
Using Distributed Reinforcement Learning for
Resource Orchestration in a Network Slicing

Scenario
Federico Mason∗, Gianfranco Nencioni†, Andrea Zanella∗

∗{masonfed, zanella}@dei.unipd.it, †gianfranco.nencioni@uis.no
∗ Department of Information Engineering, University of Padova - Padova, Italy

† Department of Electrical Engineering and Computer Science, University of Stavanger - Stavanger, Norway

Abstract—The Network Slicing (NS) paradigm enables the
partition of physical and virtual resources among multiple logical
networks, possibly managed by different tenants. In such a
scenario, network resources need to be dynamically allocated
according to the slices’ requirements. In this paper, we attack
the above problem by exploiting a Deep Reinforcement Learning
approach. Our framework is based on a distributed architecture,
where multiple agents cooperate towards a common goal. The
agents’ training is carried out following the Advantage Actor
Critic algorithm, which allows to handle continuous action
spaces. By means of extensive simulations, we show that our
approach yields better performance than both a static allocation
of system resources and an efficient empirical strategy. At the
same time, the proposed system ensures high adaptability to
different scenarios without the need for additional training.

Index Terms—Network slicing; resource allocation; distributed
machine learning; deep reinforcement learning.

©2021 IEEE. This paper is under review at IEEE Transaction on Networking. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

I. INTRODUCTION

THE fifth generation of cellular networks (5G) aims at
supporting different applications with very specific re-

quirements over the same infrastructure. In this perspective,
the 3GPP consortium has identified three main service classes,
namely enhanced Mobile BroadBand (eMBB), Ultra Reliable
Low Latency Communication (URLLC) and massive Machine
Type Communication (mMTC) [1]. Specifically, eMBB is
expected to provide very high throughput in both downlink
and uplink, while URLLC appeals to applications with strict
latency and reliability constraints, like robotic surgeries, tactile
Internet, and emergency communications [2].

Traditional telecommunication networks are often based
on a rigid architecture and are not apt to support such ser-
vices [3]. To overcome this problem, the research community
has introduced the concepts of Software Defined Networking
(SDN) and Network Function Virtualization (NFV), which
can make networks more flexible and adaptable to different
requirements [4]. The NFV principle makes it possible to
execute network functions over virtual machines in the Cloud.
Instead, SDN separates the control plane from the forwarding
plane, enabling the dynamic routing of data flows.

This work was supported by Consortium GARR through the “Orio Carlini”
scholarship 2019. A preliminary and reduced version of this manuscript has
been submitted to the IEEE Mediterranean Communication and Computer
Networking Conference, June 2021.

In particular, the SDN and NFV concepts are key enablers of
the Network Slicing (NS) paradigm, which makes it possible
to define multiple virtual networks over the same physical
infrastructure [5], [6]. Under this vision, a slice consists
of a virtual overlay network designed to support commu-
nication services with similar characteristics [7]. Hence, a
slice supporting eMBB applications (e.g., video streaming) is
characterized by very high bit rate, while a slice supporting
URLLC applications (e.g., telesurgery) guarantees extremely
high reliability and low latency.

If defined over the same infrastructure, different slices
will contend for the same resources, which can be both
physical (e.g., optical links) and virtual (e.g., virtual baseband
processing units) [8]. In general, such resources are acquired
by the slice broker (i.e., the body in charge of initializing
and orchestrating slices) from the infrastructure providers (i.e.,
the owners of the physical elements of the network) [9].
Then, slices are assigned to the slice tenants (e.g., virtual
network operators), which offer slice services to the end-
users. The amount of resources that are needed to support the
slice services are determined by the so-called Service Level
Agreement (SLA) between the slice tenant and broker [10].
Therefore, a fundamental challenge in NS systems is how to
distribute resources among the different slices in an efficient
way, ensuring that all the SLAs are satisfied [11].

In this work, we consider a scenario where two slice classes
(i.e., eMBB and URLLC), with dynamic requirements in term
of throughput, computational power, memory capacity, and de-
lay, are instantiated over the same network infrastructure. Each
slice is composed by multiple information flows (with static
routes) that contend for the bandwidth provided by network
links, and the computational and memory resources provided
by the computing facilities connected with the network nodes.
The problem is to dynamically distribute the network resources
among the active information flows, in accordance to the
characteristic of the slices which they belong to.

The naive approach consists in statically allocating commu-
nication and computational resources to the different slices.
However, this method cannot exploit the statistical multiplex-
ing of the information flows and, consequently, may lead
to greater over-provisioning costs and low utilization of the
available resources. On the other hand, conventional resource
allocation strategies are often unsuitable because cannot un-

ar
X

iv
:2

10
5.

07
94

6v
1

 [
cs

.M
A

]
 1

7
M

ay
 2

02
1

derstand the specific features of different slices, neither deal
with the high complexity of NS environments.

Here, we propose a machine-learning based approach and
attack the problem by exploiting the Deep Reinforcement
Learning (DRL) paradigm, which combines Reinforcement
Learning (RL) algorithms and Neural Networks (NNs) to find
strategies for the management of complex environments [12].
More specifically, we design a distributed DRL system, where
multiple agents collaborate to allocate network resources
among the different slices running over the same infrastruc-
ture. The continuous interaction between such learning units
makes it possible to increase both the system efficiency and
adaptability to different scenarios. The main contributions of
our work consists in the following points:
• We introduce a general network model that makes it

possible to model multiple communication slices running
over the same infrastructure in different configurations,
and is apt to represent a large variety of scenarios.

• We develop a novel DRL-based strategy to dynamically
orchestrate resource allocation to multiple slices. The
proposed approach is characterized by high flexibility
and can be implemented in different network topologies
without the need for additional training.

• We show how transfer learning can improve the perfor-
mance of the system, by specializing the strategy learned
by the agents in a scalable fashion.

The performance of the proposed strategy is assessed in
multiple scenarios, including also a real network topology, and
against a Meta-Heuristic technique and an efficient empirical
algorithm.

The remainder of the work is organized as follows. Sec. II
discusses the most relevant works in the considered field.
Sec. III describes the system model used for our analysis.
Sec. IV recalls the fundamentals of DRL and describes our
learning architecture. Sec. V presents the resource allocation
strategies used a benchmark. Sec. VI describes the simulation
scenario and presents the results of our research. Finally,
Sec. VII concludes the paper with a recap of the lessons
learned and some ideas for future work.

II. RELATED WORK

Future telecommunication systems will be characterized
by the progressive softwarization of network functionalities
and increase of service heterogeneity. To deal with such a
scenario, it is necessary to design new strategies enabling
the fully sharing of physical and virtual resources by means
of the NS paradigm. In this respect, the authors of [13]
analyze a 5G scenario with end-to-end slices contending for
the virtual resources offered by data centers, proposing a
fully distributed algorithm to maximize system performance.
In [14], Leconte et al. design a NS model where multiple
traffic flows share network bandwidth and cloud processing
units; hence, they implement the Alternating Direction Method
of Multipliers [15] to determine the best resource allocation
scheme. In [16] it is adopted a similar approach in a system
where multiple network operators share both licensed and
unlicensed spectrum. Besides, the authors of [17] focus on the

problem of offloading user tasks to edge computing facilities
and design a novel algorithm to optimize resource utilization.
Finally, Fossati et al. propose a framework to generalize multi-
resource allocation techniques according to different fairness
goals, considering also the critical scenario where resources
are not sufficient to satisfy all the slices’ demands [18].

To address the many challenges related to the NS man-
agement, the scientific community has shown great interest
in implementing Machine Learning (ML) techniques in such
scenarios. In [19], the authors exploit NNs to predict the
traffic evolution in a mobile core-network, thus optimizing
the routing and the wavelength assignment according to the
SDN principles. Another example can be found in [20], where
generative adversarial NNs are used to minimize the noise in
the measurement of SLA satisfaction. Instead, the authors of
[21] design a system based on convolutional NNs to associate
users with network slices according to the required Quality of
Service (QoS). Finally, in [22], it is implemented a distributed
architecture predicting the amount of data that has to be cached
in the network edge to address the user demands.

Among all the ML techniques that are used for slice
orchestration, DRL is particularly appreciated since its ability
to learn complex strategies by trial and error, without the need
of labeled data. In [23], it is defined a novel resource allocation
policy, based on Q-Learning [24], that jointly handles the
bandwidth, computational and storage requirements of slice
users. Instead, in [25], Ayala-Romero et al. investigates the
orchestration of virtualized radio resources by means of a
DRL framework that encodes traffic data features into resource
control decisions. A similar approach is considered in [26],
where virtual network functions are dynamically reconfigured
in order to maximize the QoS of slice users and minimize
the overall system cost. Besides, Abiko et al. develop a multi-
agent architecture to distribute radio resource blocks and prove
its adaptability to a variable number of slices [27]. Finally,
the authors of [28] propose a DRL system to balance the
communication requirements of eMBB and URLLC slices;
particularly, an Actor-Critic algorithm is used to schedule
URLLC transmissions without degrading the performance of
the eMBB flows.

Despite the growing interest in this domain, many open
questions still need investigation. Most of the aforementioned
approaches, indeed, consider that it is always possible to man-
age the network in a centralized fashion, without addressing
the problem of optimize distributed systems where the network
status is only partially observable. For instance, the authors
of [23] assume that the slice requirements can be always
satisfied by the network infrastructure, which is seen as an
unique element with an aggregated rate, computational and
storage capacity. Instead, the work presented in [26] focuses
on the allocation of virtual network functions, considering a
standardized system that can be hardly be adapted to different
scenarios. Besides, the authors of [28] analyze the distribution
of the radio frequency blocks in the access network, without
taking into account the interaction between the other elements
of the network. Finally, neither of the above works thoroughly
investigate the adaptability of the proposed solutions to dif-
ferent network topologies, which is a key aspect of slice

orchestration.
The great heterogeneity of future telecommunication sys-

tems requires the implementation of more flexible strategies,
which enable the coexistence of multiple services and can
promptly adapt to new resource demands. A very promis-
ing solution is to exploit hierarchical reinforcement learning,
which is an approach that has not yet been fully investigated in
this context. Moreover, the transfer learning paradigm can be
used to improve the training of the learning agents [29], thus
increasing the system adaptability to multiple scenarios. Our
work develops along with these directions, with the final aim
of designing a fully scalable DRL system that can be separated
into smaller units, capable of both acting autonomously and
cooperating to orchestrate network resources under multiple
working conditions.

III. SYSTEM MODEL

In this section, we model a NS environment where multiple
information flows contend for the same physical and virtual
network resources. We adopt a fluid traffic model, where the
traffic through a link is viewed as a fluid stream of data with
a certain flow rate. In particular, we assume that network
slices are organized hierarchically, so that more flows can
be compound into an aggregate slice, possibly managed by a
different tenant. The resulting framework is thus very flexible,
and can model the interactions among slice tenants, and with
slice brokers. For the reader convenience, we report the main
parameters of our model in Tab. I.

A. Slice Model

In our system, we define a network slice as an aggregation of
information flows with similar behaviors and requirements. We
denote by Σ the set including all the different classes of slices,
and by Φ the set including all the information flows. Given
σ ∈ Σ, we indicate by Φσ the set of all information flows
belonging to σ. Each information flow φ ∈ Φ is characterized
by a tuple of parameters, namely:
• the flow endpoints Eφ = (εiφ, ε

e
φ), which correspond to the

network nodes where the users’ data enter/exit the slice
and usually correspond to base stations, edge routers of
autonomous systems, or servers;

• the resource demand vector rφ = [ηφ, cφ,mφ, δφ], whose
elements are the requirements in terms of throughput
(η), computational power (c), memory capacity (m), and
delay (δ) of the flow;

• the performance function Fφ(·), which describes the per-
formance of the considered information flow according
to the level the SLA is fulfilled.

We assume that Eφ, Fφ(·) and δφ do not change for the
whole duration of flow Φ, while ηφ, cφ and mφ may change
in time depending on the dynamic of the data source. Note
that the throughput is measured in bits per second [b/s],
the memory capacity in bits [b], and the delay in seconds
[s]. Finally, we assume the computational requirements are
somehow related to data generated by the source. We hence
define the computational power as the speed at which data are

processed in the computing facilities, and expressed it in bits
per second [bps].

In our framework, the time is discretized in timeslots of T
seconds, and the information flow parameters can change only
slot by slot. We write rφ(t) to indicate the resource demand
vector of φ during timeslot t, while we write r̂φ(t) = [η̂φ(t),
ĉφ(t), m̂φ(t), δ̂φ(t)], to indicate the resources assigned to φ
during timeslot t. Note that rφ(t) is determined by the slice
class σ that φ belongs to, while r̂φ(t) is determined by the
resource allocation strategy.

As mentioned, we consider two different slice classes:
eMBB (e) and URLLC (u). In particular, given Φe (i.e., the set
of the eMBB flows) and Φu (i.e., the set of the URLLC flows),
we have Φ = Φe ∪Φu and Φe ∩Φu = ∅. Hence, all the infor-
mation flows belonging to the same slice σ shares the same
performance function Fσ(·), i.e., ∀φ ∈ Φσ, Fφ(·) = Fσ(·). In
general, Fσ(·) depends on both r and r̂, and returns a value
in [0, 1], where 1 means that the SLA has been completely
fulfilled. We assume that Fσ(·) is a combination of four
functions fσ(·), each of those returns the flow performance
for a specif resource ρ ∈ {δ, η, c,m}. Particularly, fσ(·) takes
as input xρ, which is the level of fulfillment of the flow
demand, and can take a different shape as long as fσ(x) = 1 ∀
x ≥ 1, i.e., the performance is maximized anytime the allotted
resource equals or exceeds the request.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

f σ
(x
)

eMBB
URLLC

Fig. 1: Resource performance function.

For what concerns the eMBB slice, we assume

Fe(r, r̂) = αδfe

(
δ

δ̂

)
+

∑
ρ∈{η,c,m}

αρfe

(
ρ̂

ρ

)
(1)

where αη, αc, αm, and αδ are non negative and add up to 1.
Hence, Fe(·) is the weighted sum of fe(xρ), which is a convex
function defined as

fe(x) =

{
β1x+ β2x

2 + β3x
3, x ∈ [0, 1);

1, x ≥ 1.
(2)

Particularly, β1, β2 and β3 are scalar parameters ensuring that
fe(·) is concave and monotonic increasing for x ∈ [0, 1].
The smooth and concave shape of fe(·) shown in Fig. 1
embodies the flexibility of the SLA for eMBB services. Hence,

TABLE I: Model parameters.

Parameter Description Parameter Description Parameter Description

φ ∈ Φ Information flow εiφ, ε
e
φ Flow endpoints Bl Link rate capacity [bps]

σ ∈ Σ Slice class rφ Flow demand vector Ccn Node computational capacity [bps]
l ∈ L Link ρφ Resource required by φ Cmn Node memory capacity [b]
n ∈ N Node ρ̂φ Resource assigned to φ bil,φ Input flow rate [bps]
η Throughput [bps] fσ(·) Resource performance function bol,φ Output flow rate [bps]
c Computational power [bps] Fσ(·) Flow performance function τn Node routing delay [s]
m Memory capacity [b] Ω System utility Dl,φ Data of φ queued in l [b]
δ Delay [s] bl,φ Bit rate assigned by l to φ [bps] τql,φ Queuing delay of φ in l [s]
t Discrete time cn,φ Computation assigned by n to φ [bps] ττl,φ Transmission delay of φ in l [s]
T Timeslot duration [s] mn,φ Memory assigned by n to φ [b] τpl Link propagation delay [s]

we assume that the quality of experience of the slice users
degrades rather graciously when the SLA is violated, as in the
case of video-streaming applications [30].

Conversely, URLLC flows have very strict requirements
that, if infringed, cause the sudden degradation of the re-
lated services. This is intended to represent the fragility of
applications such as robotic surgery, which do not tolerate
any increase in the communication delay. For this reason, the
performance function for this class of services is defined as
the product of step functions fu(·) (shown in Fig. 1):

Fu(r, r̂) = fu

(
δ

δ̂

)
×

∏
ρ∈{η,c,m}

fu

(
ρ̂

ρ

)
, (3)

where

fu(x) =

{
0, x ∈ [0, 1);

1, x ≥ 1.
(4)

In this case, Fu(·) drops to zero as soon one single resource
requirement is not met.

We remark that our system can be easily extended by
defining other slices with different performance functions. Par-
ticularly, the slice broker can take advantage of the generality
of our system and, for instance, change the composition of the
slice set, in order to address the requirements of new tenants
in different scenarios.

Given the functions Fσ(·) of all slices σ ∈ Σ, the system
utility is obtained as

Ω =
|Φe|
|Φ|

Ωe +
|Φu|
|Φ|

Ωu, (5)

where
Ωσ =

1

|Φσ|
∑
φ∈Φσ

Fσ(rφ, r̂φ), σ ∈ Σ, (6)

and |X | represents the cardinality of X . We observe that Fσ(·)
always takes values in [0, 1], so that we also have Ω ∈ [0, 1].

Besides, we can define the system utility for a specific type
of resource ρ as

Ωρ =
|Φe|
|Φ|

Ωρe +
|Φu|
|Φ|

Ωρu, (7)

where

Ωρσ =

{
1
|Φσ|

∑
φ∈Φσ

fσ (ρ/ρ̂) , if ρ = δ;
1
|Φσ|

∑
φ∈Φσ

fσ (ρ̂/ρ) , otherwhise;
(8)

and, as before, σ ∈ Σ.

B. Network Model

Our model is based on two different network elements,
namely node and link, as detailed below.

• We distinguish two types of nodes: access nodes are
located at the network edge and connect users with the
rest of the network; core nodes are located in the core
of the network and forward the aggregated data flows
coming from the access nodes. Each node n is equipped
with a certain amount of computational Ccn and memory
Cmn resources, which may differ between access and core
nodes.

• We call link any connection l between two different nodes
of the network (fronthaul or backhaul). This element
is provided with a certain bit rate Bl to support the
communications between the connected nodes.

From now on, we denote by N and L the set of network nodes
and links, respectively. Particularly, N can be partitioned into
Na, which includes the access nodes, and Nc, which includes
the core nodes.

In our model, each information flow φ ∈ Φ is initialized
between two access nodes and passes through a certain number
of core nodes and links. Let Φl and Φn be the set of
information flows that cross link l ∈ L and node n ∈ N ,
respectively. We assume that each flow φ always goes through
the same network elements from εiφ to εeφ, which implies that
Φl and Φn do not change in time ∀ l ∈ L, n ∈ N .

We observe that, in general, slices can be activated and
deactivated on-demand, thus varying the number of flows in
the network. Nonetheless, once established, the path of an in-
formation flow is generally maintained for the whole duration
of the connection, unless some links become unavailable or the
communication end points change. In this case, the resource
allocation framework will react as if the flow was interrupted
an a new one was started along the new path. We assume that
such events are rare and do not impact significantly on the
performance of the proposed scheme.

Given a link l ∈ L, each flow φ ∈ Φl gets assigned a portion
bl,φ of the link bit rate Bl. Similarly, each node n ∈ N assigns
to φ an amount cn,φ and mn,φ of its computational and storage
resources. Consequently, any resource allocation pattern must

comply with the following feasibility conditions:∑
φ∈Φl

bl,φ ≤ Bl, ∀ l ∈ L; (9)∑
φ∈Φn

ρn,φ ≤ Cρn, ∀ n ∈ N , ρ ∈ {c,m}. (10)

Given a certain allocation of network resources, we want to
compute r̂φ, ∀ φ ∈ Φ. We denote by Nφ and Lφ the ordered
set of network nodes and links crossed by φ, respectively.
In particular, the first and the last element of Nφ constitute
the flow endpoints. We assume that the computational and
memory requests of a flow φ ∈ Φ can be distributed among
all the nodes in Nφ, so that

ρ̂φ =
∑
n∈Nφ

ρn,φ, ∀ ρ ∈ {c,m}. (11)

To determine the throughput η̂φ, instead, we need to con-
sider the output flow rate bol,φ(t) at time t from each link l ∈ L.
Indeed, the throughput corresponds to the output rate from the
last link λ along the path:

η̂φ(t) = boλ,φ(t). (12)

In turn, bol,φ(t) depends on both the bit rate bl,φ(t) assigned
to φ by l, the input flow rate bil,φ(t) from the upstream link,
and the amount of data of φ queued at node n at the end of
the previous slot, which is denoted by Dl,φ(t− 1). The input
flow rate bil,φ(t) is given by

bil,φ(t) =

{
bo`,φ(t), if ` is the upstream link of l in Lφ;

ηφ(t), if l is the first link in Lφ.
(13)

The output flow rate bol,φ(t) is then given by the minimum
between the allocated rate bl,φ(t) and the sum of the incoming
and queued traffic, i.e.,

bol,φ(t) = min

{
bl,φ(t),

Dl,φ(t− 1)

T
+ bil,φ(t)

}
. (14)

The variable Dl,φ(t) is set to 0 for any time t before the
initialization of the flow, and then it is updated as

Dl,φ(t) = max
{

0, Dl,φ(t− 1) + T (bil,φ(t)− bl,φ(t))
}
.
(15)

Note that the value of Dl,φ increases as the assigned rate bl,φ
is lower than the input rate bil,φ.

For what concerns the delay experienced by φ, we have

δ̂φ(t) =
∑
n∈Nφ

τn +
∑
l∈Lφ

τl,φ(t), (16)

where τn is a positive value representing the delay due to
routing operations at node n, and it is assumed constant over
time. Instead, τl,φ(t) is computed as

τl,φ(t) = τ ql,φ(t) + τ τl,φ(t) + τpl , (17)

where τ ql,φ, τ τl,φ, and τpl represent the queuing, transmission,
and propagation delays of φ through link l, respectively. In
particular, τ ql,φ(t) is the average queuing time of a bit in l
during t, and is given by (see the Appendix)

τ ql,φ(t) =
2Dl,φ(t− 1)− T (bol,φ(t)− bil,φ(t))

2bl,φ(t)
. (18)

Instead, τ τl,φ(t) is the reciprocal of bol,φ(t), i.e.,

τ tl,φ(t) =
1

bol,φ(t)
. (19)

Finally, τpl is a positive and constant value that depends on
the physical characteristic of the communication link. We
highlight that, despite we consider a discrete time-frame, δ̂φ
is a continuous value.

Our aim is to determine the best resource allocation to
maximize the system utility as given in (5). Mathematically,
we want to determine r̂φ, bl,φ, cn,φ, mn,φ, bil,φ, bol,φ, τ ql,φ, and
τ τl,φ, ∀ φ ∈ Φ, n ∈ N , l ∈ L that maximize Ω, under the
constraints given in (9)-(19).

The many constraints and the non-convexity of Ω make
the problem very complex to solve. In particular, the optimal
solution can be determined only if a central controller is
provided with all the system variables at any timeslot. Then,
conventional optimization tools or meta heuristic techniques
can be used to identify the best resource allocations scheme.
However, the first may converge on local maxima, while the
latter can be unable to find a solution within a reasonable
time frame. If the resource demands of the information flows
evolve quickly in time, a valuable approach is to implement
distributed control algorithms that can promptly take new
actions, albeit with a partial view on the overall network. In
particular, the DRL paradigm is particularly suitable for this
problem since it can provide high-performance solutions to
carry our complex control tasks also when the environment is
partially observable.

IV. LEARNING STRATEGY

In order to efficiently orchestrate communication resources
in a NS scenario, we develop a distributed architecture based
on multiple learning units, named local controllers, that col-
laborate to maximize the overall system utility given by (5).
In the rest of the section, we will recall the main principles
of DRL, and present the framework used to train the learning
agents of our architecture.

A. Deep Reinforcement Learning

The RL paradigm is one of the main branches of ML.
Particularly, RL does not solely aim at solving classification
or regression problems, but it enables the development of
complex strategies to maximize the long-term performance of
a target system [31]. Moreover, RL algorithms do not need
to have labeled data to carry out the training phase, but they
interact with a learning environment where agent actions are
associated to specific rewards.

In a RL scenario, the target system is modeled as a Markov
Decision Process (MDP), which is a powerful mathematical
tool used to represent decision-making problems [32]. This
framework requires to define a state space S of the environ-
ment, an action space A of the learning agent, and a reward
function r : S × A → R. During any timeslot t, the learning
agent observes the system state st ∈ S , performs an action
at ∈ A and receives a reward rt ∈ R. Hence, the future state

st+1 depends uniquely on the previous state st and the agent
decision at.

The agent chooses new action according to a policy π :
S × A → [0, 1], where π(s, a) is the probability to take the
action a when the state s is observed. The aim of any RL
algorithm is to determine a policy that maximizes the system
long-term reward, which is

R =

∞∑
t=0

λtrt, (20)

where λ ∈ [0, 1] is the so-called discount factor. Particularly,
if λ → 0, the algorithm favors the actions that can acquire
high reward in a short time; instead, if λ → 1, the algorithm
aims at determining the actions that bring more benefit in the
future.

Given a policy π, a RL algorithm associates each possible
state s with a value Vπ(s). The function Vπ(·) is called state
value function and represents the expected cumulative reward
that is achieved following the actions of π from state s. In
other words, we have

Vπ(s) = E [R|s, π] . (21)

As the agent explores the learning environment, the values of
Vπ(s) and the policy itself are updated. In this perspective,
the optimal policy π∗ provides the maximum value of Vπ(s)
∀ s ∈ S, i.e.,

Vπ∗(s) = max
π

Vπ(s), ∀ s ∈ S. (22)

If the state and action spaces get too complex, conventional
RL approaches fail to determine the optimal policy because of
the curse of dimensionality [33]. To address such a problem,
the DRL paradigm allows to approximate the state value
function and the optimal policy by deep NNs. In particular,
DRL algorithms are capable of handling continuous state and
action spaces, which means that |S × A| → ∞.

B. Learning Architecture

In this work, we adopt an Actor Critic (AC) approach [34],
which involves the learning of the optimal policy by two
different units. The first is named actor and approximates the
optimal policy πθ, parameterized by θ; the latter is named
critic and approximates the value function Vγ , parameterized
by γ. Hence, the actor is trained to compute the action at that
the policy πθ takes in a state st; the critic is trained to compute
the expected long term reward that is obtained following the
policy πθ from st.

To carry out the system training, we exploit the Advantage
Actor Critic (A2C) algorithm, which has shown to provide sta-
ble DRL solutions in very complex scenarios [35]. The critic
is trained to minimize the function Lc(st, at) = A(st, at)

2,
where

A(st, at) = rt + λVγ(st+1)− Vγ(st). (23)

Particularly, the function A : S ×A → R is called advantage
and returns the reward gain obtained by choosing action at

in state st. Conversely, the actor is trained to minimize the
function

La(st, at) = −∇θlogπθ(st, at)A(st, at)
2 − κH(πθ), (24)

where ∇θ is the gradient with respect to θ, πθ(st, at) is the
probability of taking action at in state st, H(πθ) is the entropy
of πθ, and κ is a scalar value. As suggested in [35], the
actor loss function depends linearly on the policy entropy
H(πθ). Particularly, we can promote the exploration of the
action space by increasing κ since, in such a case, the actor
gain benefits to take random actions. Instead, as κ → 0, the
actor will choose actions that are expected to bring the highest
reward according to the current experience.

We highlight that A2C enables to consider continuous action
spaces: this is not possible with traditional Reinforcement
learning algorithms (e.g., Q-Learning) that, instead, can only
take actions from discrete sets. Besides, the A2C algorithm
supports an online training phase and, consequently, allows
the agents to continuously refine the target policy while it is
being used in the real system. Therefore, the slice broker does
not need to train a new system from scratch every time the
network conditions change since the policy will dynamically
adapt to the new conditions as time passes by.

URLLC
agents

eMBB
agents

Node
controllers

Link
controllers

Training
manager

Network

eM
B

B
fl
ow

eM
B

B
fl
ow

U
R

L
L
C

fl
ow

eM
B

B
fl
ow

U
R

L
L
C

fl
ow

•A

ge
nt

 tr
aining

•Controller deployment

Γeb
Γec

Γem

Γub
Γuc

Γum

ΓucΓc

ΓebΓ

ΓumΓ

ΓebΓ ΓubΓ

ΓecΓcΓe
mΓ

•Distributed
execution

Fig. 2: Learning Architecture.

Our learning architecture (shown in Fig. 2) provides a
different controller for each information flow and network
element. From an operational point of view, the total number
of local controllers depends on the network topology and
the cardinality of Φ. Practically, the local controllers are all
replicas of 3× |Σ| learning agents. During the training phase,
we design a tuples of agents (Γbσ , Γcσ , Γmσ) for each different
slice σ ∈ Σ: the agent Γbσ is trained to orchestrate the bit rate of
each information flow φ ∈ Φσ in each link l ∈ L; instead, Γcσ
and Γmσ are trained to orchestrate the computation and memory
resources of each information flow φ ∈ Φσ in each node
n ∈ N . Practically, the training phase is performed by a central
entity, named training manager, which collect the system
information and update the learning architecture accordingly.
Then, copies of Γbσ , Γcσ , and Γmσ will be instantiated in each
network element crossed by any flow φ ∈ Φσ .

According to the A2C algorithm, each learning agent is
composed by two units, i.e., the actor and the critic, which are

implemented by means of NNs. Particularly, we consider an
architecture with two hidden layers and the Rectifier Linear
Unit (ReLU) as activation function [36]. The output of the
actor is the amount ρ∗ of resources that the local controller
demands, while that for the critic is the expected future reward.
The size of the NN input varies according to the type of
resources that has to be managed, as explained in the next
subsection.

C. Observations and Actions

In our system, each local controller has full knowledge of
the element where it is installed, while it has a limited view
on the network, which implies that the system state is only
partially observable [37]. Let us consider a local controller
managing the rate resources of a flow φ in a link l. At the
beginning of each timeslot, such a controller is provided with
two vectors representing the status of the information flow and
the network element that is associated with.

The first vector gives the state of φ at the beginning of
timeslot t:

sφ(t) = [rφ(t), r̂φ(t− 1)], (25)

where rφ(t) and r̂φ(t−1), defined in Sec. III, are the resources
requested and granted by φ at the beginning of timeslot t and
t−1, respectively. We observe that r̂φ(t−1) can be computed
only knowing the aggregate amount of network resources
assigned to φ by the network elements of its routing path.
Therefore, sφ(t) needs to be shared among all the controllers
assigned to φ at the beginning of each timeslot t. However, the
size of sφ(t) is negligible with respect to the rate requirements
of the slices, and, therefore, can be transmitted within the user
data plane of φ, without degrading the performance of our
system.

The second vector provides the state of the rate resources
of φ in l at the beginning of timeslot t:

sl,φ(t) = [Bl, τl,φ(t− 1), Dl,φ(t− 1), b∗l,φ(t− 1),

bl,φ(t− 1), bel (t− 1), bul (t− 1)],
(26)

where bσl (t − 1) is the aggregate rate demanded in l by
all the flows of class σ during timeslot t − 1, while the
other parameters were defined in Sec. III. We highlight that
this information is provided by the considered link l and,
consequently, the knowing of sl,φ(t) does not require any
additional communication within the network. Hence, at the
beginning of timeslot t, the link controller takes sφ(t) and
sl,φ(t) as input and returns b∗l,φ(t), which is the bit rate
demanded by φ in l during t.

When considering a controller associated to a node n and
a flow φ we use the same approach and, depending on the
resource ρ ∈ {c,m} we want to allocate, we substitute (26)
with scn,φ(t) or smn,φ(t), which are the states of the computation
and memory resources assigned to φ by node n. In particular,
scn,φ(t) or smn,φ(t) are defined as

sρn,φ(t) = [Cρn, ρ
∗
n,φ(t− 1), ρn,φ(t− 1),

ρen(t− 1), ρun(t− 1)],
(27)

where ρσn(t − 1) is the aggregate amount of resource ρ
demanded in node n by all the flows of class σ during timeslot

t − 1. As before, the node controller takes sφ(t) and sρn,φ(t)
as input and returns ρ∗n,φ(t), with ρ ∈ {c,m}, which is the
amount of computational (or memory) capacity demanded by
φ in n during t.

D. Reward Function

In accordance to the RL paradigm, we need to define a
reward function r(·) that represents the benefit generated by
each possible state-action pair of the policy. In particular,
to maximize the overall utility, each local controller should
demand enough resources to maximize the performance of
the flow φ it is in charge of, without subtracting too many
resources to the other flows. In our system, given a controller
associated to a link l ∈ L and a flow φ ∈ Φl, the reward at
time t is given by

rl,φ(t) =γ0

(
fσφ

(
ηφ(t)

η̂φ(t)

)
+ fσφ

(
δ̂φ(t)

δφ(t)

))
+

γ1

|Φl|
∑
ψ∈Φl

(
fσψ

(
ηψ(t)

η̂ψ(t)

)
+ fσψ

(
δ̂ψ(t)

δψ(t)

))
,

(28)

where σφ is the slice class that φ belongs to, while γ0 and
γ1 are positive scalar values. In particular, γ0 weights the
throughput and delay performance of flow φ, while γ1 weights
the average throughput and delay performance of all the other
flows crossing link l.

Similarly, a controller assigned to a node n and a flow φ is
rewarded according to

rρn,φ(t) = γ0fσφ

(
ρφ(t)

ρ̂φ(t)

)
+

γ1

|Φn|
∑
ψ∈Φn

fσψ

(
ρψ(t)

ρ̂ψ(t)

)
, (29)

where ρ ∈ {c,m}, while the scalar values γ0 and γ1 have the
same role as before.

Therefore, the reward function consists of the weighted
sum of two terms: the first reflects the performance of the
flow targeted by the agent, while the second represents the
aggregate performance of all flows that share that network
element. With such a mixed reward function, the agent will
hence attempt to improve the quality of the targeted flow, but
without unduly penalizing other flows.

V. BENCHMARK STRATEGIES

In this section, we describe the resource allocation strategies
that we use as benchmark for our model. The first is an em-
pirical algorithm, which tries to fairly allocate communication
and processing resources in each network allocation. The latter
is based on meta-heuristic optimization and performs a static
allocation of network resources.

A. Empirical Strategy

Similarly to our approach, the empirical strategy implements
a distributed resource allocation scheme. At the beginning of
timeslot t, each flow φ crossing link l demands a bit rate
sufficient to both satisfy the current throughput requirement
and transmit any buffered data, i.e.,

b∗l,φ(t) = ηφ(t) +
Dl,φ(t− 1)

T
. (30)

For what concerns the computation and memory allocation,
each flow φ distributes its requests among the nodes along its
path, proportionally to their capacity. More specifically, the
amount of resources required to node n is equal to

ρ∗n,φ(t) = χn,φρφ(t), (31)

where ρ ∈ {c,m}, and χn,φ is computed as

χn,φ =
Cρn∑

k∈Nφ C
ρ
k

. (32)

We highlight that, to compute χn,φ, it is necessary to known
the computation and storage capacities of each node n ∈ Nφ.
Such an information is not provided to the local controllers
of the DRL strategy. Hence, the empirical strategy has an
advantage with respect to our learning framework since it uses
information that is generally not available in a fully distributed
approach.

We observe that, either using the empirical or the DRL
strategy, network elements may be not able to satisfy all the
requests they receive. Particularly, the total aggregated amount
of resources that is demanded to a link l (or a node n)
may exceed its overall capacity. Hence, we need to map the
demanded resources b∗l,φ, c∗n,φ, m∗n,φ to the assigned resources
bl,φ, cn,φ, mn,φ, ∀ l ∈ L, n ∈ N , ensuring that the feasibility
constraints (9) and (10) are always satisfied.

Let us consider a link l ∈ L during a timeslot t. If the total
amount of resources demanded at the link is lower than Bl,
the feasibility constraints are already met: consequently, we
can set bl,φ(t) = b∗l,φ(t). In the other case, the rate bl,φ(t)
assigned by the link to each flow φ ∈ Φl is proportional to
the flow demand b∗l,φ(t):

bl,φ(t) = b∗l,φ(t) min

{
1,

Bl∑
ψ∈Φl

b∗l,ψ(t)

}
. (33)

Using the same principle for the computational and memory
resources, we can write

cn,φ(t) = c∗n,φ(t) min

{
1,

Ccn∑
ψ∈Φn

c∗n,ψ(t)

}
, (34)

and

mn,φ(t) = m∗n,φ(t) min

{
1,

Cmn∑
ψ∈Φn

m∗n,ψ(t)

}
. (35)

B. Static Strategy

Meta-heuristic techniques have been shown to determine
the optimal solution of highly complex optimization problems
with non-convex constraints [38]. In our system, a Genetic
Algorithm (GA) may be used to approximate the best resource
allocation pattern, thus outperforming both the DRL and
empirical strategies. However, meta-heuristic algorithms are
based on a randomized search of the target solution and require
an extremely long calculation time, which makes it unfeasible
to execute them at each timeslot. At the same time, it is
reasonable to exploit meta-heuristic techniques if the resource
requirements do not vary in time.

0 10 20 30 40 50
Timeslot

DR
L

0 10 20 30 40 50
Timeslot

Em
pi
ric
al

0 10 20 30 40 50
Timeslot

St
ati
c

eMBB URLLC

Fig. 3: Link resource allocation.

In the static strategy we consider in this work, the network
resources are statically divided among the different slices.
Practically, each traffic flow φ is assumed to have fixed re-
quirements, corresponding to the average amount of resources
it demands, i.e., raφ. Hence, a GA is used to determine the
optimal resource allocation pattern under such conditions [39].

We observe that, using the static strategy, the values of
bl,φ, cn,φ,mn,φ ∀ φ ∈ Φ, l ∈ L, n ∈ N are maintained fixed.
In other words, the variability of information flows is not taken
into account, and the performance of each flow is expected
to deteriorate as soon as its requirements exceed the average
values. This is a big issue, especially for the URLLC slice,
whose performance function suddenly drops if any resource
requirements is not satisfied.

To better highlight the characteristics of the benchmark
strategies, we analyze the bit rate allocation in a network link
during a period of 50 timeslots. In Fig. 3, we represent the
share of link resources assigned to the eMBB and URLLC
services, using the different strategies. In particular, we con-
sider a scenario where the capacity is lower than the aggregate
resource demand, which means that all the strategies fully
exploit the link rate. As expected, GA distributes network
resources in a static fashion: the bitrate assigned to the
different slices does not vary in time. Instead, the empirical
algorithm is able to adapt to the slice requirements and, hence,
the bitrate distribution changes at each timeslot. Also the DRL
strategy follows a dynamic trend but it assigns a larger amount
of resources to the URLLC services than the benchmarks.

VI. SIMULATION SETTING AND RESULTS

In this section, we first describe the scenarios where our
algorithms are tested as well as the setting of our simulations.
Then, we investigate the performance of our DRL architecture
against the benchmark strategies and under different work-
ing conditions. Finally, we show how the transfer learning
paradigm can be used to further improve the performance of
our system.

A. Setting

We consider three different network scenarios, named
Dumbbell (D), Triangle (T), and Pyramid Network (P), whose
topologies are reported in Fig. 4. In all the cases, the number
of information flows in the network is NΦ ∈ {2, ..., 6}. The
capacities of each network element are fixed; specifically, we
set Bl = 50 Gbps, Ccn = 60 Gbps and Cmn = 60 Gb for the

(a) Dumbbell Network (D). (b) Triangle Network (T).

(c) Pyramid Network (P).

Fig. 4: Network topologies.

core nodes, Ccn = 20 Gbps and Cmn = 20 Gb for the access
nodes. Hence, we consider that most computing and storage
resources are concentrated in the core network. Concerning
the delay, we assume that τpl = 0.1 ms, ∀ l ∈ L, and
τn = 0.001 ms, ∀ n ∈ N . Although arbitrary, these values are
well-aligned with the features of modern network elements.

To model the information flow requirements, we consider
a Markov Model (MM) [40] Mσ with transition probability
matrix Pσ for each slice σ ∈ Σ. The model include Nstate =
10 states and is designed in such a way that transitions can
only occur between adjacent states; mathematically, Pi,j = 0
∀ (i, j) : |i−j| > 1. Each state of Mσ represents a combination
of resources requirements, i.e., a different realization of the
vector r. Hence, each information flow φ ∈ Φσ is associated to
an independent copy of Mσ that changes state at each timeslot
t, thus altering the vector rφ. The minimum and maximum
value of the resource requirements are summarized in Tab. II.

TABLE II: Traffic flow requirements.
Service class Parameter Range of values Unit Sources

η 0.30÷ 42.5 Gbps [41], [42]
eMBB c 50÷ 100 Gbps [43], [44]

m 50÷ 100 Gb [43], [44]
δ 20 ms [45]–[48]

η 2.08÷ 10 Gbps [41], [42]
URLLC c 50− 100 Gbps [43], [44]

m 50÷ 100 Gb [43], [44]
δ 1 ms [45]–[48]

To be noted that, in our simulations, the number of flows
and their requirements change randomly, so that the aggregate
resource requests can exceed the capacity of the network. In
such conditions, some flows will unavoidably experience very
low performance; hence, the allocation strategy should decide
which flow to penalize, in order to maximize the overall utility.
Therefore, our system can be exploited to handle critical

scenarios where there is a lack of network resources, or to
estimate the reliability of a specific set of network slices. In
the future, we will investigate call-admission control strategies
to avoid system overloading.

TABLE III: Agent architectures.

Γbσ Γcσ Γmσ

Parameter Actor Critic Actor Critic Actor Critic

Input size 11 11 7 7 7 7
Activation ReLU ReLU ReLU ReLU ReLU ReLU
Hidden size 12 12 8 8 8 8
Activation ReLU ReLU ReLU ReLU ReLU ReLU
Hidden size 6 6 4 4 4 4
Activation Linear Linear Linear Linear Linear Linear
Output size 1 1 1 1 1 1

To train the learning agents, we generate Ntrain = 5 · 104

independent episodes using the same network topology. Each
episode lasts Nslot = 50 timeslots of T = 0.1 seconds. At the
beginning of each episode, a random number of information
flows is generated; then, each flow φ is associated with a static
route interconnecting its endpoints. Hence, at the end of the
episode, the A2C algorithm is used to train the learning agents
Γbσ , Γcσ , Γmσ , ∀ σ ∈ Σ. We exploit the Adaptive moment
estimation (Adam) algorithm to optimize the NN weights,
considering ζa = 10−5 and ζc = 10−5 as learning rates of
the actor and the critic, respectively. We summarize the main
settings of the learning architectures in Tab. III, while the other
simulation parameters are given in Tab. IV

To be noted that the A2C algorithm updates the policies
applied by the different agents only at the end of a training
episode (i.e., after a predetermined number of time slots).
In the period between two subsequent episodes, the differ-
ent network elements collect local observations in a central
database, which is then used to carry out the training phase.
Hence, the new versions of the learning agents is shared within
the network, and the resource allocation strategy is updated
consequently. In a practical scenario, the described process
can be performed offline and, therefore, does not have any
delay requirements. Besides, the exchange of a control traffic
among network elements is required by the SDN and NFV
paradigms, which are becoming more and more widespread
in modern networks. Therefore, the communication within the
learning units should not represent a limiting factor for the
practical implementation of our approach.

B. Results

We consider two versions of our learning system, one
trained in the Dumbbell Network (DRL-D) and the other in
the Triangle Network (DRL-T).

In Fig. 5 we plot the utility (for the eMBB and URLLC
slices) obtained during the training phase in the two scenarios.
that the performance of eMBB slices (Ωe) increases slowly,
but smoothly during the training phase, ranging from 0.6
to 0.8 in 50% of the cases. Conversely, the performance of
URLLC slices (Ωu) remains very low at the beginning of the
training phase and suddenly increases after a certain number

TABLE IV: Simulation settings.

Parameter Value Description Parameter Value Description

Bl 50 Gbps Link rate capacity Ccn {10, 20, 30, 60} Gbps Node computational capacity
Cmn {10, 20, 30, 60} Gb Node memory capacity Nstate 10 State number
τn 0.001 ms Node routing delay τpl 0.1 ms Link propagation delay

Ntrain {3, 5} · 104 Training episodes Ntest 500 Testing episodes
Ntransfer 2 · 104 Transfer learning episodes NΦ {2, ..., 6} Number of flows

ζa 10−5 Actor learning rate ζc 10−5 Critic learning rate
λ 0.9 Discount factor κ 10−4 Entropy weight
T 0.1 s Timeslot duration Nslot 50 Timeslots per episode

{αη , αc, αm, αδ} {0.25, 0.25, 0.25, 0.25} eMBB performance weights {γ0, γ1} {0.1, 1} Reward weights

10000 20000 30000 40000 50000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Ω
σ

eMΩΩ
URLLC

(a) Dumbbell Network.

10000 20000 30000 40000 50000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Ω
σ

eMΩΩ
URLLC

(b) Triangle Network.

Fig. 5: Training phase.

of episodes. This means that the agents need more time to
learn how to address the URLLC requirements. In particular,
at the end of the training phase in the Triangle Network,
Ωu spans the full range of possible values, which indicates
that the URLLC flows either get maximum or zero reward in
accordance the step-like shape of their performance function.
A similar phenomenon occurs in the Dumbbell Network
where, however, the URLLC utility is lower due to the fewer
available resources.

To test the performance of our strategies, we carry out addi-
tional Ntest = 300 episodes. In Fig. 6, we report the expected

 Ω Ωe Ωu
0.0

0.2

0.4

0.6

0.8

1.0

E[
Ω

]
DRLΩD
DRLΩT

Empirical
Static

(a) Dumbbell Network.

 Ω Ωe Ωu
0.0

0.2

0.4

0.6

0.8

1.0

E[
Ω

]

DRLΩD
DRLΩT

Empirical
Static

(b) Triangle Network.

Fig. 6: Expected utility.

utility achieved by each slice, and by the whole system (see
(6) and (5)), in the Dumbbell and Triangle Network for all the
considered strategies. We can notice that, in both the scenarios,
the empirical algorithm tends to favor eMBB slices at the
expenses of URLLC flows, whose expected performance is
always lower than 0.2. The static strategy behaves similarly but
provides lower Ωe than the empirical algorithm. In contrast,
DRL-D and DRL-T slightly reduce the performance of the
eMBB services in order to double the fraction of satisfied
URLLC flows, increasing the total utility.

In Fig. 7 we analyze the distribution of the system utility
for all the different strategies and network scenarios. We adopt

 Dumbbell Triangle Pyramid
0.0

0.2

0.4

0.6

0.8

1.0
Ω

DRLΩD
DRLΩT

Empirical
Static

Fig. 7: Utility distribution.

the boxplot representation, where the white line at the center
of the box is the median of the distribution, while the box
edges represent the 25th and the 75th percentile, respectively.

It is clear that the static strategy always yield to the worst
performance: this is because it does not handle the variability
of service demands, which is very critical for the URLLC
traffic flows, whose performance goes to zero as soon as one
of the requirements is not satisfied. The empirical algorithm
works better but it is still outperformed by the DRL strategies,
both when considering the median and the 25th and 75th
percentiles of Ω. In the Dumbbell Network, DRL-D and DRL-
T ensure that Ω > 0.45 in almost 50% of the test episodes,
with a 10% gain over the empirical algorithm. In the Triangle
and Pyramid scenario, the lack of network resources is less
striking and, consequently, the performance of all the strategies
increases. Using the empirical algorithm, 50% of the test
episodes experience Ω > 0.5 while, with the DRL strategies,
this threshold is raised to 0.65 and 0.7, respectively.

We observe that DRL-D and DRL-T achieve similar results
in all the testing scenarios, including the Pyramid Network,
which is a different environment from those seen during the
training. This means that our architecture can suit multiple
network topologies without the need of an additional learning
phase. At the same time, we expect that a more specific train-
ing can further improve the behavior of the local controllers;
in the rest of the section, we will show how to leverage the
transfer learning paradigm to this purpose.

C. Transfer Learning

Transfer learning aims at speeding up the training of a
ML algorithm in a certain scenario by exploiting the structure
learned by other ML algorithms trained in similar scenarios.
In what follows, we exploit this technique to adapt our DRL
strategy to different network topologies and traffic loads.
Hence, we consider two additional learning architectures that
we named DRL-DP and DRL-TP. These systems are first
trained for Ntrain = 3 × 104 episodes in the Dumbbell and
Triangle Network, respectively, according to the framework
described in Sec. IV. Then, we perform an additional training
of Ntransfer = 2× 104 episodes in the Pyramid Network.

 η δ δ
0.0

0.2

0.4

0.6

0.8

1.0

E[
Ω

ρ]

DRLΩD
DRLΩDP

Empirical
Static

(a) Pyramid Network.

 η δ δ
0.0

0.2

0.4

0.6

0.8

1.0

E[
Ω

ρ]

DRLΩT
DRLΩTP

Empirical
Static

(b) Pyramid+ Network.

Fig. 8: Expected resource utility.

During the additional training phase, each controller is
updated with experience related to the network element it is
associated to. For instance, a controller Γ designed to manage
slice σ in a link l is trained using only the state-action pairs
for link l and information flows φ ∈ Φσ . Therefore, each
controller has to deal with a new scenario with different
characteristics than the original one. Particularly, the training
operations can be performed online in each network element,
without involving the central manager shown in Fig. 2. Hence,
this stage does not require any communication within the
network and can be executed after the learning architecture
have been deployed in a real scenario. From a practical
perspective, the described framework makes local controllers
learn how to carry out more precise actions, thus increasing
the overall utility. The drawback is that each controller will be
able to operate only in a specific location and, therefore, the
learned strategy cannot be implemented in different network
topologies.

The transfer learning stage is repeated two times, consid-
ering different configurations for the URLLC services. First,
we implement the same statistics presented in Tab. II: in this
case, the throughout required by each URLLC flow is in
[2.08, 10] Gbps. Then, we double the rate requirements of the
URLLC slice (whose range of values becomes [4.16, 20] Gbps)

 Pyramid Pyramid+
0.0

0.2

0.4

0.6

0.8

1.0

Ω
DRLΩD
DRLΩT

DRLΩDP
DRLΩTP

Empirical
Static

Fig. 9: Utility distribution.

to asses the ability of our strategy to adapt to new service
specifications. In particular, we denote by Pyramid+ the sce-
nario in which the required throughput of the URLLC flows
is increased.

In Fig. 8a, we represent the expected performance obtained
in the Pyramid Network by DRL-D and DRL-DP, and the
benchmark strategies, while considering specific network re-
sources. Hence, instead of using Ω to asses the system utility,
we consider Ωρ, defined in (8). As expected, the algorithms
obtained by exploiting the transfer learning approach perform
better than those trained on the other networks. For instance,
using the DRL-DP strategy, the expectation of Ωc increases
by more than 5%.

In Fig. 8b, we show the outcomes obtained in the Pyramid+
network scenario. We first observe that all the strategies yield
to a lower performance since the new URLLC requirements
are more difficult to fulfill. The empirical strategy slightly out-
performs DRL-T for what concerns the throughput and delay
requirements. Nevertheless, DRL-T still provides good results,
which means that the DRL approach is resilient to different
traffic loads. Also in this case, transfer learning proves to be
a worthwhile approach since DRL-TP outperforms the other
algorithms in all three key performance indicators.

In Fig. 9, we report the distribution of the system utility in
the Pyramid and Pyramid+ scenarios. We can appreciate how
the the algorithms given by transfer learning always ensure the
best utility, both considering the median and the percentiles
of Ω. In particular, DRL-DP and DRL-TP outperform DRL-D
and DRL-T, respectively, despite the total number of training
episodes is the same for all the considered strategies.

D. Practical Implementation

To provide an overview on how implement our system in a
realistic scenario, we consider a section of the GARR high ca-
pacity network [49], which is the infrastructure interconnecting
the main Italian universities and research centers. As depicted
in Fig. 10, the considered network topology includes 19 core

Fig. 10: GARR Network (Italy).

2 3 4 5 6 7 8 9 10
|Φ|

0.0

0.2

0.4

0.6

0.8

1.0

E[
Ω
]

ΩeΦΩDRL)
ΩuΦΩDRL)

ΩeΦΩEmpirical)
ΩuΦΩEmpirical)

ΩeΦΩStatic)
ΩuΦΩStatic)

Fig. 11: Expected utility vs flows’ number.

nodes, 10 edge nodes and 40 links. We assume that each link is
provided with Bl = 50 Gbps of bandwidth capacity; besides,
we set the computational and memory capacities of the core
nodes to Ccn = 30 Gbps and Cmn = 30 Gb, respectively, and
those of the edge nodes to Ccn = 10 Gbps and Cmn = 10 Gb,
respectively. Finally, we relax the delay requirements of the
eMBB and URLLC services, which are set to 100 ms and
5 ms, respectively. We make this choice to deal with the
increased length of the routing paths, which results in a higher
propagation delay for the flows.

To implement our DRL strategy in the new scenario, we
carry out two consecutive learning stages: first, we train our
system for 2 × 104 episodes using a centralized learning
approach (as done for the DRL-D and DRL-T strategies). We
recall that this phase can be achieved offline, i.e., without

time constraints, using all the experience gathered all the
network locations. Then, we carry out an additional training of
104 episodes, defining a specific tuple of learning agents for
each network element (as done for the DRL-DP and DRL-TP
strategies). As already stated, this stage is performed online
and does not require any communication within the network.

In Fig. 11, we plot the expected performance of the eMBB
and URLLC slices (i.e., E[Ωe] and E[Ωu]) as a function of
the number of information flows in the GARR scenario. When
considering the eMBB flows, all the strategies have a similar
behavior since E[Ωe] declines gradually as the cardinality
of Φ increases. Instead, E[Ωu] deceases very quickly: it is
maximized when |Φ| = 2 and approaches 0 as more flows are
initialized over the network.

In particular, the empirical algorithm outperforms the other
strategies when the number of information flows is limited
(|Φ| ≤ 3). Beyond this point, it becomes more convenient to
maintain a static allocation of the system resources to prevent
the degradation of E[Ωu]. However, both the benchmarks
are outperformed by the learning-based approach, which has
learned to give priority to the URLLC services, ensuring a
better total utility. In particular, using the empirical and the
static strategies, E[Ωu] falls below 0.3 for |Φ| = 6, while DRL
ensures E[Ωu] > 0.6 in the same conditions.

VII. CONCLUSION

In this work, we investigated the potentials of DRL to
orchestrate network resources in a NS scenario. Specifically,
we developed a distributed DRL system where different units
interact to meet the resource demands of multiple information
flows. The training of such an architecture was undertaken
following an A2C approach, which enables an online training
phase and allows our system to dynamically adapt to different
working conditions.

By means of simulations, we showed that the designed
strategy can consistently improve the management of network
resources, especially when the system complexity, both in
terms of network topology and service heterogeneity, in-
creases. In particular, our approach makes it possible to double
the number of URLLC flows supported by the network,
without significantly degrading the performance of the eMBB
flows, and can suit different network topologies without the
need for additional training. Besides, transfer learning can be
used to further improve the behavior of the learning agents,
thus increasing the overall utility at the cost of a reduced
adaptability of the agents to different network topologies.

As part of future work, we are interested in extending our
NS model by considering more slice classes with different
specifications. Particularly, we want to test our framework
with real communication traces, with the aim of identifying
potential limits. Finally, we will investigate the possibility
of introducing additional learning units, which are trained to
coordinate the local controllers of our architecture, e.g., by
varying the routing paths of the traffic flows.

APPENDIX

In what follows, we derive equation (18), which determines
the average queuing time τ ql,φ(t) of φ in link l during the time

slot t. Let T ∗ be the minimum between the slot boundary T
and the time at which the queue empties, i.e.,

T ∗ = min

(
T,

Dl,φ(t− 1)

bl,φ(t)− bil,φ(t)

)
. (36)

Furthermore, let Dl,φ(t, u) denote the residual backlog of
flow φ in link l, u seconds after the beginning of timeslot t.
Therefore, for any u ∈ [0, T ∗] we have Dl,φ(t, u) = Dl,φ(t)−
u(bl,φ(t)−bil,φ(t)), while Dl,φ(t, u) = 0 for u ∈ (T ∗, T]. Now,
the queuing delay experienced by the incoming flow at time
u ∈ [0, T] is zero if the queue is empty, and otherwise equal
to δ(u, t) =

Dl,φ(u,t)
bl,φ(t) . The average delay over the timeslot is

hence

τ ql,φ(t) =
1

T

∫ T

0

δ(u, t)du =
1

T

∫ T∗

0

Dl,φ(u, t)

bl,φ(t)
du (37)

=
2T ∗Dl,φ(t)− T ∗2(bl,φ(t)− bil,φ(t))

2Tbl,φ(t)
. (38)

For T ∗ = T , we obtain

τ ql,φ(t) =
2Dl,φ(t)− T (bl,φ(t)− bil,φ(t))

2bl,φ(t)
. (39)

For T ∗ < T , instead, we have T ∗(bl,φ(t)−bil,φ(t)) = Dl,φ(t),
so that (38) yields

τ ql,φ(t) =
T ∗Dl,φ(t)

2Tbl,φ(t)
<
Dl,φ(t)

2bl,φ(t)
. (40)

Recalling that bol,φ(t) used in (18) is defined as the minimum
between bl,φ(t), and 2Dl,φ(t−1)

T + bil,φ(t), we can see that (18)
is indeed a compact expression for τ ql,φ(t), provided that it is
approximated by its upper bound when T ∗ < T .

REFERENCES

[1] 3GPP, “Service requirements for next generation new services and
markets,” 3rd Generation Partnership Project (3GPP), Technical Speci-
fication (TS) 22.261, March 2020, version 17.2.0.

[2] J. Navarro-Ortiz, P. Romero-Diaz, S. Sendra, P. Ameigeiras, J. J. Ramos-
Munoz, and J. M. Lopez-Soler, “A survey on 5G usage scenarios and
traffic models,” IEEE Communications Surveys & Tutorials, vol. 22,
no. 2, pp. 905–929, February 2020.

[3] M. Yang, Y. Li, D. Jin, L. Zeng, X. Wu, and A. V. Vasilakos, “Software-
defined and virtualized future mobile and wireless networks: a survey,”
Mobile Networks and Applications, vol. 20, no. 1, pp. 4–18, September
2015.

[4] P. Zhang, H. Yao, and Y. Liu, “Virtual network embedding based on
computing, network, and storage resource constraints,” IEEE Internet of
Things Journal, vol. 5, no. 5, pp. 3298–3304, 2017.

[5] P. Rost, C. Mannweiler, D. S. Michalopoulos, C. Sartori, V. Sciancale-
pore, N. Sastry, O. Holland, S. Tayade, B. Han, D. Bega et al., “Network
slicing to enable scalability and flexibility in 5G mobile networks,” IEEE
Communications magazine, vol. 55, no. 5, pp. 72–79, May 2017.

[6] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network
slicing and softwarization: A survey on principles, enabling technolo-
gies, and solutions,” IEEE Communications Surveys & Tutorials, vol. 20,
no. 3, pp. 2429–2453, March 2018.

[7] P. Popovski, K. F. Trillingsgaard, O. Simeone, and G. Durisi, “5G wire-
less network slicing for eMBB, URLLC, and mMTC: A communication-
theoretic view,” IEEE Access, vol. 6, pp. 55 765–55 779, September
2018.

[8] M. Richart, J. Baliosian, J. Serrat, and J.-L. Gorricho, “Resource slicing
in virtual wireless networks: A survey,” IEEE Transactions on Network
and Service Management, vol. 13, no. 3, pp. 462–476, 2016.

[9] P. Caballero, A. Banchs, G. de Veciana, and X. Costa-Pérez, “Multi-
tenant radio access network slicing: Statistical multiplexing of spatial
loads,” IEEE/ACM Transactions on Networking, vol. 25, no. 5, pp. 3044–
3058, July 2017.

[10] K. Samdanis, X. Costa-Perez, and V. Sciancalepore, “From network
sharing to multi-tenancy: The 5G network slice broker,” IEEE Com-
munications Magazine, vol. 54, no. 7, pp. 32–39, July 2016.

[11] R. Trivisonno, R. Guerzoni, I. Vaishnavi, and A. Frimpong, “Network
resource management and QoS in SDN-enabled 5G systems,” in 2015
IEEE Global Communications Conference, December 2015.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, February 2015.

[13] H. Halabian, “Distributed resource allocation optimization in 5G virtu-
alized networks,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 3, pp. 627–642, 2019.

[14] M. Leconte, G. S. Paschos, P. Mertikopoulos, and U. C. Kozat, “A
resource allocation framework for network slicing,” in IEEE Conference
on Computer Communications. IEEE, 2018, pp. 2177–2185.

[15] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” 2011.

[16] Y. Xiao, M. Hirzallah, and M. Krunz, “Distributed resource allocation
for network slicing over licensed and unlicensed bands,” IEEE Journal
on Selected Areas in Communications, vol. 36, no. 10, pp. 2260–2274,
2018.

[17] M. Hu, L. Zhuang, D. Wu, Y. Zhou, X. Chen, and L. Xiao, “Learning
driven computation offloading for asymmetrically informed edge com-
puting,” IEEE Transactions on Parallel and Distributed Systems, vol. 30,
no. 8, pp. 1802–1815, 2019.

[18] F. Fossati, S. Moretti, P. Perny, and S. Secci, “Multi-resource allocation
for network slicing,” IEEE/ACM Transactions on Networking, vol. 28,
no. 3, pp. 1311–1324, 2020.

[19] R. Alvizu, S. Troia, G. Maier, and A. Pattavina, “Matheuristic with
machine-learning-based prediction for software-defined mobile metro-
core networks,” Journal of Optical Communications and Networking,
vol. 9, no. 9, pp. 19–30, 2017.

[20] Y. Hua, R. Li, Z. Zhao, X. Chen, and H. Zhang, “GAN-powered
deep distributional reinforcement learning for resource management in
network slicing,” IEEE Journal on Selected Areas in Communications,
vol. 38, no. 2, pp. 334–349, 2020.

[21] A. Thantharate, R. Paropkari, V. Walunj, and C. Beard, “Deepslice:
A deep learning approach towards an efficient and reliable network
slicing in 5G networks,” in IEEE 10th Annual Ubiquitous Computing,
Electronics Mobile Communication Conference (UEMCON), October
2019, pp. 0762–0767.

[22] Y. M. Saputra, D. T. Hoang, D. N. Nguyen, E. Dutkiewicz, D. Niyato,
and D. I. Kim, “Distributed deep learning at the edge: A novel proactive
and cooperative caching framework for mobile edge networks,” IEEE
Wireless Communications Letters, vol. 8, no. 4, pp. 1220–1223, 2019.

[23] N. Van Huynh, D. Thai Hoang, D. N. Nguyen, and E. Dutkiewicz,
“Optimal and fast real-time resource slicing with deep dueling neural
networks,” IEEE Journal on Selected Areas in Communications, vol. 37,
no. 6, pp. 1455–1470, 2019.

[24] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[25] J. A. Ayala-Romero, A. Garcia-Saavedra, M. Gramaglia, X. Costa-Perez,
A. Banchs, and J. J. Alcaraz, “vrAIn: A deep learning approach tailoring
computing and radio resources in virtualized RANs,” in The 25th Annual
International Conference on Mobile Computing and Networking, 2019,
pp. 1–16.

[26] J. S. P. Roig, D. M. Gutierrez-Estevez, and D. Gündüz, “Management
and orchestration of virtual network functions via deep reinforcement
learning,” IEEE Journal on Selected Areas in Communications, vol. 38,
no. 2, pp. 304–317, 2019.

[27] Y. Abiko, T. Saito, D. Ikeda, K. Ohta, T. Mizuno, and H. Mineno,
“Flexible resource block allocation to multiple slices for radio access
network slicing using deep reinforcement learning,” IEEE Access, vol. 8,
pp. 68 183–68 198, 2020.

[28] M. Alsenwi, N. H. Tran, M. Bennis, S. R. Pandey, A. K. Bairagi,
and C. S. Hong, “Intelligent resource slicing for eMBB and URLLC
coexistence in 5G and beyond: A deep reinforcement learning based
approach,” arXiv preprint arXiv:2003.07651, 2020.

[29] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans-
actions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–
1359, 2009.

[30] T. Kimura, T. Kimura, A. Matsumoto, and K. Yamagishi, “Balancing
quality of experience and traffic volume in adaptive bitrate streaming,”
IEEE Access, vol. 9, pp. 15 530–15 547, 2021.

[31] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[32] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[33] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards
removing the curse of dimensionality,” in Proceedings of the thirtieth
annual ACM symposium on Theory of computing, 1998, pp. 604–613.

[34] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances
in neural information processing systems, 2000, pp. 1008–1014.

[35] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning,
February 2016, pp. 1928–1937.

[36] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel, “Efficient
neuralwork robustness certification with general activation functions,” in
Advances in neural information processing systems, December 2018, pp.
4939–4948.

[37] T. Jaakkola, S. P. Singh, and M. I. Jordan, “Reinforcement learning algo-
rithm for partially observable Markov decision problems,” in Advances
in neural information processing systems, 1995, pp. 345–352.

[38] X.-S. Yang, Nature-inspired metaheuristic algorithms. Luniver press,
2010.

[39] D. Whitley, “A genetic algorithm tutorial,” Statistics and computing,
vol. 4, no. 2, pp. 65–85, 1994.

[40] C. J. Geyer, “Practical Markov chain Monte Carlo,” Statistical science,
pp. 473–483, 1992.

[41] L. Cominardi, L. M. Contreras, C. J. Bcrnardos, and I. Berberana,
“Understanding QoS applicability in 5G transport networks,” in 2018
IEEE International Symposium on Broadband Multimedia Systems and
Broadcasting (BMSB). IEEE, 2018, pp. 1–5.

[42] 3GPP, “System architecture for the 5G System (5GS),” 3rd Generation
Partnership Project (3GPP), Technical Specification (TS) 23.501, March
2020, version 16.4.0.

[43] D. Sattar and A. Matrawy, “DSAF: Dynamic slice allocation framework
for 5G core network,” arXiv preprint arXiv:1905.03873, 2019.

[44] A. Chiha, M. Van der Wee, D. Colle, and S. Verbrugge, “Network slicing
cost allocation model,” Journal of Network and Systems Management,
pp. 1–33, 2020.

[45] F. Voigtländer, A. Ramadan, J. Eichinger, C. Lenz, D. Pensky, and
A. Knoll, “5G for robotics: Ultra-low latency control of distributed
robotic systems,” in 2017 International Symposium on Computer Science
and Intelligent Controls (ISCSIC). IEEE, 2017, pp. 69–72.

[46] J. Sachs, L. A. Andersson, J. Araújo, C. Curescu, J. Lundsjö, G. Rune,
E. Steinbach, and G. Wikström, “Adaptive 5G low-latency communi-
cation for tactile internet services,” Proceedings of the IEEE, vol. 107,
no. 2, pp. 325–349, 2018.

[47] X. Jiang, H. Shokri-Ghadikolaei, G. Fodor, E. Modiano, Z. Pang,
M. Zorzi, and C. Fischione, “Low-latency networking: Where latency
lurks and how to tame it,” Proceedings of the IEEE, vol. 107, no. 2, pp.
280–306, 2018.

[48] 3GPP, “Policy and charging control architecture,” 3rd Generation Part-
nership Project (3GPP), Technical Specification (TS) 23.203, December
2019, version 16.2.0.

[49] “GARR high capacity network,” https://www.garr.it/en/infrastructures/
network-infrastructure/network-map, accessed: 2021-03-31.

https://www.garr.it/en/infrastructures/network-infrastructure/network-map
https://www.garr.it/en/infrastructures/network-infrastructure/network-map

	I Introduction
	II Related Work
	III System Model
	III-A Slice Model
	III-B Network Model

	IV Learning Strategy
	IV-A Deep Reinforcement Learning
	IV-B Learning Architecture
	IV-C Observations and Actions
	IV-D Reward Function

	V Benchmark Strategies
	V-A Empirical Strategy
	V-B Static Strategy

	VI Simulation Setting and Results
	VI-A Setting
	VI-B Results
	VI-C Transfer Learning
	VI-D Practical Implementation

	VII Conclusion
	Appendix
	References

