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Abstract: Echinochloa crus-galli (L.) P. Beauv. is the most common monocotyledonous weed in maize
crops in Croatia. Crop–weed interference is influenced by weed emergence patterns, and knowledge
of the timing of weed emergence is crucial for the development of an efficient integrated weed-
management program. Therefore, two-year field experiments were conducted in a maize crop sown
in early May in continental Croatia to determine the emergence pattern of E. crus-galli from natural
seedbank. In laboratory studies, the estimated base temperature and base water potential for the
Croatian ecotype of E. crus-galli were 10.8 ◦C and −0.97 MPa, respectively. Then, the estimated
germination parameters were compared with the values embedded in the AlertInf model from Italy
(Veneto) to calibrate this hydrothermal model. The estimated hydrothermal units were around 28 for
the onset (10%) and 93 for the middle (50%) emergence of E. crus-galli. Our findings showed that
the AlertInf model satisfactorily simulated the emergence of E. crus-galli in maize crop in Croatia
(EF = 0.97 in 2019 and 0.98 in 2020), indicating its potential use in other geographical areas

Keywords: AlertInf; base temperature; base water potential; barnyardgrass; integrated weed
management; validation

1. Introduction

Crop-weed interference is affected by the timing of weed emergence, and knowledge
of the peak weed emergence period is critical to developing an effective integrated weed-
management program [1]. According to Vleeshouwers and Kropff [2], emergence is the
result of two different processes: germination and pre-emergence growth. Each process is
influenced by different abiotic and biotic environmental factors, which consequently deter-
mine the timing of weed emergence. Seed germination is influenced by soil temperature,
soil moisture, light exposure, temperature fluctuations, nitrate concentration, soil pH, and
gaseous environment in the soil [3]. After successful germination, the developed seedlings
or coleoptile emerge from the soil, and the factors that can influence the pre-emergence
growth and emergence are soil type, soil texture, timing of tillage, depth of tillage, type of
tillage, crop residues, etc. [4]. The timing of weed emergence can be predicted using weed
emergence models.

Adequate soil temperature and moisture are the main factors triggering emergence [5];
both mechanistic and empirical models include these factors. Mechanistic models are
developed in growing chambers using a different range of temperatures and water poten-
tials, while empirical models rely on the observations of the emergence in the field and
the periodicity of occurrence of certain species as a function of weather data [6–8]. Both
models describe weed emergence with hydrothermal time (HTT), which is based on two
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germination parameters - base temperature (Tb) and base water potential (Ψb). Tb is the
lowest temperature at which germination can occur, while Ψb is the minimum value of
soil water potential at optimal temperature under which the germination rate is zero [9,10].
Based on these parameters, hydrothermal units (HT) are accumulated during the growing
season when the average daily soil or air temperature and soil water potential were above
Ψb, respectively, until the end of weed emergence. HT units are growing degree day-like
measurements that accumulate the heat units above Tb only on days when soil moisture is
above Ψb.

These models have been shown to be sufficiently accurate in predicting weed emer-
gence in specific areas where they have been developed. For example, in maize, two
HTT models are available as software applications for growers: AlertInf in Italy [11] and
WeedCast in the United States [12].

The idea of extending the models to other climatic zones was proposed by Grundy [1].
However, for reliable application of the predictive emergence model, the germination
parameters of the local populations should be estimated. This is because the conditions
specific for seed development as well as numerous other abiotic and biotic factors can
influence the adaptation and behavior of the plant in a given climatic region [13]. In addi-
tion, climate change may affect weed germination behavior. Therefore, it is important to
study the biology of weed germination for each population. Laboratory experiments have
shown the differences in the values of the germination parameters of different populations
of the same species. For example, Leiblein-Wild et al. [14] estimated the differences in Tb
between European and North American populations of Ambrosia artemisiifolia L. (2.0 ◦C and
4.2 ◦C, respectively) and explained this variation as an adaptation to new agroecological
conditions, which is a characteristic of invasive plant species. In addition, Bürger and Col-
bach [15] estimated different Tb values for Chenopodium album L. and Echinochloa crus-galli
(L.) P. Beauv. between the French and German populations, with 5.8 ◦C vs. 1.5 ◦C and
6.2 ◦C vs. 10.2 ◦C, respectively. Although the data of estimated Ψb between populations
of the same weed species are limited, Masin et al. [7] estimated different values of Ψb for
two populations of Amaranthus retroflexus L. in Italy (Padova, Pisa). The estimated values
of Ψb for the populations in Padova and Pisa were 0.41 MPa and −0.62 MPa, respectively.
Excluding specific population germination parameters, Loddo et al. [13] attempted to
validate the AlertInf model for Abutilon theophrasti Med. with populations collected at eight
sites in Europe and the USA, and validation was successful at only two sites. However,
model validation is more successful when calibrated for the specific geographic location.
For example, Leblanc et al. [16] successfully predicted C. album emergence by calibrating
the model for different soils at three sites in Canada. Additionally, Masin et al. [11] in Italy
successfully transferred the AlertInf model from the Veneto to Tuscany regions for three
species (C. album, Sorghum halepense (L.) Pers., and A. theophrasti) in which the estimated
germination parameters were not statistically different between the two populations.

Currently, weed emergence prediction using the AlertInf model is possible for ten
summer species: A. theophrasti, Digitaria sanguinalis (L.) Scop., E. crus-galli, Polygonum
persicaria L., Setaria viridis (L.) Beauv., Solanum nigrum L., A. retroflexus, C. album, Setaria
pumila (Poir.) Roem & Schultz, and S. halepense [7]. Among the species included in the
model, E. crus-galli is by far the most interesting to test the ability to extend the prediction
of its emergence in Croatia. Being one of the most problematic weeds in the world [17], it
is also the important weed in maize crop in Croatia occurring in 91% of the fields on the
Croatian mainland monitored over a 40-year period (1969–2009) [18]. In untreated plots in
Croatian soybean field trials, this weed species was present with an average of 48 plants
per square meter [19]. The population density of E. crus-galli is similar in other row crops
such as maize, where the competition caused by this species reduces grain yield by up to
50%, depending on the density of E. crus-galli and the crop growth stage [20].

The successful validation and transfer of the model AlertInf from Veneto to the
Tuscany region has generated the idea of possibly using the model in maize crop in Croatia.
Namely, maize is the most important arable crop in Croatia, and the HTT model could be a
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useful tool for farmers to adjust herbicide application based on predicted field emergence.
Predicting weed emergence helps determine the appropriate time to apply herbicides when
the largest population of weed species is present in the field. This approach contributes
to low pesticide use in agriculture, as required by new EU agricultural strategies (The EU
Green Deal).

Therefore, the first objective of the study was to estimate the germination parameters
(Tb and Ψb) of a Croatian population of E. crus-galli and then to compare them with the
Italian population modeled by AlertInf. The second objective was to validate the AlertInf
HTT model with the emergence data of E. crus-galli observed in a maize field in continental
Croatia.

2. Materials and Methods
2.1. Laboratory Experiments—Estimation of Base Temperature and Base Water Potential

Freshly matured seeds of E. crus-galli were collected in October 2013 from the Ex-
perimental Station of the University of Zagreb Faculty of Agriculture, Sasinovecki Lug
(45◦50′59.6′′ N 16◦09′53.9′′ E). The seeds were cleaned, placed in paper bags, and stored in
a refrigerator (4 ◦C) until the start of the experiment.

The laboratory germination experiments were conducted in 2014 and performed at
different temperatures and water potentials in the germination chambers. To estimate Tb,
100 seeds per three replicates were sown in Petri dishes containing distilled water and
sealed with parafilm to prevent evaporation. Petri dishes with sown seeds were placed
in germination chambers (W87R, KW Apparecchi Scientifici SRL, Monteriggioni, Italy)
at different temperatures (8, 12, 16, 20, 24, and 28 ◦C) and a photoperiod of 12 h:12 h
(day–night). To estimate the Ψb, the same number of seeds was sown in plastic containers
(10 cm diameter and 7 cm high) [7]. The seeds were sown in these containers to obtain a
sufficient amount of solution at each water potential throughout the experimental period.
Polyethylene glycol (PEG) 6000 (Sigma-Aldrich Chemie GmbH 25322-68-3, St. Louis, MO,
USA) was used to achieve different water potentials, and the solutions were prepared
with eight water stress levels: 0.00 (pure distilled water), −0.05, −0.10, −0.25, −0.38,
−0.50, −0.80, and −1.00 MPa [21]. The PEG 6000 solutions were prepared according to the
methodology described by Michel and Kaufman [21] using the formula:

OP = (−1.18 · 10−2) · C − (1.18 · 10−4) · C+ (2.67 · 10−4) · C·T + (8.39 · l0−7) · C2T (1)

where OP is the osmotic pressure, C is the PEG concentration expressed as different weights
to reach different stress levels, and T is the temperature (24 ◦C).

Plastic containers with 50 mL of PEG solution were placed at 24 ◦C with a photoperiod
of 12 h:12 h (day–night) in the germination chamber. Temperature was chosen according
to the preliminary experiments where the germination rate of E. crus-galli was highest at
24 ◦C. The photoperiod used in the experiment was the same as used in the experiment of
Masin et al. [7]. The light intensity in the chamber was 40–50 µmol m−2.

The monitoring of germination was performed as described in Šoštarčić et al. [22] and
Masin et al. [7]. Germination was recorded daily to analyze the germination dynamics at
different temperatures and water potentials. Germination lasted between 2 and 64 days,
depending on the temperature and water potential.

2.2. Field Experiments and Laboratory Analyses
2.2.1. Monitoring of E. crus-galli Emergence in Maize

During the two growing seasons of maize, the emergence of E. crus-galli was monitored
at the experimental station of Sasinovecki Lug to verify the transferability of the AlertInf
model. The field experiment was set in a maize crop highly infested by E. crus-galli
observed in a previous year. Maize was grown under recommended agronomic practices
and operations. Previous crops in rotation were winter wheat (Triticum aestivum L.) and
winter barley (Hordeum vulgare L.) for maize crops grown in 2019 and 2020, respectively.
After harvesting winter cereals, an experimental field was moldboard ploughed in the
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autumn of each year. Shallow spring-tooth harrowing in early spring (mid-March) for
soil loosening was followed by seedbed preparation using a field cultivator just before
sowing. Hybrid Bc 418 was sown on 8 May 2019 and 5 May 2020 at the recommended rate
(75.188 seeds per ha) in rows 70 cm apart.

Monitoring of E. crus-galli emergence was carried out three times a week by placing
12 metal formed squares (0.3 × 0.3 m) between maize rows. The first seedlings to emerge
(with visible true leaves) of E. crus-galli were counted and then removed by gently plucking
three times a week, without additional soil rotation.

Monitoring of the emergence ended when no emergent seedlings were observed for
at least two weeks after closing the maize canopy (BBCH 18-19). In both years, moni-
toring started after maize sowing and lasted until 30 June and 29 June in 2019 and 2020,
respectively.

Average daily soil temperature and soil moisture were monitored in the field by
installing a temperature data logger (HOBO UA-001-08, Onset Computer Corporation,
Bourne, MA, USA) and a moisture measuring devices (ECH2O 10HS Soil Water Content
sensor, Meter Group Inc., Pullman, WA, USA) at the soil depth of up 5 cm. The data on air
temperature and precipitation were recorded from the university meteorological station
located at the experimental field, in order to compare the meteorological conditions between
the two experimental years. The air temperature, soil temperature, and precipitation during
the experimental period are shown in Table 1.

Table 1. Average air and soil temperature and precipitation for the Sasinovecki Lug field site,
recorded during the two experimental periods. Air temperature and precipitation were provided
by the university meteorological station located at the experimental field, while soil temperature
was recorded with the temperature data logger (HOBO UA-001-08, Onset Computer Corporation,
Bourne, MA, USA).

Experimental Period Average Air
Temperature (◦C)

Average Soil
Temperature (◦C) Precipitation (mm)

2019
8–31 May 13.0 15.2 54.8
1–30 June 22.6 24.9 85.6
1–5 July 22.0 22.6 12.4

2020
5–31 May 15.3 17.8 58.6
1–29 June 19.3 22.1 85.6

2.2.2. Soil Analysis

Before the start of the experiment, a 1 m deep soil pit was dug in order to describe,
sample, and classify the soil at the site. The soil profile is a Calcaric Endogleyic Fluvisol
(Aric, Siltic) with the following horizons according to IUSS Working Group WRB [23]:
Ap-C-Cl [24]. From each soil horizon, along with the disturbed samples, the undisturbed
samples were taken using 100 cm3 cores. In this paper, only the selected properties of the
30 cm deep topsoil (ploughed layer, i.e., Ap horizon) are presented (Table 2).

The disturbed soil samples were air-dried and sieved through the 2 mm sieve. The
soil particle size distribution was determined by the pipette method. The soil organic
matter (SOM) was analyzed as humus content by wet oxidation and back titration (Tyurin
method). Soil carbonates were determined volumetrically as the content of CaCO3. Soil
pH was measured electrometrically using a glass electrode. Soil bulk density was obtained
gravimetrically from triplicate undisturbed samples, with the mean value reported in the
paper (Table 2).
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Table 2. Selected properties of the analyzed topsoil (Ap horizon).

Soil Physicochemical Properties a Soil Water Retention Properties (Vol %) b

Texture
Organic
matter

%
CaCO3 % pHKCl

Bulk density
g cm−3

Field
capacity

Plant wilting
point

Plant-
available

water

Silt loam [25] 2.7 [25] 7.0 7.28 [25] 1.16 44.0 20.6 23.4
a The results for soil texture, organic matter, and pHKCl were adapted from Pintar et al. [25]. b The soil field capacity (FC) was measured
at 0.033 MPa, and plant wilting point (PWP) was measured at 1.5 MPa; the plant-available water (PAW) volume was calculated as
PAW = FC − PWP.

Soil water retention was analyzed from the disturbed samples using the Soilmoisture
Equipment Corp. extractors by applying pressures of 0.01, 0.033, 0.625, and 1.5 MPa and
then by determining the corresponding soil water contents gravimetrically. The volumetric
soil water contents were calculated by multiplying the mass soil water contents with the
soil bulk density (Table 2). The RETC computer program (U.S. Salinity Laboratory, USDA,
ARS: Riverside, CA, USA) [26] was used to build the water retention curve of the studied
soil, which was then used to obtain the water potentials that correspond to the soil water
contents measured during the experiment.

2.3. Statistical Analysis

A parabolic model was used to describe the effect of temperature, while a logistic
model was used to describe the effect of water potential. Tb and Ψb were estimated using
cumulative germination data, which were presented as germination dynamics. The effect
of the temperature and water potential on germination dynamics, expressed in days (t10,
t50, and t90), was analyzed using means of variance analysis (ANOVA). After a significant
F-test, the LSD test for p = 0.05 was used to compare the mean values. The germination
dynamics curve was generated using the logistic function in the Bioassay97 statistical
program [27] to determine the initial (t10), medium (t50), and final (t90) germination times.
A linear regression, estimated using the bootstrap method [28], provided the best fit of
germination rate (reciprocal of time to 50% germination) against incubation temperature or
water potential. The values of Tb and Ψb were estimated as the intercept of the regression
line with the temperature or water potential axis [7,22,29].

Then, the germination parameters of E. crus-galli were compared with the germination
parameters of the Italian population. The aim of the comparison was to verify whether
inserting the value of the Croatian population into the AlertInf model is necessary, which
would be a model recalibration, whether statistical difference is found between the values
of the Italian and Croatian populations, and whether the model can be used without
recalibration. The criterion of overlap of the 95% confidence intervals estimated with
the bootstrap method was used to compare the values of the germination parameters of
Croatian and Italian populations of E. crus-galli as described in Šoštarčić et al. [22].

The soil temperature and soil moisture data during the experimental period in the
field were used to calculate hydrothermal units (HT) according to Masin et al. [30]:

HTi = n ·max (Tsi − Tb, 0) + HTi-1
Tsi < To: n = 0 if Ψsi ≤ Ψb; n = 1 if Ψsi > Ψb

Tsi > To: n = 0 if Ψsi ≤ Ψb + Kt (Tsi − To); n = 1 if Ψsi> Ψb + Kt (Tsi − To)
(2)

where Tsi and Ψsi are the average daily soil temperature and water potential at a depth
of 5 cm, Tb is the base temperature, Ψb is the base water potential, To is the optimal
temperature for seed germination, and Kt is the slope of the relationship between Ψb and
Tsi in the supra-optimal temperature range.
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Model Validation

In order to verify the applicability of the model to maize in Croatia, the weed emer-
gence dynamics of E. crus-galli were simulated by the Italian AlertInf model [30]. Emergence
dynamics are expressed by the Gompertz function according to the following equation:

CE = 100 · exp (−a · exp [−b · HT]) (3)

where CE represents cumulative emergence, a is related to an HT lag before emergence
starts, and b is related to the slope of the curve.

The simulation used the daily average values of soil temperature and soil water
potential recorded in the field. The germination parameters used were the estimated
Tb and Ψb of the Croatian population, the optimal temperature (To), the slope (Kt), and
the Gompertz coefficients (a and b) estimated for Italian populations. The cumulated
emergence percentage of both years was simulated, and the predictions were compared
with the observations. The overall model performance was evaluated using root mean
square error (RMSE) and modeling efficiency (EF), calculated as follows:

RMSE =

√
1
n

n

∑
i=1

(Pi −Oi)
2 (4)

EF =

n
∑

i=1
(Oi −O)

2 −
n
∑

i=1
(Pi −Oi)

2

n
∑

i=1
(Oi −O)

2
(5)

where Pi is the simulated value, Oi is the measured value, Ō is the mean of the measured
value, and N is the number of observations.

3. Results and Discussion
3.1. Estimation of Base Temperature and Base Water Potential

The final germination of E. crus-galli at different temperatures ranged from 0 to 93%
(Figure 1a). The highest germination was recorded at temperatures 16, 20, and 24 ◦C (92,
93, and 89%, respectively). Germination decreased at 12 ◦C (7%), while no germination
was recorded at 8 ◦C. In addition, at the highest studied temperature, 28 ◦C, germination
decreased (68%). High germination was observed across all water potentials from 0.00 to
−0.50 MPa (85–86%), and germination decreased at −0.80 MPa (3%) and −1.00 MPa (2%)
(Figure 1b).
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Figure 1. Estimated models of the final germination of Echinochloa crus-galli. A parabolic model was
used to describe the effect of temperature (a), while a logistic model was used to describe the effect
of water potential (b). The black dots represent the observed germination, while the dashed line
represents the model.

The daily recorded germination was analyzed as germination dynamics over the
studied period, and the results are presented in Table 3. The germination dynamics at
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the different studied temperatures lasted from 3.4 to 18.7 days. As expected, the onset
of germination was fastest at 28 ◦C, starting after 1.6 days, whereas it was the slowest at
12 ◦C, starting after 13.9 days. The same trend was observed for mean germination (t50)
and final germination (t90). Germination decreased with the decrease in water potential,
with statistical differences observed in t10 and t50. The germination dynamics were the
fastest at 0.00 MPa (water-saturated environment), while taking 50 days at −0.80 MPa (dry
environment).

Table 3. Germination dynamics (t10, t50, and t90) at the different studied temperatures and water
potentials at 24 ◦C.

◦C t10 t50 t90 MPa t10 t50 t90

28 1.6 a 2.4 a 3.4 a 0.00 1.3 a 1.6 a 2.1 a
24 3.2 b 3.8 ab 4.6 ab −0.05 1.6 b 2.2 ab 3.0 a
20 3.1 b 4.6 b 6.7 b −0.10 1.8 b 2.6 ab 3.6 a
16 5.2 e 8.1 c 12.6 c −0.25 2.3 c 3.3 bc 4.7 a
12 13.9 d 16.2 d 18.7 d −0.38 2.6 e 3.6 bc 4.3 a

−0.50 2.9 d 3.9 c 5.8 a
−0.80 1.6 b 9.0 d 50.0 b

Differences between the initial (t10), medium (t50), and final (t90) germination under different temperatures and
water potentials according to one-way analysis of variance (ANOVA). Different small letters (a–d) within a column
indicate a statistical difference according to Fisher’s Least Significant Difference (LSD) test at p < 0.05.

Reciprocal time to t50 was used to create a linear regression line and estimate Tb
(10.8 ◦C, Figure 2) and Ψb (−0.97 MPa, Figure 3) for the Croatian population of E. crus-galli.
The estimated Tb value for the Croatian population is similar to the estimated values for the
Iranian population (10.4 ◦C) [31] and a German origin (10.2 ◦C) [15]. A similar value was
also reported for a Texas population, 9.7 ◦C [32]. In contrary, the lowest Tb of E. crus-galli
was estimated for a French population: 6.2 ◦C [33]. Meanwhile, Steinmaus [34] estimated
the highest Tb, 13.8 ◦C, in California. To our knowledge, little information is found in the
literature on the Ψb of E. crus-galli. However, Guillemin et al. [33] reported the Ψb value of
−1.19 MPa for a French population.
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Figure 2. Estimated base temperatures (Tb) for the germination of Echinochloa crus-galli. The solid line
represents the linear regression line, and the points represent the inverse value of the time necessary
to reach 50% of germination (1/t50) estimated for the single replicates. The estimated value of the
base temperature is the intersection of the regression line with the X-axis, Tb = 10.8± 0.27; y = 0.0288x
− 0.3119, and R2 = 0.94.
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Figure 3. Estimated base water potentials (Ψb) for the germination of Echinochloa crus-galli. The
solid line represents the linear regression line, and the points represent the inverse value of the time
necessary to reach 50% of germination (1/t50) estimated for the single replicates. The estimated value
of the base water potential is the intersection of the regression line with the X-axis, Ψb = −0.97 ± 0.06;
y = 0.5578x + 0.5404, and R2 = 0.94.

The Tb value of the Croatian population of E. crus-galli is 0.9 ◦C lower than the Tb
value of the Italian population (Table 4). No overlap in the Tb values between the two
populations is found; therefore, the populations differ in this parameter. However, the Ψb
values of the two populations overlap, indicating that the Croatian and Italian populations
of E. crus-galli do not differ in this parameter. Among other factors that might influence
the difference in the estimated value, the climatic conditions at the two sites might have
affected the Tb value. Namely, Zagreb is classified as Dfb, with a cold climate, precipitation
without a dry season, and a warm summer. Padova is classified as Cfa, with a temperate
climate, precipitation without a dry season, and a warm summer minimum [35]. The
average annual temperature in Zagreb is 11.8 ◦C, while the average annual temperature in
Padova is 12.2 ◦C. A similar trend was observed for another grass weed species, S. pumila,
of which the estimated Tb of the Croatian population is 6.6 ◦C, while the Italian population
has a Tb of 10.4 ◦C [22].

Table 4. Comparison of base temperature (Tb) and base water potential (Ψb) of Echinochloa crus-galli
Croatian and Italian population estimated with the bootstrap method [28], 95% confidence interval
(95% CI), and coefficient of determination (r2). Estimated values of the Italian population were
adapted from Masin et al. [7].

Population Tb (◦C) ±95 CI r2 Ψb (MPa) ±95 CI r2

Croatia 10.8 0.27 0.94 −0.97 0.06 0.94
Italy [7] 11.7 0.28 0.89 −0.97 0.04 0.95

3.2. Field Experiments

Data on the emergence of E. crus-galli in maize crops at Sasinovecki Lug were used
to validate the AlertInf model developed with germination parameters (Tb = 10.8 ◦C and
Ψb = −0.97 MPa) of the Croatian population. The optimal temperature (To = 26 ◦C), the
slope of the relationship (Kt = 0.1) between Ψb and Tsi, and the Gompertz coefficient
(a = 4.17, and b = 0.02) were adopted from Masin et al. [30].

As dominant weed species in a natural seedbank in a Croatian field [18], E. crus-galli
was present in high density in Sasinovecki Lug. The average densities were 933 and
834 plants/m2 in 2019 and 2020, respectively, which highlight the reliability of the model
stimulation. Indeed, a prediction of E. crus-galli emergence by AlertInf in Veneto was
performed by a much lower weed density (56.6 plants/m2) [30]. Model simulation of
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E. cus-galli emergence in maize at Sasinovecki Lug is shown in Figure 4a,b for 2019 and
2020, respectively. The AlertInf model fit the observed data satisfactorily, with EF indices
of 0.97 and 0.98 in 2019 and 2020, respectively. However, the emergence data show that
the model underestimated the onset of emergence in 2019 and overestimated it in 2020.
In addition, a slight overestimation was observed in 2019 from the middle to the end of
emergence. The RMSE is 1.69 and 1.38 in 2019 and 2020 respectively, which means that the
average deviation predicted from measured values is small.
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Figure 4. Cumulative emergence of Echinochloa crus-galli observed in the field (triangle) during 2019
(a) and 2020 (b) and the AlertInf prediction of emergence (line). Hydrothermal units are expressed as
calendar days. The seed bed preparation was performed on 8 May 2019 and 5 May 2020.

In 2019, the AlertInf model predicted an initial emergence (11%) of E. crus-galli at
29.1 cumulative HT units on 31 May (Figure 4a). However, in the field, this emergence
was observed 5 days earlier, on 26 May, 18 days after sowing (DAS). The model predicted
the middle emergence (52%) on 6 June at 96.2 cumulative HT units. Field observations at
this time were similar, with emergence monitored from 4 to 8 June (40–50%). In addition,
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according to the model, an 81% emergence at 157.9 HT units should have occurred on
10 June. However, in the field, this was achieved on 12 June. The model predicted 91% of
emergence only one day earlier than the value observed in the field (18 June vs. 19 June).
Similarly, the model predicted the end of emergence (99–100%) on 26 June at 312 HT units,
whereas in the field; this was on 28 June.

In contrast to 2019, in 2020, the model overestimated the onset of emergence (0–30%),
while the middle and the end of emergence data were consistent with predicted values. In
2020, the onset of emergence (10%) was predicted for 16 May at 27.3 HT units (Figure 4b).
In the field, this emergence was observed on 18 and 22 May, i.e., between 13 and 17 DAS.
The middle emergence predicted by the model was reached at a cumulative 93.1 HT units
on 24 May. The field situation was also similar, with middle emergence observed from
22 to 25 May (32–63%), i.e., 17 to 20 DAS. Moreover, the prediction of 80% of emergence
was achieved at 156.3 HT units, which should have been achieved on 3 June according to
the model. In the field, the 85% emergence of E. crus-galli was observed two days earlier
(85%) on 1 June. The end of emergence was predicted on 17 June at 342.5 HT units, while it
was observed in the field from 12 June.

As previously mentioned, the observed field emergence of E. crus-galli varied only
slightly between 2019 and 2020 when calendar days were considered. In both years, emer-
gence began after sowing (early May) and continued through the end of June, coinciding
with the closing of the maize canopy and the concomitant decline in E. crus-galli emer-
gence. The cessation of emergence with the closing of the leaf canopy has already been
documented [5] and explained by the change in soil climate. However, studies based
on determination of emergence pattern often are performed in a crop-free field [36–38].
Nevertheless, when E. crus-galli emergence was observed without the crop at 12 sites in
the United States, the emergence extended into September [39]—much longer than in
our study. Therefore, conducting these experiments and observing emergence within
a crop and between different crops are necessary due to the differences in crop canopy
architecture. [30].

Our findings suggest that the use of the AlertInf model for predicting the emergence
of E. crus-galli in Sasinovecki Lug (Croatia) is fully feasible considering the threshold
EF value of 0.5 for an acceptable model prediction [40]. When transferring the AlertInf
from Veneto to Tuscany, Masin et al. [11] estimated the EF values for the emergence of
A. theophrasti, C. album, and S. halepense to be 0.98, 0.99, and 0.98, respectively. On the
contrary, Egea-Cobrero et al. [41] used the Myers et al. [42] dataset from the United Sates
to validate the emergence of A. theophrasti in Golega (Portugal) and Minnesota (United
States), obtaining EFs of 0.30 and 0.97, respectively. Due to the low EF in Portugal, the
authors concluded that the same model could not be used in Portugal. However, the
results of the current study do not allow us to generalize the application of the model to
different environmental conditions and agronomic practices. For example, in this study,
tillage and seedbed preparation did not differ in both years. The effect of tillage on the
vertical distribution of seed in the seed bank is well known, and different tillage practices
can significantly affect field emergence. However, Vasileiadis et al. [37] concluded that
the emergence of E. crus-galli was stable over the years under different simulated tillage
systems (conventional, reduced, and, no-till), so AlertInf could be adopted for maize grown
under different tillage conditions considering this fact. Another factor that could influence
the emergence and effectiveness of the model is soil type, which was not considered in
this experiment and should be further investigated. A good example is the study by
Leblanc et al. [16], who calibrated a predictive mathematical model to different soil types
by adjusting the base temperature of C. album seedlings to the soil texture.

In order to set an appropriate time for weed control, determining the time of weed
emergence in the field is important, which according to our study can be predicted for
E. crus-galli by AlertInf. In Croatian maize fields, E. crus-galli is almost always controlled
with pre-emergence or post-emergence herbicides, usually in combination with inter-row
cultivation. According to Oriade and Forcella [43], the efficacy of inter-row cultivation is
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highest when 60% of S. viridis, another important monocot maize species, has emerged.
Based on our experiment, inter-row cultivation should be applied from 96 to 113 cumulative
HT units. The best efficacy of post-emergence foliar herbicides is achieved when 70–80% of
weeds have emerged in the field [7,44]. According to AlertInf, foliar application should be
made at a cumulative 140–144 HT units. Finally, the AlertInf model can be used to support
the adoption of integrated weed control tactics and post-emergence band application with
inter-row cultivation, which can significantly reduce herbicide use in maize [45].

4. Conclusions

E. crus-galli is the most important monocotyledonous weed in maize in Croatia and
other geographical areas. The possible use of the existing weed emergence model for
this species could be useful for weed control programs. In this study, the Italian AlertInf
model had to be calibrated with the Tb values of the Croatian population of E. crus-galli,
as there were statistical differences with the Italian population embedded in the model.
The calibrated AlertInf model showed good prediction of E. crus-galli emergence when
validated with field data from continental Croatia (Šašinovečki Lug). Therefore, the use of
AlertInf for predicting E. crus-galli at this site is successful.

Future experiments should focus on increasing the complexity of the AlertInf model
by including previously mentioned factors such as environmental conditions (soil type)
and agronomic practices (type of tillage) that could influence the emergence of E. crus-galli.
For practical purposes, the use of AlertInf by Croatian farmers could be a good way to
predict the emergence of E. crus-galli without the need to measure and monitor all of the
parameters required as inputs by complex mechanistic models [1,17]. The results of this
study encourage us to extend AlertInf to other important maize weed species for which
the germination parameters have already been estimated [22]. The possible extension of
AlertInf to other geographical areas could be the focus of further experiments.
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