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Rationality of the probabilistic zeta functions
of finitely generated profinite groups
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Abstract. We prove that if the probabilistic zeta function PG.s/ of a finitely generated
profinite groupG is rational and all but finitely many nonabelian composition factors ofG
are groups of Lie type in a fixed characteristic or sporadic simple groups, then G contains
only finitely many maximal subgroups.

1 Introduction

Let G be a finitely generated profinite group. As G has only finitely many open
subgroups of a given index, for any n 2 N we may define the integer an.G/ as

an.G/ D
X
H

�G.H/;

where the sum is over all open subgroupsH ofG with jG W H j D n:Here �G.H/
denotes the Möbius function of the poset of open subgroups ofG;which is defined
by recursion as follows: �G.G/ D 1 and �G.H/ D �

P
H<K �G.K/ ifH < G.

Then we associate to G a formal Dirichlet series PG.s/, defined as

PG.s/ D
X
n2N

an.G/

ns
:

Hall in [9] showed that if G is a finite group and t is a positive integer,
then PG.t/ is equal to the probability that t random elements of G generate G
or in other words

PG.t/ D ProbG.t/ WD
j�G.t/j

jGt j
;

where �G.t/ is the set of generating t -tuples in G. In [13] Mann conjectured
that PG.s/ has a similar probabilistic meaning for a wide class of profinite groups.
More precisely define ProbG.t/ D �.�G.t//, where � is the normalised Haar
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measure uniquely defined on the profinite group Gt and �G.t/ is the set of gen-
erating t -tuples in G (in the topological sense) and say that G is positively finitely
generated if there exists a positive integer t such that ProbG.t/ > 0: Mann con-
jectured that if G is positively finitely generated, then PG.s/ converges in some
right half-plane and PG.t/ D ProbG.t/, when t 2 N is large enough. The sec-
ond author proved in [12] that this conjecture is true if G is a profinite group
with polynomial subgroup growth. But even when the convergence is not ensured,
the formal Dirichlet series PG.s/ encodes information about the lattice generated
by the maximal subgroups of G and combinatorial properties of the probabilistic
sequence ¹an.G/º reflect aspects of the structure of G: For example in [4] it is
proved that a finitely generated profinite group G is prosolvable if and only if the
sequence ¹an.G/º is multiplicative. Notice that if H is an open subgroup of G
and �G.H/ ¤ 0; then H is an intersection of maximal subgroups of G: This im-
plies in particular that if G contains only finitely many maximal subgroups (i.e. if
the Frattini subgroup FratG ofG has finite index inG), then there are only finitely
many open subgroupsH of G with �G.H/ ¤ 0 and consequently an.G/ D 0 for
all but finitely many n 2 N (i.e. PG.s/ is a finite Dirichlet series). A natural ques-
tion is whether the converse is true. An affirmative answer has been given in the
case of prosolvable groups [6]. In fact a stronger result holds: if G is a finitely
generated prosolvable group, then PG.s/ is rational (i.e. PG.s/ D A.s/=B.s/with
A.s/ andB.s/ finite Dirichlet series) if and only ifG=FratG is a finite group. This
has been generalized in [7] to the finitely generated profinite groups with the prop-
erty that all but finitely many factors in a composition series are either abelian or
alternating groups. In this paper we prove two other results of the same nature.

Theorem 1.1. LetG be a finitely generated profinite group. Assume that there exist
a prime p and a normal open subgroup N of G such that the nonabelian compo-
sition factors of N are simple groups of Lie type over fields of characteristic p.
Then PG.s/ is rational if and only if G=Frat.G/ is a finite group.

Theorem 1.2. Let G be a finitely generated profinite group. Assume that there ex-
ists a normal open subgroup N of G such that the nonabelian composition factors
of N are sporadic simple groups. Then PG.s/ is rational if and only if G=Frat.G/
is a finite group.

In particular, if G contains a normal open subgroup N all of whose nonabelian
composition factors are isomorphic, then we may apply the main theorem in [6] if
N is prosolvable, the main theorem in [7] ifN has a composition factor of alternat-
ing type, Theorem 1.1 if N has a composition factor of Lie type and Theorem 1.2
if a sporadic simple groups appears as a composition factor of G and deduce the
following corollary.
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Corollary. LetG be a finitely generated profinite group. Assume that there exists a
normal open subgroup N of G such that the nonabelian composition factors of N
are all isomorphic. Then PG.s/ is rational if and only if G=Frat.G/ is a finite
group.

The idea of the proof is the following. In [3, 5] it is proved that PG.s/ can be
written as formal product PG.s/ D

Q
i Pi .s/ of finite Dirichlet series associated

with the non-Frattini factors in a chief series of G. On the other hand G=Frat.G/
is finite if and only if a chief series of G contains only finitely many non-Frattini
factors. So the strategy is to prove that the product

Q
i Pi .s/ cannot be rational

if it involves infinitely many nontrivial factors. A consequence of the Skolem–
Mahler–Lech Theorem (see Proposition 2.2) can help us in this task. However
Proposition 2.2 concerns infinite product of finite Dirichlet series involving only
one nontrivial summand, but only the finite Dirichlet series associated to the abel-
ian chief factors ofG have this property, while in general the finite series Pi .s/ are
quite complicated. So we need to produce suitable “short” approximations P �i .s/
of the series Pi .s/, in such a way that the rationality of their product is preserved:
the tool to achieve such approximation is a slight modification of a result already
employed in [7] for a similar purpose (see Proposition 2.3). This requires a delicate
analysis of the subgroup structure of the almost simple groups of Lie type, based
in particular on the properties of the parabolic subgroups, and some information
on the maximal subgroups of the sporadic simple groups.

2 Infinite products of formal Dirichlet series

Let R be the ring of formal Dirichlet series with integer coefficients. We will say
that F.s/ 2 R is rational if there exist two finite Dirichlet series A.s/; B.s/ with
F.s/ D A.s/=B.s/:

For every set � of prime numbers, we consider the ring endomorphism of R

defined by

F.s/ D
X
n2N

an

ns
7! F �.s/ D

X
n2N

a�n
ns

where a�n D 0 if n is divisible by some prime p 2 � , a�n D an otherwise. We will
use the following remark:

Remark 2.1. For every set � of prime numbers, if F.s/ is rational, then F �.s/ is
rational.

The following result is a consequence of the Skolem–Mahler–Lech Theorem.
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Proposition 2.2 ([6, Proposition 3.2]). Let I � N and let q; ri ; ci be positive inte-
gers for each i 2 I . Assume that

(i) for every n 2 N, the set ¹i 2 I j ri divides nº is finite,

(ii) there exists a prime t such that t does not divide ri for any i 2 I .

If the product

F.s/ D
Y
i2I

�
1 �

ci

.qri /s

�
is rational, then I is finite.

The following slight modification of [7, Proposition 4.3] can be proved in ex-
actly the same way and will play a significant role in our arguments.

Proposition 2.3. Let F.s/ be a product of finite Dirichlet series Fi .s/, indexed
over a subset I of N:

F.s/ D
Y
i2I

Fi .s/; where Fi .s/ D
X
n2N

bi;n

ns
:

Let q be a prime andƒ the set of positive integers divisible by q. Assume that there
exists a positive integer ˛ and a set ¹riºi2I of positive integers such that if n 2 ƒ
and bi;n ¤ 0 then n is an ri -th power of some integer and vq.n/ D ˛ri (where
vq.n/ is the q-adic valuation of n). Define

w D min¹x 2 N j vq.x/ D ˛ and bi;xri ¤ 0 for some i 2 I º:

If F.s/ is rational, then the product

F �.s/ D
Y
i2I

�
1C

bi;wri

.wri /s

�
is also rational.

3 Preliminaries and notations

Let G be a finitely generated profinite group and let ¹Giºi2N be a fixed count-
able descending series of open normal subgroups with the property that G0 D G,T
i2N Gi D 1 and Gi=GiC1 is a chief factor of G=GiC1 for each i 2 N. In par-

ticular, for each i 2 N, there exist a simple group Si and a positive integer ri
such that Gi=GiC1 Š S

ri

i : Moreover, as described in [5], for each i 2 N, a finite
Dirichlet series

Pi .s/ D
X
n2N

bi;n

ns
(3.1)
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is associated with the chief factorGi=GiC1 and PG.s/ can be written as an infinite
formal product of the finite Dirichlet series Pi .s/:

PG.s/ D
Y
i2N

Pi .s/: (3.2)

Moreover, this factorization is independent of the choice of chief series (see [3,5])
and Pi .s/ D 1 unless Gi=GiC1 is a non-Frattini chief factor of G.

We recall some properties of the series Pi .s/: If Si is cyclic of order pi ; then

Pi .s/ D 1 �
ci

.p
ri

i /
s
;

where ci is the number of complements of Gi=GiC1 in G=GiC1: It is more diffi-
cult to compute the series Pi .s/ when Si is a nonabelian simple group. In that case
an important role is played by the group Li D G=CG.Gi=GiC1/: This is a mono-
lithic primitive group and its unique minimal normal subgroup is isomorphic to
Gi=GiC1 Š S

ri

i : If n ¤ jSi jri ; then the coefficient bi;n in (3.1) depends only on
Li I more precisely we have

bi;n D
X

jLi WH jDn

LiDH soc.Li /

�Li
.H/:

It is not easy to compute these coefficients bi;n even for n ¤ jSi jri . Some help
comes from the knowledge of the subgroup Xi of AutSi induced by the conjuga-
tion action of the normalizer in Li of a composition factor of the socle Sri

i (note
that Xi is an almost simple group with socle isomorphic to Si /: More precisely,
given an almost simple group X with socle S , we can consider the following finite
Dirichlet series:

PX;S .s/ D
X
n

cn.X/

ns
; where cn.X/ D

X
jX WH jDn

XDSH

�X .H/: (3.3)

Lemma 3.1 ([10, Theorem 5]). Let Si be a nonabelian simple group and let � be a
set of primes containing at least one divisor of jSi j. If n is not divisible by jSi j and
bi;n 6D 0, then there exists an m 2 N with n D mri and bi;n D cm.Xi / �mri�1:

This implies
P �i .s/ D P

�
Xi ;Si

.ris � ri C 1/:

We will give now a description of the finite Dirichlet series P ¹pºX;S .s/ when S
is a simple group of Lie type over a field of characteristic p and X is an almost
simple group with socle S . We follow the notations from [1]. Recall that a simple
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group of Lie type S is the subgroup AF of fixed points under a Frobenius map F
of a connected reductive algebraic group A defined over an algebraically closed
field of characteristic p > 0. In particular, S is defined over a field K D Fq of
characteristic p. As explained in [1, Section 3.4] a Dynkin diagram can be asso-
ciated to the simple group S and to the corresponding Lie algebra; moreover (see
[1, Section 13.3]) to the map F , a symmetry � on the Dynkin diagram of AF is
associated (� is trivial in the untwisted case). Let I WD ¹O1; : : : ;Okº be the set
of the �-orbits on the nodes of the Dynkin diagram. For every subset J � I , let
J � WD

S
i2J Oi be a �-stable subset of the set of nodes of the Dynkin diagram and

one may associate an F -stable parabolic subgroup PJ of S with J �. As described
in [1, Chapter 9], we may associate to J a polynomial TWJ

.x/ with the property
that TWJ

.q/ D jPJ j. More precisely, in the notations of [1, Section 9.4],

TWJ
.x/ D

X
w2WJ

xl.w/:

We have that:

Theorem 3.2 ([14, Theorem 17]). Let S be a simple group of Lie type defined
over a field K D Fq of characteristic p and let X be an almost simple group with
socle S . Then

P
¹pº
X;S .s/ D .�1/

jI j
X
J�I

.�1/jJ j
�
TW .q/

TWJ
.q/

�1�s
:

In particular, if X does not contain nontrivial graph automorphisms, then

P
¹pº
X;S .s/ D P

¹pº
S .s/:

For later use we need to recall definitions and results concerning Zsigmondy
primes.

Definition 3.3. Let n 2 N with n > 1: A prime number p is called a primitive
prime divisor of an � 1 if it divides an � 1 but it does not divide ae � 1 for any
integer 1 � e � n � 1.

The following theorem is due to K. Zsigmondy [15]:

Theorem 3.4 (Zsigmondy’s theorem). Let a and n be integers greater than 1.
There exists a primitive prime divisor of an � 1 except exactly in the following
cases:

(i) n D 2; a D 2s � 1, where s � 2.

(ii) n D 6; a D 2.
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Observe that there may be more than one primitive prime divisor of an � 1;
we denote by ha; ni the set of these primes.

Let p be a prime, r be a prime distinct from p and m be an integer which is not
a power of p. We define

�p.r/ D min¹z 2 N j z � 1 and pz � 1 mod rº;

�p.m/ D max¹�p.r/ j r prime; r ¤ p; r j mº:

The value of �p.S/ WD �p.jS j/ when S is a simple group of Lie type over Fq and
q D pf is given in [11, Table 5.2.C].

Proposition 3.5. Let X be an almost simple group with socle S , where S is a sim-
ple group of Lie type defined over a field of characteristicp. Assume that �p.S/ > 1
and �p.S/ > 6 if p D 2: Let � 2 hp; �p.S/i. Consider the Dirichlet series

P
¹pº
X;S .s/ D

1X
nD1

an

ns
:

(a) If an ¤ 0, then � divides n. More precisely, v� .n/ D v� .p�p.S/ � 1/.

(b) Ifm > �p.S/ and a primitive prime divisor of pm � 1 divides n, then an D 0:

(c) If n is the smallest positive integer such that n ¤ 1 and an ¤ 0, then an < 0.

Proof. The difficult part of this proposition is (a). We use Theorem 3.2 and the de-
scription of the polynomials TW .t/ and TWJ

.t/ given in [1, Sections 9.4 and 14.2]
and in [14, Section 3] (see in particular Table 1). It turns out that if q D pf , then
f divides �p.S/ and for each J � I , the polynomial TWJ

.t/ can be written as
a product of suitable cyclotomic polynomialsˆu.t/ with u � �p.S/=f . Moreover
ˆ�p.S/=f .t/ appears with multiplicity exactly 1 in the factorization of TW .t/ and
does not divide TWJ

.t/ if J ¤ I: This means that if � 2 hp; �p.S/i and J ¤ I;
then

v� .TW .q/=TWJ
.q// D v� .ˆ�p.S/=f .p

f //

D v� .p
�p.S/ � 1/:

Now (b) follows from the fact that if m > �p.S/, then no prime divisor of pm � 1
divides jS j: Finally (c) follows from the fact that by the way in which an is defined,
the minimality of n implies that the subgroups H involved in the definition of an
are maximal, thus �X .H/ D �1 and an < 0:

Combining the previous proposition with Lemma 3.1, we obtain the following.
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Corollary 3.6. Assume that Gi=GiC1 Š S
ri

i is a chief factors of G, where Si is
a simple group of Lie type defined over a field of characteristic p. Assume that
�p.Si / > 1 and �p.Si / > 6 if p D 2: If � 2 hp; �p.Si /i, then we have:

(a) If bi;n ¤ 0 and .n; p/ D 1; then � divides n. More precisely,

v� .n/ D ri � v� .p
�p.Si / � 1/:

(b) Ifm > �p.S/ and a primitive prime divisor of pm�1 divides n; then bi;n D 0.

(c) If n is the smallest positive integer > 1 such that .n; p/ D 1 and bi;n ¤ 0;
then bi;n < 0.

4 Proofs of Theorem 1.1 and Theorem 1.2

We now begin the proofs of our main results. We assume thatG is a finitely gener-
ated profinite group G with the property that PG.s/ D

P
n an=n

s is rational. As
described in Section 3, PG.s/ can be written as a formal infinite product of finite
Dirichlet series Pi .s/ D

P
n2N bi;n=n

s corresponding to the factors Gi=GiC1 of
a chief series ofG: Let J be the set of indices i such thatGi=GiC1 is a non-Frattini
chief factor. Since Pi .s/ D 1 if i … J; we have

PG.s/ D
Y
j2J

Pj .s/:

For C.s/ D
P1
nD1 cn=n

s 2 R, we define �.C.s// to be the set of primes q
for which there exists at least one multiple n of q with cn ¤ 0. Notice that if
C.s/B.s/ D A.s/; then �.C.s// � �.A.s// [ �.B.s//: In particular, if C.s/ is
rational, then �.C.s// is finite. Let S be the set of the finite simple groups that are
isomorphic to a composition factor of some non-Frattini chief factor ofG. The first
step in the proofs of Theorems 1.1 and 1.2 is to show that S is finite. The proof of
this claim requires the following result.

Lemma 4.1 ([7, Lemma 3.1]). Let G be a finitely generated profinite group and
let q be a prime with q … �.PG.s//. Then G has no maximal subgroup of index
a power of q: In particular, if q divides the order of a non-Frattini chief factor
of G; then this factor is not a q-group.

Let �.G/ be the set of the primes q with the properties that G contains at least
an open subgroupH whose index is divisible by q. Obviously �.PG.s// � �.G/.
By [7, Lemma 3.2] and the classification of the finite simple groups, S is finite if
and only if �.G/ is finite.
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Lemma 4.2. If G satisfies the hypotheses of either Theorem 1.1 or Theorem 1.2,
then the sets S and �.G/ are finite.

Proof. Since PG.s/ is rational, we have that �.PG.s// is finite. Therefore, it fol-
lows from Lemma 4.1 that S contains only finitely many abelian groups. If G
satisfies the hypotheses of Theorem 1.2, then a nonabelian group in S is either
one of the 26 sporadic simple groups or is isomorphic to a composition factor of
the finite group G=N . In any case we have only finitely many possibilities. Con-
sider now the case when G satisfies the hypothesis of Theorem 1.1 and assume
by contradiction that S is infinite. This is possible only if the subset S� of the
simple groups in S that are of Lie type over a field of characteristic p is infinite.
In particular, the set � D ¹�p.S/ j S 2 S�º is infinite (see [11, Table 5.2C]). Let

I WD ¹j 2 J j Sj 2 S�º;

A.s/ WD
Y
i2I

Pi .s/;

B.s/ WD
Y
i…I

Pi .s/:

Notice that �.B.s// �
S
S2SnS� �.S/ is a finite set. Since PG.s/ D A.s/B.s/

and �.PG.s// is finite, it follows that the set �.A.s// is finite. According to
Theorem 3.4, if m is large enough (for example if m > 6), then the set hp;mi
is nonempty. We can find a positive integer m 2 � such that hp;mi ¤ ; but
hp;mi \ �.A.s// D ;: Notice that if m ¤ u, then hp;mi \ hp; ui D ;: Let �m
be the set of the positive integers n such that there exists a � 2 hp;mi dividing n
but no prime in hp; ui divides n if u > m. Notice that if bi;n ¤ 0; then �p.Si / D m
if and only if n 2 �m: Set

r WD min¹ri j Si 2 S� and �p.Si / D mº;

I� WD ¹i 2 I j ri D r and Si 2 Sº;

ˇ WD min¹n > 1 j n 2 �m and bi;n ¤ 0 for some i 2 I�º:

By Corollary 3.6, if i 2 I and bi;ˇ ¤ 0, then �p.Si / D m; ri D r and bi;ˇ < 0:
Hence the coefficient cˇ of 1=ˇs in A.s/ is

cˇ D
X

i2I; rDri

bi;ˇ D
X
i2I�

bi;ˇ < 0:

On the other hand, again by Corollary 3.6, all the primes in hp;mi divide ˇ: But
then hp;mi � �.A.s//; which is a contradiction. So we have proved that S is
finite. By [7, Lemma 3.2], it follows that �.G/ is also finite.

The previous result allows us to employ the following.
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Proposition 4.3. Let G be a finitely generated profinite group and assume that
the set �.G/ is finite. For each n, there are only finitely many non-Frattini fac-
tors in a chief series whose composition length is at most n. Moreover there exists
a prime t such that no non-Frattini chief factor of G has composition length divis-
ible by t:

Proof. Since �.G/ is finite, the set S of the composition factors of G is also finite
and therefore there exists a u 2 N such that jS j � u for each S 2 S :Now suppose,
for a contradiction, that a chief series of G contains infinitely many non-Frattini
chief factors of composition length at most n. LetX=Y be one of them: sinceX=Y
is non-Frattini, there exists a proper supplement H=Y of X=Y in G=Y . Clearly
jG W H j � jX=Y j � un. In this way we construct infinitely many subgroups of
index at most un, which is not possible since a finitely generated profinite group
contains only finitely many subgroups of a given index. The second part of the
statement is [7, Corollary 5.2].

For a simple group S 2 S , let IS D ¹j 2 J j Sj Š Sº. Our aim is to prove that,
under the hypotheses of Theorems 1.1 and 1.2, J is a finite set. We have already
proved that S is finite, so it suffices to prove that IS is finite for each S 2 S : First
we consider the case when S is abelian.

Lemma 4.4. Assume thatG is a finitely generated profinite group such that PG.s/
is rational and �.G/ is finite. Then for any prime q, if S has a subgroup with index
a power of q; then IS is finite. In particular, if S is cyclic, then IS is finite.

Proof. Let Sq be the set of the nonabelian simple groups in S containing a proper
subgroup of q-power index. A theorem proved by Guralnick [8] implies that if
T 2 Sq , then there exists a unique positive integer ˛.T / with the property that T
contains a subgroup of index q˛.T /: Consider the set � of all the primes different
from q. By Lemma 3.1, there exist positive integers ci and nonnegative integers di
such that

P �G .s/ D
Y
i2IS

�
1 �

ci

qris

� Y
T2Sq

 Y
j2IT

�
1 �

dj

q˛.T /rj s

�!
: (4.1)

Since S is finite, the set ¹˛.T / j T 2 Sqº is finite. Moreover, by Proposition 4.3,
there is a prime number t such that no element in

¹ri j i 2 ISº [ ¹˛.T /rj j T 2 Sq and j 2 IT º

is divisible by t . Since PG.s/ is rational, P �G .s/ is also rational. But then, by
Proposition 2.2, the number of nontrivial factors in the product at the right side of
equation (4.1) is finite. In particular, IS is a finite set.
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Proof of Theorem 1.1. Let T be the set of the almost simple groups X such that
there exist infinitely many i 2 J withXi Š X and let I D ¹i 2 J j Xi 2 T º: The
hypotheses of Theorem 1.1 combined with Lemma 4.4 imply that J n I is finite.
We have to prove that J is finite; this is equivalent to showing that I D ;: But
then, in order to complete our proof, it suffices to prove the following claim.

Claim. For every n 2 N; In D ¹i 2 I j �p.Si / D nº D ;.

Assume that the claim is false and letm be the smallest integer such that the set
Im ¤ ;: Since J n I is finite and PG.s/ D

Q
i2J Pi .s/ is rational, also the seriesQ

i2I Pi .s/ is rational. In particular, the following series is rational:

Q.s/ D
Y
i2I

P
¹pº
i .s/:

We distinguish three different cases:

(1) m D 1, p D 2t � 1, t � 2,

(2) m � 5, p D 2,

(3) all the other possibilities.

Assume that (1) occurs. By [11, Table 5.2.C] if �p.S/ D 1; then S Š PSL2.p/. In
particular, S has a subgroup of index a power of 2 and IS (and consequently I1)
is finite by Lemma 4.4.

In case (3), it follows by Theorem 3.4 that hp; ti ¤ ; for every t > mI we set

� D
[
t>m

hp; ti:

In case (2), hp; ti ¤ ; whenever t > 6 and we set

� D
[
t>6

hp; ti:

The Dirichlet series H.s/ D Q�.s/ is rational. By Corollary 3.6, if i 2 It and
� 2 hp; ti; then

P
¹�;pº
i .s/ D 1I

in particular P �i .s/ D 1 whenever hp; ti � �: This implies

H.s/ D

8̂<̂
:
Q
i2Im

P
¹pº
i .s/ in case (3);Q

i2Iu
m�u�5

P
¹2º
i .s/ in case (2).
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Assume that case (3) occurs and let � 2 hp;mi: By Lemma 3.1 and Corol-
lary 3.6, if i 2 Im, .p; y/D 1 and bi;y ¤ 0; then y D xri and v� .x/D v� .pm�1/:
Let

w D min¹x 2 N j v� .x/ D v� .p
m
� 1/ and bi;xri ¤ 0 for some i 2 Imº:

By Corollary 3.6, for each i 2 Im, if bi;wri ¤ 0, then bi;wri < 0. Moreover, if
bi;wri ¤ 0 andXj Š Xi ; then bj;wrj ¤ 0, so the set†m D ¹i 2 Im j bi;wri ¤ 0º

is infinite. Applying Proposition 2.3, we obtain a rational product

H�.s/ D
Y
i2†m

�
1C

bi;wri

wris

�
; where bi;wri s < 0 for all i 2 †m:

By Propositions 2.2 and 4.3, H�.s/ is a finite product, i.e. †m is finite, which is
a contradiction.

Finally assume that case .2/ occurs. If �p.S/ � 5; then S is one of the following
groups:

PSL6.2/; U4.2/; PSp6.2/; P�C8 .2/; PSL3.4/; SL5.2/; PSL4.2/; PSL3.2/:

The explicit description of the Dirichlet series P ¹2ºX;S .s/ when S � X � Aut.S/
and S is one of the simple groups in the previous list is included in the Appendix.
Notice in particular that if i 2 ƒ D

S
m�5 Im, then

�.P
¹2º
i .s// � ¹3; 7; 5; 31º:

First consider
ƒ31 D ¹i 2 ƒ j 31 2 �.P

¹2º
i .s//º

and let

w D min¹x 2 N j x is odd; v31.x/ D 1 and bi;xri ¤ 0 for some i 2 ƒº;

D min¹x 2 N j x is odd; v31.x/ D 1 and bi;xri ¤ 0 for some i 2 ƒ31º:

Note that if i 2 ƒ31 and n is minimal with the properties that n is odd, bi;nri ¤ 0

and v31.n/ D 1, then bi;nri < 0 (see Appendix). So if bi;wri ¤ 0, then bi;wri < 0;
moreover, by applying Proposition 2.3, we obtain a rational product

H�.s/ D
Y
i2ƒ

�
1C

bi;wri

wris

�

D

Y
i2ƒ31

�
1C

bi;wri

wris

�
; where bi;wri � 0 for all i 2 ƒ31:
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By Propositions 2.2 and 4.3, the set ƒ�31 D ¹i 2 ƒ31 j bi;wri ¤ 0º is finite, but
this implies thatƒ31 D ;. Indeed, ifƒ31 ¤ ;, then there exists at least one index i
with i 2 ƒ�31, moreover by assumption there are infinitely many j with Xj Š Xi
and all of them belong to ƒ�31. Since ƒ31 D ;; if i 2 ƒ, then Si is isomorphic
to one of the following: U4.2/;PSp6.2/;P�

C
8 .2/;PSL3.4/;PSL4.2/;PSL3.2/. It

follows from the Appendix that if i 2 ƒ, x is odd and bi;xri ¤ 0, then v7.x/ � 1:
But then, we may repeat the same argument as above and consider

ƒ7 D ¹i 2 ƒ j 7 2 �.P
¹2º
i .s//º

and

w WD min¹x 2 N j x is odd; v7.x/ D 1 and bi;xri ¤ 0 for some i 2 ƒ7º:

Arguing as before we deduce that ƒ7 D ;: We can see from the Appendix that
this implies Si Š U4.2/ for all i 2 ƒ and

H ¹5º.s/ D
Y
i2ƒ

�
1 �

33ri

33ris

�
:

Again, by Propositions 2.2 and 4.3, ƒ is finite and consequently ƒ D ;:

Proof of Theorem 1.2. Let T be the set of the almost simple groups X such that
socX is a sporadic simple groups and there exist infinitely many i 2 J with
Xi Š X and let I D ¹i 2 J j Xi 2 T º: As in the case of Theorem 1.1, we have to
prove that I D ;: For an almost simple group X , let �.X/ be the set of the odd
integers m 2 N such that

� X contains at least one subgroup Y such that X D Y socX and jX W Y j D m,
� if X D Y socX and jX W Y j D m; then Y is a maximal subgroup if X:

Note that if m 2 �.X/; X D Y socX and jX W Y j D m; then �X .Y / D �1; in
particular, one has cm.X/ < 0: Combined with Lemma 3.1, this implies that if
m 2 �.Xi /, then bi;mri < 0: Certainly �.X/ is not empty and its smallest ele-
ment is the smallest indexm.X/ of a supplement of socX inX containing a Sylow
2-subgroup of X:When S D socX is a sporadic simple group, the value ofm.X/
can be read from [2], where, for each of these groups, the list of the maximal
subgroups and their indices are given; the precise values are given in Table 1.
In few cases we need to know another integer n.X/ in�.X/, given in Table 2. For
a fixed prime p, let

ƒp D ¹i 2 I j p 2 �.P
¹2º
i .s//º:

If i 2 ƒ31; then 31 divide jSi j and Si 2 ¹J4;Ly;O’N;BM;M;Thº: Moreover,
312 does not divide jSi j so if n is odd, divisible by 31 and bi;n ¤ 0, then n D xri
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and v31.x/ D 1: Let mi D n.Si / if Si Š Th, mi D m.Si / otherwise. Since mi is
the smallest odd number divisible by 31 and equal to the index in Xi of a supple-
ment of Si , we get

w D min¹x 2 N j x is odd ; v31.x/ D 1 and bi;xri ¤ 0 for some i 2 I º

D min¹x 2 N j x is odd ; v31.x/ D 1 and bi;xri ¤ 0 for some i 2 ƒ31º

D min¹mi j i 2 ƒ31º:

But then by Proposition 2.3, the following Dirichlet series is rational:Y
i2ƒ31

�
1C

bi;wri

.wri /s

�
:

We have bi;wri < 0 ifmi D w; bi;wri D 0 otherwise. By applying Propositions 2.2
and 4.3, we get that ¹i 2 ƒ31 j mi D wº is a finite set, and this implies ƒ31 D ;:

Now consider ƒ23. Since ƒ31 D ;, if i 2 ƒ23, then

Si 2 ¹M23;M24;Co1;Co2;Co3;Fi23;Fi024º:

We can repeat the argument used to proved that ƒ31 D ;: Let mi D n.Si / if
Si Š Co1, mi D m.Xi / otherwise and let w D min¹mi j i 2 ƒ23º: By applying
Propositions 2.2 and 4.3, we get that ¹i 2 ƒ23 j mi D wº is a finite set, and this
implies ƒ23 D ;:

Now we consider ƒ11: Since ƒ31 [ƒ23 D ;; if i 2 ƒ11, then

Si 2 ¹M11;M12;M22; J1;HS;Suz;McL;HN;Fi22º:

Let mi D n.Xi / if Si Š Fi22 or Si Š Fi024; mi D m.Xi / otherwise, and let

w D min¹mi j i 2 ƒ11º:

As before, by applying Propositions 2.2 and 4.3, we get that ¹i 2 ƒ23 j mi D wº
is a finite set, and this impliesƒ11 D ;:Continuing our procedure, we consider the
setƒ17: if i 2ƒ17, then Si 2 ¹J3;Heº and we can takew Dmin¹m.Xi / j i 2ƒ17º
and deduce thatƒ17 D ;: Next we takew D m.Ru/ to proveƒ29 D ; and finally
we take w D m.J2/ to prove ƒ7 D ;:

Appendix: Exceptional cases

In this section, we give explicit formulae for P .2/X;S .s/ when X is an almost simple
group whose socle S is of Lie type over a field of characteristic 2 and �2.S/ � 5.
To achieve this we use Theorem 3.2 and the description of the polynomials TW .t/
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and TWJ
.t/ given in [1, Sections 9.4 and 14.2] and in [14, Section 3] (see in par-

ticular Table 1). Just to see an example, consider the case S D PSL4.2/. Then
I D ¹1; 2; 3º is the set of the nodes of the Dynkin diagram. According to [14, Ta-
ble 1]

TW .2/ D .2
4
� 1/.23 � 1/.22 � 1/ D 32 � 5 � 7:

Moreover,
TWJ

.2/ D .23 � 1/.22 � 1/ D 3 � 7

if J 2 ¹¹1; 2º; ¹2; 3ºº;

TWJ
.2/ D .22 � 1/.22 � 1/ D 32

if J D ¹1; 3º, and
TWJ

.2/ D .22 � 1/ D 3

if J is one of the three subsets of I of cardinality 1, TW;.2/ D 1: Hence

P
.2/
S .s/ D 1 � 2.3 � 5/.1�s/ � .5 � 7/.1�s/ C 3.3 � 5 � 7/.1�s/ � .32 � 5 � 7/.1�s/:

(i) S D PSL6.2/. If X contains a graph automorphism, then

P
.2/
X;S .s/ D 1 � .3

2
� 7 � 31/.1�s/ � .3 � 5 � 72 � 31/.1�s/ � .33 � 7 � 31/.1�s/

C 2.34 � 72 � 31/.1�s/ C .33 � 5 � 72 � 31/.1�s/

� .34 � 5 � 72 � 31/.1�s/:

If X does not contain graph automorphisms, then

P
.2/
X;S .s/ D 1 � 2.3

2
� 7/.1�s/ � .32 � 5 � 31/.1�s/ � 2.3 � 7 � 31/.1�s/

C 3.32 � 7 � 31/.1�s/ C 6.32 � 5 � 7 � 31/.1�s/

C .3 � 5 � 72 � 31/.1�s/ � 4.33 � 5 � 7 � 31/.1�s/

� 6.32 � 5 � 72 � 31/.1�s/ C 5.33 � 5 � 72 � 31/.1�s/

� .34 � 5 � 72 � 31/.1�s/:

(ii) S D PSL5.2/. If X contains a graph automorphism then

P
.2/
X;S .s/ D 1 � .3 � 5 � 31/

.1�s/
� .32 � 7 � 31/.1�s/ C .32 � 5 � 7 � 31/.1�s/:
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If X does not contain graph automorphisms, then

P
.2/
X;S .s/ D 1 � 2.31/

.1�s/
� 2.5 � 31/.1�s/ C 3.3 � 5 � 31/.1�s/

C 3.5 � 7 � 31/.1�s/ � 4.3 � 5 � 7 � 31/.1�s/

C .32 � 5 � 7 � 31/.1�s/:

(iii) S D PSL4.2/. If X contains a graph automorphism then

P
.2/
X;S .s/ D 1 � .3

2
� 7/.1�s/ � .3 � 5 � 7/.1�s/ C .32 � 5 � 7/.1�s/:

If X does not contain graph automorphisms, then

P
.2/
X;S .s/ D 1 � 2.3 � 5/

.1�s/
� .5 � 7/.1�s/ C 3.3 � 5 � 7/.1�s/ � .32 � 5 � 7/.1�s/:

(iv) S D PSL3.2/. If X contains a graph automorphism, then

P
.2/
X;S .s/ D 1 � .3 � 7/

.1�s/:

If X does not contain graph automorphisms, then

P
.2/
X;S .s/ D 1 � 2.7/

.1�s/
C .3 � 7/.1�s/:

(v) S D PSL3.4/. If X contains a graph automorphism, then

P
.2/
X;S .s/ D 1 � .3 � 5 � 7/

.1�s/:

If X does not contain graph automorphisms, then

P
.2/
X;S .s/ D 1 � 2.3 � 7/

.1�s/
C .3 � 5 � 7/.1�s/:

(vi) S D PSp6.2/. We have

P
.2/
X;S .s/ D 1 � .3

2
� 7/.1�s/ � .33 � 5/.1�s/ � .32 � 5 � 7/.1�s/

C 3.33 � 5 � 7/.1�s/ � .34 � 5 � 7/.1�s/:

(vii) S D U4.2/. We have

P
.2/
X;S .s/ D 1 � .3

3/.1�s/ � .32 � 5/.1�s/ C .33 � 5/.1�s/:

(viii) S D P�C8 .2/. We have

P
.2/
X;S .s/ D 1 � 3.3

2
� 5/.1�s/ � .3 � 52 � 7/.1�s/ C 3.33 � 52/.1�s/

C 3.33 � 52 � 7/.1�s/ � 4.34 � 52 � 7/.1�s/

C .35 � 52 � 7/.1�s/:
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X jX j m.X/

M11 24 � 32 � 5 � 11 11

M12 26 � 33 � 5 � 11 32 � 5 � 11

Aut.M12/ 27 � 33 � 5 � 11 32 � 5 � 11

M22 27 � 32 � 5 � 7 � 11 7 � 11

Aut.M22/ 28 � 32 � 5 � 7 � 11 7 � 11

M23 27 � 32 � 5 � 7 � 11 � 23 23

M24 210 � 33 � 5 � 7 � 11 � 23 3 � 11 � 23

J1 23 � 3 � 5 � 7 � 11 � 19 5 � 11 � 19

J2 27 � 33 � 52 � 7 32 � 5 � 7

Aut.J2/ 28 � 33 � 52 � 7 32 � 5 � 7

J3 27 � 35 � 5 � 17 � 19 34 � 17 � 19

Aut.J3/ 28 � 35 � 5 � 17 � 19 34 � 17 � 19

J4 221�33�5�7�113�23�29�31�37�43 112 � 29 � 31 � 37 � 43

HS 29 � 32 � 53 � 7 � 11 3 � 53 � 11

Aut.HS/ 210 � 32 � 53 � 7 � 11 3 � 53 � 11

Suz 213 � 37 � 52 � 7 � 11 � 13 33 � 5 � 7 � 11 � 13

Aut.Suz/ 214 � 37 � 52 � 7 � 11 � 13 33 � 5 � 7 � 11 � 13

McL 27 � 36 � 53 � 7 � 11 52 � 11

Aut.McL) 28 � 36 � 53 � 7 � 11 52 � 11

Ru 214 � 33 � 53 � 7 � 13 � 29 32 � 53 � 13 � 29

He 210 � 33 � 52 � 73 � 17 5 � 73 � 17

Aut.He/ 211 � 33 � 52 � 73 � 17 32 � 52 � 72 � 17

Ly 28 � 37 � 56 � 7 � 11 � 31 � 37 � 67 53 � 31 � 37 � 67

O’N 29 � 34 � 5 � 73 � 11 � 19 � 31 32 � 72 � 11 � 19 � 31

Aut.O’N/ 210 � 34 � 5 � 73 � 11 � 19 � 31 32 � 72 � 11 � 19 � 31

Co1 221 � 39 � 54 � 72 � 11 � 13 � 23 36 � 53 � 7 � 13

Co2 218 � 36 � 53 � 7 � 11 � 23 34 � 52 � 23

Co3 210 � 37 � 53 � 7 � 11 � 23 33 � 52 � 11 � 23

Fi22 217 � 39 � 52 � 7 � 11 � 13 37 � 5 � 13

Aut.Fi22/ 218 � 39 � 52 � 7 � 11 � 13 37 � 5 � 13

continued on next page
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X jX j m.X/

Fi23 218 � 313 � 52 � 7 � 11 � 13 � 17 � 23 34 � 17 � 23

Fi024 221 �316 �52 �73 �11�13�17�23�29 313 � 5 � 72 � 13 � 17 � 29

Aut.Fi024/ 222 �316 �52 �73 �11 �13 �17 �29 313 � 5 � 72 � 13 � 17 � 29

HN 214 � 36 � 56 � 7 � 11 � 19 34 � 54 � 7 � 11 � 19

Aut.HN/ 215 � 36 � 56 � 7 � 11 � 19 34 � 54 � 7 � 11 � 19

Th 215 � 310 � 53 � 72 � 13 � 19 � 31 38 � 52 � 7 � 13 � 19

BM 241 � 313 � 56 � 72 � 11 � 13 � 17 �

19 � 23 � 31 � 47

37 � 53 � 7 � 13 � 17 � 19 � 31 � 47

M 246 � 320 � 59 � 76 � 112 � 133 � 17 �

19 � 23 � 29 � 31 � 41 � 47 � 59 � 71

311 � 55 � 74 � 11 � 132 � 17 � 19 �

29 � 31 � 41 � 47 � 59 � 71

Table 1. Sporadic simple groups.

X n.X/

Co1 34 � 52 � 7 � 11 � 13 � 23

Fi22 35 � 5 � 7 � 11 � 13

Fi024 39 � 5 � 11 � 72 � 13 � 17 � 23 � 29

Aut.Fi024/ 39 � 5 � 11 � 72 � 13 � 17 � 23 � 29

Th 38 � 52 � 7 � 13 � 19 � 31

Table 2. The integer n.X/.
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