for civil use arrive at a resolution of a few metres, which is 

equal to a radius of about 5 metres from the position of the receiver (Aguado et al. 2017). 

This technology in the last two decades has been widely used in the monitoring of both domestic 

livestock and wild animal movement (Cagnacci et al., 2010; Perotto-Baldivieso et al., 2012; Tullo, 

Finzi and Guarino, 2019), introducing revolutionary opportunities for the collection of large numbers 

of positions with high accuracy and time resolution. GPS data can also be coupled with information 

on individual activity and behaviour, using triaxial accelerometers integrated into geolocation 

devices. Thus, GPS technology has enabled a radical advancement in the study of the distribution, 

movement and behaviour of animals, both wild and domestic (Cagnacci et al., 2010; Lovarelli, 

Bacenetti and Guarino, 2020, Semenzato et al. 2021).  

In the livestock sector, GPS collars with tri-axial accelerometers are currently used in precision 

livestock farming, which consists of the management of animal production using advanced 

technologies to maximise efficiency (Tullo et al. 2019). Examples of GPS applications are the remote 

monitoring of grazing animals to highlight in real time behavioural variations which can be linked to 

health status and prevent, for example, the phenomena of rustling or predation (Perotto-Baldivieso et 

al., 2012). They can also be used to monitor the welfare status of animals during transport, or for the 

implementation of virtual fences with acoustic or electrical stimuli to mark areas of use (Perotto-

Baldivieso et al., 2012). GPS collars can be used to extract geometric metrics of animal movement 

and to define its spatial-temporal patterns. The temporal sequences of individual positions 

(trajectories) can be analysed to derive descriptive metrics of individual "steps" (intervals between 

one position and the next) such as distance, velocity, and relative angles (the directions of animal 

movement between the two locations; Homburger et al., 2014). These metrics, possibly in 

combination with acceleration values of activity sensors, can be used to classify the animal behaviour 

remotely through the application of Machine Learning algorithms (Valletta et al. 2017). GPS 

localizations can be used to identify the environment used by the animal, overlaying GPS positions 

with georeferenced maps of ground morphology (slope, elevation, etc.) and available habitats 

(Tomkins and O'Reagain, 2007; Handcock et al., 2009; Feldt and Schlecht, 2016), and to identify 

spatiotemporal gradients of grazing patterns (Kaufmann et al., 2013). The study of movement and 

behaviour can be conducted according to frequent events in the animals' routine, such as milking in 

the case of dairy cows, or day-night cycles, or weather conditions, or even animal states such as breed, 
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parity, milk production, etc. Thus, GPS tracking allows a deeper understanding of the real interactions 

between livestock and pasture, especially when it is coupled with remote sensing. Remote sensing is 

the monitoring of physical characteristics of an area through measures of reflected and emitted 

radiation at distance using satellites (Khorram et al. 2012). Remote sensing allows to monitor habitat 

components, such grassland vegetation through spectral indices such as the Normalized Difference 

Vegetation Index (NDVI; Myneni et al. 1995) or the green-house gases emission, such as methane 

(DeFries et al. 2007), or surface temperature (Tomlinson et al. 2011). Combining GPS telemetry and 

Remote sensing is essential to assess future impacts and to develop more conscious and sustainable 

management practices, not only for production purposes, but also for the conservation of important 

agroecosystems, such as alpine grassland.  

1.6 - APPROACHES USED TO STUDY MICROBIAL COMMUNITIESY 
 

Microbial communities can be studied in terms of taxonomic but also functional groups thanks to 

their roles in ecosystem functions. The taxonomic groups determine the richness of microbial 

communities, i.e., the taxomonic diversity, while the functional groups constitute the set of possible 

functions, which can be interpreted as functional diversity. From the perspective of ecosystem 

functioning, microbial richness per se is less relevant than phenotypic traits for specific functions 

(Moonen and Bàrberi, 2008; Bahram et al., 2018; Louca et al., 2018). The functional diversity 

depends on richness as a high number of OTUs can enrich the genetic content, which ultimately 

defines the enzyme-catalysed reactions of communities basing on the central tenet of molecular 

biology where biological information passes from genes to their transcripts and then to protein 

synthesis. (Rocca et al., 2015; Louca et al., 2018). Thus, the presence of specific genes determines 

the metabolic niches of microbial communities and their potential functions (Rocca et al., 2015; 

Louca et al., 2018). The abundance of a gene reflects that of its carrying population, as its 

multiplication testifies the relevance of that microbial group within the ongoing local processes 

(Beule et al., 2019; De Boer and Kowalchuk, 2001; Jia and Conrad, 2009; Yergeau et al., 2007). For 

this reason, the relative frequency of the corresponding cells population for a specific gene can entail 

a correspondent high expression of the same phenotype as soon as reaction substrates of those 

enzymes should become available under favourable boundary conditions. From this standpoint, 

microbial protein-encoding genes can be used both as reporters of the leading biochemical 

occurrences and as predictive indicators of potential specific phenomena within the ecosystem 

functions (Lindsay et al., 2010; Wallenstein and Vilgalys, 2005). The analysis of microbial functions 

on gene indicators can be achieved by the common molecular analysis of RealTime PCR. The 

RealTime PCR is a molecular technique based on polymerase chain reaction (PCR) able to monitor 
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the amplification of a target gene during the reaction thanks to the use of fluorescent dyes and reporter 

(Mackay et al. 2002). This technique is used to quantify the starting gene number of copies in different 

environmental matrices, including water (Wakelin et al., 2008) and soil (Henry et al., 2004).  The 

gene number of copies is used as a reporting measure for the potential of ecosystem processes, such 

as ammonia oxidation or denitrification (Henry et al., 2004). This analysis has been used in many 

different agroecosystems, such as croplands (Beule et al., 2019; Colloff et al., 2008), forests (Lindsay 

et al., 2010), and grasslands (Wakelin et al., 2009), in order to analyse the microbial communities.  

Microbial communities can be analysed from a metagenomic perspective through sequencing 

methods, such as Sanger sequencing and Illumina dye sequencing, which provide information on the 

microbial phylotypes present and their relative abundances with high sample throughput and 

affordable laboratory costs (Bartram et al. 2011; Berman et al. 2019). The process of sequencing 

determines the nucleic acid sequences or the order of DNA nucleotides, which can be used to extract 

taxonomic profiles. The two main sequencing methods in metagenomic analysis are the amplicon 

sequencing and the shotgun metagenomic sequencing (Di Bella et al. 2013). The amplicon sequencing 

is performed on genetic libraries made by PCR on marker genes, so a region of a genome, such as the 

16S rRNA in the Bacteria and Archaea and 18S rRNA in the Eukarya (Bartram et al. 2011; Di Bella 

et al. 2013).  Sequenced amplicons are compared to reference databases to achieve the taxonomic 

classification of communities. The shotgun metagenomic sequencing does not rely on the genetic 

library made through PCR but it reads the entire genome present in the DNA extracted. This method 

gives a complete inventory of genes contained in a genome, thus defining the functional genetic 

potential of an organism (Di Bella et al. 2013). However, the definition of functional profiles can be 

also obtained from amplicon sequencing thanks to modern bioinformatics tools, such as FAPROTAX 

(Functional Annotation of Prokaryotic Taxa; Louca et al. 2016), KEGG (Kyoto Encyclopedia of 

Genes and Genomes; Kanehisa and Goto 2000) and FUNGuild (Nguyen et al. 2016). These tools 

assign the functional profiles to a microbial community comparing its taxonomic profile of bacteria 

(Kanehisa and Goto 2000; Louca et al. 2016), archaea (Kanehisa and Goto 2000; Louca et al. 2016) 

and fungi (Nguyen et al. 2016) with a reference database.  

The characterization of soil microbial community at both single gene and metagenomic levels can be 

essential to assess the real impact of different management practices, other disturbance factors and 

climate change on ecosystem functions. Thus, this can be the base for developing sustainable 

management practices of grasslands (and obviously of other agricultural ecosystems).  
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2 – OBJECTIVE 
 

The general aim of this thesis is to contribute to developing integrated and multi-scale methodological 

approaches to the study of the relations between grazing patterns, environmental, vegetation and soil 

conditions, soil microbial communities and functions in grassland ecosystems. For this purpose, GPS 

tracking for fine scale monitoring of livestock movement and behaviour, remote sensing for 

characterisation of vegetation and soil morphology, soil physical-chemical and genetic molecular 

analyses are tested and compared, in order to both define methodological protocols and acquire new 

knowledge. The aims of the specific studies conducted within this framework, and their conceptual 

consequential flow, are shortly described below. 

The first and second contributions implement the use of GPS telemetry and remote sensing for 

describing grazing patterns of dairy cows in summer farms and factor influencing them. Specifically, 

the first contribution tests the effects of farmer conduction, slope, habitat type (grassland and larix 

forest) and vegetation abundance on grazing patterns and habitat selection of two local breeds of the 

Alps - the Alpine Grey and the Simmental - in traditional summer farm context. In this contribution, 

the GPS telemetry is used to monitor 9 dairy cows (4 Alpine Greys and 5 Simmentals) every minute 

during the day while the remote sensing to extract information about the local topology, habitat types 

and vegetation abundance. The second contribution expands the aims and the methods of the first one 

by applying machine learning model to remotely assess animal behaviours at pasture. This second 

contribution tests the differences between one local breed, the Alpine Grey, and one common dairy 

breed, the Brown Swiss, in terms of activity budget (grazing, resting, and walking) and grazing 

patterns, considering the effects of daily period (day and night), parity (primiparous and multiparous), 

habitat types (grassland, sparse forest and forest), slope and distance from barns. In this contribution, 

the application of GPS telemetry involves the night period and is used to monitor 18 dairy cows (9 

Brown Swiss, 4 Alpine Greys primiparous and 5 Alpine Grey multiparous) while the remote sensing 

is used to extract information on local topology and the habitat types but not on vegetation abundance.  

The third and last contribution investigates the differences between soil microbial communities in 

term of taxonomical and functional structures of 38 European highland grasslands (18 in France, 10 

in Italy and 10 in Norway) used as meadows (19) and pastures (19) testing the effect of the 

management type and two pedological parameters (pH and organic Carbon). In this contribution, the 

soil microbial communities are characterized though two molecular methods: the amplicon 

sequencing and the RealTime PCR. The former is applied along with FAPROTAX to define 

taxonomical and functional profiles while the latter to investigate the microbial potential of Nitrogen 

cycle functions.  
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Abstract 

Grazing behaviour influences animal productivity and the conservation of grassland ecosystem 

services. We used GPS tracking and remote sensing (NDVI index) to monitor the grazing patterns of 

lactating cows on the ‘Malga Ombretta’ summer farm (1,957m asl) in the Dolomites, eastern Italian 

Alps, from 5th July to 5th August 2018. The pasture area (35 ha) was grazed by a mixed herd of 

Simmental and Alpine grey cows (stocking density = 0.6 LU/ha) under traditional management: each 

morning the farmer led the cows to graze in a selected sub-area of pasture, and during the afternoon 

he left them free to graze unrestricted until they returned to the barn for the night. GPS positions were 

collected every minute from 9 Simmental and 4 Alpine Grey cows with low milk production during 

the time they were outdoors. The farmer’s choice of where to drive the herd to graze in the morning 

determined the distances the cows walked/day, which varied from 2.0 to 8.9 km, and favoured the 

use of higher and steeper areas that the cows tended otherwise to avoid. When free in the afternoon, 

the cows selected areas with higher NDVI values than those selected by the farmer in the morning, 

and Alpine Grey cows used slightly higher slopes and altitudes than Simmental cows, suggesting 

better adaptation to mountain pastures. The study revealed highly heterogenous grazing patterns 

dependent on multiple factors that can be assessed at fine temporal and spatial scales using GPS and 

remote sensing technologies to improve grazing management. 

Highlights 

• Daily distances walked and grazing patterns were influenced differently by the farmer’s 

decisions and the animals’ choices in response to environmental features. 

• The NDVI index of vegetation productivity suggested that cows grazed more productive areas 

when free than when driven by the farmer. 

• GPS tracking and remote sensing shed light on how human and animal choices regarding 

grazing are influenced by environmental features. 

Keywords 

Dairy cattle; mountain pasture; GPS tracking; NDVI 
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Introduction 

 

Alpine pastures are semi-natural grasslands managed by humans for grazing herbivores, such as cattle 

(Bunce et al. 2004). These high-elevation agroecosystems are exploited during the summer seasonal 

transhumance and are still important in local livestock farming systems and for product quality, as 

well as for their biodiversity and delivery of non-provisioning ecosystem services (Sturaro et al. 2013; 

Schils et al. 2022). Livestock grazing patterns and their effects on animal welfare and productivity, 

and on the conservation of pasture ecosystem services depend on a complex set of interactions and 

trade-offs between animal characteristics (Isselstein et al. 2007; Spiegal et al. 2019; Pauler et al. 2020; 

Rivero et al. 2021), environmental features, such as local morphology (Kaufmann et al. 2013; 

Pittarello et al. 2021; Rivero et al. 2021), water location (Probo et al. 2014), the presence of shelter 

and shade, and climate conditions (Caton and Olson 2016; Liao et al. 2017; Rivero et al. 2021). These 

interactions and trade-offs are controlled by the grazing management system adopted. The most 

extensive continuous grazing systems minimise the control of grazing patterns by leaving livestock 

free to graze the whole pasture area, and have a low, long-term stocking rate. This requires only low 

labour and infrastructure investment, but increases livestock movement costs and, due to selective 

grazing patterns, results in a heterogeneous use of pasture with a mosaic of undergrazed and 

overgrazed patches, which gradually decreases the forage value of the pasture and allows shrub and 

tree encroachment (Kothmann 2009). At the opposite extreme, grazing patterns in the most intensive 

rotational systems are controlled by sequential grazing of cows at very high stocking rates in small 

paddocks for short periods, which restricts the animals’ selectivity but enhances the forage value of 

the pasture and livestock productivity. However, these systems are labour intensive, require 

considerable infrastructure investment, and may impact on pasture biodiversity and nutrient cycling 

(Kothmann 2009; Probo et al. 2013; 2014; Perotti et al. 2018).  

In order to minimise the trade-off between these two extremes, traditional grazing management in the 

Alps has developed around extensive rotational systems, where the whole pasture area is divided into 

relatively large sub-areas where livestock are brought to graze at variable stocking rates and for 

variable periods based on the shepherd’s and/or expert’s knowledge of the vegetation conditions and 

evolution (Probo et al. 2013; Perotti et al. 2018; Pittarello et al. 2019). In this case, a thorough 

understanding of grazing patterns and how they are influenced by both the farmers’ and animals’ 

choices are fundamental to tailoring grazing management to local conditions to ensure animal welfare 

and productivity, and conservation of soil and vegetation ecosystem functions (Ravetto Enri et al. 

2017).  
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The study of animal movement and behaviour has improved dramatically during recent decades with 

the introduction of GPS tracking (Cagnacci et al. 2010; Nathan et al. 2022). This technology allows 

the position of individual animals to be monitored with high time-frequency resolution on a scale as 

small as seconds or minutes, and high spatial accuracy with location errors of <5–10m (D’Eon et al. 

2002; Tomkiewicz et al. 2010; Muminov et al. 2019), and without interference with the animals’ 

behavioural patterns by an observer (Homburger et al. 2014). GPS tracking has therefore been used 

extensively to study the movement ecology of wildlife (Nathan et al. 2022) and more recently, but to 

a lesser extent, to study livestock grazing patterns (see the reviews by Bailey et al. 2018 and Rivero 

et al. 2021). GPS location technology can be combined with remote sensing technologies, which are 

able to characterise environmental conditions at multiple spatial and temporal scales from satellite 

images and provide a more detailed understanding of animal-habitat interactions (Pettorelli et al. 

2005, 2014). A widely-used remote sensing index is the absolute Normalised Difference Vegetation 

Index (NDVI; Myneni et al. 1995; Shariatinajafabadi et al. 2014). The NDVI ranges from 1 to þ1, 

where values below 0 are typical of habitats without vegetation, while values close to 1 are indicative 

of areas with very abundant vegetation (Pettorelli et al. 2005). It is therefore used to estimate 

vegetation biomass, but, in addition, temporal variations in the index can also be used to estimate the 

phenological stage and stress conditions of plants (Myneni et al. 1995; Pettorelli et al. 2005; 

Shariatinajafabadi et al. 2014).  

In this study, we used GPS tracking on a small temporal scale to investigate the movement patterns 

of lactating cows in an alpine pasture managed according to a combination of rotational and 

continuous grazing. Specifically, we aimed to describe the animals’ movement patterns and use of 

pasture at two spatiotemporal scales, i.e. the single movement step, defined as the segment connecting 

two consecutive locations, and the total daily trajectory, and assess how they were influenced by the 

farmer’s decisions and the animals’ selectivity in relation to land morphology, weather conditions, 

vegetation type and vegetation productivity (according to the NDVI). In addition, we took advantage 

of the presence of two breeds of cows, Alpine Grey and Simmental, to obtain a preliminary indication 

of possible differences between them. 

 

Material and methods 

 

Study area and summer farm management 

The study was conducted in Val Ombretta, located in the Marmolada massif in the eastern Italian 

Alps (Dolomites; 46_2601300 N, 11_5105400 E), during the summer of 2018 (Figure 1). Val 

Ombretta is characterised by a typical alpine environment with subalpine grasslands and sparse forest 
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composed mostly of Larix decidua with also Pinus mugo and Picea abies, surrounded by rocky cliffs 

that reach an altitude of over 3,000m asl. It has approximately 35 ha of grazing land at an average 

altitude of 1,957m asl (SD = 15) and with an average slope of 16.5° (SD = 6.1).  

In summer - from mid-June until mid-September - the grasslands of the valley are grazed by a herd 

of dairy cattle managed by the local summer farm. During the study period, the summer farm hosted 

14 Simmental and 7 Alpine Grey lactating cows at an average stocking density of 0.6 livestock 

units/ha. The herd was managed traditionally. After the evening milking (starting 5.30–6 pm), the 

cows spent the night inside the barn in fixed stalls. After the morning milking (ending around 8–8.30 

am), they were conducted by the farmer to selected pasture sub-areas (Figure 1), where they grazed 

until lunch time (around 12 am–1 pm), after which the farmer left them free for the afternoon until 

they returned spontaneously to the barn for the evening milking. The cows received a very limited 

amount (0.5–0.8 kg/d) of a compound feed supplement (19.0% crude protein, 6.4% crude fibre, 9.2% 

total ash; Palumbo et al. 2021), so they had to rely mostly on grazing to fulfil their energy 

requirements.  

The study included 9 Simmental and 4 Alpine Grey cows, which were all multiparous. The summer 

farm was visited once during the study period and milk yield was estimated from the volume of milk 

collected in a graduated bucket (0.5 l resolution) at the morning and evening milking of each cow. 

On the same visit, body length (BL), girth circumference (GC) and body condition scores (BCS) were 

measured by a single trained operator. The values obtained were used to estimate live body weight 

according to the equation -1099.5 + 3.37*BL + 5.47*GC + 25.3*BCS (L. Gallo, unpublished data). 

 
Figure 1. Val Ombretta showing the location of the summer farm, the total grazing area comprising areas used 
freely by the cows in the afternoon (in blue, ‘Farmer absence’), the sub-areas where the farmer conducted the 
cows in the morning (in red, ‘Farmer presence’), and the positions of drinking troughs. 
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Spatial covariates and time-varying 

Spatial covariates 

Digital maps of the study area were generated in QGIS 3.14 (http://www.qgis.osgeo.org/) using the 

EPSG 4326 coordinate system. We created a raster map of slope (degrees) and altitude (m) using a 

Digital Elevation Model with a resolution of 10m (https://www.regione.veneto.it/web/ambiente-e-

territorio/ ctr). We created a categorical variable ‘slope class’ with four levels: <10°, 10° and <20°, 

20° and <30° and 30°. We used the map produced by Scillitani et al. (2013) with a spatial resolution 

of 50m to categorise the land cover of the grazing area into three ‘habitat types’: ‘Larix’ (Larix 

decidua stands), ‘grassland’ (subalpine pastures), and ‘scree’ (areas covered by loose stone with little 

vegetation). We obtained NDVI values as an indicator of vegetation productivity of the study area 

from the Sentinel-2 constellation of satellites using the Google Earth Engine open-source platform 

(Gorelick et al. 2017). The NDVI raster maps were acquired at a 10m resolution for the dates 5th, 8th 

and 13th July, according to the temporal resolution of Sentinel-2 spectral acquisition. We generated 

daily NDVI maps by interpolating the daily variation in NDVI across the three dates. We created a 

categorical variable ‘NDVI class’- with four levels: <0.2, 0.2 and <0.4, 0.4 and <0.6, 0.6. We also 

obtained average hourly temperatures and precipitation from the nearest weather station (Malga 

Ciapela station, 1,475m asl; Rocca Pietore BL ARPAV – Veneto Regional Agency for Environmental 

Protection and Prevention, https://www.arpa.veneto.it/) for every day of the study period. Because 

the temperatures were not recorded at the summer farm itself, but at a lower altitude, we created a 

categorical variable ‘temperature class’ with three levels: ‘low’ (<13.1 °C, first quartile); ‘average’ 

(13.1 and <17.4 °C, second and third quartiles); ‘high’ (17.4 °C, fourth quartile), which means the 

values of this variable are relative, rather than absolute. We also categorised precipitation 

as ‘rain occurrence’ (yes/no) as there were many days without rain. 

Movement patterns of cows 

The movement patterns of the cows were monitored with GPS collars (VERTEX Plus model; 

VECTRONIC Aerospace GmbH) scheduled to attempt a location every minute from 08:00 am to 

6:00pm from 5th July to 5th August. The median location error had been previously estimated at 4.5m 

(Parraga Aguado et al. 2017). We obtained 198,186 GPS positions, which we pre-processed in 

PostgreSQL 14 (https://www.postgresql.org/docs/14/index.html) with the plugin PostGIS 3.1.5 

(http://postgis.net/2022/02/01/postgis-3.1.5/). After excluding impossible locations (e.g. on steep 

rocky slopes or in other valleys), we associated to the second location of each ‘movement step’ (i.e. 

each consecutive pair of locations): (a) the ‘step distance’, calculated as the linear distance in m 

between the first and second locations corrected for the slope travelled as indicated by the elevation 

difference between them; (b) the ‘speed’, calculated as step distance/time interval in sec; (c) the 
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‘turning angle’, i.e. the cosine of the angle between the line intersecting the two locations of one step 

and the line intersecting the first location of that step with the second location of the preceding step 

(Urbano and Cagnacci 2014). We then identified the remaining outlier locations by first excluding 

those with an impossible speed (>15 km/h), as suggested by Liao et al. (2017) and Spiegal et al. 

(2019), and then those with an impossible combination of speed and turning angle (speed >2.4 km/h 

and cosine <–0.97), as suggested by Urbano and Cagnacci (2014). Finally, since the daily schedule 

of data collection by the GPS collars (8:00 am–6:00 pm) could have included periods when the cows 

were in the barn, we identified the indoor period for each cow on each day using a combination of 

the frequency of missed locations (when the GPS is inside a building most positions are lost due to 

obstruction of the satellite signals) and movement trajectories. Specifically, we assumed that the 

indoor period started in the first 10-min time interval after 4:30pm with >5 missed positions (out of 

10 expected), and ended in the last interval after 8:00 am with >5 missed positions. We checked that 

all the 10-min intervals within the starting or ending intervals exhibited consistently high numbers of 

missed positions. To avoid removing any real outdoor positions from the starting and ending intervals, 

we deleted from these only the positions that were within a 25m buffer surrounding the barn. Finally, 

we visually checked the continuity of the resulting individual outdoor daily movement trajectories. 

The final geodatabase contained 174,171 outdoor locations with each location associated with 

individual features (individual cow and breed), temporal features (Julian date and hour), 

environmental features (slope, elevation, land cover type and NDVI class), climate conditions (hourly 

and daily average temperature, temperature class, rain occurrence) and step movement features (step 

distance, speed). We also calculated for each day and each cow the ‘outdoor time’ (in h) as the 

difference between the time of the first and the last outdoor locations, and divided this into two ‘day 

periods’ using 12.00 am as the boundary: ‘morning’ (before 12.00 am), when the cows’ movement 

patterns are determined by the farmer, and ‘afternoon’ (after 12.00 am), when no restrictions are 

placed on the cow on where to graze and when to return to the barn. For each day and cow, we also 

calculated: (a) the ‘distance walked in the morning’ as the sum of the step distances of the morning 

trajectory, and the ‘distance walked daily’ as the sum of the step distances of the morning and 

afternoon trajectories; and (b) the ‘daily vertical movement’, as the difference (in m) between the 

lowest and highest elevation/cow/day. 

Statistical analysis 

The statistical analyses were conducted in R 4.0.2 (R Core Team 2016). As a preliminary, we assessed 

possible differences in milk yield and live body weight between the two breeds with a simple one-

way ANOVA. 
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Daily and hourly movement variables 

Daily movement-related variables (distance walked and vertical movement) were analysed with linear 

mixed effects models using the lmer function of the lme4 package (Bates et al. 2015). The models 

included the continuous linear effects of Julian date, distance walked in the morning, outdoor time, 

and (only for daily distance walked) daily vertical movement, the categorical effects of breed, rain 

occurrence and temperature class, and the random effect of individual cow. As a preliminary, we 

checked for absence of collinearity between the explanatory variables (all VIF values were below 

2.6). We assessed the models’ marginal R2, due to fixed factors only, and conditional R2, due to fixed 

plus random factors (Nakagawa and Schielzeth 2013), using the Performance package (Lüdecke et 

al. 2021).  

Hourly movement-related variables (slope, altitude and speed associated to each location/step) were 

analysed with generalised additive mixed models using the gam function of the mgcv package (Wood 

2017), with a model that included the smoothed spline effect of hour, the categorical effects of breed, 

temperature class, rain occurrence and day period, the two-way interactions of day period with breed, 

temperature class or rain occurrence, and the random effects of Julian date and individual cow. Speed 

was expressed as m/h, and slope and speed were log-transformed before analysis. 

Use of pasture and resource selection 

We assessed the spatial evenness of the use of the pasture area during each day period by calculating 

Camargo’s index (Payne et al. 2005; Pauler et al. 2020) on the total GPS positions acquired during 

the mornings and afternoons of the entire study period within each cell of a 25x25m grid overlaid 

onto the pasture area. The index ranges from 0, patchy or heterogeneous use of an area, to 1, 

homogeneous use.  

To assess the selection – i.e. the preferential use of a resource limited by external conditions (Manly 

et al. 2002) – of spatial features (slope, NDVI, habitat type) we used a resource selection function 

approach (Boyce and McDonald 1999). We first extracted the areas ‘available’ to the cows in each 

day period of each date by calculating the minimum convex polygons that included the morning and 

afternoon locations of the monitored cows from 5th to 13th July. From within each polygon we 

extracted the ‘non-used area’ by excluding the area not forming part of the 25m buffer around each 

acquired location. Within the non-used area, we generated a number of random ‘non-used positions’ 

equal to the number of acquired animal locations and assigned them randomly to each cow. Thus, we 

obtained a database of ‘used’ (with animal locations) and ‘non-used’ (without animal locations) 

positions, which we categorised by NDVI class, slope class and habitat type (simplified to ‘grassland’ 

and ‘forest’, excluding ‘scree’, which was very seldom used). Finally, we used a generalised linear 

mixed effects model with binomial distribution and logit link function (glmer function of the lmer4 
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package (Bates et al. 2015)) to assess the relative probability of a position being used in response to 

the fixed effects of habitat type, slope class, NDVI class and day period, the two-way interactions 

between period and the other effects, and the random effect of the individual cow. We assessed the 

model’s marginal R2, due to fixed factors only, and the conditional R2, due to fixed plus random 

factors (Nakagawa and Schielzeth 2013) with the Performance package (Lüdecke et al. 2021). 

 

Results 

 

Milk production and live body weight 

Milk production was low and did not significantly differ between breeds (GLM least square means: 

Alpine Grey: 10.9 kg/day, SE = 2.1; Simmental: 11.2 kg/day, SE = 1.4; p = 0.63), nor did predicted 

live body weight (GLM least square means: Alpine Grey: 537.9 kg, SE = 39.3; Simmental: 553.0 kg, 

SE = 26.2; p=0.74). Therefore, we assumed that any differences in movement patterns between breeds 

would not be related to milk yield and live body weight. 

Daily movement-related variables 

The average distance walked daily was 4,585m (SD = 206, minimum = 2,019, maximum = 8,912), 

while the average daily vertical movement was 101m (SD = 51 m, minimum = 18 m, maximum = 

225 m).  

For brevity, the parametric coefficients of the models analysing the two variables are given in 

Supplementary Table S1. The distance walked daily was unaffected by breed, rain occurrence and 

temperature class (P values ranging between 0.26 and 0.73) and increased only tendentially with 

outdoor time (p=0.06). However, it increased significantly (p<0.001) with Julian date and mainly, 

although unsurprisingly, with distance walked in the morning (Figure 2, panels A and B). Longer 

distances walked daily were also associated (p<0.001) with higher daily vertical movement (Figure 

2, panel C). Daily vertical movement did not vary significantly in response to distance walked in the 

morning, breed and outdoor time (p values ranging between 0.25 and 0.79) but increased markedly 

with Julian date (p<0.001; Figure 2, panel D). It was also negatively affected (p<0.05) by rain 

occurrence and temperature class (Figure 2, panels E and F). 
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Figure 2. Effects on distance walked daily of Julian date, distance walked in the morning and daily vertical 
movement (panels A, B, and C, respectively), and effects on daily vertical movement of Julian date, rain 
occurrence, and temperature class (panels D, E, and F, respectively). Shaded areas indicate 95% confidence 
intervals. Only significant effects are shown; for details of the parametric coefficients of the statistical models 
see Supplementary Table S1. 
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Hourly movement-related variables 

The parameters of the models analysing slope used, altitude used and speed are reported in 

Supplementary Table S2. Slope used followed a spiked pattern with peaks at around 11 am and 4 pm 

and troughs at around 9 am and 2 pm (Figure 3, panel A, smoothed spline effect of hour; p<0.001). 

Alpine Grey cows used steeper slopes than Simmental cows, especially in the afternoon (Figure 3, 

panel B, breed by day period interaction; p<0.05). The cows used a markedly gentler slope in the 

morning than in the afternoon in the presence of rain, and a slightly steeper slope in the absence of 

rain (Figure 3, panel C, rain class by day period interaction; p<0.001). At high temperatures the cows 

grazed on a much gentler slope in the afternoon than in the morning, but the difference was smaller 

at low temperatures and non-existent at intermediate temperatures (Figure 3, panel D, temperature 

class by day period interaction; p<0.001). 

The altitude used increased rapidly during the morning, almost paralleling the increasing pattern of 

slope, but in the afternoon showed a constant decline (Figure 3, panel E, smoothed spline effect of 

hour; p<0.001) The Alpine Grey cows used a higher altitude than the Simmental cows, especially in 

the afternoon (Figure 3, panel F, breed by day period interaction; p<0.001). The occurrence of rain 

was accompanied by lower altitudes used in the morning, and by higher altitudes in the afternoon 

(Figure 3, panel G, rain occurrence by day period interaction; p<0.001). Higher temperatures were 

accompanied by higher altitudes in the morning, but by lower altitudes in the afternoon, while the 

opposite pattern was observed at lower temperatures (Figure 3, panel H, temperature class by day 

period interaction; p<0.001).  

The cows left the barn at high speed, then gradually slowed until 12 am when they reached the 

maximum slopes and altitudes; there was then a period of slow movement until 4pm, followed by 

increasing speed until they returned to the barn (Figure 3, panel I, smoothed spline effect of hour; 

p<0.001). There were no differences between breeds (Figure 3, panel J; p=0.94), and no breed by day 

period interaction (p=0.33). The occurrence of rain reduced speed (Figure 3, panel K; p<0.01). 

Finally, speed was faster in the morning than in the afternoon, but this difference was less marked at 

high temperatures as morning speed was slower and afternoon speed was faster than at intermediate 

or low temperatures (Figure 3, panel L, temperature class by day period interaction; p<0.001). 
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Figure 3. Effects of the smoothed spline of hour, and of the interactions breed by day period, rain occurrence 
by day period, and temperature class by day period on the slope (panels A, B, C and D, respectively) and on 
the altitude used (panels E, F, G and H, respectively), and effects of the smoothed spline of hour, breed, rain 
occurrence and the temperature class by period interaction on speed (panels I, J, H and K, respectively). Shaded 
areas indicate 95% confidence intervals. The vertical dotted line in panels A, E and I indicate the separation 
between the morning and afternoon day periods at 12 am. For details of the parametric coefficients of the 
statistical models see Supplementary Table S2. 
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Use of pasture and resource selection 

Camargo’s index (0.11 ± 0.06 in the morning, and 0.13 ± 0.07 in the afternoon) indicated a highly 

uneven use of the pasture, with greater use in the steeper, peripheral areas in the morning, and in the 

flatter areas close to the barn in the afternoon (Figure 4).  

The probability of a position being used increased markedly with increasing NDVI values (see 

Supplementary Table S3 for the parametric coefficients of the model), but in the afternoon the cows 

grazed patches with high NDVI more frequently and patches with low NDVI less frequently than in 

the morning (Figure 5, panel A, NDVI class by day period interaction; p<0.01). Slope had little 

influence on the probability of a position being used in the morning, but in the afternoon this 

probability was clearly lower for slopes steeper than 20 degrees (Figure 5, panel B, slope class by day 

period interaction; p<0.001). Finally, there was a strong preference for areas of grasslands over areas 

of Larix decidua stands, but less so in the afternoon than in the morning (Figure 5, panel C, habitat 

type by day period interaction; p<0.001). 

 
Figure 4. Intensity of use of pasture (no. of locations cumulated over the study period within a 10_10 m grid) 
in the morning (A) and afternoon (B). 

 

Figure 5. Predicted probability of use of pasture area according to the two-way interactions between day period 
and NDVI class, slope class and habitat type. Shaded areas indicate 95% confidence intervals. 
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Discussion 

 

In this study, we identified the role played by the farmer’s daily decisions in determining grazing 

patterns in a mixed rotational/continuous management system, and at the same time showed how 

cows seek an energy landscape characterised by low cost (gentler slope, lower elevations) and high 

forage biomass (according to NDVI values). However, the resulting use of the pasture areas remained 

highly heterogeneous. In the following sections, we will discuss these findings. 

The importance of the farmer’s decisions 

The farmer’s daily decision regarding which pasture sub-area to conduct the herd to in the morning 

had a major influence on the distance the cows walked daily, as indicated by the distance walked in 

the morning, but also on the daily vertical movement and slopes used, as evidenced by the fact that 

the cows reached the highest altitudes (>1,950m asl) and steepest slopes (>20 degrees) around 11 am. 

There was substantial variability in the distances covered daily by the cows, and in their daily vertical 

movement, and consequently slopes used. Since these variables are positively related, there was also 

considerable daily variation in movement costs, and hence maintenance requirements. There is a 

surprisingly small literature on the energy costs of the movement of grazing livestock. According to 

the Agricultural Research Council (1980), the energy costs associated with cattle walking 1 km 

horizontally and 0.1km vertically are 2.0 and 2.8 kJ/kg body weight, respectively. In our study, the 

minimum distance walked daily was 2.0 km with a vertical movement of 0.02 km, while the 

maximum was 8.9 km with a vertical movement of 0.16 km. For a cow with a body weight of 550 kg 

this would, according to ARC (1980), correspond to energy costs of 2.5 and 12.3 MJ, which would 

increase maintenance requirements (Nozière et al. 2017) by approximately 7 and 34%, respectively. 

These additional costs are within the range suggested by the Standing Committee on Agriculture 

(SCA; 1990) for grazing cows, but the considerable variability between days cannot be compensated 

for on summer farms where supplementary feeding is very limited and cows have to rely on herbage 

intake to fulfil their needs, as in our case study. Herd management also influenced the patterns of 

speed. The cows moved faster soon after leaving the barn in the morning when the farmer conducted 

them to the selected grazing areas. They then gradually slowed down as they increased their grazing 

activity until noon, when the animals, now left free by the farmer, increased their speed to reach the 

drinking troughs. Afterwards, they reduced speed again for 2–3 hours, before starting to move faster 

to reach the barn for the evening milking. In this symmetrical diurnal pattern, the cows moved faster 

in the morning, when the farmer was driving them, than in the afternoon.  

Our results also suggest that the selection of pasture sub-areas by the farmer was influenced by 

weather conditions. Daily vertical movements were smaller on days with rain and low temperatures 
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than on days without rain and with intermediate or high temperatures, which appears to be a 

consequence of lower altitudes (and consequently gentler slopes) being used in the morning than in 

the afternoon. It seems, therefore, that the farmer decided to stay closer to the bottom of the valley 

when the weather was less favourable. Furthermore, the positive relationship between daily horizontal 

and vertical movement and Julian date probably reflects an attempt by the farmer to exploit the more 

peripheral areas with the advancing season, possibly because the more accessible areas had already 

been exploited. This is consistent with Palumbo et al. (2021) findings that in the same pasture the 

average forage value of the plant species ingested by grazing cows gradually declined over the grazing 

period because of an increase in the proportion of species with low palatability and low forage value.  

Finally, analyses of movement variables on an hourly scale and of resource selection revealed that in 

various instances the farmer’s decisions were in contrast to the cows’ choices. This is important to 

consider in addressing grazing management and will be discussed in the next section. 

The animal component remains important 

It is well known that in terms of body size/morphology, behaviour and performance levels, traditional 

local breeds are more suited to grazing in harsher areas than conventional and especially highly 

productive breeds (Hessle et al. 2014; Zendri et al. 2016). However, comparisons of the movement 

patterns of different breeds or their crosses in European mountain pastures are rare and have involved 

genotypes that are more divergent in body size and productivity than those compared here (Hessle et 

al. 2008; Pauler et al. 2020). Although our results are to be treated with caution and considered 

preliminary, requiring verification with larger sample sizes with a wider variation in body mass and 

milk yield and including factors, as parity, which we could not test here, they suggest that the local 

Alpine Grey has a better ability to move quickly and on steeper slopes than the Simmental. Alpine 

Grey cows also used higher altitudes, and although the difference was very modest in absolute values 

(around 10 m) it indicates spatial separation between individuals of the two breeds. Overall, these 

findings suggest that Alpine Grey are more suited than Simmental to grazing alpine pastures. In a 

study involving multi-breed herds on 15 alpine summer farms, Zendri et al. (2016) found that lactating 

cows of local dual-purpose breeds (Alpine Grey, Rendena and crossbreds) maintained higher body 

condition scores during the season than Simmental cows, whose milk yields were higher at the 

beginning of the summer grazing periods, but similar to the other breeds at the end. 

In general, land morphology and the spatial distribution of vegetation types and forage values 

influence animals’ movement patterns in interaction with climate conditions (Rivero et al. 2021). We 

also found an effect of land morphology in our study. In the afternoon, when left free by the farmer, 

the cows showed a clear preference for gentler slopes. This was expected, since steep slopes and 

rocky or soft soils are avoided by cattle due to the increased energy cost of movement and risk of 
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injuries (Kaufmann et al. 2013; Probo et al. 2014; Pittarello et al. 2021; Rivero et al. 2021). In our 

study, the gentler slopes and lower altitudes were also used more in the afternoon on hotter and sunny 

days, which might be to reduce energy expenditure and avoid the risk of heat stress. However, we 

could not test this hypothesis directly because we did not have the actual temperatures at the summer 

farm, which would probably have been lower than those we used. Furthermore, we do not have an 

explanation for why the cows moved faster in the afternoon and more slowly in the morning on hotter 

days.  

The analysis of habitat selection showed a strong preference for grassland patches over Larix decidua 

stands, consistent with the general observation that cattle prefer open grassland to shrub or forest 

habitat for grazing (Meisser et al. 2014; Spedener et al. 2019; Tofastrud et al. 2019). Interestingly, 

however, the cows had a greater tendency to avoid the Larix decidua stands during the morning, when 

their grazing area was chosen by the farmer, than in the afternoon, when it was chosen by the cows. 

This indicates that humans and animals have different perceptions of this habitat. Larix decidua stands 

have a loose canopy cover that allows ground vegetation to grow, and because they offer both forage 

and shade or shelter they are often grazed (Da Ronch et al. 2016). Possible explanations for the higher 

use of Larix decidua in the afternoon could be that the cows simply passed 

through the forest on their way from the high areas to the valley bottom, or alternatively that they 

deliberately made greater use of this habitat during the afternoon, for instance in search of shade while 

continuing feeding. This last hypothesis could be tested with accurate and more variable temperature 

values, and by investigating the types of activities the animals engage in (Homburger et al. 2014, 

2015). The NDVI has been used as an indicator of vegetation productivity, especially on rangelands, 

often at large spatial and temporal scales (Browning et al. 2018; Spiegal et al. 2019). It has been 

shown that cattle have a clear preference for higher NDVI values (>0.5; Manning et al. 2017). In this 

study we found a similar trend, suggesting that the index can be used to shed light on grazing patterns, 

even at small spatial and temporal scales. Interestingly, the areas selected by the cows in the afternoon 

had higher NDVI values than the areas selected by the farmer in the morning. This was not related to 

the greater use of Larix decidua stands, which had on average a lower NDVI value than the grasslands 

(least squared means of a one-way ANOVA: grassland = 0.540, SE = 0.001; Larix decidua=0.507, 

SE = 0.002, p<0.001), and therefore seems to reflect the cows’ ability to graze in (grassland) areas 

with richer vegetation than those selected by the farmer. While absolute NDVI values reflect 

vegetation biomass, relative variations in them over time index phenology, and hence nutritional 

quality, increasing rapidly during the early growth phases, more slowly towards maturation, and 

decreasing during senescence (Beck et al. 2008; Shariatinajafabadi et al. 2014). For this reason, 

various studies on wild species have found that movement and foraging patterns have a positive 
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relationship with vegetation quality as indexed by NDVI variation (Geremia et al. 2019; Semenzato 

et al. 2021). To our knowledge, this has not been replicated with domestic species and we 

were unable to do so in this study because we had too few NDVI time intervals, although it is a 

promising topic for future research. 

The use of pasture is highly heterogeneous 

Our assessment of pasture use is partial because we did not monitor the whole grazing season, but it 

clearly suggests that the combination of the farmer’s daily decisions and the cows’ preferences when 

left free resulted in highly variable stock densities over the grazed area. The morning hotspots 

reflected the farmer’s attempts to use areas at higher elevations and greater distances from the barn 

that the cows would otherwise probably not have used, while the afternoon hotspots were influenced 

in part by those of the morning, but mainly reflected the cows seeking the valley bottom, the water 

troughs and proximity to the barn. This pattern illustrates the difficulty faced by non-intensive grazing 

management systems in reducing heterogeneity in the use of pasture (Probo et al. 2013; Pittarello et 

al. 2019), which has various potential consequences. In pasture ecosystems, livestock presence is a 

local disturbance because the structure and composition of the vegetation can be shaped by selective 

herbivory (Isselstein et al. 2007; Rivero et al. 2021), and soil abiotic conditions and biotic functions 

can be modified by trampling and nutrient translocation through excreta (Teague et al. 2011; Peco et 

al. 2017; Koch et al. 2018). Undergrazed areas may suffer from depletion of nutrients, progressive 

shrub or tree encroachment, and even abandonment (Koch et al. 2018) and, in fact, visual observations 

of this pasture clearly reveal an ongoing expansion of Larix decidua towards the valley bottom. 

Overgrazed areas, on the other hand, may be impacted by erosion and depletion of grass vegetation 

– indeed vegetation sampling (Stefano Macolino, unpublished results) has indicated that standing 

grass biomass is very low in proximity to the barn during the grazing season _, and an excess of 

nutrients (Teague et al. 2011; Sartorello et al. 2020). In order to address the complexity of these 

interactions, the possibility offered by GPS tracking to accurately map the variation in animal stock 

density at a fine spatial scale is clearly of considerable interest. The data it yields may be used to 

improve grazing management, address the identification and rotation of grazing subareas or 

paddocks, and also the placement of points of attraction for the animals, such as water troughs and 

mineral supplements (Probo et al. 2013). 

 

Conclusion 

 

This study provides an example of the variability in grazing patterns that can be found in alpine 

summer pastures managed with a combination of extensive rotational and continuous grazing, an 
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increasingly common practice in recent decades in the Alps. The farmer’s driving of the herd in the 

morning was fundamental to using pasture areas that under continuous grazing management would 

have been avoided by the cows. The daily selection of these areas, which was influenced by weather 

conditions, was a determining factor in the variability in energy costs associated with animal 

movement and resulted in the cows using less productive grassland patches than those used when 

grazing freely in the afternoon. In addition, the intensity of use of the pasture area was highly 

heterogeneous. Given the wide diversity in the environmental and management conditions of alpine 

pastures, and pastures managed extensively in general, in other contexts an even greater variability 

in grazing patterns than found in this study may be expected. Describing this variability is important 

for addressing the multifunctional management of pastures, which needs to combine animal welfare 

and productivity with the conservation of ecosystem services, both provisioning (i.e. forage 

production) and non-provisioning (e.g. biodiversity, carbon and nutrient balance, aesthetic and 

cultural values). In this regard, our study shows that the rapidly expanding GPS and remote sensing 

technologies may be used not only to understand spontaneous animal grazing patterns and to index 

land morphology and grassland productivity, but also to verify farmers’ choices and their 

consequences. In geographic contexts other than Europe, this knowledge and technology is being 

increasingly expanded and used to develop precision grazing management tools. We suggest that 

further studies in different alpine contexts, with larger sample sizes and a wider range of 

environmental conditions (e.g. the actual temperature animals are exposed to) would provide useful 

information for improving grazing management of alpine pastures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



61 

 

Acknowledgments 

We thank the farmers of Malga Ombretta for their support and Dr. Luca Carraro for taking 

measurements and calculating body condition scores. 

 

Disclosure statement 

No potential conflict of interest was reported by the author(s). 

 

Ethical approval 

The study was approved by the ethical committee of the University of Padova with prot. number 

389576 09/11/2017. 

 

ORCID 

Salvatore Raniolo http://orcid.org/0000-0003-1989-0376 

 

Data availability statement 

The data of this study are freely available from the corresponding author upon request. The data are 

not publicly available due to the involvement of private partners (farmers). 

 

Funding 

The study was funded by the University of Padova, Project No. BIRD 171044/17. 

 

  



62 

 

References 

 

Agricultural Research Council. 1980. The Nutrient Requirements of Ruminant Livestock. CAB, UK: 

Slough. 

Bailey DW, Trotter, MG, Knight, CW, Thomas, MG. 2018. Use of GPS tracking collars and 

accelerometers for rangeland livestock production research. Transl. Anim. Sci. 2(1):81-88. 

Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting Linear Mixed-Effects Models Using lme4. J. 

Stat. Softw. 67(1):1–48.  

Beck PSA, Wang TJ, Skidmore AK, Liu XH. 2008. Displaying remotely sensed vegetation dynamics 

along natural gradients for ecological studies. Int. J. Remote Sens. 29(14):4277–83. 

Boyce MS, McDonald LL. 1999. Relating populations to habitats using resource selection functions. 

Trends Ecol. Evol. 14(7):268–72. 

Browning DM, Spiegal S, Estell RE, Cibils AF, Peinetti RH. 2018. Integrating space and time: A 

case for phenological context in grazing studies and management. Front. Agric. Sci. Eng. 

5(1):44–56. 

Bunce RGH, Pérez-Soba M, Jongman RH, Gómez Sal A, Herzog F, Austad I. 2004. Transhumance 

and biodiversity in european mountains. IALE publication series nr 1. Wageningen UR. 

Cagnacci F, Boitani L, Powell RA, Boyce MS. 2010. Animal ecology meets GPS-based 

radiotelemetry: A perfect storm of opportunities and challenges. Philos. Trans. R. Soc. B Biol. 

Sci. 365(1550):2157–62. 

Caton JS, Olson BE. 2016. Energetics of grazing cattle: Impacts of activity and climate. J. Anim. Sci. 

94:74–83. 

Da Ronch F, Caudullo G, Tinner W, de Rigo D. 2016. Larix decidua and other larches in Europe: 

distribution, habitat, usage and threats. Eur. Atlas For. Tree Species. 108–10. 

D'Eon RG, Serrouya R, Smith G, Kochanny C. O. 2002. GPS radiotelemetry error and bias in 

mountainous terrain. Wildl. Soc. Bull. 30(2):430–39. 

Geremia C, Merkle JA, Eacker DR, Wallen RL, White PJ, Hebblewhite M, Kauffman MJ. 2019. 

Migrating bison engineer the green wave. Proc. Natl. Acad. Sci. U.S.A. 116(51):25707-25713. 

Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R. 2017. Google Earth Engine: 



63 

 

Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202:18–27. 

Hessle A, Rutter M, Wallin K. 2008. Effect of breed, season and pasture moisture gradient on foraging 

behaviour in cattle on semi-natural grasslands. Appl. Anim. Behav. Sci. 111(1–2):108–19. 

Hessle A, Dahlström F, Bele B, Norderhaug A, Söderström M. 2014. Effects of breed on foraging 

sites and diets in dairy cows on mountain pasture. Int J Biodivers Sci Ecosyst Serv Manag. 

10(4):334-342. 

Homburger H, Schneider MK, Hilfiker S, Lüscher A. 2014. Inferring behavioral states of grazing 

livestock from high-frequency position data alone. PLoS One. 9(12):1–22. 

Homburger H, Lüscher A, Scherer-Lorenzen M, Schneider MK. 2015. Patterns of livestock activity 

on heterogeneous subalpine pastures reveal distinct responses to spatial autocorrelation, 

environment and management. Mov. Ecol. 3(1):1-15. 

Isselstein J, Griffith BA, Pradel P, Venerus S. 2007. Effects of livestock breed and grazing intensity 

on biodiversity and production in grazing systems. 1. Nutritive value of herbage and livestock 

performance. Grass Forage Sci. 62(2):145–58. 

Kaufmann J, Bork EW, Blenis P V. Alexander MJ. 2013. Cattle habitat selection and associated 

habitat characteristics under free-range grazing within heterogeneous Montane rangelands of 

Alberta. Appl. Anim. Behav. Sci. 146(1–4):1–10. 

Koch B, Homburger H, Edwards PJ, Schneider MK. 2018. Phosphorus redistribution by dairy cattle 

on a heterogeneous subalpine pasture, quantified using GPS tracking. Agric. Ecosyst. Environ. 

257:183-192. 

Kothmann M. 2009. Grazing methods: A viewpoint. Rangel. 31(5):5–10. 

Liao C, Clark PE, Degloria SD, Barrett CB. 2017. Complexity in the spatial utilization of rangelands : 

Pastoral mobility in the Horn of Africa. Appl. Geogr. 86:208–19. 

Lüdecke D, Ben-Shachar MS, Patil I, Waggoner P, Makowski D. 2021. performance: An R package 

for assessment, comparison and testing of statistical models. J. Open Source Softw. 6(60). 

Manning J, Cronin G, González L, Hall E, Merchant A, Ingram L. 2017. The behavioural responses 

of beef cattle (Bos taurus) to declining pasture availability and the use of gnss technology to 

determine grazing preference. Agric. 7(5):1–12. 

Manly BFL, McDonald L, Thomas DL, McDonald TL, Erickson WP. 2002. Resource selection by 



64 

 

animals: statistical design and analysis for field studies. 2nd ed. Springer, Dordrecht. 

Meisser M, Deléglise C, Freléchoux F, Chassot A, Jeangros B, Mosimann E. 2014. Foraging 

behaviour and occupation pattern of beef cows on a heterogeneous pasture in the Swiss alps. 

Czech J. Anim. Sci. 59(2):84–95. 

Muminov A, Sattarov O, Lee CW, Kang HK, Ko MC, Oh R, Ahn J, Oh HJ, Jeon HS. 2019. Reducing 

GPS error for smart collars based on animal’s behavior. Appl. Sci. 9(16):3408. 

Myneni RB, Hall FG, Sellers PJ, Marshak AL. 1995. Interpretation of spectral vegetation indexes. 

IEEE Trans. Geosci. Remote Sens. 33(2):481–86. 

Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from generalized 

linear mixed-effects models. Methods Ecol. Evol. 4(2):133–42. 

Nathan R, Monk CT, Arlinghaus R, Adam T, Alós J, Assaf M, Baktoft H, Beardsworth CE, Bertram 

MG, Bijleveld AI, Brodin  T, Brooks  JL, Campos-Candela A, Cooke SJ, Gjelland K Ø, Gupte 

PR, Harel  R, Hellström G, Jeltsch  F, Killen  SS, Klefoth T, Langrock R, Lennox RJ, Lourie E, 

Madden JR, Orchan Y, Pauwels IS, Říha M, Roeleke M, Schlägel UE, Shohami  D, Signer J, 

Toledo S, Vilk O, Westrelin S, Whiteside MA, Jarić I. 2022. Big-data approaches lead to an 

increased understanding of the ecology of animal movement. Science. 375(6582): eabg1780. 

Nozière P,Sauvant D, Delaby L. 2017. INRA feeding system for ruminants. Wageningen Academic 

Publishers. 

Palumbo F, Squartini A, Barcaccia G, Macolino S, Pornaro C, Pindo M, Sturaro E, Ramanzin M. 

2021. A multi-kingdom metabarcoding study on cattle grazing Alpine pastures discloses intra-

seasonal shifts in plant selection and faecal microbiota. Sci. Rep. 11(1):1–14. 

Parraga Aguado MÁ, Sturaro E, Ramanzin M. 2017. Individual activity interacts with climate and 

habitat features in influencing GPS telemetry performance in an alpine herbivore. Hystrix. 

28(1):1–7. 

Pauler CM, Isselstein J, Berard J, Braunbeck T, Schneider MK. 2020. Grazing Allometry: Anatomy, 

Movement, and Foraging Behavior of Three Cattle Breeds of Different Productivity. Front. Vet. 

Sci. 7:1–17. 

Payne LX, Schindler DE, Parrish JK, Temple SA. 2005. Quantifying spatial pattern with evenness 

indices. Ecol. Appl. 15(2):507–20. 

Peco B, Navarro E, Carmona CP, Medina NG, Marques MJ. 2017. Effects of grazing abandonment 



65 

 

on soil multifunctionality: The role of plant functional traits. Agric. Ecosyst. Environ. 249: 215-

225. 

Perotti E, Probo M, Pittarello M, Lonati M, Lombardi G. 2018. A 5-year rotational grazing changes 

the botanical composition of sub-alpine and alpine grasslands. Appl. Veg. Sci. 21(4):647–57. 

Pettorelli N, Laurance WF, O’Brien TG, Wegmann M, Nagendra H, Turner W. 2014. Satellite remote 

sensing for applied ecologists: Opportunities and challenges. J. Appl. Ecol. 51(4):839–48. 

Pettorelli N, Vik JO, Mysterud A, Gaillard JM, Tucker CJ, Stenseth NC. 2005. Using the satellite-

derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 

20(9):503–10. 

Pittarello M, Probo M, Perotti E, Lonati M, Lombardi G, Ravetto Enri S. 2019. Grazing Management 

Plans improve pasture selection by cattle and forage quality in sub-alpine and alpine grasslands. 

J. Mt. Sci. 16(9):2126–35. 

Pittarello M, Ravetto Enri S, Lonati M, Lombardi G. 2021. Slope and distance from buildings are 

easy-to-retrieve proxies for estimating livestock site-use intensity in alpine summer pastures. 

PLoS ONE. 16(11): e0259120. 

Probo M, Massolo A, Lonati M, Bailey DW, Gorlier A, Maurino L, Lombardi G. 2013. Use of mineral 

mix supplements to modify the grazing patterns by cattle for the restoration of sub-alpine and 

alpine shrub-encroached grasslands. Rangel. J. 35(1):85–93. 

Probo M, Lonati M, Pittarello M, Bailey DW, Garbarino M, Gorlier A, Lombardi G. 2014. 

Implementation of a rotational grazing system with large paddocks changes the distribution of 

grazing cattle in the south-western Italian Alps. Rangel. J. 36(5):445-458. 

R Core Team. 2016. R: A language and environment for statistical computing. Vienna, Austria: The 

R Foundation for Statistical Computing. 

Ravetto Enri S, Probo M, Farruggia A, Lanore L, Blanchetete A, Dumont B. 2017. A biodiversity-

friendly rotational grazing system enhancing flower-visiting insect assemblages while 

maintaining animal and grassland productivity. Agric. Ecosyst. Environ. 241:1–10. 

Rivero MJ, Grau-Campanario P, Mullan S, Held SD, Stokes JE, Lee MR, Cardenas LM. 2021. Factors 

affecting site use preference of grazing cattle studied from 2000 to 2020 through GPS tracking: 

A review. Sensors. 21(8):2696. 

Sartorello Y, Pastorino A, Bogliani G, Ghidotti S, Viterbi R, Cerrato C. 2020. The impact of pastoral 



66 

 

activities on animal biodiversity in Europe: A systematic review and meta-analysis. J. Nat. 

Conserv. 56:125863. 

Schils RLM, Bufe C, Rhymer CM, Francksen RM, Klaus VH, Abdalla M, Milazzo F, Lellei-Kovács 

E, ten Berge H, Bertora C, Chodkiewicz A, Dǎmǎtîrcǎ C, Feigenwinter I, Fernández-Rebollo P, 

Ghiasi S, Hejduk S, Hiron M, Janicka M, Pellaton R, Smith KE, Thorman R, Vanwalleghem T, 

Williams J, Zavattaro L, Kampen J, Derkx R, Smith P, Whittingham MJ, Buchmann N, Newell 

Price JW. 2022. Permanent grasslands in Europe: Land use change and intensification decrease 

their multifunctionality. Agric. Ecosyst. Environ. 330(November 2021):107891. 

Scillitani L, Darmon G, Monaco A, Cocca G, Sturaro E, Rossi L, Ramanzin M. 2013. Habitat 

selection in translocated gregarious ungulate species: an interplay between sociality and 

ecological requirements. J. Wildl. Manag. 77(4): 761-769. 

Semenzato P, Cagnacci F, Ossi F, Eccel E, Morellet N, Hewison AJM, Sturaro E, Ramanzin M. 2021. 

Behavioural heat-stress compensation in a cold-adapted ungulate: Forage-mediated responses to 

warming Alpine summers. Ecol. Lett. 24(8):1556–68. 

Shariatinajafabadi M, Wang T, Skidmore AK, Toxopeus AG, Kölzsch A, Nolet BA, Exo KM, Griffin 

L, Stahl J, Cabot D. 2014. Migratory herbivorous waterfowl track satellite-derived green wave 

index. PLoS One. 9(9):1–11. 

Spedener M, Tofastrud M, Devineau O, Zimmermann B. 2019. Microhabitat selection of free-ranging 

beef cattle in south-boreal forest. Appl. Anim. Behav. Sci. 213(February):33–39. 

Spiegal S, Estell RE, Cibils AF, James DK, Peinetti HR, Browning DM, Romig KB, Gonzalez AL, 

Lyons AJ, Bestelmeyer BT. 2019. Seasonal Divergence of Landscape Use by Heritage and 

Conventional Cattle on Desert Rangeland. Rangel. Ecol. Manag. 72(4):590–601. 

Standing Committee on Agriculture (SCA). 1990. Feeding standards for Australian livestock — 

Ruminants. CSIRO, Australia. 

Sturaro E, Marchiori E, Cocca G, Penasa M, Ramanzin M, Bittante G. 2013. Dairy systems in 

mountainous areas: Farm animal biodiversity, milk production and destination, and land use. 

Livest. Sci. 158(1–3):157–68. 

Teague WR, Dowhower SL, Baker SA, Haile N, DeLaune PB, Conover DM. 2011. Grazing 

management impacts on vegetation, soil biota and soil chemical, physical and hydrological 

properties in tall grass prairie. Agric. Ecosyst. Environ. 141(3–4):310–22. 



67 

 

Tofastrud M, Devineau O, Zimmermann B. 2019. Habitat selection of free-ranging cattle in 

productive coniferous forests of south-eastern Norway. For. Ecol. Manage. 437:1–9. 

Tomkiewicz SM, Fuller MR, Kie JG, Bates KK. 2010. Global positioning system and associated 

technologies in animal behaviour and ecological research. Philos. Trans. R. Soc. B Biol. Sci. 

365(1550):2163–76. 

Urbano F, Cagnacci F. 2014. Spatial Database for GPS Wildlife Tracking Data. A Practical Guide to 

Creating a Data Management System with PostgreSQL/PostGIS and R. 1st ed. Springer, Cham. 

Wood S. 2017. Generalized Additive Models: An Introduction with R. 2nd ed. Chapman and 

Hall/CRC. 

Zendri F, Ramanzin M, Bittante G, Sturaro E. 2016. Transhumance of dairy cows to highland summer 

pastures interacts with breed to influence body condition, milk yield and quality. Ital. J. Anim. 

Sci. 15(3):481–91. 

  



68 

 

Supplementary 

 

Table S1: parameters of the Linear Mixed Effects Models analysing distance walked daily and daily altitudinal gradient 

 Distance walked daily  (m)  Daily altitudinal gradient (m)  
Estimate Std. Error DF t value P  Estimate Std. Error DF t value P 

(Intercept) 1840.23 470.70 307.61 3.91 <0.001  70.47 36.76 382 1.92 0.056 

Julian Date 24.00 4.24 377.49 5.66 <0.001  2.25 0.35 382 6.52 <0.001 

Distance walked in the morning 1.36 0.05 380.96 28.73 <0.001  0.00 0.00 382 -0.51 0.61 

Outdoor time -103.51 55.70 336.58 -1.86 0.064  1.17 4.34 382 0.27 0.79 

Altitudinal gradient 3.44 0.59 370.40 5.86 <0.001  
     

Breed:Simmental  -65.51 107.75 10.03 -0.61 0.56  -5.53 4.74 382 -1.17 0.25 

Rain:yes  -30.14 60.82 369.53 -0.49 0.62  -12.65 5.27 382 -2.40 <0.05 

Temperature class:Intermediate  98.45 87.92 371.87 1.12 0.26  3.88 7.64 382 0.51 0.61 

Temperature class:low -35.88 102.05 369.86 -0.35 0.73  -22.75 8.82 382 -2.58 <0.05 

RMSE 480.98  42.51 

Model marginal R squared1 0.75  0.29 

Model conditional R squared1 0.77  0.29 
1 We assessed the model marginal R2, due to fixed factors only, and the conditional R2, due to fixed plus random factors (Nakagawa and Schielzeth 2013),  

using the package “performance”(Lüdecke 2020). In the model analysing daily altitudinal gradient the random effect was negligible, and hence the  

conditional R2 was equal to the marginal one.   
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Table S2: parameters of the Generalized Additive Mixed Models analysing the hourly average slope used, altitude used and speed of movement. 

 Slope used (degrees)  Altitude used (m)  Speed of movement (m/h) 

Parametric terms Estimate Std. Error t value P value  Estimate Std. Error t value P value  Estimate Std. Error t value P value 

Intercept 2.20 0.037 59.75 <0.001  1919.16 4.17 460.35 <0.001  4.41 0.083 53.29 <0.001 

Breed (B):Simmental -0.047 0.020 -2.28 <0.05  -3.25 0.77 -4.23 <0.001  -0.007 0.094 -0.078 0.94 

Day period (DP):morning 0.32 0.012 26.55 <0.001  19.91 0.64 30.90 <0.001  0.10 0.023 4.49 <0.001 

Rain:yes 0.070 0.008 9.24 <0.001  4.21 0.35 12.13 <0.001  0.048 0.015 3.29 <0.01 

Temperature class (TC):intermediate 0.22 0.006 36.18 <0.001  6.80 0.27 24.92 <0.001  -0.10 0.011 -8.60 <0.001 

Temperature class:low 0.28 0.008 33.71 <0.001  22.70 0.38 58.98 <0.001  -0.11 0.016 -6.75 <0.001 

B Simmental:P morning 0.014 0.006 2.41 <0.05  0.93 0.27 3.47 <0.001  0.011 0.011 0.97 0.33 

P morning:R yes -0.24 0.010 -23.44 <0.001  -11.29 0.46 -24.58 <0.001  0.008 0.019 0.39 0.69 

P morning:TC intermediate -0.31 0.007 -42.96 <0.001  -15.40 0.33 -45.98 <0.001  0.18 0.014 12.48 <0.001 

P morning:TC low -0.39 0.008 -46.93 <0.001  -35.97 0.38 -94.01 <0.001  0.16 0.016 9.97 <0.001 

Smooth terms edf Ref.df F p-value  edf Ref.df F p-value  edf Ref.df F p-value 

Spline (hour) 6.00 6 1740.4 <0.001  9.00 9 7586 <0.001  6.00 6 2975.2 <0.001 

Spline (individual) 10.77 11 82.2 <0.001  10.66 11 182 <0.001  29.64 30 119.6 <0.001 

Spline (Julian date) 29.94 30 613.5 <0.001  29.99 30 2393 <0.001  10.96 11 312.2 <0.001 

Adjusted R squared 0.21 0.62 0.14 

RSME 0.55 25.19 1.068 
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Table S3: parametric coefficients of the generalized linear mixed model with binomial distribution and logit link function analysing the probability of a position to 

be used in response to NDVI class, day period, slope class, and habitat type 

 Estimate Std. Error z value P(>|z|) 
(Intercept) -2.022 0.21 -9.88 <0.001 
NDVI class 0.2-0.4 2.11 0.20 10.54 <0.001 
NDVI class 0.4-0.6 2.93 0.19 14.75 <0.001 
NDVI class 0.6-0.9 2.88 0.20 14.40 <0.001 
Day period (DP) afternoon -0.33 0.25 -1.28 0.200 
Slope class 10-20 -0.22 0.032 -6.87 <0.001 
Slope class 20-30 -0.32 0.059 -5.44 <0.001 
Slope class >30 -0.39 0.11 -3.71 <0.001 
Habitat: Larix decidua -2.95 0.082 -36.13 <0.001 
NDVI class 0.2-0.4:Day period afternoon -0.39 0.26 -1.51 0.131 
NDVI class 0.4-0.6:Day period afternoon 0.12 0.26 0.47 0.640 
NDVI class 0.6-0.9:Day period afternoon 0.74 0.26 2.89 <0.01 
Slope class 10-20:Day period afternoon 0.12 0.039 3.04 <0.01 
Slope class 20-30:Day period afternoon -0.63 0.075 -8.38 <0.01 
Slope class >30:Day period afternoon -0.80 0.14 -5.56 <0.001 
Habitat Larix decidua:Day period afternoon 1.082 0.090 12.03 <0.001 
Model marginal R squared1 0.22 
Model conditional R squared1 0.23 
RSME 0.45 

1 We assessed the model marginal R squared, due to fixed factors only, and the conditional R squared, due to fixed plus random factors  

(Nakagawa and Schielzeth 2013), using the package “performance”(Lüdecke 2020). 
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Abstract 

Monitoring activity budgets and grazing patterns is necessary to manage semi-natural grasslands for 

both productivity and conservation of grassland ecosystem services. We used GPS tracking to 

monitor the grazing patterns and activity budget of lactating cows on the ‘Malga Vallazza’ summer 

farm (1,937m asl) in the Dolomites, eastern Italian Alps, from 5th July to 5th September 2020. The 

pasture was grazed by a mixed herd of Brown Swiss and Alpine grey cows (stocking density = 0.52 

LU/ha) under continuous grazing system characterized by morning and evening milking and free 

movement during the night. GPS positions were collected every two minute all day from 9 Brown 

Swiss multiparous and 9 Alpine Grey (4 primiparous and 5 multiparous) cows. Activity budgets 

strongly differed between night and day with some dissimilarities among breeds and parity. Resting 

was the prevalent behavior during the night while the day was dominated by grazing, which was also 

present during the late evening. Cows mainly used grasslands close to the barn although forest and 

sparse forest were also used. Despite a general avoidance of steep slopes, Alpine Grey primiparous 
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cows were less influenced by slope and more selective in term of habitat and areas used than 

multiparous cows, suggesting different mountain pasture use as function of parity and breed. The 

study outlined highly heterogenous grazing patterns for both breeds influenced by multiple factors 

which can be assessed at fine temporal and spatial scales through the integration between GPS and 

remote sensing technologies to improve grazing management. 

 

 

Highlights 

• The main behaviors were resting during the night and grazing during the day and the late 

evening. 

• Despite grasslands were the most used habitat used, even forest and sparse forest were used. 

• GPS tracking and remote sensing shed light on how grazing is influenced by breed-parity and 

environmental features. 

Keywords 

Dairy cattle; mountain pasture; GPS tracking; NDVI; animal behaviour 

 

Introduction 

 

Alpine pastures are semi-natural ecosystems that play a crucial role for mountain livestock farming 

by providing forage for grazing herbivores, and may also deliver multiple non-provisioning 

ecosystem services, e.g., carbon stocking, protection from soil erosion, water flows regulation, natural 

biodiversity (Bunce et al. 2004; Sturaro et al. 2013; Zendri et al. 2016; Schils et al. 2022). The 

conservation of these pastures and their multiple functions depends directly on the local livestock 

systems that manage them through a variety of grazing methods with variable degrees of spatio-

temporal animals’ control and grazing pressure (Probo et al. 2013; 2014; Perotti et al. 2018, Pittarello 

et al. 2019; Raniolo et al. 2022), which influence livestock patterns of pasture use with relevant 

consequences on the animal welfare and productivity and on the ecosystem services associated with 

the grasslands (Sturaro et al. 2013; Schils et al. 2022; Bai and Cotrufo 2022). For example, high 

stocking rates may lead to over-grazing, which can transform grassland areas from sinks to sources 

of carbon and modify soil conditions, microbial communities, and consequently vegetation through 

animal trampling and excreta deposition (Chang et al. 2021; Bai and Cotrufo, 2022).  

Among the multiple factors that interact with grazing methods in determining the livestock grazing 

patterns, main elements external to animals are slope (Kaufmann et al. 2013; Pittarello et al. 2021; 
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Rivero et al. 2021), climate conditions (Caton and Olson 2016; Liao et al. 2017; Rivero et al. 2021), 

and the availability and spatial distribution of shade, shelter, and water sources (Probo et al. 2014, 

Rivero et al. 2021), while main animals’ internal features are productivity, nutritional requirements, 

body weight and conformation, ability to move on difficult terrain and attitude to grazing, which 

depend first on the species, then on breed (Isselstein et al. 2007; Bailey et al. 2010; Spiegal et al. 

2019; Pauler et al. 2020; Rivero et al. 2021), and, within breed, on the age class ( Bailey et al. 2001; 

Walburger et al. 2009; Lopes et al. 2013). Cattle breeds may differ in selection of slopes and altitudes 

(Raniolo et al. 2022), activity budgets and time spent on distinct behaviours, with likely consequences 

on the areas explored by individuals (Hessle et al. 2008; Spiegal et al. 2019; Pauler et al. 2020), and 

foraging behaviour with selection of diverse plant species (Hessle et al. 2014; Koczura et al. 2019; 

Spiegal et al. 2019; Pauler et al. 2020), which may ultimately influence animals’ growth rate and milk 

production and quality. In general, local breeds show a better adaptation to harsher areas than highly 

productive breeds, such as Holstein or Brown Swiss (Hessle et al. 2014; Zendri et al. 2016). The age 

class can be important because younger individuals are smaller than mature individuals, which 

favours them in moving over difficult terrain, and in the case of dairy breeds have lower productivity 

levels and hence nutritional requirements that may be more easily fulfilled by grazing (Wyffels et al. 

2020). Moreover, younger individuals might not benefit by previous experience of summer grazing, 

which may affect resource selection (Dunn et al. 1988; Bailey et al. 2001; Walburger et al. 2009). 

Recently, the study of grazing patterns has greatly benefitted of the rapid expansion of the GPS 

tracking technology, which allows to monitor the individual animals’ position with high spatial 

accuracy, location error being normally below 10 m, and with high time-frequency resolution, as low 

as minutes or even seconds (D’Eon et al. 2002; Tomkiewicz et al. 2010; Muminov et al. 2019). 

Additionally, sensors associated with GPS tracking devices enable researchers to monitor animal 

behaviours in continuum and without observers’ interferences (Homburger et al. 2014; Semenzato et 

al., 2021), which has improved dramatically the understanding of grazing patterns of domestic 

livestock (Bailey et al. 2018; Rivero et al. 2021) and in general of movement ecology of free-roaming 

animals (Nathan et al. 2022).  

The literature comparing breeds in alpine grazing conditions has so far mainly focused on 

morphology, behaviour, and performance (Zendri et al. 2016; Toledo-Alvarado et al. 2017), while 

grazing patterns have been compared between genotypes highly divergent for productivity and body 

size (Hessle et al. 2008; Pauler et al. 2020). In this study, we aimed to compare the activity budgets, 

movement patterns and spatial use of pastures of lactating Alpine Grey and Brown Swiss lactating 

cows during summer grazing in a high-elevation alpine pasture managed with a combination of loose 

rotational and continuous grazing. Alpine Grey is a local dual-purpose breed of the eastern Alps 
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(https://www.grigioalpina.it/), while Brown Swiss is a typical cosmopolitan dairy breed 

(http://www.anarb.it/en/home/). A previous study (Raniolo et al. 2022) had suggested that Alpine 

Grey might be more suitable than Simmental, a larger and more productive dual-purpose breed 

(https://www.anapri.eu/it/), to grazing in mountain pastures, and we aimed to expand this finding by 

including a more specialized dairy breed as Brown Swiss. Additionally, we took advantage of the 

availability of different parity categories within the Alpine Grey breed to compare primiparous and 

pluriparous cows. 

 

Material and methods 

 

Study area 

The study was conducted during the summer of 2020 in the “Vallazza” summer farm, located in the 

Natural Park “Parco Naturale Paneveggio Pale di San Martino” in the Trento province, eastern Italian 

Alps (46°18′28″N, 11°44′38″E; Fig.1). Summer farms are temporary units traditionally used in the 

Alps for seasonal transhumance of livestock that is moved from lowland permanent farms to graze 

alpine pastures (Zendri et al., 2016; Sturaro et al., 2013). The Vallazza summer farm is located at 

2038 m a.s.l. (SD=146) and is characterised by an alpine climate (Tattoni et al., 2010) with long and 

cold winters (mean October-April 2000 to 2021: precipitation = 132.8mm ± 295.3 mm; temperature 

= -1.1° ± 5.5°), and fresh and rainy summers (mean June-September 2000-2021: precipitation = 

147.5mm ± 48.1mm; temperature = 10.9° ± 3.9°). 

We generated digital maps of the study area in QGIS 3.22.7 (http://www.qgis.osgeo.org/) using the 

EPSG 4326 and 32632 coordinate systems. The “grazed area” (171 ha, Figure 1) was delimited as the 

surface enclosing all the retained GPS positions (see below for details on GPS positioning) with a 

buffer of 50 m. A raster map of slope of the grazed area (mean=15.3°; SD = 7.9°) was created with a 

resolution of 25 m from the Digital Terrain Model (DTM) provided by the Natural Park “Parco 

Naturale Paneveggio Pale di San Martino” (https://siat.provincia.tn.it/stem/). A vector map of the 

habitats of the grazed area was digitized on a fixed scale of 1:2500 from the satellite images of the 

ArcGIS server (https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer), 

with 7 “habitat types”: “grassland” (48%), “forest” (Picea abies and/or Larix decidua stands, 34%), 

“sparse shrubs” (grassland mixed with shrub – mostly Rhododendron spp., 12.6), “road-path” (paved 

roads or forest paths, 3.3%); “stream” (stream beds, 1.3%),‘scree” (areas covered by loose stone with 

little vegetation, 0.3%), “farm” and “Urban” (0.5% all together).  
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Figur 1. Area grazed with the main habitat types. The external red line delimits a raster map (25 m resolution) 
encompassing all the GPS locations plus an external buffer of 50 m. The habitats are mapped as vectors at a 
fixed scale of 1:2500 (see main text for details). 
 

Summer farm management and animals sampled 

This summer farm has a long history of continuous grazing (Zanella et al., 2010) and during the study 

period hosted a herd of dairy cattle (89 livestock units – LU) of mixed breeds (Brown Swiss, Alpine 

Grey), with a low stocking rate (0.52 Livestock LU/ha). Lactating cows were milked twice daily in 

the barn, starting at approximately 6 a.m. and 5 p.m. Each day, after the morning milking, they were 

conducted by the shepherds to graze in a different section of the pasture area, where they were then 

left free until they returned to the barn for the evening milking, after which they were again released 

free to spend the night outdoor. During the milking, all cows received a concentrate supplement 

(Alpine Grey: 4 Kg/d; Brown Swiss: 6 Kg/d. Crude protein: 14.7%; crude fibre: 6.1%; crude fat: 

3.4%; total ash: 5.2%), which is a common practice in these grazing systems (Zendri et al., 2016). 

We monitored 9 Alpine Grey (4 primiparous and 5 multiparous) and 9 multiparous Brown Swiss 

cows from 5 July to 5 September 2020. Due to the herd composition, we could not match parity 

distribution of the two breeds. Individual milk yield was obtained from the monthly milk recordings 
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(excluding August) collected by the Breeders Association of Trento and averaged for each cow. 

Individual live body weight was recorded at the beginning and at the end of the grazing season and 

averaged for each cow. We classified cows for “breed-parity” as “Brown Swiss multiparous”, “Alpine 

Grey primiparous” and "Alpine Grey multiparous” and compared milk yields and live body weight 

of the three categories with a simple one-way ANOVA.  

Movement data collection  

Movement of the cows was monitored with GPS collars (Vertex Plus model, Vectronic Aerospace 

GmbH) scheduled to record a position every 2 minutes. Since we had only 9 collars available, cows 

were divided into two groups of 9 individuals, distributed across breed-parity categories, which were 

sequentially monitored for one month each. One GPS collar failed to acquire positions after August 

1. We obtained 362,157 positions out of the 372,803 scheduled (position acquisition rate: 97,1%). 

With this high acquisition rate, median position error was assumed to be within 6 m (Párraga Aguado 

et al., 2017). We pre-processed acquired positions data in PostgreSQL 14 

(https://www.postgresql.org/docs/14/index.html) with the plugin PostGIS 3.1.5 

(http://postgis.net/2022/02/01/postgis-3.1.5/). We first eliminated all impossible positions (e.g., peaks 

of mountains, etc.), and then excluded the remaining outlier positions with the procedure used by 

Raniolo et al. (2022). Briefly, this procedure identifies outlier positions as those that are associated 

with unreliable movement speed and/or abnormal deviations from the movement trajectory (e.g., the 

spatial-temporal sequence of locations). Since our time schedule of position collecting covered the 

whole day, we needed to exclude the periods spent in the barn by each cow during milking. For this 

purpose, we used a procedure like that used by Raniolo et al (2022). We first identified all the 

individual locations collected inside a 50 m buffer surrounding the barn during the periods 5:00-8:00 

a.m. and 4:00-7:00 p.m., to delimit the potential individual milking periods. Within these periods, we 

then identified the actual individual milking periods as the sequences of 10 minutes time intervals 

having more than 3 missed locations (when GPS are inside buildings, the probability of acquiring 

locations drops because of the physical obstruction to the satellites’ signal) and average acceleration 

values of the x and y activity sensors (see below) lower than 35 (which indicates inactivity). The 

positions recorded during the actual individual milking periods were excluded, and we checked 

visually for consistency of the resulting outdoor movement daily trajectories of individual cows.  

The GPS collars were equipped with a tri-axial activity sensor set by manufacturer to store 

acceleration values (0-255) as averages over five-minute intervals. We used accelerometer data 

combined with metrics of movement steps (e.g., the segments linking consecutive pairs of locations) 

to classify positions according to three behaviour categories: “grazing” (i.e., bouts of biting, chewing, 
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and swallowing, also if interrupted by relocation movements between clusters of plants; Owen-Smith 

et al. 2010); “resting” (standing without leg movements or lying); “walking” (with a clear 

directionality, without interruptions for grazing). The classification and validation procedures are 

described in detail in Supplementary Appendix S.1. Briefly, we trained a random forest classifier 

(Liaw and Wiener 2002; Homburger et al. 2015) by matching the known behaviour associated with 

2,237 positions to the corresponding accelerometer values and movement metrics. The final 

geodatabase contained 269,963 outdoor locations, which we classified into two “day-periods”: “day” 

(between the morning and evening milking) and “night” (between the evening and morning milking) 

and associated with the corresponding individual cows’ features (“individual”, breed-parity), 

temporal variables (“Julian date”, “hour”), linear distance from the barn (“distance”), movement 

features (“slope” and “speed”, calculated as the distance in m between each consecutive pair of 

locations divided by the time in seconds separating their acquisition), “habitat” (the habitat type 

corresponding to the position), and behaviour. 

Daily activity budget of cows 

For each day of monitoring, we computed the hours spent in each behaviour category (“grazing time”, 

“resting time”, “walking time”) by each cow during each day-period as NBi/30, where NBi is the 

number of locations (collected every 2 minutes) assigned to each behaviour. We analysed grazing 

time, resting time and walking time separately for each day-period, because their values across the 

whole day had a bimodal distribution. We used linear mixed models with the “lmer4” function of the 

“lme4” library (Bates et al. 2015) in R 4.2.0 (R Core Team 2016) and tested the effects of breed-

parity as a fixed factor and of the individual cow nested into breed-parity as a random factor (Table 

S.2.1). We assessed the model’s marginal R2, due to fixed factors only, and the conditional R2, due 

to fixed plus random factors (Nakagawa and Schielzeth, 2013), with the Performance package 

(Lüdecke et al. 2021).  

Movement and use of pasture  

We evaluated the cows’ movement and use of pasture with three approaches. First, we examined the 

slope and movement speed associated with each cow’s position; second, we assessed the effects of 

environmental covariates on the fine-scale spatial use of pasture; third, we compared the size of the 

areas that individual cows used daily.  

Slope used and speed of movement 

We analysed slope and speed with generalized additive mixed models using the function “gam” of 

the package “mgcv” (Wood 2017) in R 4.2.0 (R Core Team 2016). For the analysis of slope and 
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speed, since we wanted to include the effects of habitat type, we excluded 12,290 positions (4.5%) 

intersecting habitat types with a very small area (“road-path”, “scree”, “stream”), and retained only 

positions in grassland, sparse shrub, and forest. Additionally, for the analysis of speed we excluded 

the positions collected during the “night” day-period (N = 116,672), because it was dominated by 

resting, and all the resting positions (N = 32,565) during the “day” day-period. The final sub-dataset 

of speed had 83,242 positions. Slope was analysed with a model (Table S.2.2) including the fixed 

effects of the smoothed splines of hour and distance and of the categorical variables breed-parity, 

behaviour, day-period, and habitat, the two-way interactions between them, the three-way 

interactions between breed-parity, day-period and behaviour and between breed-parity, day-period 

and habitat, and the random effect of individual cow nested within breed-parity. Speed was expressed 

as m/h and log-transformed, and then analysed with a model (Table S.2.3) including the fixed effects 

of the smoothed splines of hour and distance and of the categorical variables breed-parity, habitat, 

behaviour, and of the two-way and three-way interactions between them, plus the random effect of 

the individual cow nested within breed-parity. 

Fine-scale intensity of use of pasture 

We examined how spatially structured effects affected the fine-scale spatial use of the grazed area 

based on the frequency distribution of cows’ positions discretized within a grid of 25x25 m cells 

aligned with the DTM. We classified each cell for the summed number of positions of each breed-

parity category during each day-period of the whole study duration. Spatially structured factors 

assigned to each cell were the “prevalent habitat”, which we defined as “grassland”, “sparse forest”, 

and “forest” when their percent cover was higher than 50% of the cell, the slope, and the linear 

distance (m) from the centre of each pixel to the barn. We analysed the positions’ frequency with the 

INLA (Integrated Nested Laplace Approximation) approach, which works on a Bayesian framework 

using the SPDE (Stochastic Partial Differential Equations) methodology and allows to account for 

and manage error covariance, as spatial autocorrelation (Rue et all. 2009, Homburger et all. 2015). 

We used the “INLA” function of the INLA library (Rue et all. 2009) in R 4.2.0 (RCore Team 2016) 

to build six models (Table S.2.4), one for each combination of breed-parity and day-period, using six 

corresponding sub-datasets. The models were based on a zero-inflated negative binomial distribution, 

due to the high frequency of 0 values, and included the random spatial effect of the single cell, which 

accounted for the spatial autocorrelation and included the spatial effects of neighbouring cells, and 

the fixed effects of habitat prevalence (“grassland”, “sparse forest”, “forest”, each one expressed as a 

separate binomial variable yes/no), slope, and the log-transformed distance from the barn. For 

hyperparameter specification, we set the parameters and the diffuse prior distribution as in 
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Homburger et al. 2015. The approximations of model posterior marginals were computed with the 

empirical Bayes approach and the Gaussian method to balance between accuracy and computational 

cost. The models were compared with a forest plot to highlight possible differences in terms of 

statistical relevance. 

Daily areas used by cows 

We used a utilization distribution (UD) method to calculate the surface of the areas used daily by 

individual cows during day and night with the function “kernelUD” of the adehabitatHR library 

(Calenge 2021) in R 4.2.0 (RCore Team 2016), using 90% and 50% of the locations with the 

smoothing parameter set at 25 m. This is a common approach to estimate the total area used (90%, 

”total area”, excluding the 10% most peripheric and occasional locations) and, within that, the portion 

used most intensively (50%, “core area”) by free-roaming animals (Viana et al. 2018, Floyd et al. 

2022). We analysed total areas and core areas with a generalized linear mixed model using the 

“glmer” function of the “lme4” library (Bates et al. 2015) based on a Gamma distribution and a log 

link function. The model (Table S.2.5) included the fixed effects of the 2-way interaction between 

breed-parity and day-period and of Julian date as a linear covariate, plus the random effect of 

individual cow nested into breed-parity.  

 

Results 

 

Milk production and live body weight 

Live body weight differed markedly between breed-parities (p<0.001) with the expected ranking 

order, being lowest for Alpine Grey primiparous, intermediate for Alpine Grey multiparous, and 

highest for Brown Swiss multiparous (GLM least square means: 565.6 kg, SE = 18.7; 603.8 kg, SE 

= 20.8; 689 kg, SE = 13.9; respectively). Milk yield varied also significantly (p <0.05) between breed-

parities, but with a different ranking order: it was again lowest for Alpine Grey primiparous, slightly 

higher for Brown Swiss multiparous, and clearly highest for Alpine Grey multiparous (GLM least 

square means: 15.1 kg/day, SE = 1.7; 17.1 kg/day; SE = 1.2, 22.2 kg/day, SE = 1.8; respectively). 

These differences in milk yield and especially in body weight between breeds and parities will be 

considered when discussing the movement and behavioural patterns. 
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Figure 2. Effects of breed-parity on the hours spent grazing (A and B panels), resting (B and C panels) and 
walking (D and F panels) during day and night.  “BrM”: Brown Swiss multiparous; GrM: Alpine Grey 
multiparous; GrP: Alpine Grey primiparous. Whiskers indicate 95% confidence intervals. For details of the 
parametric coefficients of the statistical models see Supplementary table S.2.1. 
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Activity budgets during day and night  

The hours spent grazing were influenced by breed-parity (p <0.01) during the day, but not during the 

night (Table S.2.1). During the day (Figure 2A), Alpine Grey primiparous cows grazed on average 

for 4:30 hours (SE = 0:12), Alpine Grey multiparous for 5:00 hours (SE: 0:13 hours), and Brown 

Swiss multiparous for 5:18 hours (SE: 0:09 hours). During the night (Figure 2B), cows of all breed-

parity categories grazed for 2:36-2:54 hours (SE = 0:06-0:09). The hours spent resting were also 

influenced by breed-parity during the day, but, again, not during the night (Table S.2.1). During the 

day (Figure 2C), Alpine Grey primiparous cows rested longer (3:12 hours, SE = 0:10) than Brown 

Swiss and Alpine Grey multiparous cows (2:24-2:42 hours; SE = 0:08-0:12); during the night (Figure 

2D), resting time varied between 7.36 and 7:54 hours (SE = 0:06-0:10) among breed-parity categories. 

Finally, time spent walking was unaffected by breed-parity during both day and night (Table S.2.1; 

Figure 2.E and 2.F, respectively). During the day cows walked for 1:18-1:24 hours (SE= 0:07-0:11 

hours), and during the night for 0:18-0:24 hours (SE = 0:02-0:03 hours). 

Use of pasture 

Slope used and movement speed 

After accounting for the spline effects of hour and distance from barn (Table S.2.2 and figure S.2.1), 

slope used was significantly influenced (P<0.001, Table S.2.2) by the three-way interactions breed-

parity by day-period by behaviour and breed-parity by day-period by habitat. During the day (Figure 

3A) and when grazing and resting, Brown Swiss multiparous cows used the gentlest slopes (grazing: 

13.9°, SE = 0.03; resting: 13.2°, SE= 0.04), Alpine Grey multiparous cows used intermediate slopes 

(grazing: 13.9°, SE = 0.04; resting: 13.6°, SE = 0.06), and Alpine Grey primiparous used the steepest 

slopes (grazing: 14.4°, SE = 0.04; resting: 13.5°, SE = 0.05), while when walking all breed-parity 

categories used similar slopes (Brown Swiss multiparous: 13.4°, SE = 0.05; Alpine Grey multiparous: 

13.35°, SE = 0.07; Alpine Grey primiparous: 13.5°, SE = 0.06). During the night (Figure 3B) and 

when grazing and walking, Alpine Grey primiparous used steeper slopes (grazing: 14.24°, SE = 0.09; 

walking: 13.5° ±0.1) than Alpine Grey multiparous and Brown Swiss pluriparous (Alpine Grey 

multiparous, grazing: 13.3°, SE = 0.09; Alpine Grey multiparous, walking: 12.8°, SE = 0.1; Brown 

Swiss multiparous, grazing: 13.3°, SE =0.09; Brown Swiss multiparous, walking: 12.8°, SE = 0.10), 

while when resting Brown Swiss pluriparous used the steepest slopes (12.9°, SE = 0.08), Alpine Grey 

primiparous the intermediate ones (12.2°, SE = 0.09), and Alpine Grey pluriparous the gentlest ones 

(11.1°, SE = 0.09). In general, slope used when grazing (13.1 – 14.5°) was steeper than that used 

when resting (12.0 – 13.6°) and walking (12.5 – 13.7°; Figure 3A and 3B).  
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During the day and when cows were in forest (Figure 3C), Brown Swiss multiparous used slightly 

steeper slopes than Alpine Grey primiparous and Alpine grey multiparous (Brown Swiss multiparous: 

16.8°, SE = 0.04; Alpine Grey primiparous: 16.6°, SE = 0.06; Alpine grey multiparous: 16.2°, SE = 

0.06;), but when cows were in grassland Brown Swiss multiparous used clearly gentler slopesthan 

the other breed-parity categories (Brown Swiss multiparous: 10.5°, SE = 0.04; Alpine Grey 

primiparous: 11.5°, SE = 0.05; Alpine grey multiparous: 11.3°, SE = 0.05). There were no differences 

between breed-parity categories when cows were in sparse shrub (Brown Swiss multiparous: 13.2°, 

SE = 0.05; Alpine Grey primiparous and Alpine Grey multiparousboth categories: 13.3°, SE = 0.06). 

During the night (Figure 3D) and when cows were in forest and grassland, Alpine Grey multiparous 

used gentler slopes (forest: 15.2°, SE = 0.1; grassland: 10.2°, SE = 0.09) than the other two categories 

(Brown Swiss multiparous, forest: 16.9°, SE = 0.08;  Brown Swiss multiparous, grassland: 11.1°, SE 

= 0.08; Alpine Grey primiparous, forest: 16.9°, SE = 0.1; Alpine Grey primiparous, grassland: 10.8°, 

SE =0.09), while when cows were in sparse shrub the gentlest slopes were used by Brown Swiss 

multiparous (Brown Swiss multiparous: 10.9°, SE = 0.08; Alpine Grey multiparous: 11.8°, SE = 0.09; 

Alpine Grey primiparous: 12.02°, SE = 0.09). In general, slope used by cows of all breed-parity 

categories was steeper when they were in forest (16.3 – 16.6°) than when they were in sparse shrub 

(12.4 – 12.6°) and especially in grassland (10.8 – 11.0°), which reflects the morphology of these 

habitats. 

After accounting for the spline effects of hour and distance (Table S.2.3 and figure S.2.2), speed was 

significantly influenced (P<0.01, Table S.2.3) by the three-way interactions breed-parity by day-

period by behaviour and breed-parity by day-period by habitat. When grazing in forest and in sparse 

shrub (Figure 3D), Brown Swiss multiparous cows moved at a slower speed (forest: 256 m/h, SE = 

0.011; sparse shrub: 229 m/h, SE = 0.012) than the cows of the other two categories (Alpine Grey 

primiparous, forest: 276 m/h, SE = 0.016; Alpine Grey primiparous, sparse shrub: 242 m/h, SE = 

0.015; Alpine Grey multiparous, forest: 276 m/h, SE = 0.015; Alpine Grey multiparous, sparse shrub: 

248 m/h, SE = 0.016) when grazing in grassland, cows of all breed-parity categories moved at a 

similar speed, remarkably lower speed than that observed in the other habitats (Brown Swiss 

multiparous: 190 m/h, SE = 0.01; Alpine Grey primiparous: 189 m/h, SE = 0.011; Alpine Grey 

multiparous 185 m/h, SE = 0.012). 

When walking (Figure 3E), cows moved at a much faster speed than when grazing, without 

differences between breed-parity categories (Brown Swiss multiparous 1149 m/h, SE = 0.012; Alpine 

Grey primiparous 1156 m/h, SE = 0.015;  Alpine Grey multiparous 1105 m/h, SE = 0.014) 
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Figure 3. Effect of the three-way interaction breed-parity by day-period by behaviour (panels A and B) and 
breed-parity by day-period by habitat (panels C and D) on the slope used by the cows, and effect of the 
interaction breed-parity by habitat by behaviour (panels E and F, note that the scale of the y axis differs between 
these two panels) on the speed of movement. BrM: Brown Swiss multiparous; GrP: Alpine Grey primiparous; 
GrM: Alpine Grey multiparous.  
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Fine scale intensity of spatial use 

The posterior estimates of the INLA models analysing the fine-scale spatial use of the cows are shown 

in table S.2.4. During the day (Figure 4A) there was in general a tendency for intensity of use to be 

higher than expected in grassland (positive effect), intermediate in sparse shrub (no effect), and lowest 

in forest (negative effect). The positive effect of grassland on intensity of use was significant for 

Brown Swiss multiparous and Alpine Grey primiparous and close to significance for Alpine Grey 

pluriparous, while the effect of forest was negative and significant for Alpine Grey primiparous, non-

significant for Alpine Grey multiparous, and positive and significant for Brown Swiss multiparous. 

Distance from barn and slope had a significant negative effect on intensity of use for all breed-parity 

categories, less marked for Alpine Grey primiparous than for the other bred-parity categories. During 

the night (Figure 4B), grassland had a similar, significant, and positive effect on intensity of use for 

all breed-parity categories, while sparse shrub and forest had no significant effect. Distance from barn 

and slope confirmed the negative effect on intensity of use observed during the day. 

 

 

Figure 4. Estimated effects of prevalent habitat type (grassland, sparse shrub and forest), distance from barn, 
slope, and breed-parity (“BrM”: Brown Swiss multiparous; GrM: Alpine Grey multiparous; GrP: Alpine Grey 
primiparous) on intensity of pasture use during day (panel A) and night (panel B). Horizontal whiskers indicate 
95% credibility intervals of posterior estimates, which differ significantly when whiskers do not overlap with 
the dotted line at estimate = 0. The asterisks (*) indicate statistical relevance. For details of the parametric 
coefficients of the statistical models see Supplementary table S.2.4. 

Total areas and core areas 

The size of both the total areas and core areas was influenced by Julian date (p<0.001; Table S.2.5) 

with a decreasing trend (Figure S.2.2). It was also, and predictably, strongly influenced by day-period 

(p<0.001), which interacted with breed-parity (p<0.05 for total areas, and p<0.01 for core areas (Table 
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S.2.5). Total areas’ size (Figure 5A) was much larger during the day (12.60 ha, SE =0.02), when it 

did not differ between breed-parity categories, than during the night, when it was smaller for Brown 

Swiss multiparous (4.38 ha, SE = 0.02) than for Alpine Grey multiparous and Alpine Grey 

primiparous (4.99 ha, SE = 0.03, and 5.06 ha, SE = 0.03, respectively). Core areas’ sizes (Figure 5B) 

were much were larger for Brown Swiss multiparous than for Alpine Grey multiparous and Alpine 

Grey primiparous cows (2.14 ha, SE = 0.03, 1.99 ha, SE = 0.04, and 1.85 ha, SE = 0.03, respectively) 

during the day, and did not differ between breed-parity categories during the night (0.88 ha, SE = 

0.02, 0.90 ha, SE = 0.03, 0.92 ha, SE = 0.03, respectively).  

 

 

Figure 5. Effects of the 2-way interaction between breed-parity and day-period on the surface (ha) of total 
areas (90%of locations) and core areas (50% of locations; note that the scale of the y axis differs from that of 
panel A). Whiskers indicate 95% confidence intervals. “BrM”: Brown Swiss multiparous; GrM: Alpine Grey 
multiparous; GrP: Alpine Grey primiparous. For details of the parametric coefficients of the statistical models 
see Supplementary tab S.2.5. 

 

Discussion 

 

In this study, we found that breed and parity influenced the activity budget of the cows and their use 

of pasture in a complex interaction with day period, behaviour displayed, and habitat type used. In 

the following discussion, we will first examine the general patterns of the activity budget during day 

and night, then discuss the influence of day-period and environmental features on pasture use, and 
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finally address how breed-parity categories differed within the general framework previously 

outlined. 

In general, during the whole day (24 hours) the cows spent approximately 8 hours grazing, 10 -11 

hours resting, and little longer than 1.5 hours walking. The total grazing time was in the lower limits 

of the values observed in the studies reviewed by Kilgour (2011), which can probably be justified by 

the substantial concentrate supplementation that the cows received, which has a well-known negative 

effect on both grazing time and herbage intake (Krysl and Hess, 1993, Gekara et al. 2001, Bovolenta 

et al. 2002; Soca et al. 2014). Of the total daily grazing time, approximately 30% occurred in the 

“night” period between the evening and the morning milking. Therefore, grazing during the night 

period is important for the daily forage intake of the cows, and this might conflict with certain 

management practices. Traditionally, cows were kept inside the barn after the evening milking and 

released only after the next morning’s milking, a practice that is now rare but still practiced (Raniolo 

et al. 2022), and likely reduces the time cows have available for grazing. Maintaining high forage 

intakes might be difficult also if night fencing or keeping in the barn were adopted as measures to 

protect livestock from the rapidly expanding alpine wolf population (Marucco et al. 20202), although 

this practice should be relevant especially for more vulnerable cattle categories than adult cows 

(Faccioni et al. 2005). Kilgour (2011) found, in the studies he examined, a very wide variability in 

the proportion of time spent grazing between day and night by cattle at pasture but did not attempt to 

provide an explanation. One possible factor influencing the daily grazing rhythms might be climate, 

and especially temperature since cattle respond to heat stress by reducing activity and feed intake 

(Silanikove 2000). When free to roam at pasture, cattle show two daily major bouts of grazing 

generally associated with sunrise and sunset (Kilgour et al. 2011). To avoid heat stress in warm days, 

which is not uncommon even in temperate climates during summer (Veissier et al 2018) and will 

become more frequent because of global warming, they might show behavioural plasticity by 

anticipating the morning grazing bout and delaying and prolonging the evening bout, as observed in 

other heat-sensitive herbivores (Semenzato et al. 2021) and as claimed by shepherds (Ramanzin M. 

personal communication). This should be considered in the management practices. For example, 

when the day and night periods of our study are decomposed into hourly sub-periods (Figure S.2.3), 

it becomes clear how milking times and grazing management may interfere with the diurnal grazing 

patterns: the sunrise grazing bout did not start until after the morning milking, the afternoon grazing 

decreased rapidly when cows had to walk back to the barn from the areas where they had been 

conducted in the morning for the evening milking, and only after it the sunset grazing bout could take 

place. Therefore, a reduction of grazing during the day should be compensated by an increase during 

the deep hours of the night that now appear dedicated most exclusively to resting.  
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The use of pasture was highly heterogenous, (Probo et al. 2014; Homburger et al. 2015; Raniolo et 

al. 2022), as indicated by the fact that half of the locations collected daily for each cow were inside 

core areas which were 5 times smaller than the total areas used. During the day, when the cows were 

conducted by the shepherd to graze at longer distances from the barn (see figure S.2.4), they stayed 

into total areas and core areas that were 2-2.5 times larger than during the night, when they grazed 

but mostly rested close to the barn (see figure S.2.4). Therefore, during the night the animals’ load 

per unit of surface was higher and spatially concentrated in areas that were likely subject to intense 

trampling and deposition of excreta (White et al, 2001), which might strongly impact on soil physical 

properties and nutrient balance and vegetation (Pietola et al. 2005; Jewell et al. 2007). Since in most 

alpine grazing systems as the one we examined here the cows are left free during the night, reducing 

the animals’ load, balancing the release of excreta, and maintaining good sward conditions in such 

areas might be challenging without devising a rotational system with the shepherd conduction also 

during the night.  

In addition to the herd management practised, the heterogeneity of pasture use was also clearly related 

with environmental variables, as indicated by the analysis of fine-scale spatial intensity of use. The 

cows showed a clear tendency to select grassland patches, did not show any preference nor avoidance 

for sparse shrub patches, and tended to avoid only tendentially but mostly in non-significant way 

forest patches. While the positive selection for grassland patches was expected, given that these are 

typically forage-rich habitats (Homburger et al.2015), the lack of a negative selection for sparse shrub 

and forest was unexpected (Raniolo et al. 2022). During the day, this might be partially explained by 

the grazing management, since to reach most of the grassland areas when conducted by the shepherd 

the cows had to pass through forest and sparse shrub (see Fig. 1). Additionally, while cattle avoid 

thick stands of high shrubs, as Alnus spp., they could move easily and find forage in sparse shrub, 

which was composed by patches of dwarf shrub (Rhododendron and Vaccinium spp.) that did not 

impede movement interspersed with grassland. Finally, forest might be used by cattle for a variety of 

reasons, including finding shade and forage in sunny and warm days (de Weerd et al. 2014). In fact, 

the cows spent more time grazing in grassland than in forest and sparse shrub, but the use of these 

two latter habitats for grazing was not negligible (see table S.2.5). Different environmental factors 

may respond to/impact on different needs of the animals, which will consequently make different 

choices according to the activity in which they are involved (Kohler et al. 2006; Homburger et al. 

2015). Slope, and distance from barn, had a negative effect on the intensity of use, which was 

expected and confirmed the findings of other studies (Kaufmann et al. 2013; Pittarello et al. 2021; 

Rivero et al. 2021 Raniolo et al. 2022). 
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When considering differences between breeds and parity categories, we should discuss the breed 

effect by comparing Alpine Grey multiparous with Brown Swiss multiparous cows, and the parity 

effect by comparing primiparous and multiparous cows within the Alpine Grey breed. Since during 

the night differences between breed-parity categories were small and non-significant (activity budget) 

or followed patterns consistent with those of the day (fine scale analysis of spatial intensity of use 

and analysis of areas used daily), and only the analysis of slope at the movement step scale showed 

somewhat different patterns (most probably because during night cows spent 70% of their time 

resting), we will address these differences considering the day, when relevant. Overall, the results 

suggest that, as respect to Alpine Grey multiparous, Brown Swiss multiparous did not differ in activity 

budget and might be less selective in their use of habitat (only for them forest had a positive effect on 

intensity of spatial use; they moved at a lower speed in forest and sparse shrub, and they used less 

heterogeneously the total daily areas used daily, as indicated by larger core areas).  Whether in moving 

they are more limited by slope can only be suggested but needs further confirmation. We have also 

to consider that in this study Brown Swiss multiparous were heavier than Alpine Grey multiparous, 

which should reduce grazing time (Aharaoni et al. 2013) and modify their movement patterns (Rivero 

et al. 2021), but produced less milk than Alpine Grey multiparous and received more concentrate 

supplement, which should have a negative effect on grazing time and reduce movement (Heublein et 

al. 2016), and it is impossible to disentangle these possibly contrasting effects. In general, differences 

between Alpine Grey primiparous and Alpine Grey multiparous, when present, were more marked 

than those between the multiparous cows of the two breeds. As respect to the older cows of the same 

breed, primiparous Alpine Grey spent less time grazing and more resting, used steeper slopes when 

grazing and in grassland, showed a higher tendency to avoid sparse shrub and especially forest, were 

influenced less negatively by slope and distance from barn in their spatial intensity of use. The 

reduced grazing time might be explained by the fact that they had lower feed requirements, being 

lighter and producing less milk, but received the same amount of concentrate, while their ability to 

move on steeper ground is in accord with their smaller body size (Rivero et al. 20121). That they 

were more selective in their use of habitats and the pasture area in general might possibly be related 

to a lack of knowledge and previous experience. Experience can be as important as breed in foraging 

behaviour (Orr et al. 2013) and in use of pasture (Bailey et al. 2010; Wyffels et al. 2020), but we 

cannot speculate on this because we don’t know whether primiparous cows had been grazing in the 

summer farm when heifers.  
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Conclusion 

 

In this study we monitored both movement and activity budget of lactating cows in an extensive 

grazing system, outlining the main differences between day and night, the influence of environmental 

covariates, and some dissimilarities between breeds and parity. Grazing was predominant during the 

day but extended remarkably during late evening, while night was dominated by resting. We suggest 

that further research should elucidate the role of concentrate supplementation, climate conditions and 

herd management on the daily activity budget of domestic livestock at a detailed time scale, because 

they might be influenced by herd and grazing management practices and by climate, especially 

considering the risks of heat stress associated with global warming. Use of the pasture area was highly 

heterogeneous, which was partly explained by the avoidance of steeper slopes and by cows 

concentrating their presence close to the barn, and by a selection for grassland patches. However, also 

habitats with a lower forage abundance, as sparce shrub and forest, were used. We did not address 

specifically the spatial intensity of use and choice of habitats by the cows when grazing, resting, or 

walking, but we recommend that they should be further investigated in relation with other 

environmental covariates and climate conditions. The comparisons between breeds and parities did 

not yield conclusive indications, partly because of the limitation of our sample, but the local Alpine 

Grey breed appeared to be more selective in the choice of habitats and in the internal use of the total 

daily areas explored than the specialized Brown Swiss breed, while primiparous Alpine Grey cows 

showed clearly to be less limited by slope in their movement and use of pasture, while being more 

selective in habitats’ use. These results indicate that different breeds, even if not genetically and 

phenotypically as divergent as those so far studied, and parity levels influence grazing patterns and 

use of pasture, which might be exploited in grazing management. For this purpose, understanding the 

different external and internal drivers of activity budgets and use of pasture by grazing livestock is 

crucial to animals' combine productivity and welfare with conservation of grasslands with their 

associated multiple ecosystem services. In this regard, GPS telemetry proved to be a powerful 

instrument to monitor both movement and behaviour of free-ranging animals, and should be 

implemented in further studies with increased sample sizes and environmental variability, and 

possibly complemented with insights into their possibly different sociality and physiological 

adaptations y. 
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Supplementary 

 

Appendix S.1. Classification of behaviours from acceleration data and movement features  

The GPS collars used in this study (VERTEX Plus, Vectronic Aerospace GmbH) were equipped with 

3-axes accelerometer (x, y, z: range 0-255) sensors. The sensors were set by the manufacturer to store 

acceleration values as averages over five-minute intervals. Since acceleration values are correlated 

with animal’s motion, they have been used, alone or in combination with metrics describing 

movement features, to discriminate between “active” (e.g., walking, grazing) and “inactive” (e.g., 

lying, standing without motion) behaviours of free-ranging herbivores (Löttker et al. 2009; Moreau 

et al 2009; Homburger et al. 2014; Semenzato et al, 2021. For this study we developed a random 

forest classifier (Valletta et al. 2017) using a database of cows’ positions which had been assigned 

directly (from visual observation) or indirectly (from unequivocal features of positions’ sequences, 

see below) to three classes of individual behaviours (“grazing”, “walking”, and “resting”).  

Figure S.1.1. Example of movement phases that can be unequivocally assigned to three behavioural states. 
Green points: grazing, indicated by a sequence of locations separated by short distances with no clear 
directionality; yellow points: resting, indicated by a sequence of locations separated by very short distances 
with random directions around a centre, determined by the error of GPS sensors; red points: walking, indicated 
by a sequence of locations separated by long distances following a clear directionality)  
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To directly classify positions, we conducted visual observations on the cows equipped with GPS 

collars between 7:00 am and 4:00 pm from 6 to 10 July 2020, for a total of 32 hours. With the aid of 

a digital clock with 1 second resolution, synchronized on the activity sensors’ time, we recorded the 

time spent into behavioral bouts of at least 10 seconds according to the following states: “grazing” 

(i.e., biting, chewing and swallowing, also if interrupted by relocation movements between clusters 

of plants; Owen-Smith et al. 2010); “walking” (with a clear directionality, without interruptions for 

grazing); “standing” (standing without leg movements) and “lying”. We then classified the GPS 

positions (N = 920) collected during the observation time from the observed individuals as “grazing”, 

“walking”, or “resting” when these observed behaviors accounted for 60% or more (≥ 72 seconds) of 

the 120 seconds separating each position from the previous one. To integrate the database of positions 

classified with direct observations, we used a selected dataset of 1317 positions which, based on the 

movement features (see Figure S.1.1 for a visual example), could be unequivocally assigned to 

“grazing” (the position is part of a sequence with slow movement at short distances along irregular 

directions); “walking” (the position is part of a sequence with faster movement at longer distances 

with clear directionality); “resting” (the position is part of a sequence with short distances at random 

directions around a centre, due to the random error of location).  

Table S.1.1. Metrics used to categorize each position for developing a random forest classifier (Calenge et al. 
2009, Urbano and Cagnacci 2014, Wang et al. 2015, Edelhoff et al. 2016) 

Metrics Unit Description 
step 1 m Step length: distance (m) between two consecutive positions, which correspond to a step  

step 3 m 
Distance (m) between the first and the last position of a sequence of 4 consecutive 
positions, corresponding to 3 steps 

step 5 m 
Distance (m) between the first and the last position of a sequence of 6 consecutive 
positions, corresponding to 5 steps 

speed 1 m/h Speed: step length/ time interval (in sec) 

speed 3 m/h 
Speed calculated on the distance and time interval between the first and last position of a 
sequence of 4 consecutive positions, corresponding to 3 steps 

speed 5 m/h 
Speed calculated on the distance and time interval between the first and last position of a 
sequence of 6 consecutive positions, corresponding to 5 steps 

rel angle rad 
Cosine of turning angle: the cosine of the angle between the line intersecting the two 
locations of one step and the line intersecting the first location of that step with the 
second location of the preceding step  

abs angle rad 
Cosine of absolute angle between the line intersecting the two locations of one step and 
the line of the X axes (east-west, “horizontal” direction) 

x  Forward/backward acceleration values (4 measures/sec<) averaged over 5 minutes 
periods 

y  Left/right acceleration values (4 measures/sec<) averaged over 5 minutes periods 
z  Vertical acceleration values (4 measures/sec<) averaged over 5 minutes periods 
xy  Sum of forward/backward (x) and left/right (y) acceleration values; xy= x + y 
m  Square root of sum of squared single axes acceleration values; m=(x2+y2+z2)0.5  
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Each classified position of this integrated dataset was then categorized for the average x, y, and z 

acceleration values of the 5 minutes interval within which it was collected and for a series of 

movement metrics (Calenge et al. 2009, Urbano and Cagnacci 2014, Wang et al. 2015, Edelhoff et 

al. 2016), as described in table S1.1. The dataset was then randomly split into a “training” (80% of 

positions) and a “testing” (20% of positions) dataset (“test dataset”). In addition, we used the sub-

database of only directly observed behaviours (“direct observation dataset”) for further validation 

(see below). The random forest model was built in R environment using the function “random forest” 

of the library “random forest” (Liaw and Wiener, 2002). Random forest is a non-parametric model 

based on the result aggregation of an ensemble of decision trees created on a subsample of a dataset 

(Liaw and Wiener, 2002). A single decision tree is characterized by a 2-step process: firstly, it divides 

the predictor space into separate regions, which are split to minimize the residual sum of squares for 

regression trees and the Gini index of entropy (Nicodemus, 2011) for the classification; secondly, it 

calculates the mean of outcome values for each region, which is then used to predict new data. We 

built the model on 10,000 trees with the variables described in table S.1 and validated it with both the 

test dataset and the direct observations dataset.  

The performance of the model was very good with few mislabelled predictions (Table S.1.2)  

Table S.1.2. Confusion matrix of the Test dataset and of the direct observation dataset. The rows indicate the 
true behaviours, and the columns indicate predicted behaviours. Values on the diagonal represent the number 
of times where the predicted behaviour matches the true one. Values in the other cells represent instances 
where the classifier mislabelled an observation. 

 Test - Dataset Direct observation - Dataset 

 Grazing Resting Walking Grazing Resting Walking 

Grazing 200 1 7 616 1 7 

Resting 7 345 0 6 119 0 

Walking 9 1 92 8 0 154 

 

The accuracy and the Kappa statistics of the test dataset were 0.96 and 0.93 while those of the direct 

observation dataset were 0.97 and 0.95, respectively (Table S.1.3). The no information rate was 

highly significantly (p < 0.001) lower than the observed accuracy. The variables most contributing to 

the classification were “m” followed by “yx”,”y”,”x”, “speed 1” and “step 1” (fig. S.1.2., see Table 

S.1.1 for the meaning of abbreviated variables).  

After testing, the random forest model was used to classify all the locations of the geodatabase, to 

introduce the factor “behaviour”. 
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Table S.1.3. Summary statistics of the random forest model. Accuracy is the proportion of observations 
correctly classified. The Kappa statistic is a normalized metric that compares the observed accuracy with an 
expected accuracy (random chance). No information rate is the largest proportion of the observed behaviours, 
which should be significantly lower than overall accuracy, as indicated here by P Value.  

 Test Direct observation 
Accuracy 0.962 0.976 
Kappa statistic 0.937 0.949 
No Information Rate (NIR) 0.524 0.692 
P value (Accuracy > NIR) <0.001 <0.001 

 

Figure S.1.2. Variable Importance of the random forest model (the mean decrease of Gini score is a measure 
of the contribution of a variable to the homogeneity of nodes and leaves in a random forest (Nicodemus, 2011)). 
The variables with the highest decrease in the Gini index of entropy are those that most contribute to the 
classification 
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Appendix S.2: Statistical analyses and results not reported in the main text 

Table S.2.1. Parametric coefficients of the generalized additive mixed models (lmer(hours~breed-parity + (1|breed-parity:individual)) analysing grazing time, 
resting time and walking time (hours). “Breed-parity” = 3 levels categorical factor: “Brown Swiss multiparous - BrM”; “Alpine Grey-primiparous – GrP”; “Alpine 
Grey multiparous – GrM”). “Individual” = 18 levels factor: individual cow. “Day- period”: 2 levels categorical factor (day/night). Marginal R2 and conditional R2 
indicate the variance explained by fixed factors and fixed+random factors, respectively (Nakagawa and Schielzeth, 2013), which were estimated with the 
Performance package (Lüdecke et al. 2021) in R 4.2.0 (RCore Team 2016). 

                                                       Day-period: day Day period: night 
Grazing 
time 

Random effects   Variance SD     Variance SD   
  Breed-parity: Individual (Intercept) 0.177 0.421    0.087 0.295   
  Residual   0.884 0.940     0.809 0.899   
Fixed effects Estimate SE df t value Pr(>|t|)  Estimate SE df t value Pr(>|t|)  
  (Intercept) 5.393 0.159 13.539 3.39E+01 <0.001 *** 2.618 0.118 13.502 2.23E+01 <0.001 *** 

  Breed-parity GrP -0.852 0.258 13.868 -3.296 <0.01 ** 0.184 0.191 14.019 0.959 0.354  
  Breed-parity GrM -0.368 0.277 13.720 -1.328 0.2058  0.291 0.205 13.814 1.422 0.177  
Marginal R2  0.108      0.016     

Conditional R2  0.257      0.112     
Resting 
time 

Random effects   Variance SD     Variance SD   
  Breed-parity: Individual  (Intercept) 0.142 0.3769    0.04909 0.2216   
  Residual   0.8495 0.9217     2.15043 1.4664   
Fixed effects Estimate SE df t value Pr(>|t|)  Estimate SE df t value Pr(>|t|)  
  (Intercept) 2.447 0.145 13.829 1.69E+01 <0.001 *** 7.937 0.118 12.757 6.74E+01 <0.001 *** 

  Breed-parity GrP 0.804 0.235 14.224 3.428 <0.01 ** -0.139 0.195 14.316 -0.715 0.486  
  Breed-parity GrM 0.323 0.251 14.050 1.286 0.219  -0.281 0.207 13.901 -1.355 0.197  
Marginal R2  0.103      0.006     
Conditional R2  0.231      0.028     
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Table S.2.1. (Continued) 

                                                       Day Night 
Walking 
time 

Random effects   Variance SD     Variance SD   
  Breed-parity: Individual (Intercept) 0.1266 0.3558    0.01291 0.1136   
  Residual   0.2677 0.5174     0.04628 0.2151   
Fixed effects Estimate SE df t value Pr(>|t|)   SE df t value Pr(>|t|)  
  (Intercept) 1.320 0.130 13.923 1.02E+01 <0.001 *** 0.363 0.042 13.819 8.60E+00 <0.001 *** 

  Breed-parity GrP 0.179 0.210 14.075 0.853 0.408  0.111 0.068 14.045 1.624 0.127  
  Breed-parity Gr M 0.040 0.225 14.002 0.178 0.861  0.069 0.073 13.945 0.945 0.361  
Marginal R2  0.014      0.038     

Conditional R2  0.331      0.248     
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Table S.2.2. Parametric coefficients of the generalized additive mixed model gam(slope~s(individual, bs = “re”)+ s(individual, breed-parity, bs = “re”)+s(hour, bs 
= “cc”, k = 12) + s(distance, k = 6) + breed-parity*day period* behaviour+ breed-parity*habitat*day-period) analysing slope used. “Individual” = 18 levels factor: 
individual cow; “hour”: continuous covariate, 24 levels; “distance”: distance from the barn, continuous covariate (log-transformed); “breed-parity” = 3 levels 
categorical factor: “Brown Swiss multiparous - BrM”; “Alpine Grey-primiparous – GrP”; “Alpine Grey multiparous – GrM”); “habitat”: 3 levels categorical factor: 
“grassland”, “forest”; sparse shrub”; “day period”: 2 levels categorical factor (day/night); “behaviour”: 3 levels factor: “grazing”, “resting”, “walking”.  

 Estimate Std. Error t value Pr(>|t|)      
(Intercept) 17.504 0.252 69.432 < 2e-16 *** 

Breed-parity BrP 0.687 0.404 1.700 0.089 .   

Breed-parity BrM -1.091 0.437 -2.498 0.012 *   

Day-period day -0.392 0.089 -4.420 0.000 *** 

Behaviour resting -0.400 0.042 -9.436 < 2e-16 *** 

Behaviour walking -0.539 0.094 -5.725 0.000 *** 

Habitat grassland -5.916 0.042 -142.159 < 2e-16 *** 

Habitat sparse shrub -6.030 0.044 -138.160 < 2e-16 *** 

Breed-parity BrP:day-period day -0.751 0.098 -7.646 0.000 *** 

Breed-parity BrM:day-period day 0.364 0.114 3.191 0.001 **  

Breed-parity BrP:behaviour resting -1.738 0.062 -27.830 < 2e-16 *** 

Breed-parity BrM:behaviour resting -1.913 0.066 -29.025 < 2e-16 *** 

Breed-parity BrP:behaviour walking -0.251 0.146 -1.717 0.086 .   

Breed-parity BrM:behaviour walking -0.028 0.160 -0.176 0.860  

Day-period day:behaviour resting -0.381 0.058 -6.593 0.000 *** 

Day-period day:behaviour walking -0.031 0.107 -0.285 0.776  

Breed-parity BrP:habitat grassland -0.173 0.072 -2.410 0.016 *   

Breed-parity BrM:habitat grassland 0.958 0.095 10.134 < 2e-16 *** 

Breed-parity BrP:habitat sparse shrub 1.298 0.080 16.261 < 2e-16 *** 

Breed-parity BrM:habitat sparse shrub 2.682 0.101 26.520 < 2e-16 *** 

Day-period day:habitat grassland -0.496 0.059 -8.395 < 2e-16 *** 

Day-period day:habitat sparse shrub 2.348 0.066 35.813 < 2e-16 *** 

Breed-parity BrP:day-period day:behaviour resting 1.592 0.091 17.584 < 2e-16 *** 

Breed-parity BrM:day-period day:behaviour resting 2.288 0.096 23.718 < 2e-16 *** 

Breed-parity BrP:day-period day:behaviour walking -0.089 0.169 -0.527 0.598  
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Breed-parity BrM day-period day:behaviour walking -0.011 0.184 -0.059 0.953  

Breed-parity BrP:day-period day:habitat grassland 1.468 0.104 14.121 < 2e-16 *** 

Breed-parity BrM:day-period day:habitat grassland 0.480 0.122 3.925 0.000 *** 

Breed-parity BrP:day-period day:habitat sparse shrub -0.936 0.119 -7.846 0.000 *** 

Breed-parity BrM:day-period day:habitat sparse shrub -1.946 0.137 -14.241 < 2e-16 *** 

 edf Ref.df F p-value  

s(individual) 0.3146 14 8.05 0.985  

s(individual:breed-parity 13.652 14 2365.87 < 2e-16 *** 

s(hour) 6.970 7 133.33 < 2e-16 *** 

s(distance) 4.996 5 3765.87 < 2e-16 *** 
Adjusted R2 0.290 
Deviance explained (%) 29.0 
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Figure S.2.1. Effects of hour (smoothed cubic cyclic spline; panel A) and distance from barn (smoothed spline; panel B) on the slope used by cows. The statistical 

model and the parametric coefficients are given in table S.2.2. 
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Table S.2.3. Parametric coefficients of the generalized additive mixed model gam (speed~ s(individual, bs = “re”)+ s(individual, breed-parity, bs = “re”)+s(hour, 
bs = “cc”, k = 12) + s(distance, k = 6) + breed-parity*habitat + breed-parity*day period* behaviour) analysing speed (log (m/hour)). “Individual” = 18 levels factor: 
individual cow; “hour”: continuous covariate, 24 levels; “distance”: distance from the barn, continuous covariate (log-transformed); “breed-parity” = 3 levels 
categorical factor: “Brown Swiss multiparous - BrM”; “Alpine Grey-primiparous – GrP”; “Alpine Grey multiparous – GrM”); “habitat”: 3 levels categorical factor: 
“grassland”, “forest”; sparse shrub”; “behaviour”: 2 levels factor: “grazing”, “walking” (resting was excluded because animals were static).  

 Estimate Std.Error t value Pr(>|t|)  
(Intercept) 5.669 0.053 106.858 < 2e-16 *** 

Breed-parity BrP 0.073 0.086 0.846 0.397  

Breed-parity BrM 0.074 0.092 0.802 0.422  

Behaviour: walking 1.486 0.017 88.244 < 2e-16 *** 

Habitat grassland -0.297 0.010 -29.359 < 2e-16 *** 

Habitat sparse_forest -0.112 0.011 -10.296 < 2e-16 *** 

Breed-parity BrP: behaviour walking -0.071 0.029 -2.435 0.015 * 

Breed-parity BrM: behaviour walking -0.113 0.030 -3.752 0.000 *** 

Breed-parity BrP: habitat grassland -0.081 0.018 -4.517 0.000 *** 

Breed-parity BrM: habitat grassland -0.105 0.018 -5.991 0.000 *** 

Breed-parity BrP: habitat sparse shrub -0.017 0.021 -0.815 0.415  

Breed-parity BrM: habitat sparse shrub 0.002 0.021 0.110 0.913  

Behaviour walking: habitat grassland 0.354 0.022 16.203 < 2e-16 *** 

Behaviour walking: habitat sparse shrub 0.093 0.023 4.061 0.000 *** 

Breed-parity BrP: behaviour walking: habitat grassland 0.078 0.037 2.118 0.034 * 

Breed-parity BrM: behaviour walking: habitat grassland 0.113 0.039 2.912 0.004 ** 

Breed-parity BrP: behaviour walking: habitat sparse shrub 0.030 0.040 0.755 0.450  

Breed-parity BrM: behaviour walking: habitat sparse shrub -0.005 0.042 -0.127 0.899  

Spline effectst edf Ref.df F p-value  
s(individual) 0.012 14.000 0.01 0.813  
s(individual:breed-parity 13.915 14.000 242.32 < 2e-16 *** 

s(hour) 9.911 10.000 321.31 < 2e-16 *** 
s(distance) 4.912 4.996 73.87 < 2e-16 *** 
Adjusted R2 0.473 
Deviance explained (%) 47.3 
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Figure S.2.2. Effects of hour (smoothed cubic cyclic spline; panel A) and distance from barn (smoothed spline; panel B) on speed. The statistical model and the 

parametric coefficients are given in table S.2.3. 
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Table S.2.4. Posterior estimates with credibility intervals of the INLA models (y~ 1 + grassland + sparse_forest + forest + log_distance + slope + f(cell, model = 
”bym”, graph = adjacency_matrix_neighbour_list, scale.model=T, hyper=(hyper_unstructured_effect, hyper_ precision_spatial_structured_effect), family= 
zeroinflatednbinomial0, control.inla = (strategy = "gaussian", int.strategy = "eb")) analysing positions’ spatial distribution for each combination of breed-parity and 
day-period. “Y”: position counts/cell. “Grassland”: binomial variable (1: cell area ≥ 50% of grassland; 0: cell area< 50% of grassland). “Sparse shrub”: binomial 
variable (1: cell area ≥ 50% of sparse shrub; 0: cell area < 50% of sparse shrub). “Forest”: binomial variable (1: cell area ≥ 50% of forest; 0: cell area< 50% of 
forest). “Barn distance”: distance from the barn in log10 scale. “Slope”: mean slope. “f(cell): random spatial effect considering the neighbouring of the grid areas 
and specifying the hyperparameters ((hyper_unstructured_effect, hyper_ precision_spatial_structured_effect), based on Homburger et al., 2015. Statistical relevance 
is marked with *. 

Brown Swiss multiparous-day 
Fixed effects Mean SD 0.025 Quant 0.5 Quant 0.975 Quant Mode Kld  
  Intercept) 1.952 0.118 1.72 1.952 2.183 1.952 0 * 
  Grassland 0.354 0.126 0.107 0.354 0.601 0.354 0 * 
  Sparse shrub 0.176 0.137 -0.092 0.176 0.445 0.176 0  
  Forest 0.319 0.129 0.066 0.319 0.571 0.319 0 * 
  Barn distance (log) -0.355 0.032 -0.419 -0.355 -0.292 -0.355 0 * 
  Slope -0.401 0.04 -0.479 -0.401 -0.323 -0.401 0 * 

Alpine Grey multiparous-day 
Fixed effects Mean SD 0.025 Quant 0.5 Quant 0.975 Quant Mode Kld  
  Intercept) 1.466 0.143 1.186 1.466 1.745 1.466 0 * 
  Grassland 0.289 0.151 -0.007 0.289 0.586 0.289 0  
  Sparse shrub -0.048 0.168 -0.377 -0.048 0.281 -0.048 0  
  Forest 0.015 0.159 -0.297 0.015 0.328 0.015 0  
  Barn distance (log) -0.312 0.039 -0.388 -0.312 -0.236 -0.312 0 * 
  Slope -0.37 0.047 -0.461 -0.37 -0.279 -0.37 0 * 

Alpine Grey primiparous - day 
Fixed effects Mean SD 0.025 Quant 0.5 Quant 0.975 Quant Mode Kld  
  Intercept) 0.038 0.037 -0.033 0.038 0.11 0.038 0  
  Grassland 0.221 0.046 0.131 0.221 0.31 0.221 0 * 
  Sparse shrub -0.137 0.084 -0.301 -0.137 0.027 -0.137 0  
  Forest -0.188 0.055 -0.295 -0.188 -0.08 -0.188 0 * 
  Barn distance (log) -0.12 0.028 -0.174 -0.12 -0.065 -0.12 0 * 
  Slope -0.105 0.025 -0.155 -0.105 -0.056 -0.105 0 * 
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Brown Swiss multiparous - night 
Fixed effects Mean SD 0.025 Quant 0.5 Quant 0.975 Quant Mode Kld  
  Intercept) 0.067 0.039 -0.009 0.067 0.143 0.067 0  
  Grassland 0.12 0.051 0.021 0.12 0.22 0.12 0 * 
  Sparse shrub -0.002 0.092 -0.183 -0.002 0.18 -0.002 0  
  Forest -0.014 0.058 -0.128 -0.014 0.101 -0.014 0  
  Barn distance (log) -0.067 0.034 -0.132 -0.067 -0.001 -0.067 0 * 
  Slope -0.205 0.028 -0.26 -0.205 -0.15 -0.205 0 * 

Alpine Grey multiparous - night 
Fixed effects Mean SD 0.025 Quant 0.5 Quant 0.975 Quant Mode Kld  
  Intercept) 0.049 0.039 -0.028 0.049 0.125 0.049 0  
  Grassland 0.122 0.051 0.023 0.122 0.221 0.122 0 * 
  Sparse shrub 0.168 0.089 -0.007 0.168 0.342 0.168 0  
  Forest -0.089 0.061 -0.209 -0.089 0.031 -0.089 0  
  Barn distance (log) -0.071 0.034 -0.137 -0.071 -0.004 -0.071 0 * 
  Slope -0.143 0.029 -0.199 -0.143 -0.087 -0.143 0 * 

Alpine Grey primiparous – night 
Fixed effects Mean SD 0.025 Quant 0.5 Quant 0.975 Quant Mode Kld  
  Intercept) 0.049 0.039 -0.026 0.049 0.125 0.049 0  
  Grassland 0.132 0.05 0.034 0.132 0.23 0.132 0 * 
  Sparse shrub 0.066 0.088 -0.106 0.066 0.238 0.066 0  
  Forest -0.081 0.059 -0.198 -0.081 0.035 -0.081 0  
  Barn distance (log) -0.101 0.033 -0.166 -0.101 -0.036 -0.101 0 * 
  Slope -0.145 0.028 -0.2 -0.145 -0.09 -0.145 0 * 

 

 

Table S.2.5. Parametric coefficients of the generalized linear mixed models glmer(area ~(1|breed-parity:individual)+Julian date+breed-parity*day period, 
family=Gamma(link=log), nAGQ = 0) analysing total areas and core areas (ha). “Breed-parity” = three-levels categorical factor: “Brown Swiss multiparous - BrM”; 
“Alpine Grey-primiparous – GrP”; “Alpine Grey primiparous – AgP”). “Individual” = 18 levels factor: individual cow. “Julian date”: linear covariate, calculated 
from 05/07/2020 to 05/09/2020. “Day period”: two-levels categorical factor (day/night). Marginal R2 and conditional R2 indicate the variance explained by fixed 
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factors and fixed+random factors, respectively (Nakagawa and Schielzeth, 2013) ), which were estimated with the Performance package (Lüdecke et al. 2021) in 
R 4.2.0 (RCore Team 2016). 

Total areae (90% positions) Core areas (50% positions)  
 Random factors  Variance SD    Variance SD   
   Breed_parity:individual (Intercept) 0.001724 0.04152   (Intercept) 0.003382 0.05816   
   Residual  0.114443 0.33829    0.080832 0.28431   
Fixed Factors Estimate SE t-value Pr(>|z|)  Estimate SE t-value Pr(>|z|)  
   (Intercept) 4.213 0.151 27.969 <0.001 *** 1.254 0.145 8.642 <0.001 *** 
   Julian date -0.008 0.001 -11.523 <0.001 *** -0.002 0.001 -3.494 <0.001 *** 
   Breed-parity GrM 0.019 0.044 0.417 0.676  -0.067 0.047 -1.432 0.152  
   Breed-parity GrP 0.039 0.042 0.920 0.357  -0.142 0.044 -3.211 <0.01 ** 
   Day period Night -1.038 0.028 -36.680 <0.001 *** -0.883 0.024 -37.118 <0.001 *** 
   Breed-parity GrM: period night 0.113 0.051 2.217 0.026 * 0.087 0.043 2.034 <0.05 * 
   Breed-parity GrP: period night 0.106 0.048 2.205 0.027 * 0.178 0.040 4.393 <0.001 *** 
Marginal R2  0.696   RMSE   0.668  RMSE  
Conditional R2  0.701   3.378   0.682  0.483 
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Figure S.2.2. effect of Julian date on total areas (90% - panel A) and core areas (50% - panel B). The model 

and its parametric coefficient are given in table S.2.3  

 

 

 

Figure S.2.3. Hourly proportions of time spent in grazing (G, green bars), resting (R, yellow bars), and walking 
(W, red bars) by Brown Swiss multiparous (BrM), Alpine Grey multiparous (GrM), and Alpine Grey 
Primiparous (GrP) cows. Dashed lines indicate median milking times. 
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Figure S.2.4. Smoothed spline of the hourly distance from the barn (m) of the cows 

 

Figure S.2.5. Proportion of grazing, resting, and walking locations collected in grassland, sparse shrub and 

forest during day and night   
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3.3 - Soil pH dominance over livestock management in determining bacterial assemblages 
through a latitudinal gradient of European meadows and pastures 
 
The paper will be submitted in a scientific journal (probably Science of the Total Environment) as soon as 
we have collected all the revision from all the authors involved   
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Abstract 

Grasslands represent key functional ecosystems due to their global contribution to macronutrients 

cycling, and as reservoirs of microbial diversity. The strategic importance of these habitats rests on 

their involvement in carbon and nitrogen fluxes from atmosphere to soil, while at the same time 

offering extensive sites for livestock rearing. The management type, distinguishing the pasture or 

meadow land use, was investigated as a variable for its possible effects on overall bacterial diversity 

and on specific genes linked to functional guilds. Its contribution was compared to that of other 

variables as region, soil pH and soil organic carbon in order to rank their respective hierarchies in 

shaping microbial community structure. A latitudinal gradient across the European continent was 

studied with three sampling clusters located in Norway, France, and Northern Italy. Methods involved 

16S DNA metabarcoding and quantitative PCR for bacterial and archaeal nitrification, intermediate 

or terminal denitrification, and nitrogen fixation genetic determinants. Results outlined that soil pH 

exerted the dominant role, affecting high taxonomy ranks and functions, along with organic carbon 

and region, with whom it partly co-varied. On the contrary, the management type showed its effects 

mostly at deeper taxonomical resolution as the OTU level and had no significant influence on the 

quantitative counts of functional genes. This suggests an ecological equivalence between the impacts 

of pasture and meadow practices, which are both perturbations sharing the aspect of vegetation 

withdrawal by browsing or cutting, respectively. 
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Introduction 

Grasslands cover over 37% of the planet’s emerged areas (Zhong et al., 2015, Bai et al. 2022), 70% 

of global agricultural land (Mencel et al. 2022) and 34% of European agricultural area (Schils et al. 

2022), contributing ~34% of the terrestrial carbon store (Bai et al. 2022). They are ecosystems with 

a fundamental role for the conservation of biodiversity, landscape diversity, and multiple ecosystem 

services provided, including carbon storage, erosion control, and water management (Burczyk et al. 

2018; Schils et al. 2022). Moreover, grasslands are fundamental in livestock systems providing feed 

for ruminants and herbivores, when used as meadows for hay/silage production or as pastures for 

animal grazing (Bunce et al. 2004, Mencel et al. 2022). Thanks to their importance as ecosystems and 

to their role in agriculture, a part of grasslands, the ones characterized by low intensity farming, are 

considered as High Nature Value (HNV) farmland (Lomba et al. 2014). Despite their relevance as 

ecosystems, grasslands are still poorly understood with respect to the microbial communities in their 

soils and the possible effects of different human use, such as pasture and meadow, on these 

communities. Different grassland uses can transform these ecosystems into sinks or sources of green-

house gasses, such as CH4 or N2O, with implications on climate change in relation to processes 

mediated directly by the microbial community (Chadwick et al. 2018; Chang et al. 2021). In fact, 

microbial soil communities are the basis of the terrestrial ecosystems functioning as they mediate 

multiple processes of biogeochemical cycles, as those of nitrogen and carbon, through enzyme-

catalysed reactions within metabolic pathways (Zhou et al. 2012; Rocca et al. 2015; Louca et al. 2018; 

Cavicchioli et al. 2019; Dong et al. 2020; Mencel et al. 2022). Diversity and functional redundancy 

within microbial communities are fundamental for sustaining ecological functions and resilience in 

biogeochemical processes (Louca et al. 2018; Maron et al. 2018). Thus, microbial communities can 

be considered as sets of functional groups in which species richness per se is less relevant than 

phenotypic traits for specific reactions, which define the functional richness of the ecosystem 

processes (Bahram et al., 2018; Louca et al., 2018; Moonen and Bàrberi, 2008). In ecosystems as 

grasslands, microbial community composition is shaped by both pedological conditions, such as pH 

and organic C content, and local disturbances, such as animal grazing or mowing or fertilization, 

which alter soil conditions (Mencel et al. 2022). Among pedological conditions, pH, moisture, soil 

organic carbon (SOC) and nitrogen contents are considered the most important drivers for microbial 

community structure (Bahram et al., 2018; Fierer, 2017; Kuypers et al., 2018). Instead, in terms of 

local disturbance, animal grazing can directly and indirectly affect soil conditions through trampling-

induced asphyxia, selective removal of vegetation and deposition of urine and faeces (Du et al. 2019; 

Yin et al. 2020; Mencel et al. 2022; Wang et al. 2022). Animal trampling induces soil compaction 

changing the oxygen concentrations and soil water potential with direct effects on its microbial 
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composition (Chroňáková et al. 2009; Yin et al., 2020; Mencel et al. 2022; Wang et al. 2022). 

Browsing of vegetation through animal grazing can shift grassland plant composition with changes 

in primary production, litter, and root exudates, which are part of the C inputs into the soil. These 

changes have direct effects on microbial communities (Mueller et al. 2017; Qu et al. 2016; Mencel et 

al. 2022; Wang et al. 2022), as those due to animal excreta deposition which directly increase the 

content and availability of nutrients such as C and N (Kohler et al. 2005, Wang et al. 2022). Also, 

mowing and fertilization practices can induce shifts on soil microbial communities in grasslands used 

as meadows. Mowing can partly simulate the plant consumption that would occur during grazing, 

inducing stimulation of root exudation and shifts on N and C cycles (Mencel et al. 2022). Instead, 

fertilization through animal dung or chemical compounds can change nutrients content and 

availability contextually to changing soil conditions such as pH (Schroder et al. 2011; Liu et al. 2014). 

Thus, grasslands used by agriculture as pastures or meadows can present similar microbial 

communities due to some similarities among the local disturbances exerted through grazing by 

animals or directly by humans. However, fractions of the grassland microbial communities can be 

resistant to local disturbance with respect to their taxonomic profiles and ensuing functional ones. 

Comparing the microbial communities of different grasslands used as pastures or meadows is crucial 

to define their differences in terms of biodiversity, functions, and possible effects of different human 

practices, providing insight into possible management improvements. In this study we compared the 

microbial communities of multiple grasslands used as either pastures, or meadows, in both cases 

fertilized with animal dung, in three European countries (France, Italy, and Norway) in terms of 

taxonomic and functional profiles, and pools of specific genes, combining 16S rDNA metabarcoding 

and qPCR analysis. We tested two main hypotheses: 1) grasslands managed as pastures or meadows 

but fertilised with animal dung differed or not in terms of both taxonomic and functional profiles; 2) 

the relative importance of pedo-climatic conditions and human management as drivers in determining 

microbial community structures and functions of grasslands. 
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Material and methods 

 

Site location 

The study was part of the European Project “Highlands.3” and involved 18 farms in three European 

mountain areas with a historical presence of agricultural systems: the Vestvågøy area in Norway (NR 

- 5 farms), the Massif Central in France (FR - 8 farms), and the Alpago-Cansiglio in Italy (IT - 5 

farms). For each farm, representative pastures and meadows were sampled for a total of 38 areas (FR: 

8 meadows and 8 pastures; IT: 5 meadows and 5 pastures; NR: 5 meadows and 7 pastures). Pastures 

coincided with areas used for livestock grazing while meadows with areas used to produce hay and/or 

silage without animal presence. All meadows selected were cut twice during the summer and 

fertilized with animal dung and without inorganic fertilizers, except for three areas in Norway where 

farmers used both fertilizer types. For each area, two replicates of 12 topsoil samples (the top 15 cm 

of soil) were taken randomly and then used to form two representative bulks per area, one for the 

chemical analyses and the other for the molecular ones. Soil samples were air-dried before making 

the bulks and the subsequent analyses.  

The three highland regions presented different extensions and pedo-climatic conditions in accord with 

the FAO soil map (http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-

soil-map-of-the-world/en/) and the Köppen climate classification (Rubel and Kottek, 2010). The 

largest area, with the consequent highest number of farms, was the Massif Central, located in the 

south of France. This region is characterized by a temperate climate and features dystric cambisols. 

The Italian region is located in the Eastern Alps and presents a subartic or alpine climate with eutric 

cambisols soil types. Instead, the Norwegian region is located in the Lofoten archipelago, above the 

Arctic Circle, and is characterized by a subartic climate, mitigated by the presence of the ocean 

(Uleberg et al. 2014). Sampling took place during July 2021, at which time the three regions 

(countries) were characterized by different temperatures and precipitation (Norway: mean 

temperature = 11.3±0.2°C, mean rainfall = 1.7±0.07mm); France: mean temperature = 16.0 ± 1.1°C, 

mean rainfall = 2.2 ± 0.5mm; Italy: mean temperature = 17.8 ± 0.7°C, mean rainfall = 2.5 ± 0.1mm; 

(Muñoz Sabater, 2019). 
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Fig. 1 Area locations: Sampling points in France (Auvergne) are marked in blue, in Italy (Alpago-Cansiglio) 
in green, and in Norway (Vestvågøy) in red. Triangles indicate pastures (areas grazed, hence with animal 
presence), and circles indicate meadows (areas without animal presence, managed by two cuts per year, and 
fertilized with manure).

  

 

Chemical and molecular analyses 

Soil chemistry analyses included quantification of pH by suspension of soil in water (ISO 10390) and 

organic C by high temperature dry combustion (ISO 10694). 

Total DNA was extracted from an amount of 0.25 g of dried soil using the Qiagen DNeasy PowerSoil 

kit as described by the manufacturer’s protocol. The extracted DNA was quantified with a Qubit 3.0 
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fluorimeter (Thermo Fisher Scientific, Carlsbad, CA) using the Qubit™ DNA HS Assay Kit (Thermo 

Fisher Scientific) and stored at -20°C.  

The purified DNA was sequenced upon 16S rDNA metabarcoding on an Illumina MiSeq sequencer 

in the Paired End 2x300 bp format at the BMR Genomics s.r.l., Padova, Italy facilities, targeting the 

V4 region using the following universal primers:  Modified 515f : GTGYCAGCMGCCGCGGTAA, 

(Parada et al. 2015), and Modified 806r:GGACTACNVGGGTWTCTAAT (Apprill et al. 2015). 

Tab. 1 List of primers used for qPCR with functions associated and references.  

Primer Function Sequence 
Amplicon 

length References 

16S F - ATGGYTGTCGTCAGCTCGTG 
1550 bp 

Leigh et al. 
(2007) 16S R - GGGTTGCGCTCGTTGC 

Archaeal amoA - AOA 

F 
Ammonia oxidation STAATGGTCTGGCTTAGACG 

635 bp 
Francis et 

al.(2005) Archaeal amoA - AOA 

R 
Ammonia oxidation GCGGCCATCCATCTGTATGT 

Bacterial amoA - AOB 

F 
Ammonia oxidation GGGGTTTCTACTGGTGGT 

500 bp 
Rotthauwe 

et al. (1997) Bacterial amoA - AOB 

R 
Ammonia oxidation CCCCTCKGSAAAGCCTTCTTC 

nifH F Nitrogen-fixation 
AAAGGYGGWATCGGYAARTCC

ACCAC 
432 bp 

Rosch et al. 
(2002) 

nifH R Nitrogen-fixation 
TTGTTSGCSGCRTACATSGCCA

TCAT 

nosZ F 
Nitrous Oxide 

reduction 
CGYTGTTCMTCGACAGCCAG 

706 bp 
Rosch et al. 

(2002) 
nosZ R 

Nitrous Oxide 
reduction 

CATGTGCAGNGCRTGGCAGAA 

nirK F Nitrite reduction ATYGGCGGVCAYGGCGA 
160 bp 

Henry et al. 
(2004) nirK R Nitrite reduction RGCCTCGATCAGRTTRTGGTT 

 

RealTime qPCR was performed by a QuantStudio 5 system (Life Technologies, Carlsbad, CA, USA. 

The qPCR reaction volume was equal to 5 µL, 1 µL of purified DNA solution and 4 µL of reaction 

mix, composed by 1.2 µL PCR-grade water, 0.15 µL each of F and R primers (Table 1) and 2.5 µL 

Power SYBR Green PCR Master Mix with Taq polymerase (Applied Biosystems, Foster City, CA, 

USA). The qPCR thermal conditions were set to a pre-denaturing stage at 95 °C for 10 minutes, 

followed by 40 cycles with a denaturation step at 95 °C for 15 sec, an annealing step at 57 °C for 60 

sec and an extension at 72 °C for 60 sec. For each amplification, a negative control of sterile MilliQ 
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water was run with three replicates. The Ct threshold cycles were transformed into gene copies using 

the equation by Dong et al. (2020). The undetermined Ct were set 40 to equate to 0 genes copies by 

the transformation.  

The bioinformatics processing of the sequencing data was based on QIIME (Caporaso et al. 2010) 

and the OTU profiles were analysed by FAPROTAX 1.2.4 (Louca et al. 2016) to extract the functional 

profiles. The DNA sequences have been deposited in the GenBank repository SRA Archive, under 

the project code https://www.ebi.ac.uk/ena/browser/view/PRJEB56444.  

Statistical analysis 

The statistical analyses were conducted in R 4.2.0 (RCore Team 2016).  

pH and organic carbon content (C org) were preliminarily analysed as function of the 2-way 

interaction between region (Norway - NR, France - FR, Italy - IT) and management type (meadow – 

M - or pasture - P) through a permutation ANOVA using the “lmp” function of the “lmperm” library 

(Bates et al. 2015). An analysis of pH and C org variance was performed to detect possible nested 

features of the data, indicating significant effects of region on pH (Supplementary Table S.1). In 

addition, pH and C org effects were analysed through separate models categorizing the pH and C org 

on their quartiles and considering as factors with 4 levels, where level 1 corresponds to the lowest 

values and level 4 to the highest (pH class: 4.5<“1”≤5.4; 5.4<”2” ≤5.8; 5.8<”3” ≤6.4; 6.4<”4” ≤7.6 

– C org class: 1.9<“1”≤4.7; 4.7<”2” ≤6.9; 6.9<”3” ≤9.8; 9.8<”4” ≤35.9).       

Diversity indices of microbial communities 

The Shannon and Simpson alpha-diversity indices and the Pielou evenness index were calculated for   

the microbial communities of each sample at the OTU and phylum level using the “vegan” library 

(Dixon 2003). The indices were first analysed in terms of correlations between both taxonomic levels 

on the Kendall’s coefficient and then as a function of the 2-way interaction between region (NR, FR, 

IT) and management type (M or P) through an ANOVA with permutation test   using the “lmp” 

function of the “lmperm” library (Bates et al. 2015). The analysis of differences between indices also 

included two ANOVAs with permutation tests as function of pH class and C org class separately.   

All ANOVAs were based on 5000 permutations. To assess which factor between organic C and pH 

class best described the gene variability, the ANOVA models with either C org or pH class were 

compared in terms of AIC indices and R2 (Johnson and Omland 2004). 
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Taxonomic and functional profiles of microbial communities 

The analysis of taxonomic and functional profiles was performed on dissimilarity matrices based on 

the Bray-Curtis distance of abundances applying multiple non-parametric tests (Warton et al. 2012) 

in function of 4 factors: region, management type, pH and C org classes. Firstly, the profile cores 

with respect to the four factors were extracted and represented through Venn Diagrams to identify 

the suite of units shared. Then, an ANOSIM (Analysis of Similarity – Clarke 1993) was performed 

for each single factor to test whether the similarity between factor levels was greater than within 

factor levels. The ANOSIM provides an R statistic constrained between -1 and +1, where the negative 

limit indicates strong similarity between factor levels while the positive limit indicates strong 

similarity within factor levels. The ANOSIM was performed at the OTU and phylum level with the 

“anosim” function of the “vegan” library (Dixon 2003) setting 9999 permutations. Subsequently, a 

NMDS (Non-metric multidimensional scaling) on 2 dimensions was performed to represent the 

similarities among sample profiles in function of the most significant factors of ANOSIM, 

considering all taxonomic rank levels. The goodness of each NMDS was verified by extracting and 

comparing the stress value to the threshold of 0.2 (Dexter et al. 2018). To identify the lists of phyla, 

OTUs and functions associated to each factor level, an indicator species analysis was performed for 

each factor through the “multipatt” function of the “indicspecies” library (Caceres et al. 2016). This 

analysis allows to measure the association between a factor level and a single phylum, OTU and 

function through an Indicator Value (stat), constrained from 0 to 1 where higher value corresponds 

to stronger associations (Dufrêne and Legendre 1997). The differences among taxonomic and 

functional profiles expressed as spatial distances were also analysed through PERMANOVA 

(Permutational Multivariate Analysis of Variance – Anderson 2001) considering firstly the 2-way 

interactions between management type and region, then the C org and pH classes separately. The 

analysis of variance was combined with the analysis of the dispersion effects between levels of single 

factors, which was performed to assess the possible differences in terms of beta diversity (Anderson 

et al. 2006). When the beta dispersion was significantly affected by a factor, an ANOVA of the 

distances between communities/samples and their centroids was performed to assess the effect on 

beta diversity. The PERMANOVA was computed with the function “adonis2” of the “vegan” library 

setting 9999 permutations while the analysis of dispersion with the function “betadisper” function of 

the same library. Then, a Mantel test (Mantel 1967) was performed with the function “mantel” of the 

“vegan” library to assess a possible linear correlation between community dissimilarities and single 

soil parameters (pH and C org) of which dissimilarities were calculated on Euclidean distances.  

Finally, Kendall’s correlations were computed between selected functions (chemoheterotrophy and 
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aerobic chemoheterotrophy, methanogenesis, nitrification, denitrification, nitrogen fixation, ureolysis 

and the number of OTUs and the percentage of FAPROTAX assignment of microbial communities.  

Genes functional profiles 

Gene copies’ abundances from amplifications were log-transformed before analysis. The gene 

analysis included Kendall's correlations among genes and ANOVA based on permutation tests using 

the “lmp” function from the “lmPerm” library (Wheeler and Torchiano 2010) as function of the 2-

way interactions between management type and region, the C org and pH classes separately. To assess 

which factor between organic C and pH classes best described the gene abundance variability, the 

ANOVA models were compared in terms of AIC indices and R2.   Moreover, to assess possible niche 

differences between archaeal and bacterial amoA genes, we calculated the ratio between AOB and 

the total ammonia-oxidation guild (AOA+AOB) and analysed it as function of with respect to factors 

used in microbial community analyses  the 2-way interactions between management type and region, 

the C org and pH classes separately by means of a general additive model based on beta distribution 

and log link function, using the function “gam” of the “mgcv” package (Wood, 2017). 
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Results 

 

A total of 3,323 different bacterial OTUs were detected from 695,182 quality-filtered reads.  The 

average number of different OTUs per sample was 134 ±31 with a percentage of unassigned cases of 

21 ± 5 % at genus level and 1 ± 1% at phylum level, while the function prediction tool FAPROTAX 

had an assignment rate of 25 ± 5%. The most abundant phyla were Firmicutes (31 ± 12%), 

Proteobacteria (20.2 ± 5.7%) and Actinobacteriota (14.8 ± 6.8%) (Fig. 2 A). Instead, the most 

abundant functions resulted Chemoheterotrophy (30.2 ± 7.4%), Aerobic chemoheterotrophy (25.5 ± 

6.3%), Aerobic ammonia oxidation (9.4 ± 8.1%) and Nitrification (9.4 ± 8.1%) (Fig.4 B). 

Alpha-diversity and evenness indices 

Fig.2 Plot of Kendall rank correlations among index of alfa-diversity and evenness at phylum and OTU rank 
level, number of phyla and OTUs, percentage of OTUs assigned by FAPTORAX and number of functions 
identified. 

 

The analysis of correlations revealed significant and positive relations between the number of OTU 

and alpha-diversity indices and number of functions (Simpson: r=0.83, Shannon: r=0.68, n_fuctions: 
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r=0.33 - Fig. 2).  The alpha diversity indices for phyla resulted positively and significantly related to 

the percentage of the functional phenotypic FAPROTAX predictive assignment and consequently to 

the number of functions (Percentage of OTUs assigned: Shannon of phylum: r=0.35, p-value<0.01; 

Simpson of phylum: r=0.38, p-value<0.01; n of functions: Shannon of phylum: r=0.33, p-value<0.05; 

Simpson of phylum: r=0.34, p-value<0.05 - Fig. 2). Instead, the alpha diversity indices for OTU 

resulted both negatively and positively related to the percentage and the number of the functions 

assigned by FAPROTAX (Percentage of OTUs assigned: Shannon of OTU: r=-0.01; Simpson of 

OTU: r=-0.05; n of functions: Shannon of OTU: r=0.29, p-value<0.05; Simpson of OTU: r=0.24, p-

value<0.05 - Fig. 2). 

The ANOVA on permutation test of alpha-diversity indices revealed no significant differences at both 

OTU and phylum levels as a function of region and management type, but there were significant 

differences with respect to pH and C org classes at phylum level. (Supplementary Material Table S2). 

In particular, the alpha diversity indices of phyla were significantly and positively correlated to the 

pH class (Shannon of phylum: p-value<0.05; Simpson of phylum: p-value<0.05) while they were 

significantly and negatively correlated to the C org class (Shannon of phylum: p-value<0.01; Simpson 

of phylum: p-value<0.01) (Supplementary Material Table S2). The index of Pielou, which gives 

information about the evenness, was significantly affected by region at OTU level (p<0.05) 

(Supplementary Material Figure S2) and pH class at both phylum and OTU levels (phylum: p-

value<0.05; OTU: p-value<0.05) (Supplementary Material Table S2). For all indices, the pH class 

models presented the lowest AIC at phylum level while the C org class models presented the lowest 

AIC at OTU level.  
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Fig. 3 Venn diagrams of phylum, OTUs and function distinguished by region (row A – “FR” France, “IT” Italy 
and “NR” Norway), pH class (row B), C org class (row C) and management type (row D – (“M” meadow and 
“P” pasture). The pH class and the C org class present 4 levels on quartiles (pH class: 4.5<“1”≤5.4; 5.4<”2” 
≤5.8; 5.8<”3” ≤6.4; 6.4<”4” ≤7.6 – C org class: 1.9<“1”≤4.7; 4.7<”2” ≤6.9; 6.9<”3” ≤9.8; 9.8<”4” ≤35.9).  
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Fig. 4 Barplot chart of the taxonomy results for single samples at phylum rank level (panel A) and the functions 
identified by FAPROTAX (panel B), distinguished by pH class and ordered by management type, region, and 
organic C class. Each sample is labelled reporting the management type (M or P), region (FR, IT, NR) and the 
C org class (1, 2, 3, 4) followed by the sample number. The phyla characterized by relative abundance below 
1% were pooled as single group. The pH class and the C org class present 4 levels on quartiles (pH class: 
4.5<“1”≤5.4; 5.4<”2” ≤5.8; 5.8<”3” ≤6.4; 6.4<”4” ≤7.6 – C org class: 1.9<“1”≤4.7; 4.7<”2” ≤6.9; 6.9<”3” 
≤9.8; 9.8<”4” ≤35.9). The most associated phyla and functions to pH class were reported. 
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Fig. 5 NMDS of taxonomic profiles at different ranks levels and function (panel A-G) and the most associated 
phyla and functions (panel H) with respect to the region and management type (“M” meadow and “P” pasture). 
The stress value (goodness of ordination) is reported for each rank level. 
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Taxonomic profiles 

The Venn Diagram of taxonomic profiles (Fig. 3) revealed different patterns between phylum and 

OTU levels with respect to the management type, region, pH class and C org class. The phylum level 

presented more abundant shared cores for all considered factors than the OTU level, which was 

characterised by more abundant cores for single factor levels. The differentially featured taxa analysis 

revealed significant abundances in terms of both OTU (70 OTUs) and phylum (9 phyla) among the 

three countries (Figure 3 and 4). In particular, France showed significant differences for 19 OTUs, 

Italy for 31 and Norway for 20, while in terms of phyla only Italy and Norway presented significant 

differences with 4 phyla for the former and 5 for the latter. With respect to the management type, 

these taxonomic differences involved only 14 different OTUs, 10 of which were enhanced in the 

pasture cases and 4 in the meadow, while in terms of phyla, there was only 1 for the meadow 

(Supplementary Materials Table S4, Supplementary Materials Table S5). The ANOSIM 

(Supplementary materials Table S3) highlighted significant differences in microbial taxonomy 

profiles at both the OTU and phylum levels with greater dissimilarity for the former than the latter. 

The region was the factor which explained mostly the differences among samples at both OTU and 

phylum levels (OTU region: p-value<0.001 – R=0.293; phylum region: p-value<0.001 – R=0.182) 

(Supplementary materials Table S3). Instead, the type of management had significant effects at only 

OTU level although the dissimilarity between groups was less than that among regions as reported 

by the R indices (OTU type: p-value=0.0393 – R=0.0607). Regarding the soil characteristics, pH had 

significant effect at both OTU and phylum levels (OTU pH: p-value<0.00 – R=0.193; phylum pH: p-

value<0.00– R=0.19), while organic C showed a significant effect only at OTU level (OTU organic 

C: p-value<0.01- R=0.0956). The stress value of NMDS based on two dimensions was rather constant 

from phylum to OTU level, passing from 0.13 to 0.14 (Figure 5, Supplementary materials Figure S3).  

The Indicator Species Analysis of differentially featured taxa in relation to the variables also 

confirmed that pH explained more dissimilarities among taxonomic levels and their abundances (60 

OTUs, 5 phyla) than organic C (31 OTUs, 0 phyla), where the class 4 of pH presented the most 

dissimilar taxonomic profiles (Supplementary Materials Table S4, Supplementary Materials Table 

S5). At OTU level, pH class 1 presented 16 associated OTUs, class 2 had 13 OTUs, class 3 16 and 

class 4 24 (Supplementary Materials Table S4, Supplementary Materials Table S5), while at phylum 

level there were significant phyla only among class 2, with 2 cases, class 3, with 1, and class 4, with 

3 (Figure 4). Organic Carbon significantly affected OTUs occurrences and abundances, in particular 

in class 1 with 14 significant OTUs and at class 4 with 12 (Supplementary Materials Table S4, 

Supplementary Materials Table S5). 
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The PERMANOVA analysis of the OTU profiles confirmed the results of the ANOSIM, showing a 

significant stronger effect of region (p-value<0.01) in comparison to the management type (p-

value<0.05). In spite of these differences, there were no effects for the interactions (Supplementary 

Materials Table S6). Regarding the soil characteristics, PERMANOVA confirmed a stronger effect 

of pH (p-value<0.01) than that of C org (p-value<0.05) to explain the variance of the OTU profiles. 

In particular, the pairwise comparisons of PERMANOVA revealed the strongest differences between 

NR and FR (p-value<0.001), IT and FR (p-value<0.001), pH class 1 and 4 (p-value<0.001), and 

organic C class 1 and 4 (p-value<0.001) (Supplementary Materials Table S6). The dispersion among 

all factors was not significant, revealing homogeneous communities with respect to the considered 

factors. The PERMANOVA analysis of phyla profiles also confirmed in part the results of the 

ANOSIM, showing strong significant effect of region (p-value<0.05) and pH class (p-value<0.01) 

but no effect of type and C org class (Supplementary Materials Table S3). The analysis of dispersion 

revealed heterogeneous communities, showing significant differences in beta diversity, with respect 

to the region, where Italy presented significant differences in terms of distance from the centroids 

compared to France and Norway (p-value<0.01) (Supplementary Materials Table S7, Supplementary 

Materials Figure S4). 

The Mantel test confirmed the significant effect of pH on both OTU and phylum levels with positive 

linear trends (OTU: p-value<0.001 – r=0.48; phylum: p-value<0.001 – r=0.39) but not for the C org 

with positive but weak trends (OTU: r=0.093; phylum: r=0.051) (Supplementary Materials Table S8 

- Supplementary Materials Figure S6). 

Functional profiles 

The Venn diagram of function profiles (Fig. 3) reflected the patterns found for at phylum level with 

high number of units shared between levels of management type, region, pH class and C org class. 

The functional profiles reflected the significant differences found at phylum level through both the 

ANOSIM, PERMANOVA and Mantel test (Figures 4 and 5; Supplementary Materials Figures S.3, 

S.5 and Supplementary Tables T.3, T.6, T.8). In particular, the most significant factor for functional 

profile was the region (ANOSIM p-value<0.001; PERMANOVA p-value<0.01), followed by pH 

classes (ANOSIM p-value<0.001; PERMANOVA p-value<0.001; Mantel test p-value<0.001 – 

r=0.37). The interaction between region and management type was not significant in terms of variance 

(PERMANOVA p-value>0.05). No effects of type management and C org were detected for the 

functional profiles (Supplementary Table S6). The pairwise comparison of PERMANOVA revealed 

the strongest differences between FR and IT (p-value<0.01), and between the pH class 4 and 1, 2 and 

3 (p-value<0.01). The dispersion test detected homogeneous distribution of samples around the 
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centroids for all factors.  Interestingly, the analysis of correlations revealed a significant but negative 

relation between nitrification and both chemoheterotrophy (r=-0.45) and aerobic chemoheterotrophy 

(r=-0.43), which were strongly correlated (r=0.69 - Supplementary Materials Figure S6). Nitrification 

was also significantly correlated to the percentage of OTUs assigned (r=0.25).  Nitrogen fixation was 

significantly correlated with ureolysis (r=-0.47), which was also correlated with methanogenesis (r=-

0.29 - Supplementary Materials Figure S6).  

The RealTime PCR quantified gene copies of nitrogen cycling reactions showed different correlations 

and patterns (Figure 6; Supplementary Materials Figure S7 and Supplementary Tables T9): the nosZ, 

nifH, AOA and AOB showed significant and positive correlations among them (nosZ-nifH: r=0.29 – 

p-value<0.01, nosZ-AOA a: r=0.53 – p-value<0.001, nosZ-AOB: r=0.21 – p-value<0.001, AOB-

nifH: r=0.14 – p-value<0.01), while the nirK and 16S were significantly correlated only between them 

(nirK-16S: r=0.27 – p-value<0.05).  

Fig.6 Plot of Kendall rank correlations among log transformed gene abundances (16S, nifH, AOA, AOB, 
nirK and nosZ) considering all sites. 

 

The ANOVA of gene copies revealed the region as the only significant factor among almost all genes 

(nosZ: p-value<0.05, nirK: p-value<0.05, nifH<0.05, AOA: p-value=0.05), except for 16S and AOB 

(Supplementary Materials Figure S7 and Supplementary Table T9). The ANOVA as regards pH and 

organic C classes showed a generally stronger effect of the latter than the former on gene copies 

except for the nirK, which was more shaped by the pH (Supplementary Material Figure S7 and 

Supplementary Materials Table T9-10). pH affected the same genes on which organic C had effect, 

but nirK presented a stronger effect (p-value<0.001) while AOB did not show one (Supplementary 
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Material Figure S9 and Supplementary Materials Table T10). The organic C class had significant and 

negative effect on nosZ (p-value<0.01), AOA (p-value<0.001) and AOB (p-value<0.05), confirming 

the correlation analysis (Figures 6 – Supplementary Materials Figure S9 and Supplementary Materials 

Table S9).   No effects on 16S were found (Supplementary Material Figure S9 and Supplementary 

Materials Tables T10). 

The ratio between AOB and the sum of AOA and AOB did not present a significant effect for both 

region and management type, and their interaction (Supplementary Table T11). However, the ratio 

was significantly affected by both pH (p-value<0.05) and organic carbon (p-value<0.001), where the 

former presented a negative trend and the latter a positive one (Figure 7 – Supplementary Materials 

Table T11). The effect of organic carbon was stronger than pH (R2 C org class: 0.28; Deviance 

explained C org class: 42.9%; R2 pH class: 0.11; Deviance explained pH class: 27.8%) 

(Supplementary Materials Table T11). 

Fig. 7 Least Square Means of ratio AOB/(AOA+AOB) as function of pH class (panel A) and C org class (panel 
B). The significant effects were estimated by GAM model based on beta distribution with log link function. 
The pH class presents 4 levels on quartiles as the C org class (pH class: 4.5< “1” ≤5.4; 5.4<”2” ≤5.8; 5.8<”3” 
≤6.4; 6.4<”4” ≤7.6 – C org class: 1.9< “1” ≤4.7; 4.7<”2” ≤6.9; 6.9<”3” ≤9.8; 9.8<”4” ≤35.9). The significant 
effects are reported in table S.11. 
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Discussion 

 

The semi-natural grasslands investigated presented appreciably distinct microbial communities in 

terms of both taxonomic and functional profiles. Communities shared a common core of phyla (Fig.3) 

in which the majority for all areas was made by Firmicutes, Proteobacteria and Actinobacteriota, 

(Figure 4) which are typically among the most abundant in both soil and water environments (Bahram 

et al. 2018). The differences relative to taxonomy increased upon the descending ranks of resolution 

from phylum to OTU (Figure 5, Supplementary Materials Figure S3), where the common units 

drastically reduced in number (Fig.3), in line with a common phyletic starting point and with the 

time-related possibilities of homogenizing dispersion. Given the metrics used as standard to assess 

microbial identity and phylogeny, i.e. the 16S ribosomal RNA gene (Woese, 1987), its estimated rate 

of change (Clark et al., 1999) allows to judge phyla as having started their branching in a timeframe 

of the order of 1-2 billions of years ago, and to species as stemming on average more than 100 millions 

of years ago.  In practical terms, considering the timing of tectonic motions and land emersion, that 

originated the current position of European regions, and, most critically, the comparatively short 

duration of soils formation, taking timeframes between decades to thousands of years it can be first 

commented that, in this sort of surveys, the contribution of in situ bacterial speciation can be regarded 

as practically irrelevant. Therefore, when commenting data, we shall consider that differences in 

composition have to be interpreted partly as effect of deterministic forces as local environmental 

selection, and partly of stochastic ones as dispersal drifts. The existence of the common core 

composed by the most abundant phyla can reveal an origin shared by microbial communities, which 

are subsequently diversified by environmental conditions. Notwithstanding the common core, phyla 

diversity showed a significant tendency to be grouped by the ‘region’ variable, which is not to be 

intended as straight geography since, besides latitude, the occurrence in Norway, France or Italy 

entails also concurrent superimposed differences in terms of pedo-climatic conditions, such as 

primarily pH or organic C. In fact, at phylum level the beta diversity of microbial communities was 

driven by region in its variability, but the alpha diversity was instead ruled by pH and organic C 

(Supplementary Tab.S4, Fig.2), confirming the role of local pedo-climatic conditions. Thus, 

geographical distances appear to explain community dissimilarities, which are actually shaped by 

local condition, according to Louca et al. 2016.  Inspecting the differences among microbial 

communities relative to uniqueness or differential abundance of the highest ranks, i.e. phyla, those 

are due only to the most rare ones and to those containing the lowest abundance of sequence reads.  
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pH resulted the single significant driver of difference among phyla as PERMANOVA and ANOSIM 

and Mantel test revealed, and the indicator species analysis confirmed. In fact, the extreme pH class, 

which corresponds to alkaline pH into the USDA classification, presented three phyla significantly 

associated with it, Crenarchaeota (within the domain Archaea), and Myxococcota and 

Methylomirabilota (within the domain Bacteria), which tended to be fewer in the other pH classes. 

Instead, the intermediate classes were characterised by the highest presence of Verrucomicrobiota. 

Interestingly, no effects of management type were found. This confirms the above premise about the 

fact that differences among microbial communities as deeply branched as those that individuate the 

phyla divergence levels would require processes able to heavily influence environmental conditions 

in geological time scales (Clark et al., 1999). That chronological framework is thus far longer in the 

past than those related to European continent shaping, pedogenetic processes, which in turn are 

themselves definitely much longer than the human practices leading to meadow or pasture 

management, which can be considered comparatively, as extremely “young” disturbances.  

Also, for OTUs, the region was confirmed as the main driver for the diversity among communities 

along with pH and also organic C. The OTU cores showed higher diversity than those at phylum 

level, with higher number of unique units and a drastic decrease of the common ones (Fig. 3). OTU 

level, in line with its definition criterion linked to the lowest cut-off of divergence (2.5%), showed to 

be the most variable rank as it was also influenced by management type, revealing the tendency of 

single communities to reflect selection issues linked to animal presence or periodical cutting and 

fertilization. Presence of animals or humans involves short-ranged temporal disturbance, and a 

consequent compositional turnover linked to microbial dispersion by wind and water (Griffin et al. 

2002; Smith et al. 2012). 

Functional profiles presented patterns similar to the taxonomy-related ones at phylum level with 

respect to region, management type and pH (Figure 3). Also, for the functions there was a common 

and persistent core (Fig.3), which is not unusual as the large fraction of metabolic genes encoding for 

functions appeared early in the Earth history and propagated into multiple clades (Falkowski et al. 

2008; David and Alm 2011). Nevertheless, a common functional core can be also affected not only 

by adaptive loss of functions to environmental conditions (Morris et al. 2012) but also by horizontal 

gene transfer (Falkowski et al. 2008; David and Alm 2011). Being the latter event independent from 

16S-based phylogeny on which bacterial taxonomy and metabarcoding assignments are based, 

bacteria could bear actual functional traits that are invisible to current attempts to infer ecosystem 

properties when those are based on ribosomal database-dependent annotation which accounts for 

sharing of traits among OTUs. In our case, the common functional core is constituted by 
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chemoheterotrophy and aerobic chemoheterotrophy, which represent two general metabolisms in 

microbial communities. The massive presence of chemoheterotrophy and aerobic chemoheterotrophy 

reflects the attitude of microbial communities to obtain energy not through carbon fixation but though 

oxidation, revealing a likely emission of green-house gasses such as CO2 (Zhang et al. 2018; Yu et 

al. 2021). Thus, semi-natural grasslands managed by humans as pasture or meadow seem to present 

a high potential of cycling carbon, with also possible emission of CO2. Interestingly, the 

chemoheterotrophy resulted significantly associated to meadow (Supplementary Material Table S.7), 

revealing a possible contribution of fertilization or cutting to support C cycling, despite the absence 

of significant effects of management type and organic C amount. The autotrophic activity of 

nitrification resulted negatively correlated with the heterotrophic ones of chemoheterotrophy 

(Supplementary Material Figure S6), in either aerobic or anaerobic conditions, indicating that the 

presence of organic substrates, not needed by the former, is hierarchically more effective than that of 

oxygen which is needed only by one of the two heterotrophic metabolisms. The uneven requirements 

of oxygen with respect to respiration and ammonia oxidation contribute to explain this difference.  

The extreme pH class was associated to a significantly higher presence of nitrification, ammonia 

oxidation, and ureolysis, whose larger bars width are also appreciable by the graph, while the lower 

pH class by animal parasites and symbionts (Fig. 4). The inferred higher levels of those ammonium 

metabolism-related traits are confirmed by the representation of the source data at taxonomy level 

(Fig. 4), as those functions can be performed by Crenarchaeota and Myxococcota (Weidler et al. 

2008; Langwing et al 2022), and we can observe the evidence of higher occurrence of those phyla at 

the corresponding pH class, and in particular for the Crenarcheota, at the expense of the Firmicutes 

share. The coherence of results among correlations, phylum-level taxonomy and function strengthens 

the concept that functional profiles of ecosystems are mainly defined by the phyla. Thus, phylum 

diversity can be regarded as a better index for ecosystem functional potential in comparison to OTU 

diversity, despite the positive and significant correlation between number of total OTUs and functions 

(Fig.2). A high number of OTUs appears to increase the number of both functions and phyla, but only 

marginally considering the whole community. The marginal contribution of OTU diversity to 

functional profiles may be due to the fact that a large fraction of functions is not monophyletic and 

multiple, coexisting distinct OTUs can perform common functions (Aguilar 2004; Martiny et al. 

2015; Louca et al. 2018). The presence of distinct OTUs able to perform shared functions provides 

an ecosystem buffer against taxonomic diversity variation due to local disturbances, making the entire 

community performance resistant to impacts of a given extent (Jurburg et al. 2015; Louca et al. 2018). 

Thus, it is reasonable to uncouple considerations on OTU diversity from microbial functional 

diversity thanks to the existence of functional redundancy across taxonomy (Louca et al 208). It can 
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be also postulated that the current databases used to extract the functional profiles could likely be 

more influenced by high taxonomy levels, such as phylum, during the assignation. This could be also 

partly due to the presence of OTUs that lack lineage annotation as their individuation is based only 

on a concept of shared sequence similarity higher that 97%, but not on taxonomical recognition, as 

revealed by the negative correlation between function assignation and total OTUs number (Fig.2 and 

Supplementary Fig. S6).  

The absence of significant effects of management type for both phyla and functions (Supplementary 

Tables T3 and T6, Fig.3) may be due to a resistance of the proportionally dominant common cores of 

the community structures to reveal quantitatively the effect of disturbances derived from pastures and 

meadows. A different hypothesis would be that pastures and meadows would tend to equate and 

compensate their differences because, in spite of the occurrence of animal excreta as fertilizer for 

both pastures and meadows , the ‘grazing-like’ mowing practice that is applied to those is the main 

effector, as it simulates the disturbance of animal presence (Schroder et al. 2011; Liu et al. 2014; 

Mencel et al. 2022), yielding similar community cores. Moreover, the return of animal excreta could 

barely shift microbial communities’ composition with respect to those of pastures as the faeces also 

contain DNA from transient taxa that abound in soil and in the browsed vegetation of the environment 

where animals spend their time (NandaKafle  et al. 2017).  

Gene pools analysed by quantitative PCR confirmed the functional and phylum-level effects but with 

an added resolution level, in that only a part of the N cycle genes, in particular nifH (nitrogen fixation) 

and nirK and nosZ (intermediate and terminal denitrification steps, respectively) were significantly 

affected by region, while the nosZ and nirK and AOA (archaeal nitrification) were affected by both 

pH and organic Carbon. nifH and nosZ were more abundant in Italy, which presented the highest 

values of pH which, as shown above, has been found compliant to the function and taxonomy 

proportions of nitrifications and ammonia oxidation with respect to the pH classes found. Thus, 

denitrification, represented by nirK and nosZ, seems to be favoured by neutral soils than by acidic 

ones. Also, nitrification, represented by AOA and AOB, showed a similar preference despite the 

absence of significant region effect. In particular, AOA showed greater variability than AOB, which 

were more constant as a function of region, pH and organic Carbon. This can be due to the different 

niche between the archaea (AOA) and bacteria (AOB) where the former prefers more nutrient-limited 

environments than the latter as the analysis of the ratio between AOB and (AOA+AOB) confirmed 

in agreement with the positive effect of organic C (Baolan et al. 2014; Sun et al. 2019). Moreover, 

the negative effect of pH on the AOB proportion seems to indicate AOA as more adapted to neutral 

soil. AOA are part of Crenarchaeota, which were however reported as present in acid pH condition 
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according to the preference of archaea nitrifiers when comparing neutral vs. acidic soil (Lehtovirta et 

al.2009, Prosser et al. 2012). Nevertheless, our results show a different scenario with a consistent 

presence of Crenarchaeota and AOA at neutral pH conditions, revealing the possible presence of this 

phylum across a wide variety of pH conditions (Figure 4). Thus, the niche diversification between 

AOA and AOB would not be universal, and AOA have indeed been found at both low and neutral 

pH (Sun et al 2019). The common trend of AOA and nosZ in relation to pH may reveal a likely 

interdependency between the two genes, also highlighted by the strong and positive relation between 

nosZ and AOA (Fig.6). The high potential of ammonia-oxidation may support high rates of 

nitrification and then the total denitrification.  

nifH is instead an indicator for nitrogen fixation, either free-living or symbiotic (Shaffer et al. 2000) 

and it showed an interesting behaviour as it was significantly affected by region but not by pH and 

organic carbon, suggesting different environmental conditions able to modify its abundance as 

possibly vegetation and fertilization, irrespective of the hierarchically dominant ones. nifH resulted 

to be influenced by plant cover during field restoration (Wang et al. 2017) as possible consequence 

of interactions between the diazotrophic community, i.e. bacteria able to fix N2, and plant species. 

Within this context, typical of pastures and meadows, acid soil with high amounts of organic carbon 

can favour functions different from those tied to N cycling, despite the general microbial communities 

are not influenced by pH and organic carbon as the constant abundance of 16S genes reveals. 

 

Conclusions  

 

Microbial communities of semi-natural grasslands are characterized by common phyla whose deep-

level variability mainly depends on pedological conditions, which have also a significant impact on 

taxonomy-inferred functions. Such taxonomy-predicted functional profiles showed similar behaviour 

to the corresponding phylum-level ordination profile, testifying the major influence of high 

taxonomic levels on the assembly of microbial functions. Pasture or meadow management of 

grasslands instead tended to affect essentially OTU-level diversity, not causing shifts in the higher 

taxonomic levels and functional profiles. Management type did not affect N cycle-related functions 

at single gene level as detectable by quantitative PCR. Thus, at the level of intensification that we 

examined, human management may affect only marginall y the functional biodiversity of semi-

natural grasslands, which can have high resistance to local disturbance due to the functional 

redundancy within guilds of the biogeochemical elemental cycling. Further studies can be envisaged 
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to involve different environmental variables, such as vegetation, soil bulk density and slope, and 

different management types and intensities, to investigate the consequent microbial patterns and 

detect different drivers.  
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Supplementary Material 

Tab.S.1 Results of permutation ANOVA on pH and C org as function of region.  

 pH   C org  
 Estimate Pr(Prob)   Estimate Pr(Prob)  

Management type M 0.11 0.34   0.37 0.80  
Region IT 0.64 <0.001   0.71 1  
Region FR 0.0047 0.29   -2.54 0.054  
Management type M: region IT 0.048 0.78   -1.57 0.21  
Management type M: region FR -0.16 0.30   -0.63 0.43  
Residual 0.65   6.14  
R2 0.43   0.15  

 

Fig.S.1 Boxplot of pH and C org as function of region. The black dot represents the mean. The significance 
values of the factor where obtained from the permutation ANOVA reported in table S.1. 
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Tab.S.2 Result of Permutation ANOVA of Shannon, Simpson and Pielou indices as function on 2-way interaction between type and region, pH class and C org class. The pH 
class presents 4 levels based on quartiles: “1” from 4.5 to 5.44, “2” from 5.44 excluded to 5.85, “3” from 5.85 excluded to 6.42 and “4” from 6.42 excluded to 7.65. The C org 
class presents 4 levels based on quartiles: “1” from 1.95 to 4.67, “2” from 4.67 excluded to 6.92, “3” from 6.92 excluded to 9.78 and “4” from 9.78 excluded to 35.89. The 
statistical significance is expressed with *** for p-value<0.001, ** for p-value<0.01 and * for p-value<0.05. 

 Shannon  Simpson  Pielou 

 Phylum   OTU  Phylum   OTU  Phylum   OTU  

 Estimate Prob  Estimate Prob  Estimate Prob  Estimate Prob  Estimate Prob  Estimate Prob  
    

management type P 0.012 0.69  0.032 0.67  0.0062 0.62  0.0004 0.84  -0.01 0.28  0.0003 0.56  

Region FR -0.058 0.17  0.023 0.94  -0.016 0.15  0.0004 0.49  -0.01 1  0.0051 0.1  

Region IT 0.042 0.37  -0.013 0.94  0.011 0.38  -0.0002 1  0.01 0.46  -0.008 0.01 * 
Management type P: region FR 0.033 0.88  0.101 0.84  0.012 0.28  0.002 0.12  0.02 0.28  0.005 0.69  

Management type P: region IT -0.058 0.11  -0.1 0.13  -0.0093 0.39  -0.001 0.2  -0.01 0.23  -0.0025 0.38  

R2 0.17  0.16  0.048  
 0.15  

 0.053  0.01  

Residual 0.13  0.24  0.13    0.004    0.078  0.33   

 
      

                   
pH class1 -0.042 0.016 * -0.073 0.71  -0.01 0.043 * -8.65E-04 0.94  0.0018 0.11  0.0048 0.0074 ** 
pH class2 -0.091 0.014 * 0.043 0.23  -0.03 0.0054 ** 1.85E-05 0.92  -0.03 0.0088 ** 0.001 0.52  

pH class3 -0.0023 0.88  0.059 0.41  0.00041 0.88  1.25E-03 0.32  -0.0055 0.65  0.0033 0.32  

Residual 0.15  0.25  0.043  0.004  0.047  0.01  

R2 0.27  0.048  0.26  0.034  0.21  0.22  

AIC -30.85  8.04  -125.46  -302.069  -118.07  -230.84  

BIC -22.66   16.228   -117.27   -293.88  -109.88   -222.65   

 
                     

C org class1 -0.045 0.34  0.07 0.36  -0.007 0.11  1.50E-03 0.084  -0.013 0.64  0.0049 0.43  
C org class2 0.14 0.0008 *** 0.017 0.78  0.037 0.002 ** 1.60E-04 0.84  0.028 0.04 * -0.0046 0.13  
C org class3 0.024 0.92  -0.003 0.94  0.01 0.78  7.00E-05 0.84  0.008 0.94  -0.0001 0.96  
Residual 0.14  0.25  0.04  0.0041  0.049  0.011  
R2 0.31  0.052  0.35  0.083  0.14  0.079  
AIC -33.13  7.917  -130.89  -304.061  -115.12  -224.08  
BIC -24.94   16.105    -122.7   -295.873  -106.94   -215.89  
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Fig.S.2 Boxplot of Shannon (panels A and B), Simpson (panels C and D) and Pielou (panels E and F) indices 
where the left column corresponds to Phylum and right column to OTU. The black dot represents the mean. 
The significance values of the factor where obtained from the permutation ANOVA reported in table S.2. 

Tab.S.3 
Results of ANOSIM at phylum, OTU and Function rank levels as function of region, management type, pH 
class and C org class. The R is the ratio of mean of ranked dissimilarities between groups to the mean of ranked 
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dissimilarities within groups. An R value close to 0 suggests distribution of high and low ranks within and 
between groups, while a value close to 1 suggests dissimilarity between groups. Negative R values suggest 
greater dissimilarities within groups than between groups. The statistical significance is expressed with *** 
for p-value<0.001, ** for p-value<0.01 and * for p-value<0.05. 

 Phylum  OTU  Function  

 R p-value  R p-value  R p-value  

region 0.16 0.01 ** 0.28 1.00E-04 *** 0.24 5.00E-04 *** 

management type 0.06 0.07  0.07 0.03 * 0.03 0.18  

pH class 0.20 0.001 ** 0.19 3.00E-04 *** 0.29 1.00E-04 *** 

C_org class 0.13 0.01 ** 0.11 0.003 ** -0.04 0.82  
 

Fig.S.3 NMDS of taxonomic profiles at different ranks levels and functions (panel A – G) as a function of 
pH class and management type. The stress value is reported for each ranks level. The pH class presents 4 
levels based on quartiles (pH class: 4.5<“1”≤5.4; 5.4<”2” ≤5.8; 5.8<”3” ≤6.4; 6.4<”4” ≤7.6). The most 
associated phyla and functions to pH class were reported (panel H). 
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Tab.S.4 Numbers of selected units from Indicator Species Analysis at phylum and OTUs rank levels and 
function as function of region and pH class. The pH class presents 4 levels based on quartiles as the C org 
class (pH class: 4.5<“1”≤5.4; 5.4<”2” ≤5.8; 5.8<”3” ≤6.4; 6.4<”4” ≤7.6 – C org class: 1.9<“1”≤4.7; 4.7<”2” 
≤6.9; 6.9<”3” ≤9.8; 9.8<”4” ≤35.9). 

 OTU Phylum Function 
Total units 3323 44 44 
Selected units 70 9 4 
Region FR 19   
Region IT 31 4 2 
Region NR 20 5 2 
Selected units 14 1 3 
Mangement type M 4 1 3 
Mangement type P 10   
Selected unit 60 5 8 
pH class 1 10  2 
pH class 2 8 1  
pH class 3 16 1 2 
pH class 4 26 3 4 
Selected units 30 5 1 
C org class 1 14   
C org class 2 1 1 1 
C org class 3 3 1  
C org class 4 12 3  
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Tab.S.5 Indicator units (phyla first section of table and functions bottom) resulted from Indicator Analysis as 
function of region, management type and pH class. The pH class presents 4 levels based on quartiles as the C 
org class (pH class: 4.5<“1”≤5.4; 5.4<”2” ≤5.8; 5.8<”3” ≤6.4; 6.4<”4” ≤7.6 – C org class: 1.9<“1”≤4.7; 
4.7<”2” ≤6.9; 6.9<”3” ≤9.8; 9.8<”4” ≤35.9). The stat value corresponds to the association strength to the 
group, values close to 1 suggest strong association while values close to 0 suggest weak association. The 
statistical significance is expressed with *** for p-value<0.001, ** for p-value<0.01 and * for p-value<0.05. 

 

   Factor stat p.value   

Phylum 

Crenarchaeota Region IT 0.56 0.004 ** 
Myxococcota Region IT 0.51 0.003 ** 
Methylomirabilota Region IT 0.5 0.002 ** 
Fibrobacterota Region IT 0.41 0.026 * 

Dependentiae Region NR 0.55 0.002 ** 

Patescibacteria Region NR 0.51 0.002 ** 

Proteobacteria Region NR 0.44 0.013 * 

RCP2.54 Region NR 0.39 0.041 * 

Euryarchaeota Region NR 0.31 0.032 * 

Cyanobacteria Management type M 0.46 0.001 *** 

Verrucomicrobiota pH class 2 0.45 0.018 * 

Halanaerobiaeota pH class 3 0.49 0.008 ** 

Crenarchaeota pH class 4 0.78 0.001 *** 

Myxococcota pH class 4 0.59 0.002 ** 

Methylomirabilota pH class 4 0.49 0.006 ** 

Actinobacteriota C org class 2 0.43 0.012 * 

Firmicutes C org class 4 0.04 0.026 * 

Function 

aerobic_ammonia_oxidation Region IT 0.50 0.004 ** 
nitrification Region IT 0.50 0.004 ** 
intracellular_parasites Region NR 0.34 0.011 * 

dark_hydrogen_oxidation Region NR 0.34 0.007 ** 

Fermentation Management type M 0.44 0.01 ** 
chloroplasts Management type M 0.41 0.002 ** 
chemoheterotrophy Management type M 0.36 0.02 * 
cellulolysis pH class 1 0.4 0.038 * 
intracellular_parasites pH class 1 0.396 0.007 ** 
aerobic_chemoheterotrophy pH class 3 0.476 0.002 ** 
chemoheterotrophy pH class 3 0.412 0.013 * 

aerobic_ammonia_oxidation pH class 4 0.7 0.001 *** 

nitrification pH class 4 0.7 0.001 *** 

chitinolysis pH class 4 0.602 0.006 ** 

ureolysis pH class 4 0.39 0.047 * 

aromatic_compound_degradation C org class 2 0.43 0.016 * 
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Tab.S.6 Results of PERMANOVA at phylum and OTU rank levels and function combined with Pairwise comparison for significant factors. Significant threshold was set at 0.05. 
Dispersion corresponds to the p-value of beta dispersion on Bray-Curtis dissimilarities and single factors. The statistical significance is expressed with *** for p-value<0.001, ** 
for p-value<0.01 and * for p-value<0.05 

 Phylum  OTU  Function 

  Df R2 F Pr(>F)   Dispersion  Df R2 F Pr(>F)   Dispersion   Df R2 F Pr(>F)   Dispersion  
Management type 1 0.06 2.47 0.05 . 0.53  

 1 0.03 1.37 0.04 * 0.06  
 1 0.05 2.35 0.07 . 0.06  

Region 2 0.11 2.31 0.04 * 0.01 *  2 0.1 2.09 0.001 ** 0.13   2 0.18 3.84 0.002 ** 0.67  
Management type: Region 2 0.03 0.61 0.79    

 2 0.05 1.04 0.31    
 2 0.04 0.81 0.58    

Residual 32 0.79      
 32 0.81      

 32 0.73      
Total 37 1      

 37 1      
 37 1      

                        
pH class 1 0.12 4.97 0.007 ** 0.66  

 1 0.06 2.21 0.002 ** 0.07  
 1 0.16 7.01 0.002 ** 0.36  

Residual 36 0.88      
 36 0.94      

 36 0.84      
Total 37 1      

 37 1      
 37 1      

                        
C org class 1 0.04 1.69 0.14  0.22  

 1 0.04 1.67 0.01 * 0.05 .  1 0.02 0.8 0.48    
Residual 36 0.96      

 36 0.96      
 36 0.98      

Total 37 1      
 37 1        37 1           

 

Pairwise 

 Phylum OTU Function  Phylum OTU Function 

FR-IT 0.069 . 0.015 * 0.01 ** C org 1-2   0.035 *   
FR-NR 0.068 . 0.001 *** 0.215  C org 1-3   0.04 *   
NR-IT 0.121  0.002 ** 0.016 * C org 1-4   0.001 ***   
pH 1-2 0.089 . 0.008 ** 0.292  C org 2-3   0.683  

  
pH 1-3 0.506  0.014 * 0.191  C org 2-4   0.009 **   
pH 1-4 0.007 ** 0.001 *** 0.001 *** C org 3-4     0.029 *     
pH 2-3 0.248  0.197  0.042 *        
pH 2-4 0.004 ** 0.001 *** 0.002 **        
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Tab.S.7 Result of ANOVA on distances to centroids obtained from permutation test of Beta dispersion as 
function of region. The reference level corresponds to FR.  

 Estimate Std.Error t-value Pr(>|t|)  

(Intercept) 0.16247 0.01232 13.184 3.88E-15 *** 

IT 0.0581 0.01987 2.924 0.00603 ** 

NR 0.01062 0.01882 0.564 0.57639  

Residual error 0.049     

R2 0.2     

Fig.S.4 PCoA of Beta dispersion at phylum rank level based on Bray-Curtis dissimilarity as function of region 
(panel A) and boxplot of distances to centroid at phylum rank level as function of region where black dots 
rapresent the means (panel B). The significant effect of factor where obtain from a parametric ANOVA and 
reported in table S.8. 

 

 

Tab.S.8 Result of Mantel Test on Bray-Curtis dissimilarity matrix of phylum and OTU rank levels and function 
as function of pH and C org. The Mantel r is a correlation measure which ranges between -1 and 1.  An r value 
of 1 suggests a strong positive relationship, 0 suggests absence of relationship and -1 suggests a strong negative 
relationship. The statistical significance is expressed with *** for p-value<0.001, ** for p-value<0.01 and * 
for p-value<0.05. 

 Phylum  OTU  Function  

 r Significance  r Significance  r Significance  

pH 0.39 1.00E-04 *** 0.48 1.00E-04 *** 0.37 1.00E-04 *** 

C org 0.093 0.10  0.051 0.29  -0.0024 0.47  
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Fig.S.5 Scatterplot of Bray-Curtis dissimilarity at phylum (panels A and B) and OTU (panels C and D) rank 
level and function (panels E and F) as function of difference in pH (left column) and C org (right column) 
expressed as Euclidean distance with linear trend. The significant effects were estimated by Mantel Test and 
reported in table S.8. 
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Fig.S.6 Plot of correlations among selected functions (aerobic chemoheterotrophy, chemoheterotrophy, 
nitrification, denitrification, nitrogen fixation, ureolysis), percentage of OTU assigned by FAPROTAX 
(perc.OTU assigned), total number of OTUs (n.OTU) and total number of functions (n.functions) considering 
all sites 
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Tab.S.9 Result of permutational ANOVAs on log transformed gene copies (16S, nifH, AOA, AOB, nirK and nosZ) as function of 2-way interaction between 
management type and region, pH class and C org class. The statistical significance is expressed with *** for p-value<0.001, ** for p-value<0.01 and * for p-
value<0.05. 

 16S  log nifH  log AOA  log AOB  log nirK  log nosZ  

 Estimate Prob  Estimate Prob  Estimate Prob  Estimate Prob  Estimate Prob  Estimate Prob  

Management type M 0.0068 0.92  
0.20 0.10 

 -0.29 0.47  0.28 0.22  0.016 0.78 
 

0.087 0.73  

Region IT -0.064 0.36  
0.27 0.22 

 0.40 0.13   0.42 0.80  -0.072 1.00 
 

0.72 0.02 * 

Region FR 0.061 0.20  
-0.41 0.03 * 1.19 0.01 ** -0.11 0.90  0.27 0.002 ** 0.30 0.08  

Management type M: region IT 0.049 0.30  
0.00 0.92 

 -0.66 0.28  -0.18 0.82  -0.018 0.76 
 

0.37 0.25  

Management type M: region FR -0.094 0.11  
0.06 0.41 

 0.53 0.45  -0.12 0.50  -0.12 0.08 
 

-0.29 0.86  

Residual 0.23  0.72  2.15  1.61  0.37  1.43  

R2 0.15  0.24  0.30  0.09  0.33  0.25  

          
         

pH class1 -0.079 0.62  
0.037 0.51 

 -1.89 0.0028 ** -0.73 0.061 
 

-0.40 0.014 * -1.35 <2e-16 *** 

pH class2 0.012 0.60  
-0.21 0.82 

 -0.53 0.98  
0.022 0.64 

 
-0.00031 0.079  -0.036 0.94  

pH class3 0.062 0.36  
-0.022 0.96 

 1.22 0.17  
0.26 0.45 

 
0.42 <2e-16 *** 0.37 0.23  

Residual 0.23 
 

0.78 
 

2.08 
 

1.57 
 

0.33 
 

1.30 
 

R2 0.049 
 

0.040 
 

0.31 
 

0.09 
 

0.45 
 

0.34 
 

AIC 2.57 
 

95.16 
 

169.08 
 

147.69 
 

28.32 
 

133.54 
 

BIC 10.75 
 

103.35 
 

177.27 
 

155.88 
 

36.51 
 

141.73 
 

          
         

C org class1 0.057 0.18 
 

0.19 0.10 
 

2.40 <2e-16 *** 0.60 0.002 ** 0.13 0.35  1.08 <2e-16 
*** 

 
C org class2 -0.060 0.59 

 
-0.005 0.86 

 
0.59 0.84  0.26 0.383  0.18 0.36  0.58 0.14 

 

C org class3 0.088 0.13 
 

0.27 0.16 
 

-1.44 0.0012 ** 0.50 0.225  -0.25 0.04 * -0.20 0.88 
 

Residual 0.22 
 

0.74 
 

1.81 
 

1.40 
 

0.40 
 

1.24 
 

R2 0.11 
 

0.146 
 

0.47 
 

0.27 
 

0.16 
 

0.40 
 

AIC 0.08   90.73   158.83   138.99 
 

44.56 
 

129.86   

BIC 8.27   98.92   167.02   147.18 
 

52.75 
 

138.05   
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Fig.S.7 Boxplot of gene copies log transformed as function of region where black dots correspond to the means. The panel A corresponds to 16S gene, B to nosZ 

gene, C to nifH gene, D to nirK gene, E to AOA gene  and F to AOB gene. The pH class presents 4 levels based on quartiles as the C org class (pH class: 4.5<“1”≤5.4; 
5.4<”2” ≤5.8; 5.8<”3” ≤6.4; 6.4<”4” ≤7.6 – C org class: 1.9<“1”≤4.7; 4.7<”2” ≤6.9; 6.9<”3” ≤9.8; 9.8<”4” ≤35.9). The significance values of the factor where 
obtained from the permutation ANOVA reported in table S.9. 
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Tab.S.10 Comparison between pH class and C org class permutation ANOVA considering R2, AIC and BIC 
indices. 

 pH class C org class 

 R2 AIC BIC R2 AIC BIC 
log 16S 0.049 2.57 10.75 0.11 0.08 8.27 
log nifH 0.04 95.16 103.35 0.146 90.73 98.92 
log AOA 0.31 169.08 177.27 0.47 158.83 167.02 
log AOB 0.09 147.69 155.88 0.27 138.99 147.18 
log nirK 0.45 28.32 36.51 0.16 44.56 52.75 
log nosZ 0.34 133.54 141.73 0.4 129.86 138.05 

 

Tab.S.11 Results of ratio AOB/(AOA+AOB) variability through three GAM models (first model: 2-way 
interaction between type and region; second model: pH class; third model: C org class) based on beta 
distribution with log link function. The statistical significance is expressed with *** for p-value<0.001, ** for 
p-value<0.01 and * for p-value<0.05. 

  Estimate Pr(>|z|)   

(Intercept) 0.058 0.90   
Management type P 1.070 0.14  
Region IT 1.47 0.040  

Region NR -0.011 0.99 * 
Region IT: management type P -1.047 0.33  

regionNR: management type P -0.26 0.79  

R2  0.087  

Deviance 29.6%   

(Intercept) 1.43 0.00014 *** 
pH class2 -0.537 0.33  

pH class3 -1.48 0.015 * 

pH class4 -1.37 0.016 * 

R2  0.14  

Deviance 28%  

AIC -193.85  

BIC -185.66   

(Intercept) -0.65 0.13  

C org class2 1.02 0.10  

C org class3 2.22 0.0001 *** 

C org class4 1.88 0.001 ** 

R2  0.31   

Deviance 44%  

AIC -199.41  

BIC -191.22   
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4 - GENERAL DISCUSSION  

This thesis is composed of three chapters based on different methodologies for monitoring semi-

natural grasslands, in particular pastures. The first and second contributions correspond to two distinct 

applications of GPS telemetry and Remote Sensing to monitor the grazing patterns of lactating cows 

in two alpine summer pastures in north Italy, while the third contribution corresponds to the 

application of genetic molecular analyses to assess the functional structure of European seminatural 

grasslands used as meadows and pastures. 

The first contribution integrated the GPS telemetry and the remote sensing to discriminate the effects 

of farmer conduction, topology, and vegetation on grazing patterns at fine temporal and spatial scales 

(Cagnacci et al. 2010; Nathan et al. 2022). The results confirmed the hypothesis of significant effects 

of slope and vegetation productivity in determining grazing patterns that resulted in a highly 

heterogeneous use of the pasture area, only partially mitigated by the farmer’s conduction, which was 

on the other hand the determinant factor of the daily distances walked by the animals, and hence of 

the associated costs. Thus farmer conduction, the GPS telemetry has been confirmed to be a technique 

able to discriminate animal movement patterns at the metric scale and characterise animal activity 

budget by providing information about the distances travelled, average speeds maintained, and habitat 

selection (Cagnacci et al. 2010; Nathan et al. 2022). Instead, the use of remote sensing has been 

confirmed to be a technique able to provide environmental information, such as slope, altitude, and 

vegetation biomass (Pettorelli et al. 2005, 2014), which are essential to define the environmental 

context used to analyse GPS data. 

The second contribution involved a larger spatial context than the first one, and integrated GPS 

positioning and remote Sensing, with remote assessment of multiple behaviours displayed by 

lactating cows of different breeds and parity. The remote identification of multiple behaviours was 

achieved by the application of a random forest model to classify single GPS positions into a single 

behaviour (grazing, walking, resting) on the base of movement metrics and accelerometer data 

obtained from GPS collars (Valletta et al. 2017). The integration of GPS telemetry, remote sensing 

and random forest allowed to discriminate different behavioural patterns as function of breed-parity 

and habitat type. The results of the second contributes confirmed the null hypothesis revealing 

significant differences in behavioural patterns and use of habitats, and between local and common 

dairy breeds and parities. Thus, the integration of behavioural analysis to the methodology adopted 

in the first contribution allowed for more detailed characterization of both patterns and budgets of 

animal activity at pasture.  



164 

 

The first two contributions confirmed the goodness of integration between GPS telemetry and remote 

sensing to monitor the grazing patterns on alpine pastures, (Homburger et al. 2014) revealing a 

heterogeneous use of pastures which is influenced by multiple factors, from environmental to animal 

conditions. Thus, the application of GPS telemetry combined with remote sensing provides 

qualitative and quantitative information about the local disturbance in the ecosystem, such as the local 

grazing intensity. This information can constitute the base to assess the possible impact of grazing 

systems on ecosystem dynamics ruled by microbial soil communities. 

The first and second contributions were used to develop an operational framework for integrating and 

managing GPS telemetry and remote sensing data. GPS telemetry provides an immense number of 

localizations, which can be integrated with multiple data arrays from remote sensing to link animal 

positions and movement characteristics to environmental variables (Cagnacci et al. 2010; Urbano and 

Cagnacci, 2014; Nathan et al. 2022).  The integration of the different data generates geodatabases 

(spatial databases), characterised by millions of records. Thus, geodatabases should be managed by 

specific softwares such as DBMSs (Database Management Systems), which allows to query, create, 

and manipulate databases quickly and easily. Among the various DBMSs available, we selected 

PostgreSQL thanks to its versatile data management in GIS (Geographic Information System) and its 

PostGIS extension, which implements the possibility to manage georeferenced data, such as GPS 

locations or georeferenced images from satellites (Urbano and Cagnacci, 2014). However, the use of 

DBMSs requires computer programming skills making it not accessible to all. The operative 

framework developed during this thesis is composed by three main steps 

1.  the validation of geodatabase through the detection and classification of outliers 

2.  the integration of geodatabase with environmental data from remote sensing and weather stations, 

and animal data about production, body condition, parity, breed, etc… 

3.  the statistical analysis of geodatabase in R 

The validation of the geodatabase is the most delicate step and requires the greatest effort in terms of 

time due to the development of a procedure able to detect and classify outlier positions derived from 

the GPS errors. GPS sensors are characterised errors of <5-10 m (D’Eon et al. 2002; Tomkiewicz et 

al. 2010; Parraga Aguado et al. 2017; Muminov et al. 2019), which can increase when the sky view 

is limited due to the presence of obstacles, such as forest canopy (Frair et al., 2004; Janeau et al., 

2004; Sager-Fradkin et al., 2007). In the study cases presented in this thesis, GPS sensors decreased 

their spatial accuracy, also losing the signal, when cows were inside the barn during the milking. 
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Thus, the increase of errors and lost positions were used as criteria to detect both outliers and milking 

periods. The GPS errors were also detected during the entire day, especially when animals were lying 

during the resting. In fact, when animals are resting, the orientation of the GPS antenna can turn 

toward the ground or be screened by the body with negative impact on spatial accuracy (Jiang et al., 

2008; Graves et al., 2013). The detection of this type of GPS error required the development of criteria 

based on movement metrics as suggested by Urbano and Cagnacci (2014).  The second step requires 

attention to the integration of environmental data through the selection of appropriate spatial 

resolution and the use of common CRSs (coordinate reference systems) across all data sources. 

Additional environmental data can be extracted from open geodatabases through tools such as Google 

Earth Engine, which allows to connect and query databases of ESA and NASA (Gorelick et al. 2017). 

The third step can involve multiple statistical analysis approaches. For example, in this thesis data 

were analysed with statistical methods such as General Additive Mixed Model (GAMM; Wood et al. 

2017) and Generalized Linear Mixed Model (GLMM; Bolker et al. 2009) in frequentist framework 

and Integrated nested Laplace approximation (INLA) in Bayesian framework (Rue et all. 2009). Thus, 

the most difficult aspects of the third step are the correct formulation of null hypothesis and the 

consequent selection-application of statistical methods. The use of GPS telemetry associated with 

remote sensing allows a deep understanding of where (what habitats, what slopes, etc.), how (how 

far, how fast, direction,…) and why (to feed, to go to the milking, to rest during the day, to rest at 

night,...) the animals move, as confirmed by the first and second contributions. GPS telemetry 

application is part of the livestock precision farming (LPF; Tullo et al. 2019) and can allow to increase 

the efficiency of grazing management by improving the use of grazing resources and prevent 

overgrazing phenomena with positive externalities for ecosystem conservation (Millward et al. 2020). 

However, GPS telemetry implementation requires advanced skills in different fields, such as 

computer science and data analysis, as discussed above and it is still expensive in terms of purchasing 

and maintaining instruments (GPS collars). Thus, the application of GPS telemetry to monitor grazing 

systems appears currently not accessible to all, but it still requires intermediates. 

The third contribution was based on the application of Illumina dye sequencing and real time PCR to 

characterise the microbial soil communities of pastures and meadows in the European context. The 

Illumina dye sequencing allowed to define the taxonomic structure of microbial communities, from 

which the functional profiles were extracted applying the external database of FAPROTAX (Louca 

et al. 2016). Taxonomical and Functional profiles of microbial soil communities were compared in 

function of management type, region and two pedological parameters, pH and organic C, which are 

known as important drivers for microbial communities (Fierer, 2017; Bahram et al., 2018; Kuypers 
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et al., 2018). Instead, the real time PCR was used to define the gene potentials of specific functions 

through the abundances of marker genes. The null hypothesis of different microbial communities 

varying in function of management type and regional soil conditions was partially verified. In fact, 

the results revealed differences between meadow and pasture microbial communities only in terms 

of OTU profiles, but neither functional profiles or gene abundances were different with respect to 

management type. Instead, communities, at both all taxonomic levels and functional profile, and gene 

potentials resulted different with respect to region and pH, suggesting that local pedological 

conditions are more important drivers for microbial communities than local management. Moreover, 

the different response of microbial communities in terms of taxonomic and functional diversities may 

confirm the possible decoupling between them (Louca et al. 2016, 2018). In general, all molecular 

methods used were able to detect information about soil microbial communities with different 

resolutions that appears complementary. In fact, the sequencing provides general information about 

the structure of microbial communities while real time PCR allows to obtain detailed information 

about selected functions. Thus, both methods should be implemented into a general framework to 

characterise microbial communities of soil and assess possible impact effects. Application of real 

time PCR and the use of genes as indicators is used in different field (Baldwin et al. 2003; Mocellin 

et al. 2003; Wang et al. 2020; Nikitin et al. 2022) while the use of sequencing is used to define 

microbial diversity in general (Lemos et al. 2011; Thompson et al. 2017; Bahram et al. 2018; Kumar 

et al. 2019). However, information about taxonomic diversity can be only partially useful to assess 

impact on the ecosystem as it provides information only on number and relative abundance of OTUs. 

The real challenge is passing from taxonomic profiles to functional profiles, which give information 

about the potential of functions in an ecosystem, so about its “operational” state (Louca et al. 2018). 

This passage is fundamental to assess impacts on ecosystem multifunctionality which not necessarily 

depends on the pure biodiversity as it directly derives from the functional diversity. In fact, functions 

are not monophyletic in microbial communities (David et al 2010; Martini et al. 2015) thus taxonomic 

diversity can bring to functional redundancy, which is important for ecosystem resistance and 

resilience (Louca et al. 2018). The sequencing provides more information than RealTime PCR, but it 

is also more expensive in terms of cost and time. For both methods, the extraction and purification of 

DNA is a fundamental step to obtain robust data as the soil contains organic compounds able to inhibit 

RealTime PCR (Alaeddini 2012). The use of standard kits ensures an efficient purification, and it 

makes data comparable to others processed by the same kit, but it can be expensive in terms of costs, 

thus limiting the number of samples. The possibility of comparing samples from different contexts 

may be fundamental to correctly assess the possible impacts on microbial communities in order to 

explore their variability, which is still largely uncharted. This highlights the relevance of developing 
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a standard monitoring framework for monitoring able to involve not only the extraction-purification 

procedure but also the assessment of environmental conditions such as pedological and vegetation 

characteristics and local disturbance intensity. Thus, merging the operative framework used for the 

management and analysis of GPS data and the procedure adopted for the analysis of microbial 

communities can provide an integrated approach able to characterise grassland conditions from a 

macro to micro scale. Such an integrated approach can be used to assess the effects of local 

environment conditions, such as pH and organic C amount, and practices, as animal conductions at 

pasture or fertilisation of meadow, on ecosystem diversity and multifunctionality through standard 

procedures. 

The contributions of this thesis presented some limitations mainly due to gaps in terms of data which 

limited the analysis. In general vegetation was not characterised in terms of phytosociological 

associations, despite they can affect both grazing with different selection (Bailey 1995; Dumont et al. 

2002; Rivero et al. 2021) and microbial communities through different structure of rhizosphere and 

root exudate input (Loranger-Merciris et al. 2006; Delgado‐Baquerizo et al. 2018). In the first 

contribution, the spectral index used (NDVI) gave information only about the biomass amount but 

not about the phenology of plants (Myneni et al. 1995; Pettorelli et al. 2005; Shariatinajafabadi et al. 

2014), which may impact on the resource selection. For example, the GWI index derives from NDVI 

as ratio between NDVI at specific time minus the annual minimum NDVI and the difference between 

annual maximum and minimum NDVI (White et al. 1997). GWI index is normalized, ranging from 

0% to 100%, and provides information about the green-up, so about plant phenology, expressed as 

relative variation of biomass, where 50% indicates an intermediate stage of greenness (Myneni et al. 

1995; Pettorelli et al. 2005; Shariatinajafabadi et al. 2014). This index can be easily implemented 

giving additional environmental information useful for further characterization of animal behaviour 

at pasture. About the third contribution, the use of FAPROTAX to classify functional profiles is 

depending on the bibliographic knowledge as its database obtains the OTU functions from the 

literature (Louca et al. 2016; Sansupa et al. 2021). In the third contribution, given also the spatial 

scale of comparison, we could differentiate management only on terms of use of grasslands as either 

meadow or pastures. We expect that a more detailed information, including for instance stocking rate, 

intensity and type of fertilising, number of cuts in meadows, might reveal finer, and local, 

differentiation between management methods than that observed in this study 

Interesting future perspectives for the methods used emerge from the limitations and results of this 

thesis. A future possible application of GPS telemetry may be the study of the behavioural dynamics 

within herds from individual inter-distances, in order to understand how animals may influence each 
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other in the choice, thus the use, of the available grazing resources, also in relation to individual 

variables such as weight, body condition, and production, both in quantitative and qualitative terms. 

The use of local weather stations, along with the integration of multiple sensors, such as GPS and 

heart rate sensors, and additional vegetation spectral indices (GWI), can allow to improve 

understanding of determinants of animal movement and grazing behaviour, considering the effect of 

current climate change (global warming and pasture drought). All this information can be used on 

one side to estimate more accurately animals’ needs in different grazing contexts, such as alpine 

pasture, improving their management, and on the other side to model variability of animals’ load and 

hence the associated disturbance, on the grazed area.  Regarding the molecular analysis, the increase 

of sample size considering new grassland systems will be useful to understand knowledge about 

common characteristics of soil microbial communities. Moreover, the implementation of other 

environmental variables, such as surface temperature or rain precipitation or soil total N or vegetation 

type, can reveal new microbial patterns. Implementing the monitoring of greenhouse gas fluxes from 

soil and correlating them to microbial functional potentials will provide important information in the 

context of climate change. This will allow to accurately estimate the contribution of grasslands to 

current climate change, verifying their sink or source nature. Also, considering different management 

types with variable intensity levels can be important to detect possible drivers for microbial 

variability. Last but not least, the integration of information about grazing patterns from GPS 

telemetry and molecular analysis can highlight possible effects of grazing intensity on local microbial 

communities and their functionalities.  
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5 – CONCLUSION 
 

This thesis explores different methods for monitoring grasslands, involving different scales and 

research fields. The application of GPS systems and remote sensing for monitoring livestock systems 

was confirmed to be able to provide an enormous amount of data with numerous opportunities for the 

development of more informed management. In the study cases presented, the use of GPS telemetry 

made it possible to accurately quantify the areas used by the grazing cows, confirming the presence 

of mostly extensive grazing and heterogenous habitat use shaped by both human choice and 

environmental conditions. The geolocation of the animals associated with accelerometer sensors also 

revealed interesting behavioural aspects, such as distances travelled and speeds, and daily behavioural 

patterns. This information makes it possible to obtain in-depth knowledge on animal movement 

patterns and the relative use of pastures, which will allow the development of more efficient 

management models and sustainable grassland management, both in productive and environmental 

terms. The use of GPS systems can thus form the basis of a real quantification and qualification of 

the role of mountain pasture in maintaining ecosystems with high biodiversity, to enhance with 

greater awareness the role of the breeders in conserving the landscape heritage in its diversity. The 

application of molecular analysis (real time PCR and amplicon sequencing) for characterising the 

microbial communities of soil also provided numerous data useful to assess grassland 

multifunctionality. It was possible to quantify and qualify microbial diversity and functions associated 

at community and gene levels, thanks to the complementary use of sequencing and real time PCR. 

Molecular analysis revealed the significant dissimilarities among microbial communities of 

grasslands at different levels as a function of pedological condition but not of local management. 

Molecular analyses make possible the characterization of both taxonomic and functional diversity of 

soil microbial communities with important implications on the assessment of local disturbance effects 

and conditions on the ecosystem and its multifunctionality. In conclusion, both the methods used in 

this thesis were able to detect variability of grasslands at fine scale, thus making their future 

integration feasible, in order to develop an integrated approach for monitoring grasslands considering 

macro and micro characteristics. Thus, this integrated approach can provide a useful tool to extract 

the base information to achieve a real sustainable management of grasslands considering these 

systems in holistic terms. 
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