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Abstract

Background

The majority of high-throughput single-cell molecular profiling methods quantify RNA

expression; however, recent multimodal profiling methods add simultaneous measurement

of genomic, proteomic, epigenetic, and/or spatial information on the same cells. The devel-

opment of new statistical and computational methods in Bioconductor for such data will be

facilitated by easy availability of landmark datasets using standard data classes.

Results

We collected, processed, and packaged publicly available landmark datasets from important

single-cell multimodal protocols, including CITE-Seq, ECCITE-Seq, SCoPE2, scNMT, 10X

Multiome, seqFISH, and G&T. We integrate data modalities via the MultiAssayExperiment Bio-

conductor class, document and re-distribute datasets as the SingleCellMultiModal package in

Bioconductor’s Cloud-based ExperimentHub. The result is single-command actualization of

landmark datasets from seven single-cell multimodal data generation technologies, without

need for further data processing or wrangling in order to analyze and develop methods within

Bioconductor’s ecosystem of hundreds of packages for single-cell and multimodal data.

Conclusions

We provide two examples of integrative analyses that are greatly simplified by

SingleCellMultiModal. The package will facilitate development of bioinformatic and statisti-

cal methods in Bioconductor to meet the challenges of integrating molecular layers and ana-

lyzing phenotypic outputs including cell differentiation, activity, and disease.
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Author summary

Experimental data packages that provide landmark datasets have historically played an

important role in the development of new statistical methods in Bioconductor by lowering

the barrier of access to relevant data, providing a common testing ground for software

development and benchmarking, and encouraging interoperability around common data

structures. In this manuscript, we review major classes of technologies for collecting mul-

timodal data including genomics, transcriptomics, epigenetics, proteomics, and spatial

information at the level of single cells. We present the SingleCellMultiModal R/Biocon-

ductor package that provides single-command access to landmark datasets from seven dif-

ferent technologies, storing datasets using HDF5 and sparse arrays for memory efficiency

and integrating data modalities via the MultiAssayExperiment class. We demonstrate two

integrative analyses that are greatly simplified by SingleCellMultiModal. The package

facilitates development and benchmarking of bioinformatic and statistical methods to

integrate molecular layers at the level of single cells with phenotypic outputs including cell

differentiation, activity, and disease, within Bioconductor’s ecosystem of hundreds of

packages for single-cell and multimodal data.

This is a PLOS Computational Biology Benchmarking paper.

Introduction

Understanding the quantitative relationship between molecules and physiology has motivated

the development of quantitative profiling techniques, especially for single-cell sequencing [1].

Single-cell multimodal omics technologies (Nature Method of the Year 2019 [2]) couple sin-

gle-cell RNA sequencing with other molecular profiles such as DNA sequences, methylation,

chromatin accessibility, cell surface proteins, and spatial information, simultaneously in the

same cell. Integrative analysis of multiple molecular measurements from the same cell has

enabled, for example, discovery of rare cell types by defining subpopulations based on surface

markers with CITE-Seq [3] and ECCITE-Seq [4] (Cellular Indexing of Transcriptomes and

Epitopes by sequencing, Expanded CRISPR CITE-Seq), of epigenetic regulation and cell differ-

entiation lineage with scNMT-seq [5] (single-cell nucleosome, methylation, and transcriptome

sequencing), a high resolution commercial version of single cell chromatin accessibility with

10X Multiomics [6], understanding of spatial patterns of gene expression with seq-FISH [7],

and correlation of genotype-phenotype in healthy and disease states with G&T-seq [8] (parallel

Genome and Transcriptome sequencing). Other single-cell multimodal datasets take measure-

ments from separate cells due to the technical constraints, like mass-spectrometry based prote-

omic methods including SCoPE2 [9] (single-cell protein analysis by mass spectrometry).

Capturing and integrating an array of different molecular signals at the single-cell level

poses new analytical challenges. Single-cell multimodal experiments generate multidimen-

sional and high volume datasets, requiring distinct informatic and statistical methods to store,

process and analyze data. Integrating different molecular layers to provide biologically mean-

ingful insight is an active area of development in R/Bioconductor due to the availability of data

containers and analysis toolkits for single-cell analysis. R/Bioconductor is an open develop-

ment and open source platform for analyzing biomedical and genomic data with dedicated
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(https://doi.org/doi:10.18129/B9.bioc.

SingleCellMultiModal), with open development and

issue tracking on Github (https://github.com/

waldronlab/SingleCellMultiModal). The original 10X

Genomics Multiome data are available from https://

support.10xgenomics.com/single-cell-multiome-

atac-gex/datasets.
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data structures such as the SingleCellExperiment class [10] for single-cell data and the MultiAs-
sayExperiment class [11] for multi-omics data. Both are designed based on the SummarizedEx-
periment class [12], the central Bioconductor data structure for storing, manipulating, and

analyzing high-throughput quantitative omics data. Relative to analysis platforms within and

outside of the R programming language (e.g. GATK, Seurat [13], mixOmics [14], MOFA+

[15], CiteFuse package [16], ScanPy for CITE-Seq [17], Conos for SCoPE2 [18]), Bioconductor

provides the broadest range of interoperable data structures and packages for statistical analy-

sis and visualization of single-cell multimodal data.

Easy availability of publicly available experimental data using standardized data classes has

long played an important role in the development of interoperable software packages for the

analysis of data from new technologies, helping to coalesce development efforts around shared

datasets and commonly used data classes such as ExpressionSet [19] and then (Ranged)Sum-
marizedExperiment [20] and SingleCellExperiment [10]. We therefore introduce a suite of sin-

gle-cell multimodal landmark datasets for benchmarking and testing multimodal analysis

methods via the Bioconductor ExperimentHub package SingleCellMultiModal (Fig 1A). The

scope of this package is to provide efficient access to a selection of curated, pre-integrated, pub-

licly available landmark datasets for methods development and benchmarking within the Bio-

conductor ecosystem. Also, we included cell type labels using ontology terms for each

experimental database called ontomap (see Methods). Cell labels metadata helps users develop

a common ground truth. Some such methods and code for analysis workflows are reviewed by

Lê Cao et al. [21]. Users can obtain integrative representations of multiple modalities as a Mul-
tiAssayExperiment, a common core Bioconductor data structure relied on by dozens of multi-

modal data analysis packages. Each dataset was quality controlled; either by the original

authors during publication, or we implemented a quality control pre-filtered for high quality

cells. SingleCellMultiModal uses Bioconductor’s ExperimentHub package and service to host,

coordinate, and manage the data from the cloud. We plan to update the package as new data-

sets and technologies become available and we welcome community contributions. This man-

uscript serves as a review of essential aspects of these technologies suitable for developers of

bioinformatic and statistical software, and as a description of the SingleCellMultiModal data

package.

Results

Summary of landmark datasets in SingleCellMultiModal
To evaluate and design new statistical methods that accompany experimental single-cell multi-

modal data, it is important to establish landmark datasets. The goal of this section is to provide

an overview of the landmark datasets currently in SingleCellMultiModal as well as to introduce

the experimental and technological context for each experimental assay (Table 1). For more

information concerning the details of the technologies, consult [22]. We briefly describe each

landmark experiment including context, major findings from the publication, and challenges

in its analysis, then summarize its accompanying dataset in SingleCellMultiModal including

number of cells and features (Fig 1B).

RNA and protein: antibody tagged cell surface markers. Purpose and goals: Tradition-

ally, protein expression in cell populations are measured using flow cytometry. With the

advent of single-cell multimodal methods cell surface proteins are measured with higher reso-

lution with simultaneous measurements of mRNA abundance, which enhances the ability to

identify new cell subpopulations in heterogeneous samples. Cellular Indexing of Transcrip-

tomes and Epitopes by sequencing (CITE-Seq) measures protein cell surface markers and gene

expression in the same cell. An extension of CITE-Seq is ECCITE-Seq, Expanded CRISPR-
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Fig 1. Representation of modalities included in the SingleCellMultiModal package. (A) a Venn diagram representation of

the modalities collected by each different technology, including: RNA (center), surface proteins (top left), spatial information

(bottom left), methylation and open chromatin (bottom right), and peptides (top right). (B) The number of features and cells

collected for each data modality by each technology.

https://doi.org/10.1371/journal.pcbi.1011324.g001
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compatible CITE-Seq, which allows for the capture of sgRNA from CRISPR mediated screens.

Collectively, these technologies provide a high-throughput method for single-cell immunophe-

notyping and transcriptome analysis.

Technology: CITE-Seq relies on antibodies conjugated to DNA barcodes to infer protein

levels, and in tandem count DNA handles from PCR amplification of mRNA transcripts.

Inside the droplet contains mRNA transcripts, proteins conjugated with antibody derived tags

(ADTs), beads decorated with oligo-dT, reverse transcriptase and primers for cDNA amplifi-

cation. The use of DNA barcodes is a departure from traditional fluorescence labels, which are

limited in number because of the overlaps in spectral detection, excitation and emission fre-

quencies [25].

A variation of CITE-Seq is ECCITE-Seq that can track single-cell CRISPR screens using

sgRNA sequencing capture [4]. The CRISPR-Cas9 system is used to generate targeted gene

knockout/mutants by using two components: sgRNA (single guide RNA for gene of interest)

and Cas9 (endonuclease for cleaving double DNA strand breaks). sgRNA are composed of cus-

tom crRNA 17-22nt with a scaffold tracrRNA, which means the sgRNA are composed of two

RNA pieces: one is customizable and the other is not. The sgRNA targets the gene of interest

and orchestrates the Cas9 enzyme to gene location to insert a variety of mutations or full gene

knock-outs. The CRISPR-Cas9 system introduces targeted gene mutations with greater ease at

the bench, plus it is easier to scale up to many more experimental samples than previous

approaches.

Antibody oligo counts are listed in the ADT and HTO (hashtag oligo) tables and sgRNAs

counts in the GDO tables. After cell perturbations via CRISPR screens, cells are collected and

prepared with 10X Genomics V(D)J solution which incorporates Single-cell RNA-seq with

additional profiling of protein surface markers and sgRNAs (when applicable). The molecular

contents, mRNA and DNA-tagged proteins, will hybridize to the decorated beads. The benefit

of adding barcoding to cells is that it allows for tracking of doublets (two cells in one droplet).

Landmark data: There are several experimental datasets derived from the original CITE-

Seq landmark paper. Among them we selected the cord blood dataset where the cells have

been incubated with CITE-seq antibody conjugates and fluorophore-conjugated antibodies.

This cord_blood dataset has two different assays. The scADT assay is a matrix indicating the 13

proteins surface abundance for each of the 8617 cells, while the scRNA assay is a matrix of

20400 human genes and 15880 mouse genes where each entry contains the expression abun-

dance in each of the 8617 cells (Table 2).

The package also includes an ECCITE-Seq dataset aimed at characterizing immune sub-

population cell types after an experimental perturbation. The peripheral_blood dataset is

Table 1. Single-cell multimodal datasets included SingleCellMultiModal package. Modalities refer to the molecular feature measured in the experimental assay. Cell/

process type provides information on the type of material or development event data was collected. Datatype name column refers to the dataset name in

SingleCellMultiModal.

MODALITIES EXPERIMENTAL ASSAY CELL / PROCESS TYPE DATATYPE NAME CITATION

RNA + DNA G&T-seq Mouse epithelial, human breast tumor mouse_embryo_8_cell [8]

RNA + Protein CITE-Seq Cord blood mononuclear cord_blood [3]

ECCITE-Seq Peripheral blood mononuclear, human T-cell lymphoma,

mouse fibroblast

peripheral_blood [4]

RNA

+ Epigenetic

scNMT-seq Mouse gastrulation mouse_gastrulation [23]

10X Multiome scATAC-seq + Single-cell

RNA-seq

Peripheral blood mononuclear pbmc_10x [6]

RNA + Spatial seqFISH Mouse cortical neuronal mouse_visual_cortex [24],[22]

RNA

+ Proteomic

SCoPE2 Human monocyte and PMA-induced macrophage macrophage_differentiation [9]

https://doi.org/10.1371/journal.pcbi.1011324.t001
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organized in two different conditions: the control (CTRL) and the cutaneous T-cell lymphoma

(CTCL). For both conditions the ECCITE-Seq protocol has been performed to produce tran-

scripts (RNA-seq), proteins (ADT) and cell tracking (HTO) abundance. All these modalities

are collected as separated assays into the MultiAssayExperiment, where a sparse matrix is used

to store the RNA-seq counts. The modalities are collected from the same cells, but not all the

cells are entirely profiled by the same modalities. Of the total 36248 cells, 4190 cells from the

CTCL and 4292 cells from the CTRL are matched with all modalities (Fig 2). sgRNA data is

stored in long format providing access through the metadata data structure of the MultiAs-
sayExperiment. The CITE-Seq dataset is accessible via the SingleCellMultiModal package by

using the CITEseq(DataType="cord_blood") function call, while for the ECCITE-

Seq data it’s sufficient to change the identifier as follow CITEseq(DataType=
"peripheral_blood"). Both function calls return a MultiAssayExperiment object with

matrices or sparse matrices as assays (Table 3).

RNA and protein: mass spectrometry-based. Purpose and goals: CITE-Seq offers valu-

able information about the expression of surface proteins. However, the acquisition is limited

to tens of targets as the identification relies on antibodies. Furthermore, it cannot provide

information on intracellular markers. Mass spectrometry (MS)-based single-cell proteomics

(SCP) provides a means to overcome these limitations and to perform unbiased single-cell pro-

filing of the soluble proteome. MS-SCP is emerging thanks to recent advances in sample prep-

aration, liquid chromatography (LC) and MS acquisition. The technology is in its infancy and

protocols still need to be adapted in order to acquire multiple multimodalities from a single-

cell. In this section the multimodality is achieved by subjecting similar samples to MS-SCP and

Single-cell RNA-seq.

Technology: The current state-of-the-art protocol for performing MS-SCP is the SCoPE2

protocol [9]. Briefly, single-cells are lysed, proteins are extracted and digested into peptides.

The peptides are then labeled using tandem mass tags (TMT) in order to multiplex up to 16

samples per run (Fig 3A). The pooled peptides are then analysed by liquid chromatography-

tandem mass spectrometry (LC-MS/MS). LC separates the peptides based on their mass and

affinity for the chromatographic column. The peptides are immediately ionized as they come

out (Fig 3B) and are sent for two rounds of MS (MS/MS, Fig 3C). The first round isolates the

ions based on their mass to charge (m/z) value. The isolated ions are fragmented and sent to

the second round of MS that records the m/z and intensity of each fragment. The pattern of

intensities over m/z value generated by an ion is called an MS2 spectrum. The MS2 spectra are

then computationally matched to a database to identify the original peptide sequence from

which they originated. The spectra that were successfully associated to a peptide sequence are

called peptide to spectrum matches (PSMs, Fig 3D). Next to that, a specific range of the MS

spectrum holds the TMT label information where each label generates a fragment with an

expected m/z value. The intensity of each label peak is proportional to the peptide expression

in the corresponding single cell and this allows for peptide quantification (Fig 3D). Finally, the

quantified PSM data go through a data processing pipeline that aims to reconstruct the protein

data that can be used for downstream analyses (Fig 3E).

Table 2. CITE-Seq dataset description, with assay types, molecular modes, number of specimens, number of features and number of cells. ADTs, antibody derived

tags.

Dataset Identifier Assay Type Modes Species Data Structure Version # features # cells

Cord blood RNA-seq Transcripts Human matrix 1.0.0 36280 8617

ADT Proteins Human matrix 1.0.0 13 8617

https://doi.org/10.1371/journal.pcbi.1011324.t002
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The major challenge in MS-SCP is to recover sufficient peptide material for accurate pep-

tide identification and quantification. SCoPE2 solves this issue by optimizing the sample prep-

aration step to limit samples loss, by providing analytical tools to optimize the MS/MS settings,

and most importantly by introducing a carrier sample into the pool of multiplexed samples.

The carrier is a sample that contains hundreds of cells instead of a single-cell and allows to

Fig 2. Upset plot [26] of the overlap of modalities on the same cells in the control sample of the ECCITE-Seq “peripheral blood” dataset. 8482 cells

are assayed in all three modes (ADT, HTO, RNA), 3105 cells are assayed by HTO and ADT only, etc. RNA data are available for ~10248 cells, whereas HTO

and ADT data are each individually available for ~13000 cells across both conditions. This plot is produced by the upsetSamples function of the

MultiAssayExperiment package, and can be applied directly to all datasets produced by SingleCellMultiModal.

https://doi.org/10.1371/journal.pcbi.1011324.g002
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boost the peptide identification rate by increasing the amount of peptide material delivered to

the MS instrument.

Parallel to SCoPE2, other groups have developed a label-free MS-SCP, where each LC-MS/

MS run contains unlabelled peptides from a single cell [27]. Although it allows for more accu-

rate quantifications, it suffers from low throughput. The current methodological advances in

MS-SCP have extensively been reviewed elsewhere [28].

Landmark data: The SCoPE2 dataset we provide in this work was retrieved from the sup-

plementary information of the landmark paper [9]. This is a milestone dataset as it is the first

publication where over a thousand cells are measured by MS-SCP. The research question is to

understand whether a homogeneous monocyte population (U-937 cell line) could differentiate

upon PMA treatment into a heterogeneous macrophage population, namely whether M1 and

M2 macrophage profiles could be retrieved in the absence of differentiation cytokines. Differ-

ent replicates of monocyte and macrophage samples were prepared and analyzed using either

MS-SCP or Single-cell RNA-seq. The MS-SCP data was acquired in 177 batches with on aver-

age 9 single-cells per batch. The Single-cell RNA-seq data was acquired in 2 replicates with on

average 10,000 single-cells per acquisition using the 10x Genomics Chromium platform. Cell

type annotations are only available for the MS-SCP data. Note also that MS-SCP data provides

expression information at protein level meaning that the peptide data has already been pro-

cessed. The processing includes filtering high quality features, filtering high quality cells, log-

transformation, normalization, aggregation from peptides to proteins, imputation and batch

correction (Fig 3E). More details on the protein data processing can be found in the original

paper or in the paper that reproduced that analysis [29]. Count tables were provided for the

Single-cell RNA-seq dataset with no additional processing.

The data can be accessed in the SingleCellMultiModal package by calling SCoPE2
("macrophage_differentiation") (Table 4). Relevant cell metadata is provided

within the MultiAssayExperiment object. The MS-SCP dataset contains expression values for

3,042 proteins in 1,490 cells. The Single-cell RNA-seq contains expression values for 32,738

genes (out of which 10,149 are zero) for 20,274 cells.

Single-cell nucleosome, methylation and transcription sequencing (scNMT-seq). Pur-

pose and goals: The profiling of the epigenome at single-cell resolution has received increasing

interest, as it provides valuable insights into the regulatory landscape of the genome [30,31].

Although the term epigenome comprises multiple molecular layers, the profiling of chromatin

accessibility and DNA methylation have received the most attention to date.

Table 3. ECCITE-Seq dataset description: assay types, molecular modes, number of specimens, number of features and number of cells. ADTs, antibody derived

tags; HTO, Hashtagged oligos; sgRNAs, CRISPR V(D)J’s.

Dataset Identifier Assay Type Modes Species Data Structure Condition # features # cells

Peripheral blood RNA-seq Transcripts Human dgCMatrix CTCL 33538 5399

CTRL 33538 4849

ADT Proteins Human dgCMatrix CTCL 52 6500

CTRL 52 6500

HTO Cell tracking Human dgCMatrix CTCL 7 6500

CTRL 7 6500

sgRNAs stored in long format # rows # cols

sgRNAs CRISPR perturbation Human data.frame CTCL TCRab 9626 18

CTCL TCRgd 2430 18

CTRL TCRab 8359 18

CTRL TCRgd 3099 18

https://doi.org/10.1371/journal.pcbi.1011324.t003
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Fig 3. SCoPE2 workflow. The workflow consists of 4 main steps. (A) Sample preparation extracts and labels peptides from single-

cells. (B) LC separates the peptides based on their mass and affinity for the column. Note that the TMT tag does not influence those

properties. Peptides that are eluting are ionised thanks to an electrospray. (C) MS/MS performs an m/z scan of the incoming ions to

select the most abundant ones that are then fragmented separately. A second round of MS acquires the spectrum generated by the

ion fragments. (D) Each spectrum is then computationally processed to obtain the cell-specific expression values and the peptide
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Technology: DNA methylation is generally measured using single-cell bisulfite sequencing

(scBS-seq) [32]. The underlying principle of scBS-seq is the treatment of the DNA with sodium

bisulfite before DNA sequencing, which converts unmethylated cytosine (C) residues to uracil

(and after retro-PCR amplification, to thymine (T)), leaving 5-methylcytosine residues intact.

The resulting C!T transitions can then be detected by DNA sequencing. Further methodo-

logical innovations enabled DNA methylation and RNA expression to be profiled from the

same cell, demonstrated by the scM&T-seq assay [33].

Chromatin accessibility was traditionally profiled in bulk samples using DNase sequencing

(DNase-seq) [34]. However, in recent years, transposase-accessible chromatin followed by

sequencing (ATAC-seq) has displaced DNase-seq as the de facto method for profiling chroma-

tin accessibility due to its fast and sensitive protocol, most notably in single-cell genomics [35].

Briefly, in ATAC-seq, cells are incubated with a hyperactive mutant Tn5 transposase, an

enzyme that inserts artificial sequencing adapters into nucleosome-free regions. Subsequently,

the adaptors are purified, PCR-amplified and sequenced. Notably, single-cell ATAC-seq has

also been combined with Single-cell RNA-seq to simultaneously survey RNA expression and

chromatin accessibility from the same cell, as demonstrated by SNARE-seq [36], SHARE-seq

[37] and the recently commercialized Multiome Kit from 10x Genomics [6]. Finally, some

assays have been devised to capture at least three molecular layers from the same cell, albeit at

a lower throughput than SNARE-seq or SHARE-seq. An example is scNMT-seq (single-cell

nucleosome methylation and transcriptome sequencing) [5]. scNMT captures a snapshot of

RNA expression, DNA methylation and chromatin accessibility in single-cells by combining

two previous multi-modal protocols: scM&T-seq [33] and Nucleosome Occupancy and Meth-

ylation sequencing (NOMe-seq) [38]

In the first step (the NOMe-seq step), cells are sorted into individual wells and incubated

with a GpC methyltransferase. This enzyme labels accessible (or nucleosome depleted) GpC

sites via DNA methylation. In mammalian genomes, cytosine residues in GpC dinucleotides

are methylated at a very low rate. Hence, after the GpC methyltransferase treatment, GpC

methylation marks can be interpreted as direct readouts for chromatin accessibility, as

opposed to the CpG methylation readouts, which can be interpreted as endogenous DNA

methylation. In a second step (the scM&T-seq step), the DNA molecules are separated from

the mRNA using oligo-dT probes pre-annealed to magnetic beads. Subsequently, the DNA

fraction undergoes scBS, whereas the RNA fraction undergoes Single-cell RNA-seq.

Landmark data: The scNMT landmark paper reported simultaneous measurements of

chromatin accessibility, DNA methylation, and RNA expression at single-cell resolution dur-

ing early embryonic development, spanning exit from pluripotency to primary germ layer

specification [23]. This dataset represents the first multi-omics roadmap of mouse gastrulation

at single-cell resolution. Using multi-omic integration methods, the authors detected genomic

associations between distal regulatory regions and transcription activity, revealing novel

insights into the role of the epigenome in regulating this key developmental process.

identity. (E) The data processing pipeline reconstructs the protein data from the quantified PSMs. Abbreviations: TMT: tandem

mass tags; LC: liquid chromatography; MS: mass spectrometry; MS/MS: tandem MS; m/z: mass over charge; PSM: peptide to

spectrum match.

https://doi.org/10.1371/journal.pcbi.1011324.g003

Table 4. SCoPE2 dataset descriptions, with assay types, molecular modes, specimens, dataset version provided, number of features and number of cells.

Dataset Identifier Assay Type Modes Species Data Structure Version # features # cells

macrophage _differentiation LC-MS/MS Proteins Human matrix 1.0.0 3,042 1,490

RNA-seq Transcripts Human HDF5 1.0.0 32,738 20,274

https://doi.org/10.1371/journal.pcbi.1011324.t004
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One of the challenges of this dataset is the complex missing value structure. Whereas RNA

expression is profiled for most cells (N = 2480), DNA methylation and chromatin accessibility

is only profiled for subsets of cells (N = 986 and N = 1105, respectively). This poses important

challenges to some of the conventional statistical methods that do not handle missing

information.

The output of the epigenetic layers from scNMT-seq is a binary methylation state for each

observed CpG (endogenous DNA methylation) and GpC (a proxy for chromatin accessibility).

However, instead of working at the single nucleotide level, epigenetic measurements are typi-

cally quantified over genomic features (i.e. promoters, enhancers, etc.). This is done assuming

a binomial model for each cell and feature, where the number of successes is the number of

methylated CpGs (or GpCs) and the number of trials is the total number of CpGs (or GpCs)

that are observed. Here we provide DNA methylation and chromatin accessibility estimates

quantified over CpG islands, gene promoters, gene bodies and DNAse hypersensitive sites

(defined in Embryonic Stem Cells).

The pre-integrated scNMT dataset is accessed from the SingleCellMultiModal package by

calling e.g. scNMT("mouse_gastrulation", version = "1.0.0") (Table 5). Rel-

evant cell metadata is provided within the MultiAssayExperiment object. The overall dataset is

277MB.

Chromium Single-cell Multiome ATAC and gene expression. Purpose and goals: A

new commercial platform introduced in late 2020 by 10X Genomics, the Chromium Single

Cell Multiome ATAC and gene expression (10x Multiome), provides simultaneous gene

expression and open chromatin measurements from the same cell at high throughput. This

technology is well suited to identify gene regulatory networks by linking open chromatin

regions with changes in gene expression, a task which is harder to perform when the two

modalities are derived from separate groups of cells. However, very few datasets have been

published to date using the 10x Multiome technology, and so how much information can be

obtained by simultaneously profiling both modalities in the same cell remains an open

question.

Technology: First, cells are purified and single nuclei are isolated, chromosomes are trans-

positioned. Next, ATAC and mRNA sequencing libraries are prepared with 10X Genomics

Chromium microfluidic controller device where nuclei are partitioned and embedded in a

droplet with a decorated gel bead with DNA 16nt 10X barcode that allows for pairing ATAC

and mRNA signals to the same nuclei. mRNA is tagged with an 12nt Unique Molecular Identi-

fier sequence (UMI), and a poly(dT)VN for poly-adenylated 3’ends. ATAC fragments are

tagged with a Illumina primer sequence and an 8nt space sequence. All barcoded products are

amplified in two rounds of PCR and then processed for sequencing. According to the

Table 5. scNMT-seq dataset description, with of assay types, molecular modes, number of specimens, number of features and number of cells.

Dataset Identifier Assay type Modes Data structure # features # cells

Mouse Gastrulation RNA-seq Transcripts Matrix 18345 2480

DNA Methylation CpG islands Matrix 14080 986

promoters Matrix 17179 986

Gene bodies Matrix 17559 986

DHS Matrix 6673 986

Chromatin accessibility CpG islands Matrix 14824 1101

promoters Matrix 18037 1103

Gene bodies Matrix 17924 1105

DHS Matrix 20082 1094

https://doi.org/10.1371/journal.pcbi.1011324.t005
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Chromium Single-Cell Multiome ATAC and gene expression assay product information, it

has a flexible throughput of 500–10,000 nuclei per channel and up to 80,000 per run with a

65% recovery rate and low multiplet rate of<1% per 1000 cells (10Xgenomics.com).

Landmark data: 10X genomics has released a dataset of ~10k peripheral blood mononu-

clear cells (PBMCs) from a human healthy donor. Here we provide the RNA expression matrix

and the binary matrix of ATAC fragments for each cell, quantified over a set of pre-computed

peaks (Table 6). To access data in the SingleCellMultiModal package, call the scMultiome

("pbmc_10x") command. Relevant cell metadata is provided within the MultiAssayExperiment

object. The overall dataset is 1.1 GB.

RNA and spatial sequencing assays. Purpose and goals: The power of microscopy to

resolve spatial information has been paired with single-cell sequencing to measure transcrip-

tomic activity. These microscopy-based sequencing technologies capture a cell population’s

heterogeneous gene expression typically lost in bulk assays. Technologies like seqFISH(+)

(sequential Fluorescence In Situ Hybridization), fluorescence in situ hybridization sequencing

[7], Multiplexed error-robust fluorescence in situ hybridization (MERFISH) [39], Slide-seq

[40,41] combine sequential barcoding with in situ molecular fluorescence probing, allowing

the identification from tens to thousands of mRNAs transcripts while preserving spatial coor-

dinates at micrometer resolution. We refer to this family of technologies as molecular-based

spatial transcriptomics. Another family of spatial omics technologies can be described as spot-

based; it includes the 10x Visium Spatial Gene Expression and Slide-seq [40]. In this family,

the spatial coordinates are typically associated with barcoded spot-like identities, where the

transcripts are amplified and sequenced. Currently, our package does not include any spot-

based spatial transcriptomics dataset. The TENxVisiumData package [42] (available at https://

github.com/HelenaLC/TENxVisiumData) contains several such datasets. See [43] for a com-

prehensive review of spatial transcriptomics technologies.

Technology: The seqFISH technology makes use of temporal barcodes to be read in multi-

ple rounds of hybridization where mRNAs are labeled with fluorescent probes. During the

hybridization rounds, the fluorescent probes are hybridized with the transcripts to be imaged

with microscopy. Then they are stripped to be re-used and coupled with different fluoro-

phores, during further rounds. In this case, the transcript abundance is given by the number of

colocalizing spots per each transcript. The main differences between the technologies are due

to the barcoding of RNAs. In seqFISH they are detected as a color sequence while in MERFISH

the barcodes are identified as binary strings allowing error handling but requiring longer tran-

scripts and more rounds of hybridizations [44].

Landmark data: The provided seqFISH dataset is designed on a mouse visual cortex tissue

and can be retrieved in two different versions. Both versions include Single-cell RNA-seq and

seqFISH data. Single-cell RNA-seq data in version 1.0.0 are part of the original paper [24] of

24057 genes in 1809 cells, while version 2.0.0 is a pre-processed adaptation of version 1.0.0

[22] where the authors analyzed it in order to provide the 113 genes in common with seqFISH

data in 1723 cells. The provided seqFISH data are the same for both versions as part of their

original paper [45,46] made of 1597 cells and 113 genes. The dataset is accessible via the

SingleCellMultiModal Bioconductor package by using the seqFISH(DataType=
"mouse_visual_cortex", version = "1.0.0") function call, which returns a

Table 6. 10X Multiome dataset descriptions, with assay types, molecular modes, number of features and number of cells.

Dataset Identifier Assay type Modes Data structure # features # cells

Human PBMCs RNA-seq Gene expression SingleCellExperiment 36,549 10,032

Chromatin accessibility Fragments over peaks SingleCellExperiment 108,344 10,032

https://doi.org/10.1371/journal.pcbi.1011324.t006
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MultiAssayExperiment object with a SpatialExperiment object for the seqFISH data and a Sin-

gleCellExperiment object for the Single-cell RNA-seq data (Table 7).

RNA and DNA sequencing assays. Purpose and goals: Parallel genome and transcrip-

tome sequencing (G&T-seq) of single-cells [8] opens new avenues for measuring transcrip-

tional responses to genetic and genomic variation resulting from different allele frequencies,

genetic mosaicism [47], single nucleotide variants (SNVs), DNA copy-number variants

(CNVs), and structural variants (SVs). Although current experimental protocols are low-

throughput with respect to the number of cells, simultaneous DNA and RNA sequencing of

single-cells resolves the problem of how to associate cells across each modality from indepen-

dently sampled single-cell measurements [48].

Technology: Following cell isolation and lysis, G&T-seq measures DNA and RNA levels of

the same cell by physically separating polyadenylated RNA from genomic DNA using a bioti-

nylated oligo-dT primer [49]. This is followed by separate whole-genome and whole-transcrip-

tome amplification. Whole-genome amplification is carried out via multiple displacement

amplification (MDA) or displacement pre-amplification and PCR (DA-PCR) for DNA

sequencing, providing targeted sequencing reads or genome-wide copy number estimates.

Parallel Smart-seq2 whole-transcriptome amplification is used for Illumina or PacBio cDNA

sequencing, providing gene expression levels based on standard computational RNA-seq

quantification pipelines. While pioneering technologies such as G&T-seq [8] and DR-seq [50]

sequence both the DNA and RNA from single-cells, they currently measure only few cells (50–

200 cells [51]) compared to assays that sequence DNA or RNA alone (1,000–10,000 cells [51])

such as Direct Library Preparation [52] or 10x Genomics Single-cell RNA-seq [53].

Landmark data: G&T-seq has been applied by Macaulay et al. [8] for parallel analysis of

genomes and transcriptomes of (i) 130 individual cells from breast cancer line HCC38 and B

lymphoblastoid line HCC38-BL, and (ii) 112 single cells from a mouse embryo at the eight-cell

stage. Publicly available and included in the SingleCellMultiModal package is the mouse

embryo dataset, assaying blastomeres of seven eight-cell cleavage-stage mouse embryos, five of

which were treated with reversine at the four-cell stage of in vitro culture to induce chromo-

some mis-segregation. The dataset is stored as a MultiAssayExperiment [11] consisting of (i) a

SingleCellExperiment [10] storing the single-cell RNA-seq read counts, and (ii) a RaggedEx-

periment [54] storing integer copy numbers as previously described [55] (Table 8). Although

assaying only a relatively small number of cells, the dataset can serve as a prototype for bench-

marking single-cell eQTL integration of DNA copy number and gene expression levels, given

that Macaulay et al. [8] reported copy gains or losses with concomitant increases and decreases

in gene expression levels.

Table 7. seqFISH dataset descriptions, with assay types, molecular modes, specimens, dataset version provided, number of features and number of cells.

Dataset Identifier Assay Type Modes Species Data Structure Version # features # cells

Mouse visual cortex Single-cell RNA-seq Transcripts Mouse SingleCellExperiment 1.0.0 24057 1809

2.0.0 113 1723

seqFISH Spatial Transcriptomics Mouse SpatialExperiment 1.0.0/2.0.0 113 1597

https://doi.org/10.1371/journal.pcbi.1011324.t007

Table 8. G&T-seq dataset description, with assay types, molecular modes, number of specimens, number of features and number of cells.

Dataset Identifier Assay Type Mode Species Data Structure Version # features # cells

E-ERAD-381 RNA-seq mRNA expression Mouse SingleCellExperiment 1.0.0 23363 112

DNA-seq Copy number Mouse RaggedExperiment 1.0.0 2366 112

https://doi.org/10.1371/journal.pcbi.1011324.t008
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Integrative analysis across modalities using data from SingleCellMultiModal. Existing

methods of integrative analysis of single-cell multimodal data have been recently reviewed

[21]. Very briefly, some of the most popular current implementations are 1) the Seurat V4 R

package which aims at vertical integration across several modal data types [56], 2) mixOmics

[14] provides an extensive framework for data integration at molecular (P-integration, MINT

[57]) and sample levels (N-integration, DIABLO [58]), and 3) Multi-Omics Factor Analysis,

MOFA+ [15], a generalisation of Principal Components Analysis for inferring low-dimen-

sional representation of multimodal data. Datasets provided by SingleCellMultiModal can be

readily reshaped as input to any of these packages. We provide novel examples of such integra-

tive analysis for exploratory visualization using SingleCellMultiModal datasets, produced

within package documentation: MOFA+ [15] on the 10X Multiome dataset (Fig 4). For more

information, see Data Integration Methods. In addition, we provide a sample analysis on the

SCoPE2 dataset, which can be found in SingleCellMultimodal’s package vignette.

Methods

SingleCellMultiModal data package

All datasets are distributed through the SingleCellMultiModal experimental data package in

Bioconductor. This package employs ExperimentHub [59] for robust Cloud-based data down-

load from AWS S3 buckets, with automatic local caching to avoid repetitive downloads. These

methods are described in detail elsewhere for application to The Cancer Genome Atlas and

cBioPortal [60]. Briefly, metadata and individual omics datasets are stored in ExperimentHub

as simple core Bioconductor objects such as matrix, SparseMatrix, SingleCellExperiment, and

RaggedExperiment. A simple user-facing convenience function is provided for each dataset

that retrieves all necessary individual components, assembles a MultiAssayExperiment object

[11], and returns this to the user. For very large matrices we employ HDF5 on-disk representa-

tion. Methods for users to access these datasets are documented in the SingleCellMultiModal

package vignette and functions manual.

All datasets provide a cell-type annotation either provided by the authors of the original pub-

lications or based on external knowledge, except for ECCITEseq and G&T-seq for which none

was available (Table 9). In particular, the SCoPE2, seqFISH, and scNMT datasets include the

cell type labels provided by the authors of the original publication, while scMultiome includes a

cell type label inferred by manually inspecting cluster markers. While the CITEseq dataset does

not formally have cell type labels, the ADT data for cell surface markers typically used in immu-

nology allow for manual gating of cell types (see e.g., S3 Fig of [3]). We used this additional

information to define cell type labels that are independent of scRNA-seq data. We note that this

dataset has been previously used for method benchmarking by looking for maximal correspon-

dence between scRNA-seq derived cell type labels and ADT surface markers, which can be con-

sidered as gold standard (see e.g. [61]). A dedicated function (getCellGroups) has been added to

the SingleCellMultiModal package to help the user to add their own cell annotations based on

manual gating. An overview of the cell type annotation for all the dataset can be easily retrieved

through the ontomap function, which also standardizes cell names from the Cell Ontology [62]

(first preference) or NCI Thesaurus [63] to facilitate cross-dataset comparisons.

Furthermore, each dataset includes information on the quality of the cells: for some data-

sets, the package provides a pre-filtered object, in which low-quality cells were already

excluded by the original authors; for others, we provide an option to retrieve either the filtered

dataset, which include only cells that pass a quality control step, or the full dataset along with

an indication, for each cell, of whether it passes the QC filters, defined following state-of-the-

art best practices (Table 9).
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CITE-Seq and ECCITE-Seq dataset

The CITE-Seq contains two modalities of cord blood mononuclear cells, the transcripts

(scRNA) and the cell surface proteins (scADT) measured and preprocessed as described in

the CITE-Seq landmark paper [3]. The PBMC UMI counts together with the Centered Log

Fig 4. Summary of example integration using the 10X Genomic Multiome data from the SingleCellMultiModal package. A): (left)
from the 10X Genomic Multiome data resource, a sparse matrix and FASTA datasets provided, (right) pre-processing steps of source

data required to work with of Multiome dataset provided in SingleCellMultiModal B): MultiAssayExperiment (MAE) objects returned

when called C): Bar graph of the alternative data import sizes D), E) data integration of 10x Genomic Multiome dataset, combining the

chromatin accessibility data with the transcriptome data using MOFA+. D): RNA-seq and ATAC-seq matrices used for weight factored

analysis, E): UMAP cluster of cell types based on factor analysis. For more detail on the analysis, see the Methods and the

SingleCellMultiModal package vignette. Other datasets can be represented similarly: raw data processing and integration of data modes

occur upstream of the SingleCellMultiModal package, users invoke a single command that creates a MultiAssayExperiment integrating

appropriate memory-efficient objects, which are applied directly to downstream R/Bioconductor analyses.

https://doi.org/10.1371/journal.pcbi.1011324.g004
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Ratio (CLR) transformed counts for the scADT were retrieved from the GEO repository with

accession number GSE100866 and then loaded in R to be transformed in matrix format and

then be loaded as separate assays of a MultiAssayExperiment object. This latter object can be

retrieved from the SingleCellMultiModal package with the function call: CITEseq(DataType =

"cord_blood", dry.run = FALSE).

Because this dataset provides a mixture of human and mouse cells, we applied k-means

clustering combined with hierarchical clustering on the log transformed scRNA counts to

identify then classify human cells, approximately reconstructing the population of cells that

the landmark paper reported through manual gating on the ADT assay. Despite a few uniden-

tified cells, most of the subgroups of cells are identified, i.e., Natural Killers, Precursors, CD4

T-cells, CD8 T-cells, B-cells, Monocytes CD14+ and Monocytes CD16+. The code for cell fil-

tering and cell manual gating has been released inside the script folder of the SingleCellMulti-

Modal package. Additionally, two functions (getCellGroups and addCTLabels) for the manual

gating are now exported by the package to help users identify their own cell populations.

The ECCITE-Seq has three modalities of the of peripheral blood mononuclear cells,

(scRNA), the cell surface proteins (scADT) and the Hashtagged Oligo (scHTO) measured

and preprocessed as described in the ECCITE-Seq landmark paper [4].

The PBMC modalities for the cutaneous T-cell lymphoma (CTCL) and controls (CTRL)

were retrieved in TXT format from the GEO repository with accession number GSE126310 and

then loaded in R to be transformed in matrix and data.frame format and then be loaded

as separate assays of a MultiAssayExperiment object. The CRISPR perturbed scRNAs data

are stored as data.frame in the object metadata to keep their original long format. This

latter object can be retrieved from the SingleCellMultiModal with the function call:

CITEseq(DataType = "peripheral_blood", dry.run = FALSE).

Visual cortex seqFISH dataset

The seqFISH dataset has two different modalities, the spatial transcriptomics (seqFISH) and

the single-cell RNA-seq, in two different versions. The main difference between the two ver-

sions are in the Single-cell RNA-seq counts data which in version 1.0.0 are provided as down-

loaded in CSV format from the GEO repository with accession number GSE71585, while the

version 2.0.0 is a processed dataset [46] where only the genes with correspondence in the seq-

FISH dataset have been preserved. Methods of pre-processing are described at https://github.

com/BIRSBiointegration/Hackathon. In both versions the seqFISH dataset is the processed

Table 9. Dataset information on cell filtering and annotations. Specifies if the quality controls on the cells of each dataset have been already performed or if it is present

in the retrieved object. Column Version QC indicates the version of the dataset where QC is available. Cell Annotation column indicates which datasets have a ground-

truth available.

EXPERIMENTAL

ASSAY

DATATYPE NAME CELL QC VERSION QC CELL ANNOTATION CELL ANNOTATION COLUMN

G&T-seq mouse_embryo_8_cell Filtered as in [8] 1.0.0 absent NA

CITE-Seq cord_blood Based on [64,65] 1.0.0 Manual gating on ADT markers celltype

ECCITE-Seq peripheral_blood Based on [64,65] 1.0.0 absent NA

scNMT-seq mouse_gastrulation Based on [5] 2.0.0 Provided by (22) lineage

10X Multiome pbmc_10x Based on (66) 1.0.0 Manual curation based on

markers

celltype

seqFISH mouse_visual_cortex unavailable 1.0.0 Provided by [21] class

Filtered as in

[21]

2.0.0

SCoPE2 macrophage_differentiation Filtered as in [9] 1.0.0 Provided by [9] celltype

https://doi.org/10.1371/journal.pcbi.1011324.t009
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version [46] as downloaded from https://cloudstor.aarnet.edu.au/plus/s/ZuBIXuzuvc9JMj3.

Processed version of the seqFISH data were downloaded as TXT format for the coordinates

(fcortex.coordinates.txt), as TSV format for the cell annotated labels (seqfish_labels.tsv) and

TXT format for the counts (seqfish_cortex_b2_testing.txt). The data constitute a SpatialEx-

periment object with the counts as assay, the cell labels as colData and the coordinates stored

as spatialData.In the same way, the processed Single-cell RNA-seq data were downloaded as

TXT format for the counts (tasic_training_b2.txt), as TSV format for the cell annotated labels

(tasic_labels.tsv) to build a SingleCellExperiment object with the counts as assay and the cell

labels as colData.

Finally, the SingleCellExperiment and the SpatialExperiment have been loaded into a Mul-

tiAssayExperiment object as two different assays. The MultiAssayExperiment object can be

retrieved with the function call, for example:

seqFISH(DataType = "mouse_visual_cortex",dry.run = FALSE, version = "2.0.0")

Mouse gastrulation scNMT dataset

Preprocessing methods are described in full by Argelaguet et al. [23]. Briefly, RNA-seq libraries

were aligned to the GRCm38 mouse genome build using HiSat235 (v.2.1.0). Gene expression

counts were quantified from the mapped reads using featureCounts [66] with the Ensembl 87

gene annotation [67]. The read counts were log-transformed and size-factor adjusted using

scran normalization [68]. Bisulfite-seq libraries were aligned to the bisulfite converted

GRCm38 mouse genome using Bismark [69]. Endogenous CpG methylation was quantified

over ACG and TCG trinucleotides and GpC chromatin accessibility over GCA, GCC and GCT

trinucleotides. Note that for GCG trinucleotides it is not possible to distinguish endogenous

CpG methylation from induced GpC methylation. In addition, CGC positions were discarded

because of off-target effects of the GpC methyltransferase enzyme [70].

For each CpG site in each cell we obtained binary methylation calls and for each GpC site

in each cell we obtained binary accessibility calls. Notice that binary readouts is an exclusive

property of single-cell bisulfite sequencing data, as for the vast majority of sites only one allele

is observed per cell. This contrasts with bulk bisulfite sequencing data, where each dinucleotide

typically contains multiple reads originating from different cells.

Finally, we quantified DNA methylation and chromatin accessibility over genomic features

by assuming a binomial model is assumed for each cell and feature, where the number of suc-

cesses is the number of methylated CpGs (or GpCs) and the number of trials is the total num-

ber of CpGs (or GpCs) that are observed within the specific cell and genomic feature. Here,

We quantified DNA methylation and chromatin accessibility rates over CpG islands, gene pro-

moters, gene bodies and DNAse hypersensitive sites. All these data modalities were compiled

together with the RNA expression into a MultiAssayExperiment object. The dataset can be

loaded from within the SingleCellMultiModal package by the function call scNMT("mou-

se_gastrulation", dry.run = FALSE, version = "2.0.0"). Code with the data processing pipeline is

available in https://github.com/rargelaguet/scnmt_gastrulation.

10X multiome dataset

PBMCs were extracted from a healthy donor after removing granulocytes through cell sorting.

The dataset was downloaded as a CellRanger ARC output from https://support.10xgenomics.

com/single-cell-multiome-atac-gex/datasets/1.0.0/pbmc_granulocyte_sorted_10k, which

includes the gene expression matrix and the chromatin accessibility matrix quantified over

ATAC peaks. The dataset included 11,909 cells with a median of 13,486 high-quality ATAC

fragments per cell and a median of 1,826 genes expressed per cell. Data processing details,
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including the peak calling algorithm, can be found in https://support.10xgenomics.com/

single-cell-multiome-atac-gex/software/pipelines/latest/what-is-cell-ranger-arc. The dataset is

provided as a MultiAssayExperiment [11] consisting of two SingleCellExperiment [10], one

containing the single-cell RNA-seq read counts, and the other containing the binary ATAC

peak matrix. The dataset can be loaded from within the SingleCellMultiModal package by

the function call scMultiome("pbmc_10x", dry.run = FALSE).

Macrophage differentiation SCoPE2 dataset

The macrophage differentiation project contains two datasets: single-cell RNA-seq data and

MS-SCP data. Upstream processing is described in detail in the SCoPE2 landmark paper [9].

Briefly, for the Single-cell RNA-seq dataset, the authors used CellRanger to align the reads and

to build the UMI count matrices. Based on cell QC and manual inspection, they discarded

cells containing less than 104 UMI barcodes. The resulting tables for two technical replicates

were deposited in a GEO repository with accession GSE142392. For the MS-SCP dataset, the

authors followed the workflow described in Fig 3, with identification and quantification steps

performed using the MaxQuant software and additional protein quantification using a custom

R script available on GitHub (https://github.com/SlavovLab/SCoPE2).

We retrieved the single-cell RNA-seq dataset from the GSE142392 repository. The MS-SCP

data and annotations were retrieved from CSV files available at the authors’ website (https://

scope2.slavovlab.net/docs/data). We formatted the Single-cell RNA-seq and the MS-SCP data

as two separate SingleCellExperiment objects without further processing. Because the

Single-cell RNA-seq data is relatively large, it is stored as a sparse matrix using the HDF5 data

format. We combined the two data objects in a single MultiAssayExperiment object. This latter

object can be queried from the SingleCellMultimodal package with the function call SCoPE2

("macrophage_differentiation", dry.run = FALSE).

G&T-seq dataset

Raw sequencing data was obtained from the European Nucleotide Archive (ENA [71], acces-

sion PRJEB9051). The data was downloaded in fastq files for whole-genome and whole-tran-

scriptome paired-end sequencing data for 112 mouse embryo cells. The data was processed as

described in the step-by-step protocol of Macaulay et al. [49]. Preprocessing and mapping of

genome sequencing data was carried out following steps 78–84 of the protocol of Macaulay

et al. [49], using Rsubread [72] for read trimming, alignment to the mm10 mouse reference

genome, and removal of PCR-duplicate reads. DNA copy-number profiling was carried out

following steps 85–87, using bedtools [73] to convert BAM to BED files, and subsequently

applying Ginkgo [74] for copy number determination. Preprocessing and mapping of tran-

scriptome sequencing data was carried out following steps 94–96, using Rsubread [72] for read

trimming and alignment to the mm10 mouse reference genome. Read counts for each gene

were obtained using the featureCounts [66] function of the Rsubread package. The dataset is

provided as a MultiAssayExperiment [11] consisting of (i) a SingleCellExperiment [10] storing

the single-cell RNA-seq read counts, and (ii) a RaggedExperiment [54] storing integer copy

numbers as previously described [55]. The dataset can be loaded from within the SingleCell-

MultiModal package by the function call GTseq(dry.run = FALSE).

Data integration of the 10x multiome data set

For the integration of the 10x Multiome dataset we used MOFA+ [15] to obtain a latent

embedding with contribution from both data modalities. The RNA expression was normalised

using scran [68], followed by feature selection of the top 2000 most variable genes. The
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chromatin accessibility was normalised using TFIDF, followed by feature selection of the top

10,000 peaks with the highest mean accessibility. The MOFA model was trained with K = 15

factors using default options. To obtain a non-linear embedding we applied UMAP [75] on

the MOFA factors.

Discussion

Experimental data packages providing landmark datasets have historically played an important

role in the development of new statistical methods in Bioconductor, from the classic acute

lymphocytic leukemia (ALL) microarray dataset [76] to the HSMMSingleCell single-cell RNA-

seq dataset [77], as well as packages providing more extensive curated selections of standard-

ized datasets in a specific realm [78]. Such packages greatly lower the barrier of access to rele-

vant data for developers of scientific software, and provide a common testing ground for

development and benchmarking. We present the SingleCellMultiModal Bioconductor experi-

mental data package, to distribute landmark single-cell multimodal datasets in pre-integrated

immediately usable forms, utilizing standard Bioconductor data structures. Multimodal data-

sets are serialized as a MultiAssayExperiment object by a single command, without requiring

users to perform data wrangling to link multiple ‘omics profiles or to manage cells with incom-

plete data. We provide curated landmark datasets for a selection of key single-cell multimodal

assays that will serve as benchmarks for the development and assessment of appropriate analy-

sis methods in R/Bioconductor. We provide a brief review of the assays provided for the pur-

pose of providing essential background to developers of statistical and bioinformatic methods,

a summary of the data contained in each dataset, and examples of minimal code needed to

access each dataset in an R/Bioconductor session. Methods of statistical analysis are reviewed

in a recent complimentary paper [22].

Single-cell RNA-seq analysis methods in Bioconductor are well developed and widely used

[10], setting the stage for new development in single-cell multimodal data analysis that will be

facilitated by the SingleCellMultiModal experimental data package. Areas of active research

include integrative systems biology across data modes, spatial statistics on high-dimensional

data, dimension reduction and clustering [14], cell identification, multimodal batch correc-

tion, and new data structures for representation and analysis of large and spatially resolved sin-

gle-cell multimodal data. These areas of research and their software products will be facilitated

and made more interoperable by the easily accessible and uniformly represented data provided

by this work.

Author Contributions

Conceptualization: Kelly B. Eckenrode, Dario Righelli, Marcel Ramos, Ricard Argelaguet,

Christophe Vanderaa, Ludwig Geistlinger, Aedin C. Culhane, Laurent Gatto, Martin Mor-

gan, Davide Risso, Levi Waldron.

Data curation: Kelly B. Eckenrode, Dario Righelli, Marcel Ramos, Ricard Argelaguet, Chris-

tophe Vanderaa, Ludwig Geistlinger.

Formal analysis: Dario Righelli, Marcel Ramos, Ricard Argelaguet, Christophe Vanderaa,

Ludwig Geistlinger.

Investigation: Kelly B. Eckenrode, Marcel Ramos.

Methodology: Dario Righelli, Marcel Ramos, Ricard Argelaguet, Christophe Vanderaa, Lud-

wig Geistlinger.

Project administration: Kelly B. Eckenrode, Dario Righelli.

PLOS COMPUTATIONAL BIOLOGY Curated single cell multimodal landmark datasets for R/Bioconductor

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011324 August 25, 2023 19 / 23

https://doi.org/10.1371/journal.pcbi.1011324


Resources: Dario Righelli, Marcel Ramos, Ricard Argelaguet, Christophe Vanderaa, Ludwig

Geistlinger.

Software: Dario Righelli, Marcel Ramos, Ricard Argelaguet, Christophe Vanderaa, Ludwig

Geistlinger.

Supervision: Aedin C. Culhane, Laurent Gatto, Vincent Carey, Martin Morgan, Davide Risso,

Levi Waldron.

Validation: Dario Righelli, Marcel Ramos, Ricard Argelaguet, Ludwig Geistlinger.

Visualization: Kelly B. Eckenrode, Dario Righelli, Ricard Argelaguet.

Writing – original draft: Kelly B. Eckenrode, Dario Righelli, Marcel Ramos, Ricard Argela-

guet, Christophe Vanderaa, Ludwig Geistlinger, Aedin C. Culhane.

Writing – review & editing: Kelly B. Eckenrode, Dario Righelli, Ricard Argelaguet, Chris-

tophe Vanderaa, Ludwig Geistlinger, Aedin C. Culhane, Laurent Gatto, Vincent Carey,

Davide Risso, Levi Waldron.

References
1. Schier AF. Single-cell biology: beyond the sum of its parts. Nat Methods. 2020; 17: 17–20. https://doi.

org/10.1038/s41592-019-0693-3 PMID: 31907464

2. Method of the Year 2019: Single-cell multimodal omics. Nat Methods. 2020; 17: 1.

3. Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, Swerdlow H, et al.

Simultaneous epitope and transcriptome measurement in single cells. Nat Methods. 2017; 14: 865–

868. https://doi.org/10.1038/nmeth.4380 PMID: 28759029

4. Mimitou EP, Cheng A, Montalbano A, Hao S, Stoeckius M, Legut M, et al. Multiplexed detection of pro-

teins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat Methods. 2019; 16:

409–412. https://doi.org/10.1038/s41592-019-0392-0 PMID: 31011186

5. Clark SJ, Argelaguet R, Kapourani CA, Stubbs TM, Lee HJ, Alda-Catalinas C, et al. ScNMT-seq

enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells e. Nat

Commun. 2018;9. https://doi.org/10.1038/s41467-018-03149-4 PMID: 29472610

6. Shi M, Annika K, Michael P. Nuclei Isolation from Tissue for 10x Multiome v1. protocols.io. https://doi.

org/10.17504/protocols.io.bukqnuvw

7. Lubeck E, Coskun AF, Zhiyentayev T, Ahmad M, Cai L. Single-cell in situ RNA profiling by sequential

hybridization. Nature methods. 2014. pp. 360–361. https://doi.org/10.1038/nmeth.2892 PMID:

24681720

8. Macaulay IC, Haerty W, Kumar P, Li YI, Hu TX, Teng MJ, et al. G&T-seq: parallel sequencing of single-

cell genomes and transcriptomes. Nat Methods. 2015; 12: 519–522.

9. Specht H, Emmott E, Petelski AA, Huffman RG, Perlman DH, Serra M, et al. Single-cell proteomic and

transcriptomic analysis of macrophage heterogeneity using SCoPE2. Genome Biol. 2021; 22: 50.

https://doi.org/10.1186/s13059-021-02267-5 PMID: 33504367

10. Amezquita RA, Lun ATL, Becht E, Carey VJ, Carpp LN, Geistlinger L, et al. Orchestrating single-cell

analysis with Bioconductor. Nat Methods. 2020; 17: 137–145. https://doi.org/10.1038/s41592-019-

0654-x PMID: 31792435

11. Ramos M, Schiffer L, Re A, Azhar R, Basunia A, Rodriguez C, et al. Software for the Integration of Mul-

tiomics Experiments in Bioconductor. Cancer Res. 2017; 77: e39–e42. https://doi.org/10.1158/0008-

5472.CAN-17-0344 PMID: 29092936

12. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, et al. Orchestrating high-

throughput genomic analysis with Bioconductor. Nat Methods. 2015; 12: 115–121. https://doi.org/10.

1038/nmeth.3252 PMID: 25633503

13. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al. Comprehensive Integration

of Single-Cell Data. Cell. 2019; 177: 1888–1902.e21. https://doi.org/10.1016/j.cell.2019.05.031 PMID:

31178118

14. Rohart F, Gautier B, Singh A, LêCao K-A. mixOmics: An R package for ‘omics feature selection and

multiple data integration. PLoS Comput Biol. 2017; 13: e1005752. https://doi.org/10.1371/journal.pcbi.

1005752 PMID: 29099853

PLOS COMPUTATIONAL BIOLOGY Curated single cell multimodal landmark datasets for R/Bioconductor

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011324 August 25, 2023 20 / 23

https://doi.org/10.1038/s41592-019-0693-3
https://doi.org/10.1038/s41592-019-0693-3
http://www.ncbi.nlm.nih.gov/pubmed/31907464
https://doi.org/10.1038/nmeth.4380
http://www.ncbi.nlm.nih.gov/pubmed/28759029
https://doi.org/10.1038/s41592-019-0392-0
http://www.ncbi.nlm.nih.gov/pubmed/31011186
https://doi.org/10.1038/s41467-018-03149-4
http://www.ncbi.nlm.nih.gov/pubmed/29472610
https://doi.org/10.17504/protocols.io.bukqnuvw
https://doi.org/10.17504/protocols.io.bukqnuvw
https://doi.org/10.1038/nmeth.2892
http://www.ncbi.nlm.nih.gov/pubmed/24681720
https://doi.org/10.1186/s13059-021-02267-5
http://www.ncbi.nlm.nih.gov/pubmed/33504367
https://doi.org/10.1038/s41592-019-0654-x
https://doi.org/10.1038/s41592-019-0654-x
http://www.ncbi.nlm.nih.gov/pubmed/31792435
https://doi.org/10.1158/0008-5472.CAN-17-0344
https://doi.org/10.1158/0008-5472.CAN-17-0344
http://www.ncbi.nlm.nih.gov/pubmed/29092936
https://doi.org/10.1038/nmeth.3252
https://doi.org/10.1038/nmeth.3252
http://www.ncbi.nlm.nih.gov/pubmed/25633503
https://doi.org/10.1016/j.cell.2019.05.031
http://www.ncbi.nlm.nih.gov/pubmed/31178118
https://doi.org/10.1371/journal.pcbi.1005752
https://doi.org/10.1371/journal.pcbi.1005752
http://www.ncbi.nlm.nih.gov/pubmed/29099853
https://doi.org/10.1371/journal.pcbi.1011324


15. Argelaguet R, Arnol D, Bredikhin D, Deloro Y, Velten B, Marioni JC, et al. MOFA+: a statistical frame-

work for comprehensive integration of multi-modal single-cell data. Genome Biol. 2020; 21: 111. https://

doi.org/10.1186/s13059-020-02015-1 PMID: 32393329

16. Kim HJ, Lin Y, Geddes TA, Yang JYH, Yang P. CiteFuse enables multi-modal analysis of CITE-seq

data. Bioinformatics. 2020; 36: 4137–4143. https://doi.org/10.1093/bioinformatics/btaa282 PMID:

32353146

17. Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis.

Genome Biol. 2018; 19: 15. https://doi.org/10.1186/s13059-017-1382-0 PMID: 29409532

18. Barkas N, Petukhov V, Nikolaeva D, Lozinsky Y, Demharter S, Khodosevich K, et al. Joint analysis of

heterogeneous single-cell RNA-seq dataset collections. Nat Methods. 2019; 16: 695–698. https://doi.

org/10.1038/s41592-019-0466-z PMID: 31308548

19. Gentleman R, Carey V, Huber W, Irizarry R, Dudoit S. Bioinformatics and Computational Biology Solu-

tions Using R and Bioconductor. Springer Science & Business Media; 2006.

20. Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M, Gentleman R, et al. Software for computing

and annotating genomic ranges. PLoS Comput Biol. 2013; 9: e1003118. https://doi.org/10.1371/

journal.pcbi.1003118 PMID: 23950696

21. LêCao K-A, Abadi AJ, Davis-Marcisak EF, Hsu L, Arora A, Coullomb A, et al. Community-wide hacka-

thons to identify central themes in single-cell multi-omics. Genome Biol. 2021; 22: 220. https://doi.org/

10.1186/s13059-021-02433-9 PMID: 34353350

22. Al J Abadi Emily F. Davis-Marcisak Lauren Hsu Arshi Arora Alexis Coullomb Atul Deshpande Yuzhou

Feng Melanie Loth Vera Pancaldi Kris Sankaran Amrit Singh Joshua S. Sodicoff Genevieve L. Stein-

O’Brien Ayshwarya Subramanian Joshua D. Welch Yue You Ricard Argelaguet Vincent J. Carey

Ruben Dries Casey S. Greene Susan Holmes Michael I. Love Matthew E. Ritchie Guo-Cheng Yuan

Aedin C Culhane and Elana Fertig K-ALC. “Community-wide hackathons establish foundations for

emerging single cell data integration.” In submission.

23. Argelaguet R, Clark SJ, Mohammed H, Carine Stapel L, Krueger C, Kapourani C-A, et al. Multi-omics

profiling of mouse gastrulation at single-cell resolution. Nature. 2019; 576: 487–491. https://doi.org/10.

1038/s41586-019-1825-8 PMID: 31827285

24. Tasic B, Menon V, Nguyen TN, Kim TK, Jarsky T, Yao Z, et al. Adult mouse cortical cell taxonomy

revealed by single cell transcriptomics. Nat Neurosci. 2016; 19: 335–346. https://doi.org/10.1038/nn.

4216 PMID: 26727548

25. Schepers K, Swart E, van Heijst JWJ, Gerlach C, Castrucci M, Sie D, et al. Dissecting T cell lineage

relationships by cellular barcoding. J Exp Med. 2008; 205: 2309–2318. https://doi.org/10.1084/jem.

20072462 PMID: 18809713

26. Conway JR, Lex A, Gehlenborg N. UpSetR: An R Package For The Visualization Of Intersecting Sets

And Their Properties. bioRxiv. 2017. p. 120600. https://doi.org/10.1101/120600

27. Zhu Y, Piehowski PD, Zhao R, Chen J, Shen Y, Moore RJ, et al. Nanodroplet processing platform for

deep and quantitative proteome profiling of 10–100 mammalian cells. Nat Commun. 2018; 9: 882.

https://doi.org/10.1038/s41467-018-03367-w PMID: 29491378

28. Kelly RT. Single-cell Proteomics: Progress and Prospects. Mol Cell Proteomics. 2020; 19: 1739–1748.

https://doi.org/10.1074/mcp.R120.002234 PMID: 32847821

29. Vanderaa C, Gatto L. Utilizing Scp for the analysis and replication of single-cell proteomics data. bioR-

xiv. 2021. p. 2021.04.12.439408. https://doi.org/10.1101/2021.04.12.439408

30. Kelsey G, Stegle O, Reik W. Single-cell epigenomics: Recording the past and predicting the future. Sci-

ence. 2017; 358: 69–75. https://doi.org/10.1126/science.aan6826 PMID: 28983045

31. Klemm SL, Shipony Z, Greenleaf WJ. Chromatin accessibility and the regulatory epigenome. Nat Rev

Genet. 2019; 20: 207–220. https://doi.org/10.1038/s41576-018-0089-8 PMID: 30675018

32. Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J, et al. Single-cell genome-wide

bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods. 2014; 11: 817–820. https://

doi.org/10.1038/nmeth.3035 PMID: 25042786

33. Angermueller C, Clark SJ, Lee HJ, Macaulay IC, Teng MJ, Hu TX, et al. Parallel single-cell sequencing

links transcriptional and epigenetic heterogeneity. Nat Methods. 2016; 13: 229–232. https://doi.org/10.

1038/nmeth.3728 PMID: 26752769

34. Song L, Crawford GE. DNase-seq: a high-resolution technique for mapping active gene regulatory ele-

ments across the genome from mammalian cells. Cold Spring Harb Protoc. 2010; 2010: db.prot5384.

https://doi.org/10.1101/pdb.prot5384 PMID: 20150147

35. Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, et al. Single-cell chromatin

accessibility reveals principles of regulatory variation. Nature. 2015; 523: 486–490. https://doi.org/10.

1038/nature14590 PMID: 26083756

PLOS COMPUTATIONAL BIOLOGY Curated single cell multimodal landmark datasets for R/Bioconductor

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011324 August 25, 2023 21 / 23

https://doi.org/10.1186/s13059-020-02015-1
https://doi.org/10.1186/s13059-020-02015-1
http://www.ncbi.nlm.nih.gov/pubmed/32393329
https://doi.org/10.1093/bioinformatics/btaa282
http://www.ncbi.nlm.nih.gov/pubmed/32353146
https://doi.org/10.1186/s13059-017-1382-0
http://www.ncbi.nlm.nih.gov/pubmed/29409532
https://doi.org/10.1038/s41592-019-0466-z
https://doi.org/10.1038/s41592-019-0466-z
http://www.ncbi.nlm.nih.gov/pubmed/31308548
https://doi.org/10.1371/journal.pcbi.1003118
https://doi.org/10.1371/journal.pcbi.1003118
http://www.ncbi.nlm.nih.gov/pubmed/23950696
https://doi.org/10.1186/s13059-021-02433-9
https://doi.org/10.1186/s13059-021-02433-9
http://www.ncbi.nlm.nih.gov/pubmed/34353350
https://doi.org/10.1038/s41586-019-1825-8
https://doi.org/10.1038/s41586-019-1825-8
http://www.ncbi.nlm.nih.gov/pubmed/31827285
https://doi.org/10.1038/nn.4216
https://doi.org/10.1038/nn.4216
http://www.ncbi.nlm.nih.gov/pubmed/26727548
https://doi.org/10.1084/jem.20072462
https://doi.org/10.1084/jem.20072462
http://www.ncbi.nlm.nih.gov/pubmed/18809713
https://doi.org/10.1101/120600
https://doi.org/10.1038/s41467-018-03367-w
http://www.ncbi.nlm.nih.gov/pubmed/29491378
https://doi.org/10.1074/mcp.R120.002234
http://www.ncbi.nlm.nih.gov/pubmed/32847821
https://doi.org/10.1101/2021.04.12.439408
https://doi.org/10.1126/science.aan6826
http://www.ncbi.nlm.nih.gov/pubmed/28983045
https://doi.org/10.1038/s41576-018-0089-8
http://www.ncbi.nlm.nih.gov/pubmed/30675018
https://doi.org/10.1038/nmeth.3035
https://doi.org/10.1038/nmeth.3035
http://www.ncbi.nlm.nih.gov/pubmed/25042786
https://doi.org/10.1038/nmeth.3728
https://doi.org/10.1038/nmeth.3728
http://www.ncbi.nlm.nih.gov/pubmed/26752769
https://doi.org/10.1101/pdb.prot5384
http://www.ncbi.nlm.nih.gov/pubmed/20150147
https://doi.org/10.1038/nature14590
https://doi.org/10.1038/nature14590
http://www.ncbi.nlm.nih.gov/pubmed/26083756
https://doi.org/10.1371/journal.pcbi.1011324


36. Chen S, Lake BB, Zhang K. High-throughput sequencing of the transcriptome and chromatin accessibil-

ity in the same cell. Nat Biotechnol. 2019; 37: 1452–1457. https://doi.org/10.1038/s41587-019-0290-0

PMID: 31611697

37. Ma S, Zhang B, LaFave LM, Earl AS, Chiang Z, Hu Y, et al. Chromatin Potential Identified by Shared

Single-Cell Profiling of RNA and Chromatin. Cell. 2020; 183: 1103–1116.e20. https://doi.org/10.1016/j.

cell.2020.09.056 PMID: 33098772

38. Pott S. Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome

phasing in single cells. Elife. 2017;6. https://doi.org/10.7554/eLife.23203 PMID: 28653622

39. Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. RNA imaging. Spatially resolved, highly multi-

plexed RNA profiling in single cells. Science. 2015; 348: aaa6090. https://doi.org/10.1126/science.

aaa6090 PMID: 25858977

40. Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E, Vanderburg CR, et al. Slide-seq: A scalable

technology for measuring genome-wide expression at high spatial resolution. Science. 2019; 363:

1463–1467. https://doi.org/10.1126/science.aaw1219 PMID: 30923225

41. Eng C-HL, Lawson M, Zhu Q, Dries R, Koulena N, Takei Y, et al. Transcriptome-scale super-resolved

imaging in tissues by RNA seqFISH. Nature. 2019; 568: 235–239. https://doi.org/10.1038/s41586-019-

1049-y PMID: 30911168

42. Righelli D, Weber LM, Crowell HL, Pardo B, Collado-Torres L, Ghazanfar S, et al. SpatialExperiment:

infrastructure for spatially resolved transcriptomics data in R using Bioconductor. Cold Spring Harbor

Laboratory. 2021. p. 2021.01.27.428431. https://doi.org/10.1101/2021.01.27.428431

43. Moses L, Pachter L. Museum of Spatial Transcriptomics. bioRxiv. 2021. p. 2021.05.11.443152. https://

doi.org/10.1101/2021.05.11.443152

44. Shah S, Lubeck E, Zhou W, Cai L. In Situ Transcription Profiling of Single Cells Reveals Spatial Organi-

zation of Cells in the Mouse Hippocampus. Neuron. 2016; 92: 342–357. https://doi.org/10.1016/j.

neuron.2016.10.001 PMID: 27764670

45. Zhu Q, Shah S, Dries R, Cai L, Yuan G-C. Identification of spatially associated subpopulations by com-

bining scRNAseq and sequential fluorescence in situ hybridization data. Nat Biotechnol. 2018. https://

doi.org/10.1038/nbt.4260 PMID: 30371680

46. birsauthors. White Paper for the Mathematical Frameworks for Integrative Analysis of Emerging Biologi-

cal Data Types Workshop. Available from: https://github.com/BIRSBiointegration/whitePaper.

47. Taylor TH, Gitlin SA, Patrick JL, Crain JL, Wilson JM, Griffin DK. The origin, mechanisms, incidence

and clinical consequences of chromosomal mosaicism in humans. Hum Reprod Update. 2014; 20:

571–581. https://doi.org/10.1093/humupd/dmu016 PMID: 24667481

48. Campbell KR, Steif A, Laks E, Zahn H, Lai D, McPherson A, et al. clonealign: statistical integration of

independent single-cell RNA and DNA sequencing data from human cancers. Genome Biol. 2019; 20:

54. https://doi.org/10.1186/s13059-019-1645-z PMID: 30866997

49. Macaulay IC, Teng MJ, Haerty W, Kumar P, Ponting CP, Voet T. Separation and parallel sequencing of

the genomes and transcriptomes of single cells using G&T-seq. Nat Protoc. 2016; 11: 2081–2103.

50. Dey SS, Kester L, Spanjaard B, Bienko M, van Oudenaarden A. Integrated genome and transcriptome

sequencing of the same cell. Nat Biotechnol. 2015; 33: 285–289. https://doi.org/10.1038/nbt.3129

PMID: 25599178

51. Stuart T, Satija R. Integrative single-cell analysis. Nat Rev Genet. 2019; 20: 257–272. https://doi.org/

10.1038/s41576-019-0093-7 PMID: 30696980

52. Zahn H, Steif A, Laks E, Eirew P, VanInsberghe M, Shah SP, et al. Scalable whole-genome single-cell

library preparation without preamplification. Nat Methods. 2017; 14: 167–173. https://doi.org/10.1038/

nmeth.4140 PMID: 28068316

53. Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively parallel digital tran-

scriptional profiling of single cells. Nat Commun. 2017; 8: 14049. https://doi.org/10.1038/ncomms14049

PMID: 28091601

54. Ramos M, Morgan M. RaggedExperiment: Representation of Sparse Experiments and Assays Across

Samples.(2017). https://doi.org/10.18129/B9 bioc. RaggedExperiment.

55. da Silva V, Ramos M, Groenen M, Crooijmans R, Johansson A, Regitano L, et al. CNVRanger: associa-

tion analysis of CNVs with gene expression and quantitative phenotypes. Bioinformatics. 2020; 36:

972–973. https://doi.org/10.1093/bioinformatics/btz632 PMID: 31392308

56. Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, et al. Integrated analysis of mul-

timodal single-cell data. Cell. 2021. https://doi.org/10.1016/j.cell.2021.04.048 PMID: 34062119

57. Rohart F, Eslami A, Matigian N, Bougeard S, LêCao K-A. MINT: a multivariate integrative method to

identify reproducible molecular signatures across independent experiments and platforms. BMC Bioin-

formatics. 2017; 18: 128. https://doi.org/10.1186/s12859-017-1553-8 PMID: 28241739

PLOS COMPUTATIONAL BIOLOGY Curated single cell multimodal landmark datasets for R/Bioconductor

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011324 August 25, 2023 22 / 23

https://doi.org/10.1038/s41587-019-0290-0
http://www.ncbi.nlm.nih.gov/pubmed/31611697
https://doi.org/10.1016/j.cell.2020.09.056
https://doi.org/10.1016/j.cell.2020.09.056
http://www.ncbi.nlm.nih.gov/pubmed/33098772
https://doi.org/10.7554/eLife.23203
http://www.ncbi.nlm.nih.gov/pubmed/28653622
https://doi.org/10.1126/science.aaa6090
https://doi.org/10.1126/science.aaa6090
http://www.ncbi.nlm.nih.gov/pubmed/25858977
https://doi.org/10.1126/science.aaw1219
http://www.ncbi.nlm.nih.gov/pubmed/30923225
https://doi.org/10.1038/s41586-019-1049-y
https://doi.org/10.1038/s41586-019-1049-y
http://www.ncbi.nlm.nih.gov/pubmed/30911168
https://doi.org/10.1101/2021.01.27.428431
https://doi.org/10.1101/2021.05.11.443152
https://doi.org/10.1101/2021.05.11.443152
https://doi.org/10.1016/j.neuron.2016.10.001
https://doi.org/10.1016/j.neuron.2016.10.001
http://www.ncbi.nlm.nih.gov/pubmed/27764670
https://doi.org/10.1038/nbt.4260
https://doi.org/10.1038/nbt.4260
http://www.ncbi.nlm.nih.gov/pubmed/30371680
https://github.com/BIRSBiointegration/whitePaper
https://doi.org/10.1093/humupd/dmu016
http://www.ncbi.nlm.nih.gov/pubmed/24667481
https://doi.org/10.1186/s13059-019-1645-z
http://www.ncbi.nlm.nih.gov/pubmed/30866997
https://doi.org/10.1038/nbt.3129
http://www.ncbi.nlm.nih.gov/pubmed/25599178
https://doi.org/10.1038/s41576-019-0093-7
https://doi.org/10.1038/s41576-019-0093-7
http://www.ncbi.nlm.nih.gov/pubmed/30696980
https://doi.org/10.1038/nmeth.4140
https://doi.org/10.1038/nmeth.4140
http://www.ncbi.nlm.nih.gov/pubmed/28068316
https://doi.org/10.1038/ncomms14049
http://www.ncbi.nlm.nih.gov/pubmed/28091601
https://doi.org/10.18129/B9
https://doi.org/10.1093/bioinformatics/btz632
http://www.ncbi.nlm.nih.gov/pubmed/31392308
https://doi.org/10.1016/j.cell.2021.04.048
http://www.ncbi.nlm.nih.gov/pubmed/34062119
https://doi.org/10.1186/s12859-017-1553-8
http://www.ncbi.nlm.nih.gov/pubmed/28241739
https://doi.org/10.1371/journal.pcbi.1011324


58. Singh A, Shannon CP, Gautier B, Rohart F, Vacher M, Tebbutt SJ, et al. DIABLO: an integrative

approach for identifying key molecular drivers from multi-omics assays. Bioinformatics. 2019; 35: 3055–

3062. https://doi.org/10.1093/bioinformatics/bty1054 PMID: 30657866

59. Pasolli E, Schiffer L, Manghi P, Renson A, Obenchain V, Truong DT, et al. Accessible, curated metage-

nomic data through ExperimentHub. Nat Methods. 2017; 14: 1023–1024. https://doi.org/10.1038/

nmeth.4468 PMID: 29088129

60. Ramos M, Geistlinger L, Oh S, Schiffer L, Azhar R, Kodali H, et al. Multiomic Integration of Public Oncol-

ogy Databases in Bioconductor. JCO Clin Cancer Inform. 2020; 4: 958–971. https://doi.org/10.1200/

CCI.19.00119 PMID: 33119407

61. Risso D, Pagnotta SM. Per-sample standardization and asymmetric winsorization lead to accurate clus-

tering of RNA-seq expression profiles. Bioinformatics. 2021; 37: 2356–2364. https://doi.org/10.1093/

bioinformatics/btab091 PMID: 33560368

62. Diehl AD, Meehan TF, Bradford YM, Brush MH, Dahdul WM, Dougall DS, et al. The Cell Ontology

2016: enhanced content, modularization, and ontology interoperability. J Biomed Semantics. 2016; 7:

44. https://doi.org/10.1186/s13326-016-0088-7 PMID: 27377652

63. Sioutos N, de Coronado S, Haber MW, Hartel FW, Shaiu W-L, Wright LW. NCI Thesaurus: a semantic

model integrating cancer-related clinical and molecular information. J Biomed Inform. 2007; 40: 30–43.

https://doi.org/10.1016/j.jbi.2006.02.013 PMID: 16697710

64. Lun ATL, Riesenfeld S, Andrews T, Dao TP, Gomes T, participants in the 1st Human Cell Atlas Jambo-

ree, et al. EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA

sequencing data. Genome Biol. 2019; 20: 63. https://doi.org/10.1186/s13059-019-1662-y PMID:

30902100

65. Griffiths JA, Richard AC, Bach K, Lun ATL, Marioni JC. Detection and removal of barcode swapping in

single-cell RNA-seq data. Nat Commun. 2018; 9: 2667. https://doi.org/10.1038/s41467-018-05083-x

PMID: 29991676

66. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence

reads to genomic features. Bioinformatics. 2014; 30: 923–930. https://doi.org/10.1093/bioinformatics/

btt656 PMID: 24227677

67. Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D, et al. Ensembl 2016. Nucleic Acids

Res. 2016; 44: D710–6. https://doi.org/10.1093/nar/gkv1157 PMID: 26687719

68. Lun ATL, McCarthy DJ, Marioni JC. A step-by-step workflow for low-level analysis of single-cell RNA-

seq data with Bioconductor. F1000Research. 2016. p. 2122. https://doi.org/10.12688/f1000research.

9501.2 PMID: 27909575

69. Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications.

Bioinformatics. 2011; 27: 1571–1572. https://doi.org/10.1093/bioinformatics/btr167 PMID: 21493656

70. Kelly TK, Liu Y, Lay FD, Liang G, Berman BP, Jones PA. Genome-wide mapping of nucleosome posi-

tioning and DNA methylation within individual DNA molecules. Genome Res. 2012; 22: 2497–2506.

https://doi.org/10.1101/gr.143008.112 PMID: 22960375

71. Harrison PW, Ahamed A, Aslam R, Alako BTF, Burgin J, Buso N, et al. The European Nucleotide

Archive in 2020. Nucleic Acids Res. 2021; 49: D82–D85. https://doi.org/10.1093/nar/gkaa1028 PMID:

33175160

72. Liao Y, Smyth GK, Shi W. The R package Rsubread is easier, faster, cheaper and better for alignment

and quantification of RNA sequencing reads. Nucleic Acids Res. 2019; 47: e47. https://doi.org/10.1093/

nar/gkz114 PMID: 30783653

73. Quinlan AR. BEDTools: The Swiss-Army Tool for Genome Feature Analysis. Curr Protoc Bioinformat-

ics. 2014; 47: 11.12.1–34. https://doi.org/10.1002/0471250953.bi1112s47 PMID: 25199790

74. Garvin T, Aboukhalil R, Kendall J, Baslan T, Atwal GS, Hicks J, et al. Interactive analysis and assess-

ment of single-cell copy-number variations. Nat Methods. 2015; 12: 1058–1060. https://doi.org/10.

1038/nmeth.3578 PMID: 26344043

75. McInnes L, Healy J, Melville J. UMAP: Uniform Manifold Approximation and Projection for Dimension

Reduction. arXiv [stat.ML]. 2018. Available from: http://arxiv.org/abs/1802.03426.

76. Li X. ALL Bioconductor package. Bioconductor; 2004. https://doi.org/10.18129/B9.BIOC.ALL

77. Trapnell C. HSMMSingleCell: Single-cell RNA-Seq for differentiating human skeletal muscle myoblasts

(HSMM). R package version. 2014;1140.

78. Ganzfried BF, Riester M, Haibe-Kains B, Risch T, Tyekucheva S, Jazic I, et al. curatedOvarianData:

clinically annotated data for the ovarian cancer transcriptome. Database. 2013; 2013: bat013. https://

doi.org/10.1093/database/bat013 PMID: 23550061

PLOS COMPUTATIONAL BIOLOGY Curated single cell multimodal landmark datasets for R/Bioconductor

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011324 August 25, 2023 23 / 23

https://doi.org/10.1093/bioinformatics/bty1054
http://www.ncbi.nlm.nih.gov/pubmed/30657866
https://doi.org/10.1038/nmeth.4468
https://doi.org/10.1038/nmeth.4468
http://www.ncbi.nlm.nih.gov/pubmed/29088129
https://doi.org/10.1200/CCI.19.00119
https://doi.org/10.1200/CCI.19.00119
http://www.ncbi.nlm.nih.gov/pubmed/33119407
https://doi.org/10.1093/bioinformatics/btab091
https://doi.org/10.1093/bioinformatics/btab091
http://www.ncbi.nlm.nih.gov/pubmed/33560368
https://doi.org/10.1186/s13326-016-0088-7
http://www.ncbi.nlm.nih.gov/pubmed/27377652
https://doi.org/10.1016/j.jbi.2006.02.013
http://www.ncbi.nlm.nih.gov/pubmed/16697710
https://doi.org/10.1186/s13059-019-1662-y
http://www.ncbi.nlm.nih.gov/pubmed/30902100
https://doi.org/10.1038/s41467-018-05083-x
http://www.ncbi.nlm.nih.gov/pubmed/29991676
https://doi.org/10.1093/bioinformatics/btt656
https://doi.org/10.1093/bioinformatics/btt656
http://www.ncbi.nlm.nih.gov/pubmed/24227677
https://doi.org/10.1093/nar/gkv1157
http://www.ncbi.nlm.nih.gov/pubmed/26687719
https://doi.org/10.12688/f1000research.9501.2
https://doi.org/10.12688/f1000research.9501.2
http://www.ncbi.nlm.nih.gov/pubmed/27909575
https://doi.org/10.1093/bioinformatics/btr167
http://www.ncbi.nlm.nih.gov/pubmed/21493656
https://doi.org/10.1101/gr.143008.112
http://www.ncbi.nlm.nih.gov/pubmed/22960375
https://doi.org/10.1093/nar/gkaa1028
http://www.ncbi.nlm.nih.gov/pubmed/33175160
https://doi.org/10.1093/nar/gkz114
https://doi.org/10.1093/nar/gkz114
http://www.ncbi.nlm.nih.gov/pubmed/30783653
https://doi.org/10.1002/0471250953.bi1112s47
http://www.ncbi.nlm.nih.gov/pubmed/25199790
https://doi.org/10.1038/nmeth.3578
https://doi.org/10.1038/nmeth.3578
http://www.ncbi.nlm.nih.gov/pubmed/26344043
http://arxiv.org/abs/1802.03426
https://doi.org/10.18129/B9.BIOC.ALL
https://doi.org/10.1093/database/bat013
https://doi.org/10.1093/database/bat013
http://www.ncbi.nlm.nih.gov/pubmed/23550061
https://doi.org/10.1371/journal.pcbi.1011324

