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Abstract. A method for the identification of joint stiffness making use of modal 

tests carried out in specific robot configurations is presented. The experimental 

results show the presence of a resonance peak related to structural compliance as 

well. Therefore, a method for the identification of the structural compliance based 

on the Mozzi’s axis theorem is presented. This method makes it possible to define 

a compliance axis that models the effect of structural compliance. 

Keywords: Industrial robots, Compliance, Mozzi’s axis, Modes of vibration. 

1 Introduction 

In the last years, industrial robots have been widely used for applications in which 

the structure of the robot is excited either by high external loads or by high dynamic 

forces. In such applications, the compliance of both the joints and the links of the robot 

is not negligible [1]. This aspect may result in poor robot performance, which is directly 

correlated to higher production costs. Then, it is crucial to properly identify joint and 

link compliances to better calculate the real robot capabilities, or it is crucial to increase 

structural stiffness [2]. Several authors have studied joint and link stiffness, and many 

approaches have been proposed. Some of them rely on the measurement of the end 

effector position, either via optical and laser systems [3, 5] or via closed chain fixtures 

[6]. As a result, such methods are not applicable to all industrial applications due to 

high equipment costs or encumbrance. In this paper, the modal approach proposed in 

[7] is extended to identify the stiffness of the first three joints of an industrial robot and 

the compliance of the first link. Moreover, the Mozzi’s axis concept [8, 9] is used to 

find the compliance axis of the first link. The paper is structured as follows: sections 2-

3 describe the experimental setup and joint compliance; section 4 describes the mathe-

matical model of the Mozzi’s axis, which is used in section 5 for the identification of 

the compliance axis of the link; conclusions are drawn in section 6. 
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2 Configurations to identify the joints compliance 

In this paper the same approach of [7] is applied to a new robot Mitsubishi RV4-

FRL to identify the stiffness of the first three joints. To perform the modal tests eighteen 

test points were chosen. Figure 1 shows the robot and the test points. In Table 1 the 

Denavit Hartenberg (DH) parameters of the transformation matrices from link 𝑖 to 𝑗 are 

reported [10]. 

 

Fig. 1. Robot Mitsubishi RV4-FRL. (a) DH frames of this robot (red line represents X axis; green 

line represents Y axis; blue line represents Z axis). (b) Robot with test points. 

Table 1. Denavit Hartenberg parameters of robot Mitsubishi RV4-FRL. 

𝑻𝒊,𝒋 𝜶𝒊−𝟏 [°] 𝒂𝒊−𝟏[𝒎] 𝜽𝒊[°] 𝒅𝒊[𝒎] 𝑻𝒊,𝒋 𝜶𝒊−𝟏 [°] 𝒂𝒊−𝟏[𝒎] 𝜽𝒊[°] 𝒅𝒊[𝒎] 

1w 0 0 𝜃1 0.350 43 -90 0.050 𝜃4 0.335 

21 -90 0 𝜃2 − 90 0 54 90 0 𝜃5 0 

32 0 0.350 𝜃3 − 90 0 65 -90 0 𝜃6 0.085 

 

In this analysis the robot links are assumed infinitely rigid whereas the joints cause 

the compliance of the robot. The vibration modes of a robot typically involve the rota-

tions of some joints, and the natural frequencies are functions of the stiffness of these 

joints. Therefore, the main problem of modal methods for identifying joint stiffness is 

finding robot configurations with modes of vibrations dominated by the stiffness of 

only one joint. In this case, the modal stiffness coincides with the joint stiffness, and 

the latter can be identified from the measured natural frequency and the calculated value 

of the moment of inertia. Another important factor is the choice of appropriate excita-

tion directions for the selected configurations. In this analysis the robot configurations 

were chosen to minimize the off-diagonal elements of the mass matrix to decouple as 

much as possible the joint of interest from the others. In Table 2 the joint angles of the 

test configurations are presented. 

Table 2. Joint angles - robot test configurations. 

Configuration 𝜃1[°] 𝜃2[°] 𝜃3[°] 𝜃4[°] 𝜃5[°] 𝜃6[°] 

Test 1 -25 90 0 0 90 0 

Test 2 -25 0 98 0 -9 0  

Test 3 -25 -80 155 2 -75 0 
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Test configuration 1 was chosen to selectively excite joint 1. The robot is fully ex-

tended horizontally, to achieve the maximum excitation on joint 1 when a lateral im-

pulse is applied. Test configuration 2 minimizes the excitation of joint 3 and maximizes 

the excitation of joint 2.  Link 2 is vertical and the impulse force is applied along a line 

(perpendicular to the flange) that crosses the axis of joint 3. Actually, there is always 

an inertial cross-coupling between joints 2 and 3. This phenomenon chiefly affects the 

identification of joint 3 stiffness [7], since the inertial cross-coupling term is always 

small with respect the direct inertia of joint 2, but in some configurations, it may be 

comparable with the direct inertia of joint 3. Test configuration 3 is adopted to identify 

the stiffness of joint 3. Since the folded configuration minimizes the inertial cross-cou-

pling term and the vertical force strongly excites joint 3 and has a small moment about 

joint 2. In Figure 2 the three configurations and the relative impulsive forces are shown.  

 

Fig. 2. Robot configurations and excitation forces. (a) Test 1. (b) Test 2. (c) Test 3. 

3 Identification of joint compliance 

Experimental tests were carried out using a PCB 086C01 hammer (sensitivity 0.25 

mV/N) to excite the system, a PCB 356A17 tri-axial accelerometer (sensitivity 50 

mV/(m/s2)) and a data acquisition board NI9234. For each configuration the FRFs were 

acquired using a sampling rate of      𝐻  and  0   samples. The tests were carried 

out using the rowing response approach, the accelerometer was moved to 18 points, 

whereas the excitation was always applied to point 1. The natural frequencies domi-

nated by the compliance of each joint were identified from the measured FRFs by 

means of the software ModalVIEW, they are reported in Table 3 together with the 

damping ratios. In Figure 3a all the FRFs obtained in test configuration 1 are reported. 

In this case, the natural frequency of joint 1 is equal to   .  𝐻  and the damping ratio 

is equal to  . %. In Figure 3b the sums of FRFs of points 1-14 and of points 15-18 are 

shown. This plot shows the presence of a large resonance peak at   .  𝐻  in all the 

FRFs of points 1-14. This result confirms that the mode at   .  𝐻  chiefly involves the 

first joint, because the points 1-14 are after this joint.  

  Table 3. Natural frequencies and damping ratios for first three joints. 

 Joint 1 Joint 2 Joint 3 

𝑓 [𝐻 ] 14.8 19.2 38.8 

𝜁 [%] 3.4 2.1 3.4 

(a) (b) (c)



4 

When the selected mode is dominated by the compliance of only one joint it is possible 

to evaluate the joint stiffness and the damping coefficient from the modal equation [7]: 

 𝑘𝑖 = ( 𝜋𝑓𝑛𝑖)
2
𝐼𝑧𝑧𝑖(𝒒𝒊) (1) 

 𝑐𝑖 =
𝜁𝑖𝑘𝑖

𝜋𝑓𝑛𝑖
 (2) 

In which 𝑖 =  …𝑛 (𝑛 is the number of joints) and 𝐼𝑧𝑧𝑖(𝒒𝒊) is the moment of inertia 

about joint 𝑖 in the selected configuration (𝒒𝒊). The calculated results are summarized 

in Table 4. 

Table 4. Joint stiffness and damping. 

 Joint 1 Joint 2 Joint 3 

Stiffness [Nm/rad] 20789 24307 21243 

Damping [Nms/rad] 15.2 8.6 5.9 

 

Fig. 3. FRFs between applied force and measured accelerations in configuration test 1. (a) Mag-

nitude of all FRFs. (b) Total sum of FRFs magnitudes and sum of magnitudes of the FRFs before 

and after point 15. 

Figure 3a clearly shows the presence of a tall resonance peak at  9 𝐻  with a damp-

ing ratio 𝜁 =  . % . The mode shape at this specific frequency shows that this mode is 

not characteristic of a joint (or groups of joints), but it involves the structural defor-

mation of the system. To corroborate the previous statement, a graphical representation 

of the displacements of the test points at  9 𝐻  is reported in Figure 4. From this figure 

is clear that there are relevant displacements in the X and Z direction, whereas the dis-

placement in the Y direction is negligible. Displacements in the X direction are parallel 

to the axes of joints 2 and 3 and cannot be associated to a rigid rotation about joint 1. 

This behavior of the system suggests the presence of a structural compliance about an 

axis passing through link 1. This compliance can be caused by the flexion of the fork 

supporting link 2 or by the compliance of the bearing of joint 1. It is worth noticing that 

in the Figure 4b the first two measurement points are in phase opposition with respect 

to the other points and points 3 and 4 have small displacements: this phenomenon could 

be justified by a sloping position of the compliance axis that passes through link 1 and 

(b)(a)
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near points 3 and 4. To evaluate the structural stiffness, first, the compliance axis related 

to the natural frequency of  9 𝐻  has to be calculated. Then, the inertia about this axis 

can be calculated from the CAD model of the robot and the stiffness value can be cal-

culated by means Eq. (1). 

 

 

Fig. 4. Displacements of the test points at  9 𝐻  expressed in the fixed reference frame 𝑓. 

4 Compliance axis 

A method, based on the Mozzi’s axis theorem, is proposed to evaluate the position 

of the compliance axis of link 1. This method is novel, since in a previous research [9] 

the Mozzi’s axis theorem was used for representing the effect of joint compliance. A 

group of 3 points located in the stiff part of the robot arm is selected. They are assumed 

to move as a rigid body and define a rigid reference plane. Hence, the Mozzi’s axis 

theorem can be applied and the motion of the reference plane can be described as a 

combination of a rotation about the Mozzi’s axis and a translation along this axis. The 

general equation for studying the rigid motion of the reference plane is defined as: 

 {

 ̇𝑃
 ̇𝑃
 ̇𝑃

}

𝑓

= {

 ̇𝑄
 ̇𝑄
 ̇𝑄

}

𝑓

+ [𝑅]𝑚
𝑓
[

0 −𝜔𝑧 𝜔𝑦
𝜔𝑧 0 −𝜔𝑥
−𝜔𝑦 𝜔𝑥 0

]

𝑚

{

 𝑃
 𝑃
 𝑃
}

𝑚

 (3) 

Points 𝑃 and 𝑄 are two points of the rigid reference plane that moves due to the 

structural deformation of the robot. If small oscillations are considered, the fixed (𝑓) 

and the mobile (𝑚) frames are nearly coincident and the rotation matrix [𝑅]𝑚
𝑓

 is equal 

to the identity matrix. If a point 𝑃 belongs to the Mozzi’s axis, the vector product be-

tween the angular and linear velocity is equal to 0. 

  �⃗⃗� × ({ ̇𝑝,  ̇𝑝,  ̇𝑝 }
𝑓
)
𝑇

 = {0}  (4) 

So, in matrix form: 

 [

0 −𝜔𝑧 𝜔𝑦
𝜔𝑧 0 −𝜔𝑥
−𝜔𝑦 𝜔𝑥 0

]

𝑓

× ({

 ̇𝑄
 ̇𝑄
 ̇𝑄

}

𝑓

+ [

0 −𝜔𝑧 𝜔𝑦
𝜔𝑧 0 −𝜔𝑥
−𝜔𝑦 𝜔𝑥 0

]

𝑓

{

 𝑃
 𝑃
 𝑃
}

𝑓

) = {
0
0
0
}  (5) 

 𝑓

 𝑓  𝑓
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Eq. (5) are not independent, and  𝑃  can be considered as a parameter. Hence, it is 

possible to write the parametric equations of the Mozzi’s axis: 

  𝑃 = 
𝜔𝑦(𝜔𝑥 �̇�𝑄+𝜔𝑧�̇�𝑃)−�̇�𝑃(𝜔𝑥

2+𝜔𝑧
2)

𝜔𝑧(𝜔𝑥
 2+𝜔𝑦

 2+𝜔𝑧
 2)

+
𝜔𝑥𝑧𝑃

𝜔𝑧
 (6) 

  𝑃 = 
𝜔𝑥(𝜔𝑦 �̇�𝑃 +𝜔𝑧�̇�𝑃)−�̇�𝑃(𝜔𝑦

2+𝜔𝑧
2)

𝜔𝑦(𝜔𝑥
 2+𝜔𝑦

 2+𝜔𝑧
 2)

+
𝜔𝑧𝑦𝑃

𝜔𝑦
  (7) 

 Since at  9 𝐻  𝜔𝑥 ≈ 0 and   ̇𝑄 ≈ 0, the previous expressions become: 

  𝑃 =
𝜔𝑦�̇�𝑄

𝜔𝑦
2+𝜔𝑧

2 (8) 

  𝑃 =
𝜔𝑧

𝜔𝑦
 𝑃 −

�̇�𝑄

𝜔𝑦
= 𝑚 𝑃 + 𝑞   (9) 

 Modal tests make it possible to measure only linear accelerations of the test points 

(i.e. velocities and displacements, if a certain frequency is chosen). Therefore, 𝜔𝑦, 

𝜔𝑧,  ̇𝑄 and   ̇𝑄 have to be calculated from measured data using the formula of rigid 

body motion for the 3 points (𝑖 =  ,  ,  ) defining the reference plane: 

 {

 ̇𝑖
 ̇𝑖
 ̇𝑖

}

𝑓

= {

 ̇𝑄
 ̇𝑄
 ̇𝑄

}

𝑓

+ [

0 −𝜔𝑧 𝜔𝑦
𝜔𝑧 0 −𝜔𝑥
−𝜔𝑦 𝜔𝑥 0

]

𝑓

{

 𝑖
 𝑖
 𝑖
}

𝑓

 (10) 

Four equations are needed in this particular case: 

  ̇1 =  ̇𝑄 − 𝜔𝑧 1 + 𝜔𝑦 1 (11) 

  ̇2 =  ̇𝑄 − 𝜔𝑧 2 +𝜔𝑦 2 (12) 

  ̇3 =  ̇𝑄 − 𝜔𝑧 3 +𝜔𝑦 3 (13) 

  ̇1 =  ̇𝑄 −𝜔𝑦 1 (14) 

From the first three equations 𝜔𝑧, 𝜔𝑦 and   ̇𝑄 can be calculated solving a linear sys-

tem. Then, independently, velocity  ̇𝑄 can be calculated from Eq. (14). 

5 Identification of link compliance  

The definition of the group of 3 points on the “rigid part” of the robot is somewhat 

arbitrary. Using Equations 8 and 9, the slope 𝑚, the intercept 𝑞 and the coordinate  𝑃 

of the Mozzi’s axis can be computed for different combinations of 3 points. For differ-

ent groups of points, the Mozzi’s axis should be the same if the considered part of the 

robot moves as a rigid body. In this case, 6 different sets of points are considered. In 

Table 5 the slope 𝑚, the intercept 𝑞 and the coordinate  𝑝 of the identified Mozzi’s 

axes are reported. The Mozzi’s axes are shown in Figure 5.  
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Table 5. Slope 𝑚, intercept 𝑞 and the coordinate  𝑝 of each considered plane. 

Points 14 15 16 13 15 16 12 14 16 11 15 16 11 14 15 11 14 16 

m [/] -0.31 -0.26 -0.33 -0.28 -0.28 -0.29 

q [mm] 187.2 217.6 193.8 203.9 191.9 178.6 

xP [mm] 17.0 26.0 12.6 21.6 17.5 14.6 

 

Fig. 5.  Mozzi’s axis considering different groups of points. 

The position of the Mozzi’s axis is only slightly different if different groups of points 

are considered. This result corroborates the assumption that at  9 𝐻  the links after 

joint 1 essentially behave as a rigid body. Finally, the average Mozzi’s axis, which is 

the compliance axis of the robot, is calculated. The average slope is �̅� = −0. 9, the 

average intercept is �̅� =  9 .  𝑚𝑚 and the average X-coordinate is  ̅𝑃 =   .  𝑚𝑚. 

Figure 6 shows that the Mozzi’s axis, as previously hypothesized, passes through link 

1 and near points 3 and 4 that are located on link 5. This location of the compliance 

axis explains why the X displacements of points 1 and 2 (which are below the compli-

ance axis) are in phase opposition with respect to the displacements of the other points.  

From the position of the compliance axis, it is possible to evaluate the inertia of the 

system about this axis by means of the CAD model. Finally, using Eq. (1) it is possible 

to evaluate the structural stiffness about the compliance axis. 

With 𝐼𝑧𝑧7 = 0.   𝐾𝑔 𝑚
2, and 𝑓𝑛𝑖 =   9 𝐻  structural stiffness is: 𝑘7 =

       𝑁𝑚/𝑟𝑎𝑑, Eq. (2) with the same 𝑓𝑛𝑖 gives 𝑐7 =   .  𝑁𝑚𝑠/𝑟𝑎𝑑. It is worth 

noticing that the link stiffness is much larger than the identified joint stiffness values. 
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Fig. 6. Average Mozzi’s axis. (a) Axonometric view. (b) Upper view. 

6 Conclusions 

The application of the Mozzi’s axis concept has made possible the identification of 

the compliance axis of the robot related to the measured resonance peak at  9 𝐻 . 
Therefore, the vibrational behavior of the robot can be simulated considering the first 

3 actual joints equipped with the identified joint stiffness and a virtual joint aligned to 

the identified compliance axis and with rotation stiffness equal to the identified value. 

The proposed method can be used for finding the compliance characteristics of other 

serial robots if at a certain frequency the compliance is due to a specific link or bearing, 

while the other robot’s components behave as rigid bodies. The analysis of complex 

cases (e.g. modes involving both structural and joints compliance) may require a dif-

ferent approach.  
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