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Abstract

Purpose

Congenital myopathies are a heterogeneous group of diseases affecting the skeletal mus-

cles and characterized by high clinical, genetic, and histological variability. Magnetic Reso-

nance (MR) is a valuable tool for the assessment of involved muscles (i.e., fatty

replacement and oedema) and disease progression. Machine Learning is becoming

increasingly applied for diagnostic purposes, but to our knowledge, Self-Organizing Maps

(SOMs) have never been used for the identification of the patterns in these diseases. The

aim of this study is to evaluate if SOMs may discriminate between muscles with fatty

replacement (S), oedema (E) or neither (N).

Methods

MR studies of a family affected by tubular aggregates myopathy (TAM) with the histologi-

cally proven autosomal dominant mutation of the STIM1 gene, were examined: for each

patient, in two MR assessments (i.e., t0 and t1, the latter after 5 years), fifty-three muscles

were evaluated for muscular fatty replacement on the T1w images, and for oedema on the

STIR images, for reference. Sixty radiomic features were collected from each muscle at t0

and t1 MR assessment using 3DSlicer software, in order to obtain data from images. A

SOM was created to analyze all datasets using three clusters (i.e., 0, 1 and 2) and results

were compared with radiological evaluation.

Results

Six patients with TAM STIM1-mutation were included. At t0 MR assessments, all patients

showed widespread fatty replacement that intensifies at t1, while oedema mainly affected

the muscles of the legs and appears stable at follow-up. All muscles with oedema showed
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fatty replacement, too. At t0 SOM grid clustering shows almost all N muscles in Cluster 0

and most of the E muscles in Cluster 1; at t1 almost all E muscles appear in Cluster 1.

Conclusion

Our unsupervised learning model appears to be able to recognize muscles altered by the

presence of edema and fatty replacement.

Introduction

Congenital myopathies are a group of genetically determined diseases affecting skeletal muscle

and characterized by a spectrum of typical pathological changes within the myofiber.

Clinically, these diseases present with various degrees of muscle weakness, hypotonia,

hyporeflexia, poor muscle bulk and sometimes dysmorphic features like pectus carinatum,

scoliosis, foot deformities or facial abnormalities.

Because of the high overlap with other muscle conditions, clinical characteristics, family

history [1], electromyographic study, muscle biopsy (with histological, immunohistochemical

and electron microscopy examinations), muscle magnetic resonance imaging (MRI) and some

laboratory tests, are necessary to reach a diagnosis [2].

Tubular Aggregates Myopathy (TAM) due to STIM1 (stromal interaction molecule 1)

gene mutations is a congenital myopathy, clinically characterized by skeletal muscle weak-

ness, myalgias and cramps. Mutations in STIM1 result in a constitutive channel activation

leading to transmembrane calcium flow impairment and the formation of tubular aggre-

gates in skeletal muscle [3].

Muscle biopsies in TAM are characterized by the presence of “tubular aggregates”, cellu-

lar inclusions consisting of highly ordered arrays of tubules derived from the sarcoplasmic

reticulum [4].

STIM1-TAM follows an autosomal dominant pattern of inheritance. STIM1 mutations

have also been observed in Stormoken syndrome characterized by bleeding tendency, hemato-

logical abnormalities, asplenia, ichthyosis, and congenital miosis [5].

Muscle imaging is emerging as an important tool in the differential diagnosis of congenital

myopathies due to its high soft tissue contrast and its ability to detect skeletal muscle abnor-

malities in trophism and muscle signal.

MRI protocols should include T2w fat suppressed (or STIR, often preferred for less promi-

nent artifacts) sequences to allow radiologists to detect any abnormal increase in muscle signal,

corresponding to muscle oedema. Muscle oedema could be caused by trauma, denervation, or

myositis, but in the correct clinical setting indicates the acute phase of muscle involvement

typical of certain myopathies.

T1w sequences are acquired to detect an increase in muscle signal representing fibro-adi-

pose degeneration, the chronic stage of myopathies; these sequences also allow the detection of

morphologic changes, such as the loss of muscle bulk or muscle enlargement (adaptive hyper-

trophy or pseudohypertrophy related to fibro-adipose replacement) [6], and the type of intra-

muscular disorganization of muscle texture [7].

Specific patterns are most recognizable in patients presenting mild phenotypes, with indi-

vidual muscles selectively affected. Extensive and severe muscle involvement, as well as very

mild and initial involvement do not allow for clear pattern detection even if they can be identi-

fied by expert radiologist [8].
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Muscle MRI to be helpful in the diagnostic process needs to be properly interpreted and the

radiologist needs to gain experience to correctly evaluate the muscle alterations severity and

characteristic imaging pattern.

Radiomics, converting images in data, could be useful in standardizing these assessments.

Radiomics predicts that the information reflecting pathophysiologic changes in tissues and

organs contained in medical images can be revealed through quantitative analyses.

The basic image features of intensity, shape, size, volume, and texture can be processed via

multiple steps, including image acquisition, volume of interest identification, segmentation,

extraction and quantification will form a dataset, and mining these datasets, in combination or

not with additional demographic, clinical or genomic information will help the diagnostic

process.

The principal application of radiomics has so far been used in oncology, but recently it has

been applied to other clinical settings.

We employed Self-Organizing Maps (SOMs), an unsupervised machine learning method

based on neural networks, [9] to characterize radiomic data obtained from the MRI assessment

of a homogeneous, STIM1-TAM cohort of patients, in order to verify the possibility to differ-

entiate healthy muscle (N), fibro-adipose substituted muscle (S), and oedematous muscle (E).

Material and methods

The study was approved by our Institutional Ethics Committee (316n/AO/22).

Dataset creation

Seven patients segregating the autosomal dominant p.Leu98Val STIM1 mutation from a three

generations family affected by TAM were studied.

Anamnestic data were collected, and medical records reviewed. All data and images were

fully anonymized before analysis.

Patients who underwent at least two MR evaluation (i.e., at baseline and follow-up) were

included. All of them provide an informed written consent. Upper right girdle and lower

limbs MRI scans were all performed with 1.5 T commercial scanner (Magnetom Avanto, Sie-

mens, Erlangen, Germany) at the Institute of Radiology of Padua; T1w and STIR sequences of

scapular and forearm girdle of the right hemisoma (for technical convenience) and of the

lower limbs were acquired on the axial plane with an 8 mm slice thickness.

A radiologist (AL) reviewed the images of each exam, as reference for subsequent SOM

results interpretation. Muscles included in the field of view were evaluated assessing fibro-adi-

pose replacement in T1w sequences using the Mercuri 6 point scale (i.e., stage 0, normal

appearance; stage 1, mildly moth-eaten appearance with occasional scattered T1 hyperintense

areas; stage 2A, moderate moth-eaten appearance with numerous scattered T1 hyperintense

areas; stage 2B, severely moth-eaten appearance with numerous confluent areas of T1 hyperin-

tensity; stage 3, confluent areas of signal hyperintensity and stage 4, complete fatty degenera-

tion with replacement of muscle by connective tissue and fat) [10], and muscle oedema in

STIR sequences, using a 5 point scale (0, absent; 1, mild, interfascicular; 2A, mild, intrafascicu-

lar, segmented; 2B, mild, intrafascicular, global; 3A, moderate, intrafascicular, segmented; 3B,

moderate, intrafascicular, global), already used at our Radiology Institute [11] (Fig 1).

Texture information were obtained by the same radiologist using 3DSlicer open source soft-

ware (version 4.10.2) by selecting a round-shaped ROI of a standard dimension (1% of screen

dimension in total matrix) in the T1w sequences and a round-shaped ROI of the same dimen-

sion in the STIR sequences for each muscle assessed at baseline MR (i.e., t0) and at follow-up

MR (i.e., t1), at the middle third of the muscle belly, excluding perimysium, tendons and, on
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STIR images, prominent vascular structures. Features extracted through each ROI were: first

order statistic (i.e., describing distribution of values of singular voxels without spatial relation-

ship), Gray Level Run Length Matrix (GLRLM), and Gray Level Co-occurrence Matrix

(GLCM). In a preliminary phase of data pre-processing, every included patient was assigned a

number, and non-standard data (i.e., Mercuri stages 2a, 2b) were converted in consecutive

numbers to obtain machine-learning “friendly” data. Subsequently, for each muscle we created

two datasets for MR images, one at t0 and one at t1. The datasets include all radiomics features

extracted from T1w and STIR sequences. The two datasets can be found in S1 File.

Self-organizing map and clustering

Both datasets were processed with an unsupervised neural network. Specifically, we exploited a

Self-Organizing Map (SOM, also known as Kohonen’s map) [9]. The SOM is a special class of

fully connected neural network able to represent high-dimensional data into a low-dimen-

sional (generally 2D) map, in which each cell is associated with a neuron and its set of weights.

So doing, at the end of the unsupervised learning process, neurons that are topologically close

fire in response to samples (i.e., muscles) sharing similar characteristics. Once trained, the

weights of the neurons can be clustered by means of a clustering algorithm, in order to group

together samples sharing similar characteristics.

We used this approach to group muscles into three clusters, sharing similar radiomics fea-

tures. Specifically, we trained a 10x10 SOM with hexagonal topology, employing a gaussian

neighborhood function with σ = 1.0, learning rate t = 0.5, and cosine distance. The weights of

the SOM were initialized by means of a principal component analysis (PCA), and the training

was performed for a total of 500 iterations. The SOM was implemented using Python (version

Fig 1. Representative images of T1- and T2-weighted images classification used. (A) 6 point scale for fatty infiltration evaluation. (B) 5 point scale for oedema

assessment.

https://doi.org/10.1371/journal.pone.0285422.g001
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3.7.4) and the MiniSom library (version 2.2.7) [12]. To cluster the SOM’s weights, we

employed an agglomerative clustering algorithm with euclidean distance and Ward linkage

criterion, implemented with the Scikit-learn Python library (version 1.0.2) [13]. The script

employed to generate the results of this work can be found in S1 File. The resulting clustering

was compared with each radiological assessment, to verify the SOM reliability in recognizing

muscles altered by the presence of oedema and fatty replacement.

Results

Clinical and radiological analysis

One patient among the seven family members affected by STIM1-TAM, was excluded from

analyses because missed the follow up MR scan. The remaining patients were three females

and three males: a woman (73 years-old at baseline MR evaluation-patient II-3), her 2 sons (52

and 50 years-old at baseline MR evaluation, patients III-3 and III-4, respectively), her two

daughters (47 and 54 years-old at baseline MR evaluation, patients III-1 and III-6, respec-

tively), and her grandson (21 years-old at baseline MR evaluation, patient IV-3) (Fig 2).

All six patients underwent two MR evaluations: at baseline (t0) and after 5 years (t1)

between 2009 and 2019.

Radiological evaluation required about 25 minutes for each examination. 53 muscles for

each patient were classified.

In all patients, a pattern of diffuse muscular involvement, with predominant fibro-adipose

changes and mild oedema was revealed. Thighs and legs muscles were invariably more affected

than arms, with diffuse fibro-adipose replacement of anterior and posterior thighs muscles,

particularly of glutei, tensors fasciae latae, quadriceps, adductors, semimembranous and semi-

tendinosus and long heads of biceps femoris.

There was relative sparing of the short head of the biceps femoris in four patients and of

gracilis in two patients.

In lower legs a diffuse distribution of fibro-fatty infiltration was noticed, with a predomi-

nant involvement of the posterior compartment muscles, mainly soleus and gastrocnemius,

flexor hallucis longus and the peroneal muscles; tibialis anterior, extensors digitorum and

extensor hallucis were less involved (Fig 3A).

Upper girdles scans revealed mild fibro-adipose changes in deltoid, triceps brachii and

biceps brachii only in the three more severely affected patients (III-1, III-3, III-4) while subsca-

pularis muscle was involved in all patients with different degrees of severity (Fig 3B).

From t0 to t1 the general pattern of muscle involvement did not differ, but in patients III-3

and III-6 there was a worsening of MRI fibro-fatty replacement that was concurrent to a clini-

cal worsening of muscle strength. Fibro-fatty replacement and clinical worsening were

observed also in patient III-4 and, more prominently, in patient II-3. Patient III-1 did not

show any progression at muscle MRI but a worsening of muscle strength clinical evaluation,

where patient IV-3 muscle strength was unchanged at follow-up but an increase in fibro-adi-

pose replacement was observed.

Muscle oedema assessment revealed at t0 minimal positive findings in the thighs and lower

legs in III-1, mild and moderate involvement respectively in the thighs and lower legs in

patients IV-3 and III-3, minimal involvement in lower legs in patient II-3 and in upper girdle

muscles in III-6. No oedema was observed in patient III-4; at t1 patients IV-3 and III-3 under-

went a slight worsening in the same anatomical regions involved at t0, patient III-4 became

positive with appearance of minimal edematous findings in the thighs and lower legs, and

patients II-3, III-1 and III-6 were stable.

All muscles with oedema also showed fibro-adipose replacement.
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Fig 2. STIM1-TAM family pedigree. Black squares, affected males; black circles, affected females; crossed out black circle, affected

female deceased; white squares and circles, unaffected males and females, respectively.

https://doi.org/10.1371/journal.pone.0285422.g002

Fig 3. Fibro-fatty infiltration pattern representative images. (A) Axial T1-weighted MR image of the leg showing muscle fibro-fatty

infiltration with predominant involvement of posterior muscles (yellow line), such as soleus, medial and lateral gastrocnemii, and flexor hallucis

longus. (B) T1-weighted MR image of the shoulder girdle showing the involvement of subscapularis muscle (yellow arrow).

https://doi.org/10.1371/journal.pone.0285422.g003
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Radiomics and artificial intelligence analysis

Due to excessive artifact presence (mainly movement or peripheral magnetic field inhomoge-

neities artifacts), it was considered appropriate to exclude 22 muscles from t0 evaluation and

10 from the t1 evaluation for the extraction of radiomics data. For each muscle, at t0 and t1

MR evaluation, fifty-eight features (i.e., 18 first order statistics, 16 GLRLM, and 24 GLCM)

were extracted from T1w and STIR images. The procedure required about 30 minutes for each

examination.

A separate SOM was trained for each dataset, and used to partition the data into three clus-

ters, according to the radiologically determined muscles categories: normal muscle (N, Mer-

curi and oedema scale 0 points), fibro-adipose replacement (S, Mercuri scale 1–4 points),

fibro-adipose replacement and oedema (E, oedema score 1-3b and Mercuri scale 1–4 points).

The results obtained on the t0 dataset are shown in Fig 4.

SOM output was compared to human radiological evaluation. At t0, 74% of normal muscles

(N) and 68% of muscles with fatty replacement and oedema (E) were clustered together; at t1,

97% of “E” muscles were in two out of three clusters (Fig 5). Since in our SOMs the muscles

displaying fibro-adipose substitution (S) were distributed in all clusters we decided to perform

a further analysis, using only two clusters (Fig 6). Excluding the samples classified as S, this

new SOM was able to correctly classify 91.4% of the oedema samples. A full overview of the

classification performance on E and N muscles is available in Table 1. Normal muscles were

correctly classified in 50% of cases. It should be noted that they were underrepresented in our

dataset.

Discussion

Patterns of muscle involvement is becoming critical in the diagnostic process of muscle dis-

eases. We report the muscle MRI pattern in 6 patients affected by STIM1-mutated TAM and

compare radiologist evaluation with the output of a clustering based on Self-Organizing Maps.

The typical pattern of STIM1-TAM includes in the lower limbs an overall fat replacement of

the anterior and posterior thighs, calf, and peroneal muscles, with almost invariably reported

involvement of flexor hallucis longus muscle and sparing of tibialis anterior; other features

often reported were sartorius muscle involvement with sparing of gracilis and short head of

biceps femoris [14–17]. In the upper limbs the subscapularis muscle and often the lumbar

extensors are involved with sparing of trapezius and masticatory muscles.

Despite the different location of STIM1 gene mutations, and the small number of patients

reported this pattern of muscle involvement is common indicating in muscle MRI a valuable

tool for diagnosis of this rare myopathy [16].

In our cohort of STIM1-TAM patients, flexor hallucis longus and subscapularis muscles

were almost always affected, confirming the known pattern of muscle involvement and the

usefulness of evaluating specific muscles that rarely are involved in the pathological process

[14], in the differential diagnosis with many others muscle diseases (i.e., alpha dystroglycano-

pathies, calpainopathy, TPM2-related and RYR1-related myopathies, among the others).

Moreover, the previously reported sparing of gracilis and tibialis anterior were not con-

stantly observed in our series, even if they were never the most affected muscles [14–17].

The findings of progression of muscle fibro-fatty infiltration and the subtle variations of

muscle oedema from t0 to t1 MR scans confirmed that STIM1-TAM is a progressive muscle

disease [5]. In general muscle MR involvement parallels muscle strength, being the more MR

involved muscles the weakest, as shown in patients III-3, III-4, III-6 and II-3; on the contrary,

when fatty infiltration or muscle weakness are mild, a direct correlation between the two is dif-

ficult to observe: patient IV-3 MRI assessment showed an increase in fibro-fatty replacement
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at t1 in hamstring, flexor hallucis longus, and flexor digitorum muscles that was not consistent

with the muscle strength stability, and patient III-1 showed a progression of muscle weakness

but a stability of fibro-adipose replacement at MRI.

Given the emerging importance of muscle MR in the diagnostic process of congenital

myopathies, the development of a computed automatic single muscle scoring system is becom-

ing relevant. In the literature multiple attempts of applying texture analyses on specific

Fig 4. Clustering results obtained on a SOM trained on the t0 dataset. The clusters are compared to labels (E, S, N)

assigned by trained human evaluators.

https://doi.org/10.1371/journal.pone.0285422.g004

Fig 5. Clustering results obtained on a SOM trained on the t1 dataset. The clusters are compared to labels (E, S, N)

assigned by trained human evaluators.

https://doi.org/10.1371/journal.pone.0285422.g005
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myopathy are reported and showed, for example, their capability in distinguishing normal and

pathologic muscles in neurogenic and myopathic diseases [18], in distinguishing inflammatory

myopathy from myotonic dystrophy [19], identifying the progression of disease [20], quantify-

ing muscle T2 water and fat fraction in facio-scapulo-humeral dystrophy [21], and in discern-

ing between different types of inflammatory myopathies [22].

The main goal of our study was to evaluate SOMs performance in distinguishing radiologi-

cal muscles appearance in order to identify disease progression or stability in our STIM1-TAM

cohort.

At t0 SOM attributed most of healthy (N), and fibro-adipose and oedema (E) muscles to

two different clusters, underlining that a trained SOM can recognize muscles with pathologic

MRI alterations.

At t1 evaluation, a more evenly distribution of the healthy and involved muscles among the

three clusters, could suggest that, with general disease progression, a SOM might recognize

alterations also in muscles classified as normal by human’s eye and human evaluation might

overestimate negative samples from MRI image inspection; indeed, the SOM was still able to

discern “E” muscles and to separate them in the additional analysis.

SOMs are a non-supervised machine learning method that allowed us to subdivide muscles

in clusters without a human expert evaluation. SOMs can capture the non-linear correlations

often existing in biological and medical datasets, and their output can be more easily

Fig 6. Clustering results obtained by retraining a SOM on the t1 dataset using only 2 clusters. The clusters are

compared to labels (E, S, N) assigned by trained human evaluators.

https://doi.org/10.1371/journal.pone.0285422.g006

Table 1. Classification performance over the N and E samples, using two clusters on the t1 dataset.

Predicted normal (N) Predicted oedema (E)

True normal (N) 7 (50.0%) 7 (50.0%)

True oedema (E) 6 (8.6%) 64 (91.4%)

Percentage over total amount of samples belonging to that class reported between parentheses.

https://doi.org/10.1371/journal.pone.0285422.t001
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interpreted by professionals not belonging to the computer science field, thanks to the fact that

they visualize their outcomes through “maps”.

Although with our dataset the SOM did not discriminate perfectly between our three radio-

logical categories, it was able to discriminate between normal and affected muscles.

Further analyses with larger cohorts are needed to confirm our results and to carry out

other applications, such as in pattern recognition of congenital myopathies.

A limit of this study is represented by the selection of a ROI for radiomic data extraction;

the dimension of the ROI was chosen to be the same for all muscles. This allows the analyses of

multiple muscles in a feasible time, being the amount of time necessary for the process of

image segmentation one of the main issues in Radiomics texture analyses [23].

Conclusions

We argue that a trained SOM can recognize muscles altered by the presence of oedema and

fatty replacement.

However, in our experience, human expertise can better evaluate also different aspects,

such as artifacts impact on images.

Further analyses will serve to confirm whether a SOM can detect alterations invisible to the

human eye.
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