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Abstract. We consider deterministic mean field games in which the agents control their acceler-
ation and are constrained to remain in a region of \BbbR n. We study relaxed equilibria in the Lagrangian
setting; they are described by a probability measure on trajectories. The main results of the paper
concern the existence of relaxed equilibria under suitable assumptions. A difficulty in the proof of
existence comes from the fact that the optimal trajectories of the related optimal control problem
do not form a compact set. The proof requires closed graph properties of the map which associates
to initial conditions the set of optimal trajectories.
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1. Introduction. The theory of mean field games (MFGs) has been investigated
more and more since the pioneering works [19, 20, 21] of Lasry and Lions: it aims at
studying the asymptotic behavior of differential games (Nash equilibria) as the number
of agents tends to infinity. The dynamics of the agents can be either stochastic or
deterministic. Concerning the latter case, we refer the reader to [14] for a detailed
study of deterministic MFGs in which the interactions between the agents are modeled
by a nonlocal regularizing operator acting on the distribution of the states of the
agents. They are described by a system of PDEs coupling a continuity equation for
the density of the distribution of states (forward in time) and a Hamilton--Jacobi (HJ)
equation for the optimal value of a representative agent (backward in time). If the
interaction cost depends locally on the density of the distribution (and hence is not
regularizing), then, in the deterministic case, the available theory mostly deals with
so-called variational MFGs; see [15].

The major part of the literature on deterministic MFGs addresses situations when
the dynamics of a given agent is strongly controllable: for example, in crowd motion
models, this happens if the control of a given agent is her velocity. Under the strong
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controllability assumption, it is possible to study realistic models in which the agents
are constrained to remain in a given region K of the space state, i.e., state constrained
deterministic MFGs. An important difficulty in state constrained deterministic MFGs
is that nothing prevents the agents from concentrating on the boundary \partial K of the
state space; let us call m(t) the distribution of states at time t. Even if m(0) is
absolutely continuous, there may exist some t > 0, such that m(t) has a singular part
supported on \partial K and the absolute continuous part of m(t) with respect to Lebesgue
measure blows up near \partial K. This was first observed in some applications of MFGs
to macroeconomics; see [1, 2]. From the theoretical viewpoint, the main issue is
that, as we have already said, the distribution of states is generally not absolutely
continuous with respect to Lebesgue measure; this makes it difficult to characterize
the state distribution by means of PDEs. These theoretical difficulties have been
addressed in [11]: following ideas contained in [8, 9, 16], the authors of [11] introduce
a weak or relaxed notion of equilibrium, which is defined in a Lagrangian setting
rather than with PDEs. Because there may be several optimal trajectories starting
from a given point in the state space, the solutions of the relaxed MFG are probability
measures defined on a set of admissible trajectories. Once the existence of a relaxed
equilibrium is ensured, it is then possible to investigate the regularity of solutions and
give a meaning to the system of PDEs and the related boundary conditions; this was
done in [12].

On the other hand, if the agents control their acceleration instead of their velocity,
the strong controllability property is lost. In [3], we have studied deterministic MFGs
in the whole space \BbbR n with finite time horizon T in which the dynamics of a generic
agent is controlled by the acceleration. In [3], the state variable is the pair (x, v) \in 
\BbbR n \times \BbbR n, where x and v respectively stand for the position and the velocity; the
dynamics of a given agent is described by a double integrator\left\{       

\xi \prime (s) = \eta (s), s \in (t, T ),
\eta \prime (s) = \alpha (s), s \in (t, T ),
\xi (t) = x,
\eta (t) = v.

The control \alpha (the acceleration) is a measurable function of time with values in \BbbR n.
At the equilibrium, a generic agent chooses her strategy by minimizing at time t the
cost

Jt(\xi , \eta , \alpha ) =

\int T

t

\biggl( 
L(\xi (s), \eta (s)) +

| \alpha 2(s)| 
2

+ F [m(s)](\xi (s), \eta (s))

\biggr) 
ds

+G[m(T )](\xi (T ), \eta (T )),

where m(s) is the distribution of states at time s. The initial distribution is a given
probability measure on \BbbR 2n, assumed to be absolutely continuous with respect to
Lebesgue measure; its density m0 may be assumed to be continuous and compactly
supported. Here,

\bullet (x, v) \mapsto \rightarrow L(x, v) is a bounded from below and C2 function defined on \BbbR 2n;
\bullet F is a Lipschitz continuous map from the set of probability measures on
\BbbR 2n with finite first moment to bounded C2 functions defined on \BbbR 2n with
bounded first and second order derivatives;

\bullet G is a continuous map from the set of probability measures on \BbbR 2n with finite
first moment to bounded C2 functions defined on \BbbR 2n with bounded first and
second order derivatives.
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STATE CONSTRAINED MFG ON THE ACCELERATION 3759

Note that in the optimal control problem described above, the running cost has the
form \ell (\xi (s), \eta (s), s) + 1/2| \alpha (s)| 2, where

\ell (x, v, s) = L(x, v) + F [m(s)](x, v).

Similarly, the terminal cost is g(\xi (T ), \eta (T )) where g(x, v) = G[m(T )](x, v). In the
literature, the coupling costs F and G are said to be strongly regularizing because
they map probability measures to regular functions defined on \BbbR 2n.

The MFG leads to the following system of forward-backward PDEs:
(1.1)\left\{    - \partial tu - v \cdot Dxu+H(x, v,Dvu) - F [m(t)](x, v) = 0 in \BbbR 2n \times (0, T ),

\partial tm+ v \cdot Dxm - divv(Dpv
H(x, v,Dvu)m) = 0 in \BbbR 2n \times (0, T ),

m(x, v, 0) = m0(x, v), u(x, v, T ) = G[m(T )](x, v) on \BbbR 2n.

The unknowns are the value function of a generic agent u and the density of the
distribution of states m. Here, H : \BbbR n \times \BbbR n \times \BbbR n \rightarrow \BbbR is defined as a Fenchel--
Legendre transform:

(1.2) H(x, v, pv) = max
\alpha \in \BbbR n

\biggl( 
 - \alpha \cdot pv  - 

| \alpha | 2

2

\biggr) 
 - L(x, v) =

| pv| 2

2
 - L(x, v).

The Hamiltonian (x, v, px, pv) \mapsto \rightarrow  - v \cdot px + H(x, v, pv) is neither strictly convex
nor coercive with respect to p = (px, pv). Hence the available results on the regularity
of the value function u of the associated optimal control problem [13, 14] and on
the existence of a solution of the MFG system [14] cannot be applied. In [3], the
existence of a weak solution of the MFG system (1.1) was proved via a vanishing
viscosity method; the distribution of states was characterized as the image of the
initial distribution by the flow associated with the optimal control.

In traffic theory and also in economics, the models may require that the positions
of the agents belong to a given compact subset \Omega of \BbbR n, and state constrained MFGs
with control on the acceleration must be considered. In the present paper, we wish
to investigate some examples of such MFGs and address the first step of the program
followed by the authors of [11] in the strongly controllable case: we wish to prove the
existence of a relaxed mean field equilibrium in the Lagrangian setting under suitable
assumptions (see Definition 3.5 below). We leave for the future the next natural steps,
i.e., to further investigate the regularity of the solutions, and then, if possible, to study
a related boundary value problem with PDEs as we did in [3].

1.1. Our program. Most of the paper is devoted to the case when the accelera-
tion \alpha can take its values in the whole space and when the running cost depends sepa-
rately on the acceleration and on the other variables. More precisely, the running cost

and the terminal costs will be respectively of the form L(x, v, t)+F [m(t)](x, v)+ | \alpha | 2
2

and G[m(T )](x, v). The assumptions on F , G, and L will be specified later; at this
point, we just need to say that F and G will be assumed to be bounded and L will
be bounded from below. The admissible trajectories are pairs of functions (\xi , \eta ),
\xi \in C1([0, T ]; \Omega ), \eta \in W 1,1(0, T ;\BbbR n) and \xi \prime = \eta . An example of state constrained
MFGs in which the acceleration takes its values in a compact subset of \BbbR n (the opti-
mal value may therefore take the value +\infty in the interior of the x-domain) will be
studied in a forthcoming work.

In view of the applications to traffic models, we will deal with the cases when
1. \Omega is a bounded domain of \BbbR n with a smooth boundary; we will also briefly

discuss the case when \Omega is a convex polygonal domain of \BbbR 2;
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3760 Y. ACHDOU, P. MANNUCCI, C. MARCHI, AND N. TCHOU

2. n = 1 and \Omega is a bounded straight line segment.
In the one-dimensional case, the simplicity of the geometry will allow us to obtain
accurate information on the optimal trajectories, and in turn to get a more general
existence result for the MFG, yet under an additional assumption on the running cost.

Recall that the admissible states are the pairs (x, v) \in \Omega \times \BbbR n, where \Omega is a
bounded region of \BbbR n. At first glance, we see that some restrictions will have to
be imposed on the initial distribution of states: indeed, for x \in \partial \Omega and v pointing
outward \Omega at x, there is no admissible trajectory taking the value (x, v) at t = 0;
hence the optimal value u(x, v, 0) is +\infty ; the definition of the mean field equilibrium
would then be unclear if the probability that the initial state takes such values (x, v)
was not zero.

As in [11], the aim is to prove the existence of relaxed MFG equilibria which
are described by probability measures defined on a set of admissible trajectories (see
Definition 3.5 below). We stress the fact that this definition does not involve any
system of PDEs. Strongly related to this definition of equilibria in the Lagrangian
setting is the notion of mild solution of the MFG; see Definition 3.7 below; by and
large, a mild solution is a pair (u,m) for which there exists a mean field equilibrium
in the sense of Definition 3.5 (i.e., a probability measure \mu on admissible trajectories
(\xi , \eta )), such that for each time t and each Borel subset A of the state space,

m(t)(A) = \mu (\{ (\xi , \eta ) : (\xi (t), \eta (t)) \in A\} ) ,

and u is a value function defined as an infimum on admissible trajectories. Again, note
that, for lack of smoothness, the definition of mild solutions is not written in terms
of PDEs; see Remark 3.3 below for a discussion on the relationship with a boundary
value problem of the form (1.1).

The proof of existence of an equilibrium in the Lagrangian setting involves Kaku-
tani's fixed point theorem (see [17]) applied to a multivalued map defined on a convex
and compact set of probability measures on a suitable set of admissible trajectories
(itself endowed with the C1([0, T ];\BbbR n) \times C0([0, T ];\BbbR n)-topology). Difficulties in ap-
plying Kakutani's fixed point theorem will arise from the fact that all the optimal
trajectories do not form a compact subset of C1([0, T ];\BbbR n) \times C0([0, T ];\BbbR n) (due to
the lack of strong controllability). This explains why we shall need additional assump-
tions, either on the support of the initial distribution of states, or, in some cases, on
the running cost.

Assumptions on the support of the initial distribution of states. Note that if a
set of trajectories is a compact metric space, then probability measures on this set
form a compact set, as required by Kakutani's theorem. Therefore, a natural strategy
is to identify a compact set of trajectories that contains the optimal trajectories
whose initial value belongs to the support of the initial distribution of states. In
such a strategy, we therefore need to identify a modulus of continuity common to all
the velocity laws of the optimal trajectories; since the running cost is quadratic in
the acceleration, the more natural idea is to look for a uniform bound on the W 1,2

norms of the velocity laws of the optimal trajectories. But, due to the lack of strong
controllability, if x and v respectively belong to \partial \Omega and to the boundary of the tangent
cone to \Omega at x (the optimal value u(x, v, 0) is finite), there exist sequences (xi, vi)i\in \BbbN 
tending to (x, v) such that the optimal value u(xi, vi, 0) blows up when i \rightarrow \infty ; in
other words, the cost of preventing the trajectories with initial value (xi, vi) from
exiting the domain tends to +\infty as i \rightarrow \infty . Hence, to get uniform bounds on the
W 1,2 norms of the velocity law, the support of the initial distribution of states must

D
ow

nl
oa

de
d 

07
/0

5/
22

 to
 1

47
.1

62
.2

2.
66

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STATE CONSTRAINED MFG ON THE ACCELERATION 3761

not contain such sequences (xi, vi). Sufficient conditions on the support of the initial
distribution will be given.

Furthermore, Kakutani's fixed point theorem requires a closed graph property for
the multivalued map which maps a given point (x, v) to the set of optimal trajectories
starting from (x, v). An important part of our work is therefore devoted to proving a
closed graph property for the latter map. Note that this issue is of interest in its own
right in optimal control theory, independently of MFGs.

Assumptions on the running cost. For n = 1, we will be able to get rid of the
above-mentioned restrictions on the support of the initial distribution of states if an
additional assumption is made on the running cost---namely that it does not favor
the trajectories that exit the domain. The existence of equilibria is then proved by
approximating the initial distribution m0 by a sequence m0,k for which Kakutani's
theorem can be applied, and by passing to the limit. To pass to the limit, accurate
information on the optimal trajectories is needed. We managed to obtain this for
n = 1 only.

1.2. Organization of the paper. The paper is organized as follows: Section 2
is devoted to state constrained optimal control problems in a bounded region of \BbbR n

with a smooth boundary, and in particular to the closed graph properties of the above-
mentioned multivalued map. Although this issue seems to be important in several
applications, we were not able to find any relevant result in the available literature.
Then, section 3 deals with an existence result for a related mean field equilibrium
in the Lagrangian setting, under sufficient conditions on the support of the initial
distribution of states. A variant with a nonquadratic cost will be investigated as well.
We also shortly address the case of a convex polygonal region in \BbbR 2; in the present
paper, we will skip the details for brevity, and we will refer to the extended version;
see the preprint [4]. In section 4, we address the case when the dynamics takes place
in a bounded straight line segment (n = 1): under a natural additional assumption on
the running cost, we are able to prove the existence of mean field equilibria without
any restriction on the initial distribution of states; the proof requires a quite careful
study of the optimal trajectories.

2. State constrained optimal control problems in a region of \BbbR \bfitn .

2.1. Setting and notation. Let \Omega be a bounded domain of \BbbR n with a boundary
\partial \Omega of class C2. For x \in \partial \Omega , let n(x) be the unitary vector normal to \partial \Omega pointing
outward \Omega . We will use the signed distance to \partial \Omega , d : \BbbR n \rightarrow \BbbR ,

d(x) =

\biggl\{ 
miny\in \partial \Omega | x - y| if x /\in \Omega ,

 - miny\in \partial \Omega | x - y| if x \in \Omega .

Since \partial \Omega is C2, the function d is C2 near \partial \Omega . In particular, for all x \in \partial \Omega , \nabla d(x) =
n(x).

Given a time horizon T and a pair (x, v) \in \Omega \times \BbbR n, we are interested in optimal
control problems for which the dynamics is of the form

(2.1)

\left\{       
\xi \prime (s) = \eta (s), s \in (0, T ),
\eta \prime (s) = \alpha (s), s \in (0, T ),
\xi (0) = x,
\eta (0) = v.

The state space is \Xi = \Omega \times \BbbR n. The optimal control problem consists of minimizing
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the cost

(2.2) J(\xi , \eta , \alpha ) =

\int T

0

\biggl( 
\ell (\xi (s), \eta (s), s) +

1

2
| \alpha | 2(s)

\biggr) 
ds+ g(\xi (T ), \eta (T ))

on the dynamics given by (2.1) and staying in \Xi .

Assumption 2.1. Here, \ell : \Xi \times [0, T ] \rightarrow \BbbR is a continuous function, bounded from
below. The terminal cost g : \Xi \rightarrow \BbbR is also assumed to be continuous and bounded
from below. Set

(2.3) M = \| g - \| L\infty (\Xi ) + \| \ell  - \| L\infty (\Xi \times [0,T ]),

where we use the notation \zeta  - = max( - \zeta , 0).

Remark 2.1. The results contained in the present section will be useful for study-
ing the MFGs described in the introduction: in section 3 below, they will be applied
to \ell (x, v, t) = L(x, v, t) + F [m(t)](x, v) and g(x, v) = G[m(T )](x, v).

It is convenient to define the set of admissible trajectories as follows:
(2.4)

\Gamma =

\biggl\{ 
(\xi , \eta ) \in C1([0, T ];\BbbR n)\times AC([0, T ];\BbbR n) :

\bigm| \bigm| \bigm| \bigm| \xi \prime (s) = \eta (s) \forall s \in [0, T ]
(\xi (s), \eta (s)) \in \Xi \forall s \in [0, T ]

\biggr\} 
.

For any (x, v) \in \Xi , set

(2.5) \Gamma [x, v] = \{ (\xi , \eta ) \in \Gamma : \xi (0) = x, \eta (0) = v\} .

Then, \Gamma opt[x, v] is the set of all (\xi , \eta ) \in \Gamma [x, v] such that \eta \in W 1,2(0, T,\BbbR n) and
(\xi , \eta , \eta \prime ) achieves the minimum of J in \Gamma [x, v].

Note that \Gamma [x, v] = \emptyset if x \in \partial \Omega and v points outward \Omega . This is the reason why
we introduce \Xi ad as follows:

(2.6) \Xi ad = \{ (x, v) : x \in \Omega , v \cdot n(x) \leq 0 if x \in \partial \Omega \} \subset \Xi .

Lemma 2.1. For all (x, v) \in \Xi ad, the optimal value

(2.7) u(x, v) = inf
(\xi ,\eta )\in \Gamma [x,v]

J(\xi , \eta , \eta \prime )

is finite. The function u is lower semicontinuous on \Xi ad.

Proof. Let us consider (x, v) \in \Xi ad. We distinguish two cases:
1. x \in \Omega or x \in \partial \Omega and v \cdot n(x) < 0: in this case, for t small enough, the trajectory

(\xi , \eta ) defined by\Biggl\{ 
\eta (s) = (1 - s

t
)v and \xi (s) = x+ (s - s2

2t
)v if 0 \leq s \leq t,

\eta (s) = 0 and \xi (s) = x+ t
2v if t \leq s \leq T

is admissible and J(\xi , \eta , \eta \prime ) is finite.
2. x \in \partial \Omega and v \cdot n(x) = 0. We make a simple observation that will also be used in the

proof of Lemma 2.3 below: for all x \in \partial \Omega , there exist an open neighborhood Vx of
x in \BbbR n, a positive number Rx, and a C2-diffeomorphism \Phi x from Vx onto B(0, Rx)
such that for all y \in Vx, the nth coordinate of \Phi x(y) is d(y), i.e., \Phi x,n(y) = d(y).
Hence, \Phi x| Vx\cap \Omega is a C2-diffeomorphism from Vx \cap \Omega onto B - (0, Rx) = B(0, Rx) \cap 
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STATE CONSTRAINED MFG ON THE ACCELERATION 3763

\{ xn < 0\} , and \Phi x| Vx\cap \partial \Omega is a C2-diffeomorphism from Vx\cap \partial \Omega onto B(0, Rx)\cap \{ xn =
0\} . Let us also call \Psi x the inverse of \Phi x, which is a C2-diffeomorphism from
B(0, Rx) onto Vx. Note that

(2.8) \nabla d(y) = D\Phi T
x (y)en for all y \in Vx,

where en is the nth vector of the canonical basis. In particular, n(x) = D\Phi T
x (x)en.

In the present case, let us set \^x = \Phi x(x) and \^v = D\Phi x(x)v. It is easy to see that
\^xn = 0 and \^vn = 0. Then, for t small enough, the trajectory (\xi , \eta ) defined by

\xi (s) = \Psi x(\^\xi (s)), \eta (s) =
d\xi 
ds (s) = D\Psi x(\^\xi (s))\^\eta (s) for all s \in [0, T ], with\Biggl\{ 

\^\eta (s) = (1 - s
t
)\^v and \^\xi (s) = \^x+ (s - s2

2t
)\^v if 0 \leq s \leq t,

\^\eta (s) = 0 and \^\xi (s) = \^x+ t
2 \^v if t \leq s \leq T,

is admissible and J(\xi , \eta , \eta \prime ) is finite.
The lower semicontinuity of u on \Xi ad stems from standard arguments in the calculus
of variations.

2.2. Closed graph properties. An important feature of the optimal control
problem described above is the closed graph property.

Proposition 2.2. Consider a closed subset \Theta of \Xi ad. Assume that for all se-
quences (xi, vi)i\in \BbbN such that for all i \in \BbbN , (xi, vi) \in \Theta , and limi\rightarrow +\infty (xi, vi) =
(x, v) \in \Theta , the following holds: if x \in \partial \Omega , then

(2.9)
\bigl( 
(vi \cdot \nabla d(xi))+

\bigr) 3
= o

\bigl( \bigm| \bigm| d(xi)
\bigm| \bigm| \bigr) 

(note that (2.9) is meaningful for i large enough because d is C1 near \partial \Omega ); then the
graph of the multivalued map

\Gamma opt : \Theta \rightrightarrows \Gamma ,
(x, v) \mapsto \rightarrow \Gamma opt[x, v]

is closed, which means that for any sequence (yi, wi)i\in \BbbN such that for all i \in \BbbN ,
(yi, wi) \in \Theta with (yi, wi) \rightarrow (y, w) as i \rightarrow \infty ; consider a sequence (\xi i, \eta i)i\in \BbbN such
that for all i \in \BbbN , (\xi i, \eta i) \in \Gamma opt[yi, wi]; if (\xi i, \eta i) tends to (\xi , \eta ) uniformly, then
(\xi , \eta ) \in \Gamma opt[y, w].

Remark 2.2. In Proposition 2.2, the condition (2.9) is restrictive only for se-
quences (xi, vi) \in \Theta which tend to (x, v) \in \Theta such that x \in \partial \Omega and v is tangent
to \partial \Omega at x. We will see that this assumption makes it possible to control the cost
associated to the optimal trajectories starting from (xi, vi).

Remark 2.3. In section 4.1 below, we will see that in dimension one (\Omega is then
a bounded straight line), and under stronger assumptions on the running cost, the
closed graph properties hold for \Theta = \Xi ad.

Remark 2.4. In the context of MFGs (see section 3 below), the assumptions in
Proposition 2.2 will yield sufficient conditions on the support of the initial distribution
for the existence of relaxed mean field equilibria.

The proof of Proposition 2.2 relies on Lemmas 2.3 and 2.5 below.

Lemma 2.3. Consider (x, v) \in \Xi ad, (\xi , \eta ) \in \Gamma [x, v] such that \eta \in W 1,2(0, T ;\BbbR n)
and a sequence (xi, vi)i\in \BbbN such that for all i \in \BbbN , (xi, vi) \in \Xi ad and limi\rightarrow \infty (xi, vi) =
(x, v).

Assume that one of the following conditions is true:
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1. x \in \Omega ;
2. x \in \partial \Omega and v \cdot n(x) < 0 (hence vi \cdot \nabla d(xi) < 0 for i large enough);
3. x \in \partial \Omega , v \cdot n(x) = 0 and one of the following properties is true:

(a) for i large enough, vi \cdot \nabla d(xi) \leq 0;
(b) for i large enough, vi \cdot \nabla d(xi) > 0 (hence d(xi) < 0) and

(2.10) lim
i\rightarrow \infty 

(vi \cdot \nabla d(xi))3

| d(xi)| 
= 0.

Then there exists a sequence (\xi i, \eta i)i\in \BbbN such that (\xi i, \eta i) \in \Gamma [xi, vi], \eta i \in W 1,2(0, T ;\BbbR n),
and (\xi i, \eta i) tends to (\xi , \eta ) in W 2,2(0, T ;\BbbR n)\times W 1,2(0, T ;\BbbR n), hence uniformly in [0, T ].

Before proving Lemma 2.3, let us define a family of third order polynomials with
values in \BbbR n.

Definition 2.4. Given t > 0 and x, v, y, w \in \BbbR n, let Qt,x,v,y,w be the unique third
order polynomial with value in \BbbR n such that

Qt,x,v,y,w(0) = x, Q\prime 
t,x,v,y,w(0) = v, Qt,x,v,y,w(t) = y, Q\prime 

t,x,v,y,w(t) = w.

It is given by
(2.11)

Qt,x,v,y,w(s) = x+ vs+

\biggl( 
3
y  - x - vt

t2
 - w  - v

t

\biggr) 
s2 +

\biggl( 
 - 2

y  - x - vt

t3
+

w  - v

t2

\biggr) 
s3.

Proof of Lemma 2.3. We are going to see that each of the three conditions men-
tioned in the statement makes it possible to explicitly construct families of admissible
trajectories fulfilling all the desired properties (in particular with a finite energy or
cost). The trickier situations will arise when x \in \partial \Omega and vi \cdot \nabla d(xi) > 0 for i large
enough, in which case the restrictive condition (2.10) will be needed. Since the con-
struction is different in each of the three cases mentioned in Lemma 2.3, we discuss
each case separately.

1. If x \in \Omega , then there exist t \in (0, T ] and c > 0 such that d(\xi (s)) <  - c for all
s \in [0, t]. We construct the sequence (\xi i, \eta i)i\in \BbbN as follows:

\xi i(s) =

\biggl\{ 
\xi (s) +Qt,\delta xi,\delta vi,0,0(s) if 0 \leq s \leq t,

\xi (s) if t \leq s \leq T,

where \delta xi = xi - x and \delta vi = vi - v; see Definition 2.4 for the third order polynomial
Qt,\delta xi,\delta vi,0,0. It is clear that for i large enough, \xi i(s) \in \Omega for all s \in [0, T ]; hence

(\xi i, \eta i) \in \Gamma [xi, vi] and \eta i \in W 1,2(0, T ;\BbbR n). On the other hand, it can be easily
checked that

(2.12) lim
i\rightarrow +\infty 

\int T

0

\bigm| \bigm| \bigm| \bigm| d\eta idt
(s) - d\eta 

dt
(s)

\bigm| \bigm| \bigm| \bigm| 2 ds = 0.

This achieves the proof in the first case.
2. x \in \partial \Omega and v \cdot n(x) < 0; hence for i large enough, vi \cdot \nabla d(xi) < 0. We can always

assume that the latter property holds for all i.

Notation. We use the same geometric arguments as in the proof of Lemma 2.1:
for the neighborhood Vx mentioned there, there exists \^T , 0 < \^T \leq T , such that
\xi (s) \in Vx \cap \Omega for all s \in [0, \^T ]. Consider the local chart \Phi x introduced in the
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proof of Lemma 2.1 and call \Psi x the inverse map from B(0, Rx) onto Vx. For

t \in [0, \^T ], let us set \^\xi (t) = \Phi x(\xi (t)), \^\eta (t) = d\^\xi 
dt (t) = D\Phi x(\xi (t))

d\xi 
dt (t), \^x = \Phi x(x),

and \^v = \^\eta (0) = D\Phi x(x)v. It is clear that \^xn = 0 and that \^vn < 0. We also set
\^xi = \Phi x(x

i) and \^vi = D\Phi x(x
i)vi.

Since \eta \in W 1,2(0, T ), there exists t \in (0, \^T ) such that for all s \in [0, t],

3

2
\^vn \leq \^\eta (s) \cdot en \leq 1

2
\^vn,(2.13)

3s

2
\^vn \leq (\^\xi (s) - \^x) \cdot en \leq s

2
\^vn.(2.14)

For ti \in [0, t], we set

\^\xi i(s) =

\biggl\{ 
Qti,\^xi,\^vi,\^\xi (ti),\^\eta (ti)

(s) if s \in [0, ti],
\^\xi (s) if s \in [ti, \^T ],

and \^\eta i(s) = d\^\xi i

dt (s) for s \in [0, \^T ]. Then, we define \xi i as follows:

\xi i(s) =

\Biggl\{ 
\Psi x

\Bigl( 
\^\xi i(s)

\Bigr) 
if s \in [0, \^T ],

\xi (s) if s \in [ \^T , T ],

and \eta i = d\xi i

dt . Let us first see why (\xi i, \eta i) \in \Gamma [xi, vi] for ti small enough and i large
enough. A straightforward calculation shows that for s \leq ti,

\^\xi i(s) - \^x =(\^xi  - \^x)

\biggl( 
1 - 3

s2

t2i
+ 2

s3

t3i

\biggr) 
+ s\^vi

\biggl( 
1 - 2

s

ti
+

s2

t2i

\biggr) 
+ (\^\xi (ti) - \^x)

\biggl( 
3
s2

t2i
 - 2

s3

t3i

\biggr) 
+ s\^\eta (ti)

\biggl( 
 - s

ti
+

s2

t2i

\biggr) 
.

(2.15)

Let us focus on (\^\xi i(s)  - \^x) \cdot en = \^\xi i(s) \cdot en: from the formula above, we see that
\^\xi i(s) \cdot en is the sum of four terms, the first three of them being nonpositive and the
last one being nonnegative for all s \in [0, ti]. Let us consider the sum of the last
three terms, namely

A(s) = s\^vi \cdot en
\biggl( 
1 - 2

s

ti
+

s2

t2i

\biggr) 
+ \^\xi (ti) \cdot en

\biggl( 
3
s2

t2i
 - 2

s3

t3i

\biggr) 
+ s\^\eta (ti) \cdot en

\biggl( 
 - s

ti
+

s2

t2i

\biggr) 
;

from (2.13) and (2.14), we see that

\^\xi (ti) \cdot en
\Bigl( 
3 s2

t2i
 - 2 s3

t3i

\Bigr) 
+ s\^\eta (ti) \cdot en

\Bigl( 
 - s

ti
+ s2

t2i

\Bigr) 
\leq s\^v \cdot en

\Bigl( 
1
2

\Bigl( 
3 s2

t2i
 - 2 s3

t3i

\Bigr) 
+ 3

2

\Bigl( 
 - s

ti
+ s2

t2i

\Bigr) \Bigr) 
= s\^v \cdot en

\Bigl( 
 - 3

2
s
ti
+ 3 s2

t2i
 - s3

t3i

\Bigr) 
for all s \in [0, ti]. On the other hand, since limi\rightarrow \infty \^vi = \^v, we see that for i large
enough, \^vi \cdot en \leq 3\^v \cdot en/4. Hence,

A(s) \leq s\^v \cdot en

\Biggl( 
3

4

\biggl( 
1 - s

ti

\biggr) 2

 - 3

2

s

ti
+ 3

s2

t2i
 - s3

t3i

\Biggr) 
= s\^v \cdot en

\biggl( 
3

4
 - 3

s

ti
+

15

4

s2

t2i
 - s3

t3i

\biggr) 
.
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It is easy to check that the function \theta \mapsto \rightarrow 3
4  - 3\theta + 15

4 \theta 2 - \theta 3 is positive for \theta \in [0, 1],
which implies that A(s) is negative for s \in [0, ti].

Hence, for i large enough, \^\xi i(s) \cdot en \leq 0 for all 0 \leq s \leq ti \leq t.

On the other hand, since limi\rightarrow +\infty 
\bigl( 
| \^xi  - \^x| + | \^vi  - v| 

\bigr) 
= 0, \^\xi and \^\eta are continuous,

and (2.15) implies that there exist I > 0 and \~t \in (0, t ] such that, if i \geq I and

ti \in (0, \~t), then \^\xi i(s) \in B - (0, Rx) for all s \in [0, ti]. Hence, for i \geq I and ti \in (0, \~t),
(\xi i, \eta i) \in \Gamma [xi, vi].

Let us now turn to \| d\eta i

dt \| L2(0,ti): straightforward calculus shows that

d\eta i

dt
(t) = D\Psi x(\^\xi 

i(t))
d\^\eta i

dt
(t) +

\Bigl( 
D2\Psi x(\^\xi 

i(t))\^\eta i(t)
\Bigr) 
\^\eta i(t).

This implies that

(2.16)

\bigm\| \bigm\| \bigm\| \bigm\| d\eta idt

\bigm\| \bigm\| \bigm\| \bigm\| 2
L2(0,ti)

\leq C

\Biggl( \bigm\| \bigm\| \bigm\| \bigm\| d\^\eta idt

\bigm\| \bigm\| \bigm\| \bigm\| 2
L2(0,ti)

+
\bigm\| \bigm\| \^\eta i\bigm\| \bigm\| 4

L4(0,ti)

\Biggr) 

for a constant C independent of x \in \partial \Omega . Hereafter, C may vary from line to line.

First, we focus on \| d\^\eta i

dt \| 
2
L2(0,ti)

:\bigm\| \bigm\| \bigm\| \bigm\| d\^\eta i

dt

\bigm\| \bigm\| \bigm\| \bigm\| 2
L2(0,ti)

= 4

\int ti

0

\bigm| \bigm| \bigm| \bigm| \bigm| 3 \^\xi (ti) - \^viti  - \^xi

t2i
 - \^\eta (ti) - \^vi

ti
+

3s

ti

\Biggl( 
 - 2

\^\xi (ti) - \^viti  - \^xi

t2i
+

\^\eta (ti) - \^vi

ti

\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| 
2

ds

\leq 2I1 + 2I2,

where

I1 =

\int ti

0

\bigm| \bigm| \bigm| \bigm| \bigm| 2
\Biggl( 
3
\^\xi (ti) - \^vti  - \^x

t2i
 - \^\eta (ti) - \^v

ti

\Biggr) 
+

6s

ti

\Biggl( 
 - 2

\^\xi (ti) - \^vti  - \^x

t2i
+

\^\eta (ti) - \^v

ti

\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| 
2

ds

and

I2 =

\int ti

0

\bigm| \bigm| \bigm| \bigm| 2\biggl( 3 \^x - \^xi

t2i
+ 2

\^v  - \^vi

ti

\biggr) 
+

6s

ti

\biggl( 
 - 2

\^x - \^xi

t2i
 - \^v  - \^vi

ti

\biggr) \bigm| \bigm| \bigm| \bigm| 2 ds.
Standard arguments yield that

I1 \leq C

\bigm\| \bigm\| \bigm\| \bigm\| d\^\eta dt
\bigm\| \bigm\| \bigm\| \bigm\| 2
L2(0,ti)

for an absolute constant C > 0. Therefore, given \epsilon > 0, there exists \^t : 0 < \^t < t
such that 2I1 < \epsilon /2 for all ti < \^t.
On the other hand,

I2 \leq C1

\biggl( 
| \^x - \^xi| 2

t3i
+

| \^v  - \^vi| 2

ti

\biggr) 
\leq C

\biggl( 
| x - xi| 2

t3i
+

| v  - vi| 2

ti

\biggr) 
.

It is possible to choose the sequence ti such that
\bullet limi\rightarrow \infty ti = 0,
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\bullet limi\rightarrow \infty 
| x - xi| 2

t3i
+ | v - vi| 2

ti
= 0,

\bullet (\xi i, \eta i) \in \Gamma [xi, vi] for i large enough.

Such a choice of ti yields that limi\rightarrow \infty \| d\^\eta i

dt \| 
2
L2(0,ti)

= 0. On the other hand, the

choice made on ti also implies that limi\rightarrow \infty 
| x - xi| 

ti
= 0, and in turn that \| \^\eta i\| L\infty (0,ti)

is uniformly bounded with respect to i; therefore, the quantity \| \^\eta i\| 4L4(0,ti)
tends

to 0 as i tends to \infty ; using (2.16), we have proved that limi\rightarrow \infty \| d\eta i

dt \| L2(0,ti) = 0.
Therefore, it is possible to choose a sequence ti > 0 such that the trajectories

(\xi i, \eta i) are admissible for i large enough and limi\rightarrow \infty \| d\eta i

dt  - d\eta 
dt \| L2(0,T ) = 0. This

achieves the proof in case 2.
3. (a) x \in \partial \Omega , v \cdot n(x) = 0 and vi \cdot \nabla d(xi) \leq 0 at least for i large enough. We may

assume that vi \cdot \nabla d(xi) \leq 0 for all i. Using the same notation as in case 2, we
see from (2.8) that \^vi \cdot en = vi \cdot D\Phi T

x (x
i)en = vi \cdot \nabla d(xi) \leq 0.

In the present case, the approximate trajectories will have three successive
phases; see Remarks 2.5 and 2.6 for explanations on these different phases.
Given ti,1 \in (0, \^T ), we define (\^yi, \^wi) as follows:

\^yi = \^xnen + \pi e\bot n

\bigl( 
\^xi + \^viti,1

\bigr) 
,

\^wi = \^vnen + \pi e\bot n

\bigl( 
\^vi
\bigr) 
= \pi e\bot n

\bigl( 
\^vi
\bigr) 
,

where \pi e\bot n
stands for the orthogonal projector on e\bot n = \BbbR n - 1\times \{ 0\} , and we set

\^\xi i(s) = Qti,1,\^xi,\^vi,\^yi, \^wi(s) and \^\eta i(s) =
d\^\xi i

ds
(s) for 0 \leq s \leq ti,1.

Remark 2.5. In this first phase of the approximate trajectory, i.e., for s \in 
[0, ti,1], \pi e\bot n

(Q\prime \prime 
ti,1,\^xi,\^vi,\^yi, \^wi(s)) = 0. The effort only lies in driving the nth

components of \^\xi i(s) and \^\eta i(s) so that they match those of \^x and \^v at s = ti,1.

As above, we first check that for ti,1 small enough and i large enough, \^\xi i(s) \in 
B - (0, Rx) for all s \in [0, ti,1]: from the definition of Qti,1,\^xi,\^vi,\^yi, \^wi , we see that

(2.17) \^\xi i(s) \cdot en =

\biggl( 
\^xi \cdot en

\biggl( 
1 + 2

s

ti,1

\biggr) 
+ s\^vi \cdot en

\biggr) \biggl( 
1 - s

ti,1

\biggr) 2

is nonpositive for s \in [0, ti,1]. On the other hand, we see that there exist I > 0

and 0 < \~t \leq \^T such that if i \geq I and 0 < ti,1 < \~t, then for all s \in [0, ti,1],
\^\xi i(s) \in B - (0, Rx).

As in case 2, we need to focus on \| d\^\eta i

dt \| L2(0,ti,1): straightforward calculus shows
that \bigm\| \bigm\| \bigm\| \bigm\| d\^\eta idt

\bigm\| \bigm\| \bigm\| \bigm\| 2
L2(0,ti,1)

\leq C

\Biggl( 
| \^xi \cdot en| 2

t3i,1
+

| (\^v  - \^vi) \cdot en| 2

ti,1

\Biggr) 

= C

\Biggl( 
d2(xi)

t3i,1
+

| vi \cdot \nabla d(xi)| 2

ti,1

\Biggr) 
,

and we see as above that there exists a sequence ti,1 such that
\bullet limi\rightarrow \infty ti,1 = 0,

\bullet limi\rightarrow \infty 
d2(xi)
t3i,1

+ | vi\cdot \nabla d(xi)| 2
ti,1

= 0,
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\bullet \^\xi i(s) \in B - (0, Rx) for all 0 \leq s \leq ti,1.

Taking the derivative of \^\xi i and arguing as in case 2, we also see that

limi\rightarrow \infty \| \^\eta i\| L4(0,ti,1) = 0 because limi\rightarrow \infty 
d(xi)
ti,1

= 0.

Next, for ti,1 < ti,2 < \^T , we set
(2.18)

\^\xi i(s) =

\biggl\{ 
Qti,1,\^xi,\^vi,\^yi, \^wi(s) if s \leq ti,1,

Qti,2 - ti,1,\^yi - \^x, \^wi - \^v,0,0(s - ti,1) + \^\xi (s - ti,1) if ti,1 \leq s \leq ti,2,

and

(2.19) \xi i(s) =

\Biggl\{ 
\Psi x

\Bigl( 
\^\xi i(s)

\Bigr) 
if s \leq ti,2,

\xi (s - ti,1) if ti,2 \leq s \leq T.

As above, \^\eta i(s) = d\^\xi i

dt (s) for 0 \leq s \leq ti,2 and \eta i(s) = d\xi i

dt (s) for 0 \leq s \leq T .

Remark 2.6. In the second phase of the approximate trajectory, i.e., for s \in 
[ti,1, ti,2], the components of \^\xi i(s) and \^\xi (s  - ti,1) parallel to en coincide, i.e.,
Qti,2 - ti,1,\^yi - \^x, \^wi - \^v,0,0(s - ti,1) \cdot en = 0. The effort only consists of driving the

projections of \^\xi i(s) and \^\eta i(s) on e\bot n such that they match those of \^\xi (s  - ti,1)
and \^\eta (s - ti,1) at s = ti,2. We will see that it is not necessary to have ti,2 tend

to zero, because from the choice of ti,1, the distance between (\^\xi i(ti,1), \^\eta 
i(ti,1))

and (\^x, \^v) tends to 0 as i \rightarrow +\infty .

It is possible to choose the sequence ti,2 bounded from below by a positive

constant which depends on (x, v) but not on i such that \^\xi i(s) stays in B - (0, Rx)
for s \in [ti,1, ti,2]. Hence, (\xi i, \eta i) \in \Gamma [xi, vi].
Moreover, since ti,2 is bounded away from 0 and limi\rightarrow \infty 

\bigl( 
| \^yi  - \^x| + | \^wi  - \^v| 

\bigr) 
=

0, it is not difficult to check that limi\rightarrow \infty \| d\eta i

dt  - d\eta 
dt \| L2(0,T ) = 0; this achieves

the proof in subcase 3(a).
(b) x \in \partial \Omega , v \cdot n(x) = 0, vi \cdot \nabla d(xi) > 0 for all i (or for i large enough), and (2.10)

holds.
The trajectory \xi i is constructed as in (2.18)--(2.19), but a further restriction
on ti,1 is needed in order to guarantee that the trajectory is admissible. Using
(2.17), we see that the trajectory is admissible if

\^vi \cdot en
| \^xi \cdot en| 

\leq 1

s
+

2

ti,1
for all 0 \leq s \leq ti,1.

This happens if and only if

ti,1 \leq 3| \^xi \cdot en| 
\^vi \cdot en

=
3| d(xi)| 

vi \cdot \nabla d(xi)
,

which should be supplemented with the other two conditions as in subcase
3(a):

lim
i\rightarrow \infty 

ti,1 = 0,

lim
i\rightarrow \infty 

| d(xi)| 2

t3i,1
+

| vi \cdot \nabla d(xi)| 2

ti,1
= 0.
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If (2.10) holds, then it is possible to choose such a sequence ti,1. Then, as in
subcase 3(a), it is possible to choose the sequence ti,2 bounded from below by
a positive constant independent of i such that (\xi i, \eta i) \in \Gamma [xi, vi]; the last part
of the proof is identical to subcase 3(a).

Lemma 2.5. Consider (x, v) \in \Xi ad and a sequence (xi, vi)i\in \BbbN such that for all
i \in \BbbN , (xi, vi) \in \Xi ad and (xi, vi) \rightarrow (x, v) as i \rightarrow \infty . Suppose that Assumption 2.1
and one of the three conditions in Lemma 2.3 are satisfied. Let a sequence (\xi i, \eta i)i\in \BbbN 
be such that for all i \in \BbbN , (\xi i, \eta i) \in \Gamma opt[xi, vi]. If (\xi i, \eta i) tends to (\xi , \eta ) uniformly in
[0, T ], then \eta \in W 1,2(0, T ;\BbbR n) and (\xi , \eta ) \in \Gamma opt[x, v].

Proof. We need to prove that for any (\widetilde \xi , \widetilde \eta ) \in \Gamma [x, v] such that \widetilde \eta \in W 1,2(0, T ;\BbbR n),

(2.20) J(\xi , \eta , \eta \prime ) \leq J(\widetilde \xi , \widetilde \eta , \widetilde \eta \prime ).
From Lemma 2.3 applied to (\widetilde \xi , \widetilde \eta ), there exists a sequence (\widetilde \xi i, \widetilde \eta i)i\in \BbbN , with (\widetilde \xi i, \widetilde \eta i) \in 
\Gamma [xi, vi], such that (\widetilde \xi i, \widetilde \eta i) \rightarrow (\widetilde \xi , \widetilde \eta ) uniformly on [0, T ] as i \rightarrow \infty , and

lim
i\rightarrow \infty 

\int T

0

\bigm| \bigm| \bigm| \bigm| d\widetilde \eta idt
(s)

\bigm| \bigm| \bigm| \bigm| 2 ds = \int T

0

\bigm| \bigm| \bigm| \bigm| d\widetilde \eta dt (s)
\bigm| \bigm| \bigm| \bigm| 2 ds.

On the other hand, the optimality of (\xi i, \eta i) yields that

(2.21) J

\biggl( 
\xi i, \eta i,

d\eta i

dt

\biggr) 
\leq J

\biggl( \widetilde \xi i, \widetilde \eta i, d\widetilde \eta i
dt

\biggr) 
.

From the properties of (\widetilde \xi i, \widetilde \eta i), the right-hand side of (2.21) converges to J(\widetilde \xi , \widetilde \eta , d\widetilde \eta 
dt ).

The left-hand side of (2.21) is thus bounded. Combining this fact with the uniform

convergence of (\xi i, \eta i) to (\xi , \eta ) in [0, T ], we obtain that the sequence
\int T

0
| d\eta 

i

dt (s)| 
2ds is

bounded. This implies d\eta i

dt \rightharpoonup d\eta 
dt in L2(0, T ;\BbbR n) weakly and lim infi\rightarrow \infty 

\int T

0
| d\eta 

i

dt (s)| 
2ds \geq \int T

0
| d\eta dt (s)| 

2ds. We deduce that

J

\biggl( 
\xi , \eta ,

d\eta 

dt

\biggr) 
\leq lim inf

i\rightarrow \infty 
J

\biggl( 
\xi i, \eta i,

d\eta i

dt

\biggr) 
.

Combining the information obtained above, we obtain (2.20), which achieves the
proof.

Proof of Proposition 2.2. Consider (y, w) \in \Theta and a sequence (yi, wi)i\in \BbbN such
that for all i \in \BbbN , (yi, wi) \in \Theta and (yi, wi) \rightarrow (y, w) as i \rightarrow \infty . Consider a sequence
(\xi i, \eta i)i\in \BbbN such that for all i \in \BbbN , (\xi i, \eta i) \in \Gamma opt[yi, wi] and that (\xi i, \eta i) tends to
(\xi , \eta ) uniformly. Thanks to the assumption made in the statement of Proposition 2.2,
possibly after the extraction of a subsequence, we may suppose that one of the three
conditions in Lemma 2.3 holds. Then the conclusion follows from Lemma 2.5.

2.3. Bounds related to optimal trajectories.

Definition 2.6. For a positive number C, let us set

KC = \{ (x, v) \in \Xi : | v| \leq C\} ,(2.22)

\Gamma C =

\Biggl\{ 
(\xi , \eta ) \in \Gamma :

\bigm| \bigm| \bigm| \bigm| \bigm| (\xi (t), \eta (t)) \in KC \forall t \in [0, T ],\bigm\| \bigm\| \bigm\| d\eta 
dt

\bigm\| \bigm\| \bigm\| 
L2(0,T ;\BbbR n)

\leq C

\Biggr\} 
.(2.23)
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Proposition 2.7. Given r > 0, let us define

(2.24) \Theta r = \Theta \cap Kr,

where Kr is defined by (2.22) and \Theta is a closed subset of \Xi ad which satisfies the
assumption in Proposition 2.2.

Under Assumption 2.1, the value function u defined in (2.7) is continuous on \Theta r.
There exists a positive number C = C(r,M) such that if (x, v) \in \Theta r, then \Gamma opt[x, v] \subset 
\Gamma C .

Remark 2.7. The set of trajectories \Gamma C is a compact subset of \Gamma . In the context
of MFGs (see section 3), the existence of relaxed equilibria will be obtained by apply-
ing Kakutani's fixed point theorem to a multivalued map defined on a closed set of
probability measures on \Gamma C .

Proof. Take (x, v) \in \Theta r and a sequence (xi, vi)i\in \BbbN , (xi, vi) \in \Theta r, such that
limi\rightarrow \infty (xi, vi) = (x, v).

From Lemma 2.1 we know that u(x, v) is finite, and from Assumption 2.1 we
know that the infimum in (2.7) is achieved by a trajectory (\xi , \eta ) \in \Gamma opt[x, v].

Possibly after the extraction of a subsequence, we may assume that (xi, vi) sat-
isfies one of the three points in Lemma 2.3. Then, there exists a sequence (\xi i, \eta i)i\in \BbbN 
such that for all i \in \BbbN , (\xi i, \eta i) \in \Gamma [xi, vi], \eta i \in W 1,2(0, T ;\BbbR n), and (\xi i, \eta i) tends to
(\xi , \eta ) in W 2,2(0, T ;\BbbR n)\times W 1,2(0, T ;\BbbR n), and hence uniformly in [0, T ]. Hence,

lim
i\rightarrow \infty 

J

\biggl( 
\xi i, \eta i,

d\eta i

dt

\biggr) 
= u(x, v).

On the other hand,

J

\biggl( 
\xi i, \eta i,

d\eta i

dt

\biggr) 
\geq u(xi, vi).

The latter two observations yield that

lim sup
i\rightarrow \infty 

u(xi, vi) \leq u(x, v).

This proves that u is upper-semicontinuous on \Theta r. From Lemma 2.1, u is continuous
on \Theta r. Since \Theta r is a compact subset of \BbbR n \times \BbbR n, u is bounded on \Theta r.

Then from the definitions of J and u and the boundedness of u on \Theta r, it is
clear that there exists a constant C = C(r,M) such that \Gamma opt[x, v] \subset \Gamma C for any
(x, v) \in \Theta r.

3. A mean field game with control on the acceleration and state con-
straints.

3.1. Setting and notation. The bounded domain \Omega of \BbbR n and the sets \Xi and
\Xi ad have been introduced in section 2.1. Let \scrP (\Xi ) be the set of probability measures
on \Xi .

Let C0
b (\Xi ;\BbbR ) denote the space of bounded and continuous real-valued functions

defined on \Xi , and let F,G : \scrP (\Xi ) \rightarrow C0
b (\Xi ;\BbbR ) be bounded and continuous maps (the

continuity is with respect to the narrow convergence in \scrP (\Xi )). Let L be a real-valued,
continuous, and bounded from below function defined on \Xi \times [0, T ].
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Let F [m] and G[m] denote the images by F and G of m \in \scrP (\Xi ). Set
(3.1)

M = max

\Biggl( 
sup

(x,v,s)\in \Xi \times [0,T ]

L - (x, v, s) + sup
m\in \scrP (\Xi )

\| F [m]\| L\infty (\Xi ), sup
m\in \scrP (\Xi )

\| G[m]\| L\infty (\Xi )

\Biggr) 
.

Let \Gamma be the set of admissible trajectories given by (2.4). It is a metric space with
the distance d((\xi , \eta ), (\~\xi , \~\eta )) = \| \xi  - \~\xi \| C1([0,T ];\BbbR n). Let \scrP (\Gamma ) be the set of probability
measures on \Gamma .

For t \in [0, T ], the evaluation map et : \Gamma \rightarrow \Xi is defined by et(\xi , \eta ) = (\xi (t), \eta (t))
for all (\xi , \eta ) \in \Gamma .

For any \mu \in \scrP (\Gamma ), let the Borel probability measure m\mu (t) on \Xi be defined by
m\mu (t) = et\sharp \mu . It is possible to prove that if \mu \in \scrP (\Gamma ), then t \mapsto \rightarrow m\mu (t) is continuous
from [0, T ] to \scrP (\Xi ) for the narrow convergence in \scrP (\Xi ). Hence, for all (\xi , \eta ) \in \Gamma ,
t \mapsto \rightarrow F [m\mu (t)](\xi (t), \eta (t)) is continuous and bounded by the constant M in (3.1).

With \mu \in \scrP (\Gamma ), we associate the cost

(3.2) J\mu (\xi , \eta ) =

\left(   
\int T

0

\Biggl( 
F [m\mu (s)](\xi (s), \eta (s)) + L(\xi (s), \eta (s), s) +

1

2

\bigm| \bigm| \bigm| \bigm| d\eta dt (s)
\bigm| \bigm| \bigm| \bigm| 2
\Biggr) 
ds

+G[m\mu (T )](\xi (T ), \eta (T ))

\right)   .

Remark 3.1. It is clear from (3.1) that given \mu \in \scrP (\Gamma ), the running and terminal
costs \ell (y, w, s) = F [m\mu (s)](y, w) + L(y, w, s) and g(y, w) = G[m\mu (T )](y, w) satisfy
Assumption 2.1, and that the constant arising in (2.3) can be chosen uniformly with
respect to \mu \in \scrP (\Gamma ). Hence, for all \mu \in \scrP (\Gamma ), Propositions 2.2 and 2.7 hold for the
state constrained control problem related to J\mu , and the constants arising in these
propositions can be chosen uniformly with respect to \mu \in \scrP (\Gamma ).

Assumption 3.1. There exists a positive number r such that the initial distribu-
tion of states is a probability measure m0 on \Xi supported in \Theta r, where \Theta r is a closed
subset of \Xi ad as in (2.24).

Let C = C(r,M) be the constant appearing in Proposition 2.7 (uniform with
respect to \mu ) and \Gamma C be the compact subset of \Gamma defined by (2.23); clearly, \Gamma C is a
Radon metric space. From the Prokhorov theorem (see [6, Theorem 5.1.3]), the set
\scrP (\Gamma C) is compact for the narrow convergence of measures.

Let \scrP m0(\Gamma ) (resp., \scrP m0(\Gamma C)) denote the set of probability measures \mu on \Gamma (resp.,
\Gamma C) such that e0\sharp \mu = m0.

Hereafter, we identify \scrP (\Gamma C) with a subset of \scrP (\Gamma ) by extending \mu \in \scrP (\Gamma C) by
0 outside \Gamma C . Similarly, we may consider \scrP m0

(\Gamma C) as a subset of \scrP m0
(\Gamma ).

Note that for all \mu \in \scrP (\Gamma C) and for all t \in [0, T ], m\mu (t) is supported in KC ,
where KC is defined as in (2.22).

Remark 3.2. Note that \Gamma C (endowed with the metric of the C1\times C0-convergence

of (\xi , \eta )) is a Polish space (because it is compact). The multivalued map \widetilde \Gamma opt, related,
for instance, to F \equiv 0 and G \equiv 0, maps \Theta r to nonempty and closed subsets of \Gamma C (the
closedness can be checked by usual arguments of the calculus of variations). Since

the graph of \widetilde \Gamma opt is closed, \widetilde \Gamma opt is measurable. Therefore, there exists a measurable
selection j : \Theta r \rightarrow \Gamma C from the Kuratowski and Ryll-Nardzewski theorem [18]. Then
j\sharp m0 belongs to \scrP m0(\Gamma C). The set \scrP m0(\Gamma C) is not empty.
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3.2. Existence of a mean field game equilibrium.

Lemma 3.1. Let a sequence of probability measures (\mu i)i\in \BbbN , \mu i \in \scrP (\Gamma ), be nar-
rowly convergent to \mu \in \scrP (\Gamma ). For all t \in [0, T ], (m\mu i(t))i\in \BbbN is narrowly convergent
to m\mu (t).

Proof. For all f \in C0
b (\Xi ;\BbbR ),\int 

\Xi 

f(x, v)dm\mu i(t)(x, v) =

\int 
\Gamma 

f(\xi (t), \eta (t))d\mu i(\xi , \eta ) \rightarrow 
\int 
\Gamma 

f(\xi (t), \eta (t))d\mu (\xi , \eta )

=

\int 
\Xi 

f(x, v)dm\mu (t)(x, v).

An easy consequence of Lemma 3.1 is that for C = C(r,M) as in Proposition 2.7,
\scrP m0

(\Gamma C) is a closed subset of \scrP (\Gamma C) and is therefore compact.

Lemma 3.2. If \mu \in \scrP (\Gamma C), the map t \mapsto \rightarrow m\mu (t) is 1/2-H\"older continuous from
[0, T ] to \scrP (KC) (KC is defined in (2.22) and \scrP (KC) is endowed with the Kantorovitch--
Rubinstein distance).

Proof. Let \phi be any Lipschitz function defined on KC with a Lipschitz constant
not larger than 1. \int 

KC

\phi (x, v) (dm\mu (t2)(x, v) - dm\mu (t1)(x, v))

=

\int 
\Gamma C

(\phi (\xi (t2), \eta (t2)) - \phi (\xi (t1), \eta (t1))) d\mu (\xi , \eta )

\leq 
\int 
\Gamma C

(| \xi (t2) - \xi (t1)| + | \eta (t2) - \eta (t1)| ) d\mu (\xi , \eta )

\leq C

\int 
\Gamma C

\Bigl( 
| t2  - t1| + | t2  - t1| 

1
2

\Bigr) 
d\mu (\xi , \eta )

\leq \~C | t2  - t1| 
1
2

for a constant \~C which depends only on C and T .

It is useful to recall the disintegration theorem.

Theorem 3.3. Let X and Y be Radon metric spaces, \pi : X \rightarrow Y be a Borel
map, and \mu be a probability measure on X. Set \nu = \pi \sharp \mu . There exists a \nu -almost
everywhere uniquely defined Borel measurable family of probability measures (\mu y)y\in Y

on X such that

\mu y(X \setminus \pi  - 1(y)) = 0 for \nu -almost all y \in Y,

and for every Borel function f : X \rightarrow [0,+\infty ],\int 
X

f(x)d\mu (x) =

\int 
Y

\biggl( \int 
X

f(x)d\mu y(x)

\biggr) 
d\nu (y) =

\int 
Y

\Biggl( \int 
\pi  - 1(y)

f(x)d\mu y(x)

\Biggr) 
d\nu (y).

Recall that (\mu y)y\in Y is a Borel family of probability measures if for any Borel subset
B of X, Y \ni y \mapsto \rightarrow \mu y(B) is a Borel function from Y to [0, 1].

It is possible to apply Theorem 3.3 with X = \Gamma C , Y = \Theta r, \pi = e0, and \nu = m0

(identifying m0 and its restriction to \Theta r): for any \mu \in \scrP m0
(\Gamma C), there exists an m0-

almost everywhere uniquely defined Borel measurable family of probability measures
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(\mu (x,v))(x,v)\in \Theta r
on \Gamma C such that

(3.3) \mu (x,v)(\Gamma C \setminus e - 1
0 (x, v)) = 0 for m0-almost all (x, v) \in \Theta r,

and for every Borel function f : \Gamma C \rightarrow [0,+\infty ],\int 
\Gamma C

f(\xi , \eta )d\mu (\xi , \eta ) =

\int 
\Theta r

\biggl( \int 
\Gamma C

f(\xi , \eta )d\mu (x,v)(\xi , \eta )

\biggr) 
dm0(x, v)

=

\int 
\Theta r

\Biggl( \int 
e - 1
0 (x,v)

f(\xi , \eta )d\mu (x,v)(\xi , \eta )

\Biggr) 
dm0(x, v).

(3.4)

For (x, v) \in \Theta r, m0 supported in \Theta r, and \mu \in \scrP m0
(\Gamma C) (where C = C(r,M) is

the constant appearing in Proposition 2.7), let us set

\Gamma \mu ,opt[x, v] =

\Biggl\{ 
(\xi , \eta ) \in \Gamma [x, v] : J\mu (\xi , \eta ) = min

(\widetilde \xi ,\widetilde \eta )\in \Gamma [x,v]
J\mu (\widetilde \xi , \widetilde \eta )\Biggr\} ,

where J\mu is defined as in (3.2). Standard arguments from the calculus of variations
yield that for each \mu \in \scrP m0

(\Gamma C) and (x, v) \in \Xi ad, \Gamma \mu ,opt[x, v] is not empty. Moreover,
from Proposition 2.7, \Gamma \mu ,opt[x, v] \subset \Gamma C for all (x, v) \in \Theta r.

Proposition 3.4. Under the assumptions made on L, F , and G in section 3.1,
and under Assumption 3.1, let C = C(r,M) be chosen as in Proposition 2.7.

Let a sequence of probability measures (\mu i)i\in \BbbN , \mu i \in \scrP m0
(\Gamma C), be narrowly conver-

gent to \mu \in \scrP (\Gamma C). Let (xi, vi)i\in \BbbN be a sequence with (xi, vi) \in \Theta r which converges to
(x, v). Consider a sequence (\xi i, \eta i)i\in \BbbN such that for all i \in \BbbN , (\xi i, \eta i) \in \Gamma \mu i,opt[xi, vi].
If (\xi i, \eta i)i\in \BbbN tends to (\xi , \eta ) uniformly, then (\xi , \eta ) \in \Gamma \mu ,opt[x, v]. In other words, the
multivalued map (x, v, \mu ) \mapsto \rightarrow \Gamma \mu ,opt[x, v] has closed graph.

Proof. First, from Lemma 3.1, \mu \in \scrP m0
(\Gamma C) and for all t \in [0, T ], (m\mu i(t))i\in \BbbN is

narrowly convergent to m\mu (t). From the continuity assumptions made on F and G
and the dominated convergence theorem, we deduce that\int T

0

F [m\mu i(t)](\xi i(t), \eta i(t))dt \rightarrow 
\int T

0

F [m\mu (t)](\xi (t), \eta (t))dt,

G[m\mu i(T )](\xi i(T ), \eta i(T )) \rightarrow G[m\mu (T )](\xi (T ), \eta (T )).

The last part of the proof is completely similar to the proof of Proposition 2.2. It
makes use of Assumption 2.1 and Lemma 3.2.

Definition 3.5. The probability measure \mu \in \scrP m0
(\Gamma ) is a constrained MFG equi-

librium associated with the initial distribution m0 if

(3.5) supp(\mu ) \subset 
\bigcup 

(x,v)\in supp(m0)

\Gamma \mu ,opt[x, v].

Theorem 3.6. Under the assumptions made on L, F , and G at the beginning of
section 3.1 and Assumption 3.1, let C = C(r,M) be chosen as in Proposition 2.7.
There exists a constrained MFG equilibrium \mu \in \scrP m0

(\Gamma C); see Definition 3.5. More-
over, t \mapsto \rightarrow et\sharp \mu \in C1/2([0, T ];\scrP (KC)) (KC is defined as in (2.22) and \scrP (KC) is
endowed with the Kantorovitch--Rubinstein distance).
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Proof. The proof follows that of Cannarsa and Capuani in [11]. Define the mul-
tivalued map E from \scrP m0

(\Gamma C) to \scrP m0
(\Gamma C) as follows: for any \mu \in \scrP m0

(\Gamma C),

E(\mu ) =
\bigl\{ 
\^\mu \in \scrP m0

(\Gamma C) : supp(\^\mu (x,v)) \subset \Gamma \mu ,opt[x, v] for m0-almost all (x, v) \in \Xi 
\bigr\} 
,

where (\^\mu (x,v))(x,v)\in \Xi is the m0-almost everywhere uniquely defined Borel measurable
family of probability measures which disintegrates \^\mu ; see the lines after Theorem 3.3.
Then the measure \mu \in \scrP m0(\Gamma C) is a constrained MFG equilibrium if and only if
\mu \in E(\mu ). This leads us to apply the Kakutani fixed point theorem to the multivalued
map E; see [5, 17]. Several steps are needed in order to check that the assumptions
of the Kakutani theorem are satisfied. First, we recall that \scrP m0

(\Gamma C) is compact.
Step 1. For any \mu \in \scrP m0

(\Gamma C), E(\mu ) is a nonempty convex set.
First, we have already seen that \Gamma \mu ,opt[x, v] \not = \emptyset and that the map (x, v) \mapsto \rightarrow 
\Gamma \mu ,opt[x, v] has closed graph. Therefore, from [7], (x, v) \mapsto \rightarrow \Gamma \mu ,opt[x, v] has a Borel
measurable selection (x, v) \mapsto \rightarrow (\xi \mu (x,v), \eta 

\mu 
(x,v)). The measure \^\mu defined by

\^\mu (B) =

\int 
\Theta r

\delta (\xi \mu 
(x,v)

,\eta \mu 
(x,v)

)(B)dm0(x, v) for all Borel subsets B of \Gamma C

belongs to E(\mu ); indeed, the total mass of \^\mu is one because m0 is supported in \Theta r

and C = C(r,M) as in Proposition 2.7 so E(\mu ) is nonempty.
Second, take \mu 1, \mu 2 in E(\mu ) and \lambda \in [0, 1]. We wish to prove that \lambda \mu 1+(1 - \lambda )\mu 2 \in 
E(\mu ). It is clear that \lambda \mu 1+(1 - \lambda )\mu 2 belongs to \scrP m0

(\Gamma C). On the other hand, since
\mu 1 belongs to E(\mu ), there exist an m0-almost everywhere uniquely defined Borel
measurable family (\^\mu 1

(x,v))(x,v)\in \Theta r
of probability measures which disintegrates \mu 1

and a subset A1 of \Theta r such that m0(A
1) = 0 and supp(\mu 1

(x,v)) \subset \Gamma \mu ,opt[x, v] for all

(x, v) \in \Theta r \setminus A1. Similarly, \mu 2 can be disintegrated into an m0-almost everywhere
uniquely defined Borel measurable family (\^\mu 2

(x,v))(x,v)\in \Theta r
of probability measures,

and there exists a subset A2 of \Theta r such that m0(A
2) = 0 and supp(\mu 2

(x,v)) \subset 
\Gamma \mu ,opt[x, v] for all (x, v) \in \Theta r \setminus A2. Therefore, \lambda \mu 1+(1 - \lambda )\mu 2 can be disintegrated
as follows: for any Borel function f defined on \Gamma C ,\int 

\Gamma C

f(\xi , \eta )d
\bigl( 
\lambda \mu 1 + (1 - \lambda 

\bigr) 
\mu 2)(\xi , \eta )

=

\int 
\Theta r

\biggl( \int 
\Gamma C

f(\xi , \eta )d
\Bigl( 
\lambda \mu 1

(x,v) + (1 - \lambda )\mu 2
(x,v)

\Bigr) 
(\xi , \eta )

\biggr) 
dm0(x, v),

supp
\Bigl( 
\lambda \mu 1

(x,v) + (1 - \lambda )\mu 2
(x,v)

\Bigr) 
\subset \Gamma \mu ,opt[x, v] \forall (x, v) \in \Theta r \setminus (A1 \cup A2),

and m0(A
1 \cup A2) = 0. Hence, \lambda \mu 1 + (1 - \lambda )\mu 2 \in E(\mu ), so E(\mu ) is convex.

Step 2. The multivalued map E has closed graph.
Consider a sequence (\mu i)i\in \BbbN , \mu 

i \in \scrP m0(\Gamma C), narrowly convergent to \mu \in \scrP m0(\Gamma C).
Let a sequence (\^\mu i)i\in \BbbN , \^\mu 

i \in E(\mu i), be narrowly convergent to \^\mu \in \scrP m0(\Gamma C). We
claim that \^\mu \in E(\mu ).
First, there exists an m0-almost everywhere uniquely defined Borel measurable
family of probability measures (\^\mu (x,v))(x,v) on \Gamma C such that (3.3) and (3.4) hold
for \^\mu and \^\mu (x,v). In particular, there exists a subset A of \Theta r with m0(A) = 0 such

that for (x, v) \in \Theta r \setminus A, \^\mu (x,v)(\Gamma C \setminus e - 1
0 (x, v)) = 0.

Take (x, v) \in \Theta r \setminus A and (\^\xi , \^\eta ) \in supp(\^\mu (x,v)).
The Kuratowski convergence theorem applied to (\^\mu i)i, \^\mu (see [10]) implies that

there exists a sequence (\^\xi i, \^\eta i)i\in \BbbN , (\^\xi 
i, \^\eta i) \in supp(\^\mu i), which converges to (\^\xi , \^\eta )
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STATE CONSTRAINED MFG ON THE ACCELERATION 3775

uniformly in [0, T ]. Set (xi, vi) = (\^\xi i(0), \^\eta i(0)) \in \Theta r. Since \^\mu i \in E(\mu i), it holds

that (\^\xi i, \^\eta i) \in \Gamma \mu i,opt[xi, vi]. From Proposition 3.4, we see that (\^\xi , \^\eta ) \in \Gamma \mu ,opt[x, v].
Since (x, v) is any point in \Theta r \setminus A, this implies that \^\mu \in E(\mu ).

All the assumptions of the Kakutani theorem are satisfied; hence, there exists \mu \in 
\scrP m0

(\Gamma C) such that \mu \in E(\mu ). This achieves the proof.

Definition 3.7. A pair (u,m), where u is a measurable function defined on \Xi \times 
[0, T ] and m \in C0([0, T ];\scrP (\Xi )), is called a mild solution of the MFG if there exists a
constrained MFG equilibrium \mu for m0 (see Definition 3.5) such that

(i) m(t) = et\sharp \mu ;
(ii) \forall (x, v) \in \Xi ad, u(x, v, t) is given by

u(x, v, t)

= inf
(\xi ,\eta ,\alpha )\in \Gamma [x,v,t]

\left(   
\int T

t

\biggl( 
F [m(s)](\xi (s), \eta (s)) + L(\xi (s), \eta (s), s) +

1

2
| \alpha (s)| 2

\biggr) 
ds

+G[m(T )](\xi (T ), \eta (T ))

\right)   
where \Gamma [x, v, t] is the set of admissible trajectories starting from (x, v) at s = t.

Remark 3.3. It is tempting to say that a mild solution (u,m) is a very weak
solution of a boundary value problem related to a system of PDEs posed in \Omega \times [0, T ],
of the form (1.1) with H(x, v, pv) as in (1.2). However, to do so, we should also write
boundary conditions on \partial \Omega \times (0, T ), which is tricky because u blows up on some part
of the boundary.

A corollary of Theorem 3.6 is as follows.

Corollary 3.8. Under the assumptions of Theorem 3.6, there exists a mild so-
lution (u,m). Moreover, m \in C

1
2 ([0, T ];\scrP (KC)).

Remark 3.4. Under classical monotonicity assumptions for F and G (see, e.g.,
[11]), the mild solution is unique.

3.3. Nonquadratic running costs. It is possible to generalize the results of
sections 2 and 3 to costs of the form

(3.6) J(\xi , \eta , \alpha ) =

\int T

0

\biggl( 
\ell (\xi (s), \eta (s), s) +

1

p
| \alpha | p(s)

\biggr) 
ds+ g(\xi (T ), \eta (T )),

where 1 < p for dynamics given by (2.1) and staying in \Xi .
For brevity, we restrict ourselves to the closed graph result, whose proof is com-

pletely similar to that of Proposition 2.2. The generalization of Theorem 3.6 is then
possible.

Proposition 3.9. Consider a closed subset \Theta of \Xi ad. Assume that for any se-
quence (xi, vi)i\in \BbbN such that for all i \in \BbbN , (xi, vi) \in \Theta and limi\rightarrow +\infty (xi, vi) = (x, v) \in 
\Theta , the following holds: if x \in \partial \Omega , then

((vi \cdot \nabla d(xi))+)
2p - 1 = o

\Bigl( \bigm| \bigm| d(xi)
\bigm| \bigm| p - 1

\Bigr) 
;

then the graph of the multivalued map \Gamma opt : \Theta \rightrightarrows \Gamma , (x, v) \mapsto \rightarrow \Gamma opt[x, v] is closed in
the sense given in Proposition 2.2.

3.4. The case when \Omega is a convex polygonal region of \BbbR \bftwo . Let \Omega be a
bounded and convex domain of \BbbR 2 with a polygonal boundary \partial \Omega . For x \in \Omega , the
tangent cone to \Omega at x is defined by

T\Omega (x) =
\bigl\{ 
v \in \BbbR 2 : x+ tv \in \Omega , for t > 0 small enough

\bigr\} 
.
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Note that T\Omega (x) = \BbbR 2 if x \in \Omega . A vector v \in \BbbR 2 points outward \Omega at x \in \partial \Omega if
v /\in T\Omega (x).

Let (\nu i)0\leq i<N be the vertices of \partial \Omega , labeled in such a way that \partial \Omega =
\bigcup N - 1

i=0 \gamma i,
where \gamma i = [\nu i, \nu i+1] and \nu N = \nu 0. We may assume that three successive vertices
are not aligned. We are going to use the notation (\nu i, \nu i+1) for the open straight line
segment between \nu i and \nu i+1. For i \in \{ 0, . . . , N  - 1\} , let ni be the unitary normal
vector to \gamma i pointing outward \Omega . It is easy to see that T\Omega (\nu i) = \{ x \in \BbbR 2 : ni \cdot x \leq 
0 and ni - 1 \cdot x \leq 0\} , setting n - 1 = nN - 1. Since \Omega is convex, \Omega coincides locally near
\nu i with \nu i + T\Omega (\nu i).

The optimal control problem is set exactly as in section 2: it consists of minimizing
J(\xi , \eta , \eta \prime ) given by (2.2) on the dynamics given by (2.1) and staying in \Xi = \Omega \times \BbbR 2.
We set \Xi ad = \{ (x, v) : x \in \Omega , v \in T\Omega (x)\} .

For brevity, we focus hereafter on the closed graph properties of \Gamma opt and refer
the reader to the extended version of the present paper (see the preprint [4]) for the
analysis of relaxed mean field equilibria.

3.4.1. Closed graph properties. The closed graph result given in Proposition
3.10 below is similar to that contained in Proposition 2.2, but special conditions are
needed near the vertices of \partial \Omega .

Proposition 3.10. Consider a closed subset \Theta of \Xi ad. Assume that for any
sequence (xi, vi)i\in \BbbN such that for all i \in \BbbN , (xi, vi) \in \Theta and limi\rightarrow +\infty (xi, vi) =
(x, v) \in \Theta , the following hold:
1. If x \in (\nu j , \nu j+1) for some j \in \{ 0, . . . , N - 1\} (recall that \nu N = \nu 0), then (vi \cdot nj)

3
+ =

o((x - xi) \cdot nj);
2. if x = \nu j for some j \in \{ 0, . . . , N  - 1\} and v \not = 0, then (vi \cdot nk)

3
+ = o((x - xi) \cdot nk)

for k = j  - 1, j, recalling that n - 1 = nN - 1;
3. if x = \nu j for some j \in \{ 0, . . . , N  - 1\} and v = 0, then (vi \cdot nk)+(| x - xi| 23 + | vi| 2) =

o((x - xi) \cdot nk) for k = j  - 1, j.
Then the graph of the multivalued map \Gamma opt : \Theta \rightrightarrows \Gamma , (x, v) \mapsto \rightarrow \Gamma opt[x, v] is closed in
the sense given in Proposition 2.2.

Proof. For brevity, we skip the proof, which is given in the extended version
of the present paper (see [4]); it essentially consists of proving the counterpart of
Lemma 2.3.

4. One-dimensional problems: Refined results. In dimension one and for
a running cost quadratic in \alpha , it is possible to obtain refined results under a slightly
stronger assumption on the running cost, namely that it does not favor the trajectories
which exit the domain. In particular, the closed graph property can be proved to hold
on the whole set \Xi ad, and concerning MFGs, no assumptions are needed on the support
of m0 by contrast with Theorem 3.6.

4.1. Optimal control problem in an interval: A closed graph property.
In this section, we set \Omega = ( - 1, 0) and \Xi = [ - 1, 0]\times \BbbR . The optimal control problem
consists of minimizing J(\xi , \eta , \eta \prime ) given by (2.2) on the dynamics given by (2.1) and
staying in \Xi .

The definition of \Xi ad then becomes

\Xi ad = \Xi \setminus 
\Bigl( 
\{ 0\} \times (0,+\infty ) \cup \{  - 1\} \times ( - \infty , 0)

\Bigr) 
.

We make the following assumptions.
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Assumption 4.1. The running cost \ell : \Xi \times [0, T ] \rightarrow \BbbR is a continuous function,
bounded from below. The terminal cost g : \Xi \rightarrow \BbbR is also assumed to be continuous
and bounded from below. Set M = \| g - \| L\infty (\Xi ) + \| \ell  - \| L\infty (\Xi \times [0,T ]).

Assumption 4.2. For all t \in [0, T ] and v > 0,

\ell (0, v, t) \geq \ell (0, 0, t) and \ell ( - 1, - v, t) \geq \ell ( - 1, 0, t).

An interpretation of Assumption 4.2 is that the running cost \ell penalizes (or at
least does not favor) the trajectories that exit \Xi ad. In that respect, Assumption 4.2
is rather natural.

For (x, v) \in \Xi , let \Gamma , \Gamma [x, v], and \Gamma opt[x, v] be defined as follows:

\Gamma =

\biggl\{ 
(\xi , \eta ) \in C1([0, T ];\BbbR )\times AC([0, T ];\BbbR ) :

\bigm| \bigm| \bigm| \bigm| \xi \prime (s) = \eta (s) \forall s \in [0, T ],
(\xi (s), \eta (s)) \in \Xi \forall s \in [0, T ]

\biggr\} 
,

\Gamma [x, v] = \{ (\xi , \eta ) \in \Gamma : \xi (0) = x, \eta (0) = v\} ,
\Gamma opt[x, v] = argmin(\xi ,\eta )\in \Gamma [x,v]J(\xi , \eta , \eta 

\prime ).

Theorem 4.1. Under Assumptions 4.1 and 4.2, the graph of the multivalued map
\Gamma opt : \Xi ad \rightrightarrows \Gamma , (x, v) \mapsto \rightarrow \Gamma opt[x, v], is closed in the following sense: consider a
sequence (xi, vi)i\in \BbbN , (x

i, vi) \in \Xi ad, such that limi\rightarrow \infty (xi, vi) = (x, v) \in \Xi ad. Consider
a sequence (\xi i, \eta i)i\in \BbbN such that for all i \in \BbbN , (\xi i, \eta i) \in \Gamma opt[xi, vi]. If (\xi i, \eta i) tends to
(\xi , \eta ) uniformly, then (\xi , \eta ) \in \Gamma opt[x, v].

Remark 4.1. Note that, by contrast with Proposition 2.2, Theorem 4.1 holds for
\Gamma opt and not only its restriction to a subset \Theta of \Xi ad satisfying suitable conditions.
Hence, Theorem 4.1 is more general. On the other hand, it requires an additional
assumption, namely Assumption 4.2.

Note also that the result stated in Theorem 4.1, namely the closed graph property
of the multivalued map \Gamma opt, is obtained despite the fact that the value function of the
optimal control problem is not continuous and not locally bounded on \Xi ad. This may
seem surprising at first glance. Besides, the fact that the value function is singular at
some points of \Xi ad will be an important difficulty in the proofs.

The proof of Theorem 4.1 relies on several lemmas.

Lemma 4.2. Consider (x, v) \in \Xi ad, (\xi , \eta ) \in \Gamma [x, v] such that \eta \in W 1,2(0, T ;\BbbR )
and a sequence (xi, vi)i\in \BbbN such that for all i \in \BbbN , (xi, vi) \in \Xi ad and (xi, vi) \rightarrow (x, v)
as i \rightarrow \infty .

If one of the following assumptions is satisfied,
1. x \in \Omega ,
2. x = 0, v \leq 0, and for all integer i, vi \leq 0,

3. (x, v) = (0, 0), vi > 0 for all integer i, and limi\rightarrow \infty 
(vi)3

| xi| = 0,

4. x =  - 1, v \geq 0, and for all integer i, vi \geq 0,

5. (x, v) = ( - 1, 0), vi < 0 for all integer i, and limi\rightarrow \infty 
| vi| 3
| xi+1| = 0,

then there exists a sequence (\xi i, \eta i)i\in \BbbN such that for all i \in \BbbN , (\xi i, \eta i) \in \Gamma [xi, vi],
\eta i \in W 1,2(0, T ;\BbbR ), and (\xi i, \eta i) tends to (\xi , \eta ) in W 2,2(0, T ;\BbbR ) \times W 1,2(0, T ;\BbbR ), and
hence uniformly in [0, T ].

Proof. Lemma 4.2 is the counterpart of Lemma 2.3. The proof is quite similar,
so we skip it for brevity.
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Corollary 4.3. Consider (x, v) \in \Xi ad and a sequence (xi, vi)i\in \BbbN such that for
all i \in \BbbN , (xi, vi) \in \Xi ad and (xi, vi) \rightarrow (x, v) as i \rightarrow \infty . Suppose that Assumption 4.1
and one of the five conditions in Lemma 4.2 are satisfied. Let a sequence (\xi i, \eta i)i\in \BbbN 
be such that for all i \in \BbbN , (\xi i, \eta i) \in \Gamma opt[xi, vi]. If (\xi i, \eta i) tends to (\xi , \eta ) uniformly in
[0, T ], then \eta \in W 1,2(0, T ;\BbbR ) and (\xi , \eta ) \in \Gamma opt[x, v].

Proof. Corollary 4.3 is the counterpart of Lemma 2.5. The proof is identical.

Consider (x, v) \in \Xi ad and a sequence (xi, vi)i\in \BbbN such that for all i \in \BbbN , (xi, vi) \in 
\Xi ad and (xi, vi) \rightarrow (x, v) as i \rightarrow \infty . Because it is always possible to extract subse-
quences, we can say that the only cases that have not yet been addressed in Lemma
4.2 are the following:

(4.1)

\Biggl\{ 
(x, v) = (0, 0), vi > 0,

and there exists a constant C > 0 s.t. for all i \in \BbbN , (vi)3

| xi| \geq C,

or

(4.2)

\Biggl\{ 
(x, v) = ( - 1, 0), vi < 0,

and there exists a constant C > 0 s.t. for all i \in \BbbN , | vi| 3
| xi+1| \geq C.

Since the two cases are symmetrical, we may concentrate on (4.1).
It is clear that (4.1) implies that | xi| /vi \rightarrow 0 as i \rightarrow +\infty because vi \rightarrow 0. In

the case when (4.1) is satisfied, we need two technical lemmas which provide a lower

bound for the cost
\int T

0
| d\eta 

i

dt (s)| 
2ds of the admissible trajectories starting at (xi, vi).

Lemma 4.4. Consider (x, v) \in \Xi ad such that x < 0, v > 0, 3| x| /v < T , and
\theta \in (0, T ). Given a real number w \in [0, | x| /T ], set

(4.3) K\theta ,w =

\left\{       \eta \in W 1,2(0, \theta ;\BbbR ) :

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\eta (0) = v, \eta (\theta ) = w,
\eta (s) \geq w \forall s \in [0, \theta ],

x+

\int \theta 

0

\eta (s)ds \leq 0

\right\}       .

The quantity

(4.4) I(\theta , w) = inf
\eta \in K\theta ,w

1

2

\int \theta 

0

\bigm| \bigm| \bigm| \bigm| d\eta dt (s)
\bigm| \bigm| \bigm| \bigm| 2 ds

is achieved by a function \eta = \eta \theta ,w and is given by
(4.5)

I(\theta , w) =

\left\{             

1

2

(w  - v)2

\theta 
if \theta \in 

\Bigl[ 
0, 2| x| 

v+w

\Bigr] 
,

6
x2

\theta 3
+ 6

x(v + w)

\theta 2
+ 2

v2 + vw + w2

\theta 
if \theta \in 

\Bigl[ 
2| x| 
v+w , 3| x| 

v+2w

\Bigr] 
,

2

9

(v  - w)3

| x|  - w\theta 
if \theta \in 

\Bigl[ 
3| x| 

v+2w , T
\Bigr) 
.

Remark 4.2. The partition of the interval [0, T ] in (4.5) is justified by the as-
sumptions of Lemma 4.4. Indeed,

\bullet 3| x| /v < T and w \geq 0 imply that 3| x| /(v + 2w) < T ;
\bullet 2| x| /(v + w) < 3| x| /(v + 2w) because 0 \leq w \leq | x| /T < v/3.

Note also that if | x| /v \rightarrow 0, then 3| x| /(v + 2w) \sim 3| x| /v \ll T .
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Proof. Problem (4.4) is the minimization of a strictly convex and continuous
functional under linear and continuous constraints, and the set K\theta ,w is nonempty, as
we shall see below, convex, and closed. Hence there exists a unique minimizer, named
\eta again. The Euler--Lagrange necessary conditions read as follows: there exists a real
number \mu \geq 0 such that \eta is a weak solution of the linear complementarity problem
(variational inequality)

(4.6)

\left\{                                 

 - \eta \prime \prime \geq  - \mu in (0, \theta ),
\eta \geq w in (0, \theta ),

( - \eta \prime \prime + \mu )(\eta  - w) = 0 in (0, \theta ),

x+

\int \theta 

0

\eta (s)ds \leq 0,

\mu \geq 0,

\mu 

\Biggl( 
x+

\int \theta 

0

\eta (s)ds

\Biggr) 
= 0,

\eta (0) = v,
\eta (\theta ) = w.

The solution of (4.6) can be written explicitly. Skipping the details, it has the following
form:
1. If \theta \geq 3| x| /(v + 2w), then\Biggl\{ 

\eta (t) = v  - \mu \tau t+
\mu 

2
t2, 0 \leq t \leq \tau ,

\eta (t) = w, \tau < t \leq \theta ,

with

\tau =  - 3
x+ w\theta 

v  - w
and \mu =

2(v  - w)3

9(x+ w\theta )2
.

Note that  - 3x+w\theta 
v - w \leq \theta because \theta \geq 3| x| 

v+2w . Note also that x +
\int \theta 

0
\eta (s)ds = 0. We

see that I(\theta , w) = \mu 2

2

\int \tau 

0
( - \tau + t)2dt = \mu 2\tau 3

6 = 2
9
(v - w)3

| x|  - w\theta ; we have obtained the third

line in (4.5).
2. If 2| x| /(v + w) \leq \theta \leq 3| x| /(v + 2w), then for all t \in [0, \theta ],

\eta (t) = v + kt+
\mu 

2
t2,

with

k =  - 6x+ (4v + 2w)\theta 

\theta 2
, and \mu = 6

2x+ (v + w)\theta 

\theta 3
.

Note that x +
\int \theta 

0
\eta (s)ds = 0. Easy algebra leads to I(\theta , w) = 6x2

\theta 3 + 6x(v+w)
\theta 2 +

2 v2+vw+w2

\theta ; we have obtained the second line in (4.5).
3. If \theta \leq 2| x| /(v + w), then for all t \in [0, \theta ],

\eta (t) = v  - (v  - w)
t

\theta 
.

Then, I(\theta , w) = 1
2
(w - v)2

\theta ; we have obtained the first line in (4.5). Note that if

\theta < 2| x| 
v+w , then x+

\int \theta 

0
\eta (s)ds < 0.
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Lemma 4.5. Consider a sequence (xi, vi)i\in \BbbN such that xi < 0, vi > 0 for all
i \in \BbbN , and vi \rightarrow 0, | xi| /vi \rightarrow 0 as i \rightarrow +\infty . Call Ii(\theta , w) the quantity given by (4.4)
for v = vi, x = xi, and w \in 

\bigl[ 
0, | xi| /T

\bigr] 
. Then

(4.7) inf
\bigl\{ 
Ii(\theta , w), \theta \in (0, T )

\bigr\} 
=

2

9

(vi)3

| xi| 
+ o(1),

where o(1) is a quantity that tends to 0 as i tends to infinity (which is in fact of the
order of (vi)2 or smaller).

Proof. Recall that Ii(\theta , w) is given by (4.5). It is easy to see that \theta \mapsto \rightarrow Ii(\theta , w) is
decreasing on

\bigl( 
0, 2| xi| /(vi + w)

\bigr] 
and increasing on

\bigl[ 
3| xi| /(vi + 2w), T

\bigr] 
.

In
\bigl[ 
2| xi| /(vi + w), 3| xi| /(vi + 2w)

\bigr] 
, Ii(\theta , w) = P (1/\theta ), where P is the third order

polynomial

P (z) = 6(xi)2z3 + 6xi(vi + w)z2 + 2((vi)2 + viw + w2)z.

The roots of the second order polynomial P \prime (z) = 18(xi)2z2+12xi(vi+w)z+2((vi)2+

viw + w2) are vi+w\pm 
\surd 
viw

3| xi| . Hence, \theta \mapsto \rightarrow Ii(\theta , w) is decreasing in [ 2| x
i| 

vi+w , 3| xi| 
vi+w+

\surd 
viw

]

and increasing in [ 3| xi| 
vi+w+

\surd 
viw

, 3| xi| 
vi+2w ]. Therefore, the minimizer of \theta \mapsto \rightarrow Ii(\theta , w) on

[0, T ) is \theta = 3| xi| 
vi+w+

\surd 
viw

, and the minimal value is

P

\Biggl( 
vi + w +

\surd 
viw

3| xi| 

\Biggr) 

=
2(vi)3

9| xi| 

\biggl( 
1 +

\sqrt{} 
w

vi
+

w

vi

\biggr) 3

 - 2(vi)3

3| xi| 

\biggl( 
1 +

\sqrt{} 
w

vi
+

w

vi

\biggr) 2

+
2(vi)3

3| xi| 

\biggl( 
1 +

\sqrt{} 
w

vi
+

w

vi

\biggr) 
+O

\biggl( 
(vi)2

w

| xi| 

\biggr) 
=

2(vi)3

9| xi| 
+O

\biggl( 
(vi)2

w

| xi| 

\biggr) 
.

The next lemma is the counterpart of Lemma 4.2 when (4.1) holds. By contrast
with the situations considered so far, Assumption 4.2 is used.

Lemma 4.6. Under Assumptions 4.1 and 4.2, consider a sequence (xi, vi)i\in \BbbN 
tending to (x, v) = (0, 0) as i \rightarrow \infty , and which satisfies (4.1). Let a sequence
(\xi i, \eta i)i\in \BbbN be such that for all i \in \BbbN , (\xi i, \eta i) \in \Gamma opt[xi, vi]. If (\xi i, \eta i) tends to (\xi , \eta )
uniformly in [0, T ], then \eta \in W 1,2(0, T ;\BbbR ) and (\xi , \eta ) \in \Gamma opt[x, v].

Proof. The proof is more difficult than that of Lemma 4.2 because we will see
that in general, the sequence u(xi, vi) does not converge to u(0, 0) as i \rightarrow \infty , and

that
\int T

0
(d\eta 

i

dt (s))
2ds may tend to +\infty .

Step 1. We start by building a particular competitor for the optimal control
problem at (xi, vi). It will be used in Steps 2 and 3 below. Let us set \widetilde ti = 3| xi| /vi
(observe that limi\rightarrow \infty \widetilde ti = 0 since vi \rightarrow 0 and (vi)3/| xi| \geq C > 0). As in the proof

of Lemma 4.4 with w = 0, we construct a pair of continuous functions (\widetilde \xi i, \widetilde \eta i) defined
on [0,\widetilde ti] such that  - 1 \leq \widetilde \xi i \leq 0 and d\widetilde \xi i

dt = \widetilde \eta i, and
1. (\widetilde \xi i(0), \widetilde \eta i(0)) = (xi, vi);
2. \widetilde \eta i(\widetilde ti) = 0;
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3. 1
2

\int \widetilde ti
0

\Bigl( 
d\widetilde \eta i

dt (s)
\Bigr) 2

ds \sim 2
9
(vi)3

| xi| 

(we have also used Lemma 4.5 with w = 0 and Remark 4.2). Observe that xi \leq \widetilde \xi i(\widetilde ti) \leq 0; hence limi\rightarrow +\infty \widetilde \xi i(\widetilde ti) = 0. Then, with the same arguments as in Lemma 2.3,

it is possible to extend continuously (\widetilde \xi i, \widetilde \eta i) to [0, T ] in such a way that

1. (\widetilde \xi i, \widetilde \eta i) \in \Gamma [xi, vi];

2. limi\rightarrow \infty 
\int T\widetilde ti | d\widetilde \eta i

dt (s)  - \alpha (s  - \widetilde ti)| 2ds = 0, where \alpha is an optimal control law for tra-

jectories with initial values (0, 0).
Combining all the information above, we obtain that

(4.8) J

\biggl( \widetilde \xi i, \widetilde \eta i, d\widetilde \eta i
dt

\biggr) 
=

2

9

(vi)3

| xi| 
+ u(0, 0) + o(1).

Step 2. Since (\xi i, \eta i) \in \Gamma opt[xi, vi], we know that for all t \in [0, T ], \xi i(t) = xi +\int t

0
\eta i(s)ds \leq 0. We claim that there exists ti \in (0, T ] such that \eta i(ti) \leq  - xi/T .

Indeed, if this were not the case, then \xi i(T ) would be larger than xi  - T (xi/T ) = 0,
which is not true. Since \eta i is continuous, we may define \theta i as the minimal time t such
that \eta i(t) \leq  - xi/T , and we see that \eta i(\theta i) =  - xi/T .

Step 2 consists of proving that

(4.9) lim
i\rightarrow \infty 

\theta i = 0.

Suppose by contradiction that there exists \delta > 0 such that \theta i \geq \delta . We may apply
Lemma 4.4 with w = | xi| /T . Since vi \rightarrow 0 and (vi)3/| xi| \geq C > 0, we see that

| xi| /vi \rightarrow 0, and then that limi\rightarrow \infty 
3| xi| 

vi+2| xi| /T = 0. Hence, for i large enough, \theta i \geq 

\delta > 3| xi| 
vi+2| xi| /T , and the third line of (4.5) yields

(4.10)
1

2

\int T

0

\biggl( 
d\eta i

dt
(s)

\biggr) 2

ds \geq 2T

9(T  - \delta )

(x
i

T + vi)3

| xi| 
=

2T

9(T  - \delta )

(vi)3

| xi| 
+ o(1),

where o(1) is a quantity that tends to zero as i \rightarrow \infty (in fact like (vi)2).
Note that \eta i \geq  - xi/T \geq 0 in [0, \theta i] yields that \xi 

i \geq xi in [0, \theta i]. Therefore,

(4.11) lim
i\rightarrow \infty 

\| \xi i\| L\infty (0,\theta i) = 0.

Let us construct an admissible trajectory (\widehat \xi i, \widehat \eta i) starting from (x, v) = (0, 0) as fol-
lows:
1. For s \in [0, \theta i], \widehat \xi i(s) = Q\theta i,0,0,\xi i(\theta i),\eta i(\theta i)(s) and \widehat \eta i(s) = Q\prime 

\theta i,0,0,\xi i(\theta i),\eta i(\theta i)
(s); see

Definition 2.4;
2. (\widehat \xi i(s), \widehat \eta i(s)) = (\xi i(s), \eta i(s)) for s \in [\theta i, T ].
It is easy to check that, if s \leq \theta i, then

\widehat \xi i(s) = \bigl( \theta i\eta i(\theta i) - 2\xi i(\theta i)
\bigr) s3
\theta 3i

 - 
\bigl( 
\theta i\eta 

i(\theta i) - 3\xi i(\theta i)
\bigr) s2
\theta 2i

,(4.12)

\widehat \eta i(s) = 3
\bigl( 
\theta i\eta 

i(\theta i) - 2\xi i(\theta i)
\bigr) s2
\theta 3i

 - 2
\bigl( 
\theta i\eta 

i(\theta i) - 3\xi i(\theta i)
\bigr) s

\theta 2i
,(4.13)

d\widehat \eta i
dt

(s) = 6
\bigl( 
\theta i\eta 

i(\theta i) - 2\xi i(\theta i)
\bigr) s

\theta 3i
 - 2

\bigl( 
\theta i\eta 

i(\theta i) - 3\xi i(\theta i)
\bigr) 1

\theta 2i
.(4.14)
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Since \eta i(\theta i) =  - xi/T > 0 and \xi i(\theta i) \leq 0, we see that
\bigl( 
\theta i\eta 

i(\theta i) - 2\xi i(\theta i)
\bigr) 
\geq 0 and

that
\bigl( 
\theta i\eta 

i(\theta i) - 3\xi i(\theta i)
\bigr) 
\geq 0. Hence for s \in [0, \theta i],

\widehat \xi i(s) = \bigl( \theta i\eta i(\theta i) - 2\xi i(\theta i)
\bigr) \biggl( s3

\theta 3i
 - s2

\theta 2i

\biggr) 
+ \xi i(\theta i)

s2

\theta 2i
\leq 0

as the sum of two nonpositive terms. Therefore, (\widehat \xi i, \widehat \eta i) \in \Gamma [0, 0]. On the other hand,
using (4.11) and the fact that \theta i\eta 

i(\theta i) = \theta i| xi| /T , (4.12), and (4.13), we see that

(4.15) lim
i\rightarrow +\infty 

\Bigl( 
\| \widehat \xi i\| L\infty (0,\theta i) + \| \widehat \eta i)\| L\infty (0,\theta i)

\Bigr) 
= 0.

Moreover, since \theta i \geq \delta > 0, it is easy to check that

(4.16) lim
i\rightarrow +\infty 

\int \theta i

0

\biggl( 
d\widehat \eta i
dt

(s)

\biggr) 2

ds = 0.

Since (\widehat \xi i, \widehat \eta i) \in \Gamma [0, 0],

u(0, 0) \leq J(\widehat \xi i, \widehat \eta i, 0)
=

\int T

0

\Biggl( 
\ell (\widehat \xi i(s), \widehat \eta i(s), s) + 1

2

\biggl( 
d\widehat \eta i
dt

(s)

\biggr) 2
\Biggr) 
ds+ g(\widehat \xi i(T ), \widehat \eta i(T ))

=

\int \theta i

0

\Biggl( 
\ell (\widehat \xi i(s), \widehat \eta i(s), s) + 1

2

\biggl( 
d\widehat \eta i
dt

(s)

\biggr) 2
\Biggr) 
ds

+

\int T

\theta i

\Biggl( 
\ell (\xi i(s), \eta i(s), s) +

1

2

\biggl( 
d\eta i

dt
(s)

\biggr) 2
\Biggr) 
ds+ g(\xi i(T ), \eta i(T ))

= u(xi, vi) +

\int \theta i

0

\Biggl( 
\ell (\widehat \xi i(s), \widehat \eta i(s), s) + 1

2

\biggl( 
d\widehat \eta i
dt

(s)

\biggr) 2
\Biggr) 
ds

 - 
\int \theta i

0

\Biggl( 
\ell (\xi i(s), \eta i(s), s) +

1

2

\biggl( 
d\eta i

dt
(s)

\biggr) 2
\Biggr) 
ds.

Therefore,
(4.17)

u(xi, vi) \geq u(0, 0) +
1

2

\int \theta i

0

\biggl( 
d\eta i

dt
(s)

\biggr) 2

ds

+

\int \theta i

0

\Bigl( 
\ell (\xi i(s), \eta i(s), s) - \ell (\widehat \xi i(s), \widehat \eta i(s), s)\Bigr) ds - 1

2

\int \theta i

0

\biggl( 
d\widehat \eta i
dt

(s)

\biggr) 2

ds.

Let us address the terms in the right-hand side of (4.17) separately.
Thanks to the continuity of \ell , (4.11), (4.15), and Assumption 4.2, we see that

(4.18)
lim inf
i\rightarrow \infty 

\int \theta i

0

\Bigl( 
\ell (\xi i(s), \eta i(s), s) - \ell (\widehat \xi i(s), \widehat \eta i(s), s)\Bigr) ds

= lim inf
i\rightarrow \infty 

\int \theta i

0

\bigl( 
\ell (0, \eta i(s), s) - \ell (0, 0, s)

\bigr) 
ds \geq 0.

Combining (4.18), (4.16), and (4.10), we obtain that

(4.19) u(xi, vi) \geq 2T

9(T  - \delta )

(vi)3

| xi| 
+ u(0, 0) + o(1),
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where o(1) is a quantity that tends to 0 as i \rightarrow \infty .

But for (\widetilde \xi i, \widetilde \eta i) constructed in Step 1, J(\widetilde \xi i, \widetilde \eta i, d\widetilde \eta i

dt ) \geq u(xi, vi). This fact and
(4.8) lead to a contradiction with (4.19). We have proved (4.9).

Step 3. Since limi\rightarrow \infty \theta i = 0 and (\xi i, \eta i) converges uniformly to (\xi , \eta ), we see that\int \theta i

0

\ell (\xi i(s), \eta i(s), s)ds = o(1).

Hence

u(xi, vi) =
1

2

\int \theta i

0

\biggl( 
d\eta i

dt
(s)

\biggr) 2

ds

+

\int T

\theta i

\ell (\xi i(s), \eta i(s), s)ds+
1

2

\int T

\theta i

\biggl( 
d\eta i

dt
(s)

\biggr) 2

ds+ g(\xi i(T ), \eta i(T )) + o(1).

(4.20)

On the other hand, we have seen above that (4.8) implies that

(4.21) u(xi, vi) \leq 2

9

(vi)3

| xi| 
+ u(0, 0) + o(1).

From Lemma 4.5, we know that

(4.22)
1

2

\int \theta i

0

\biggl( 
d\eta i

dt
(s)

\biggr) 2

ds \geq 2

9

(vi)3

| xi| 
 - o(1).

Combining (4.20), (4.21), and (4.22) yields that

\int T

\theta i

\ell (\xi i(s), \eta i(s), s)ds+
1

2

\int T

\theta i

\biggl( 
d\eta i

dt
(s)

\biggr) 2

ds+ g(\xi i(T ), \eta i(T )) \leq u(0, 0) + o(1).

(4.23)

Since (\xi i, \eta i) converges uniformly to (\xi , \eta ), (4.23) implies that (1(\theta i,T )
d\eta i

dt )i\in \BbbN is a
bounded sequence in L2(0, T ). Hence there exists \phi \in L2(0, T ) such that, after

the extraction of subsequence, 1(\theta i,T )
d\eta i

dt \rightharpoonup \phi in L2(0, T ) weakly. By testing with

compactly supported functions in (0, T ), it is clear that \phi = d\eta 
dt . Hence, the whole

sequence (1(\theta i,T )
d\eta i

dt )i\in \BbbN converges in L2(0, T ) weakly to d\eta 
dt \in L2(0, T ). Moreover,

the weak convergence in L2(0, T ) implies that\int T

0

\biggl( 
d\eta 

dt
(s)

\biggr) 2

ds \leq lim inf
i\rightarrow +\infty 

\int T

0

\biggl( 
1(\theta i,T )

d\eta i

dt
(s)

\biggr) 2

ds.

This and (4.23) imply that\int T

0

\ell (\xi (s), \eta (s), s)ds+
1

2

\int T

0

\biggl( 
d\eta 

dt
(s)

\biggr) 2

ds+ g(\xi (T ), \eta (T )) \leq u(0, 0).

Hence, (\xi , \eta ) \in \Gamma opt[0, 0], and the above inequality is in fact an identity. The proof is
achieved.
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Proof of Theorem 4.1. Consider (x, v) \in \Xi ad and a sequence (xi, vi)i\in \BbbN such that
for all i \in \BbbN , (xi, vi) \in \Xi ad and (xi, vi) \rightarrow (x, v) as i \rightarrow \infty . Consider a sequence
(\xi i, \eta i)i\in \BbbN such that for all i \in \BbbN , (\xi i, \eta i) \in \Gamma opt[xi, vi] and that (\xi i, \eta i) tends to (\xi , \eta )
uniformly. Possibly after the extraction of a subsequence, we can always assume that
either one of the five conditions in Lemma 4.2 or one of the two symmetrical conditions
(4.1)--(4.2) holds. Then the conclusion follows from Corollary 4.3 in the former case
or from Lemma 4.6 in the latter case.

Remark 4.3. For costs of the form (3.6) with 1 < p \not = 2, it is not possible to
reproduce the explicit calculations of Lemmas 4.4 and 4.5, which are crucial steps for
Lemma 4.6 and finally for Theorem 4.1.

4.2. Bounds related to optimal trajectories.

Proposition 4.7. For positive numbers r and C, let us set

\Theta r =
\bigl\{ 
(x, v) \in \Xi :  - r(x+ 1) \leq v3 \leq r| x| 

\bigr\} 
,(4.24)

KC = \{ (x, v) \in \Xi : | v| \leq C\} ,(4.25)

\Gamma C =

\Biggl\{ 
(\xi , \eta ) \in \Gamma :

\bigm| \bigm| \bigm| \bigm| \bigm| (\xi (t), \eta (t)) \in KC \forall t \in [0, T ],\bigm\| \bigm\| \bigm\| d\eta 
dt

\bigm\| \bigm\| \bigm\| 
L2(0,T ;\BbbR )

\leq C

\Biggr\} 
.(4.26)

Under Assumption 4.1, for all r > 0, there exists a positive number C = C(r,M)
(M is defined in Assumption 4.1) such that if (x, v) \in \Theta r, then \Gamma opt[x, v] \subset \Gamma C .
Moreover, as r \rightarrow +\infty , C(r,M) = O(

\surd 
r).

Proof. A possible proof consists of building a suitable map j from \Theta r to \Gamma . We
distinguish different cases:
Case 1: 0 \leq v \leq  - 3x/T . Let j(x, v) = (\widetilde \xi , \widetilde \eta ) \in \Gamma [x, v] be defined by\Biggl\{ \widetilde \eta (t) = v

\bigl( 
1 - 3t

2T

\bigr) 
and \widetilde \xi (t) = x+ v

\Bigl( 
t - 3t2

4T

\Bigr) 
if 0 \leq t \leq 2T

3 ,\widetilde \eta (t) = 0 and \widetilde \xi (t) = x+ vT
3 if 2T

3 \leq t \leq T.

It is easy to check that there exists a constant \widetilde C = \widetilde C(r,M) such that

(4.27) \| \widetilde \eta \| L\infty (0,T ;\BbbR ) \leq \widetilde C;

\bigm\| \bigm\| \bigm\| \bigm\| d\widetilde \eta dt
\bigm\| \bigm\| \bigm\| \bigm\| 
L2(0,T ;\BbbR )

\leq \widetilde C.

Case 2:  - 3x/T < v \leq (r| x| ) 1
3 . In this case, we choose j(x, v) = (\widetilde \xi , \widetilde \eta ) \in \Gamma [x, v] where\widetilde \xi \prime = \widetilde \eta and \widetilde \eta is the solution of the linear complementarity problem (4.6) with \theta = T

and w = 0. Here again (\widetilde \xi , \widetilde \eta ) satisfies (4.27) for some constant \widetilde C = \widetilde C(r,M). From

Lemma 4.4, we see that as r \rightarrow +\infty , \widetilde C = O(
\surd 
r).

Case 3:  - 3(1 + x)/T \leq v \leq 0. The situation is symmetric to Case 1, and j(x, v) is
given by the same formula.

Case 4:  - r
1
3 (x+ 1)

1
3 \leq v <  - 3(1 + x)/T . The situation is symmetric to Case 2, and

j(x, v) is constructed in the symmetric way as in Case 2.
Then, using j(x, v) as a competitor for the optimal control problem leads to the
desired result with a constant C that depends only on r and M and that can always
be taken larger than \widetilde C.

Note that j is piecewise continuous from \Theta r to \Gamma . Note also that the construction
of j is independent of \ell and g.
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Remark 4.4. Note that the sets \Theta r form an increasing family of compact subsets
of \Xi ad and that

(4.28)
\bigcup 
r\geq 0

\Theta r = \Xi ad.

4.3. Mean field games with state constraints. In the example considered
here, we take \Xi = [ - 1, 0]\times \BbbR . Let \scrP (\Xi ) be the set of probability measures on \Xi .

Let F,G : \scrP (\Xi ) \rightarrow C0
b (\Xi ;\BbbR ) be bounded and continuous maps (the continuity is

with respect to the narrow convergence in \scrP (\Xi )) and L be a continuous and bounded
from below function defined on \Xi \times [0, T ]. Set

M = max

\Biggl( 
sup

(x,v,t)\in \Xi \times [0,T ]

L - (x, v, t) + sup
m\in \scrP (\Xi )

\| F [m]\| L\infty (\Xi ), sup
m\in \scrP (\Xi )

\| G[m]\| L\infty (\Xi )

\Biggr) 
.

Assumption 4.3. We assume that for all t \in [0, T ], m \in \scrP (\Xi ), and v \geq 0,
L(0, v, t) + F [m](0, v) \geq L(0, 0, t) + F [m](0, 0) and L( - 1, - v, t) + F [m]( - 1, - v) \geq 
L( - 1, 0, t) + F [m]( - 1, 0).

Using notation similar to that in section 3.1, we consider the cost given by (3.2).
With M in (3.1), note that Proposition 4.7 can be applied to J\mu defined in (3.2) with
constants C(r,M) uniform in \mu .

Lemma 4.8. Let r be a positive number. Under the assumptions made above on
L, F , and G (including Assumption 4.3), let C = C(r,M) be the constant appearing
in Proposition 4.7. For any probability measure m0 on \Xi supported in \Theta r defined in
(4.24), there exists a constrained MFG equilibrium associated with the initial distri-
bution m0, i.e., a probability measure \mu \in \scrP m0

(\Gamma C) such that (3.5) holds.

Proof. The proof is similar to that of Theorem 3.6. We skip it.

Remark 4.5. In Lemma 4.8, we still suppose that the support of m0 is contained
in some compact set, namely \Theta r; this assumption is used to obtain an estimate on
the cost and guarantees that the optimal trajectories with initial conditions in the
support of m0 belong to a compact subset of \Gamma , which allows us to use Kakutani's
fixed point theorem. However, compared to Theorem 3.6, the restrictions made in
Lemma 4.8 on the support of m0 are weaker; yet, the latter requires the additional
Assumption 4.3 on the running cost.

In Theorem 4.9 below, we get rid of the assumptions on the support of m0 made
in Lemma 4.8; we just require that m0(\Xi \setminus \Xi ad) = 0. By contrast with Lemma 4.8,
the strategy for proving Theorem 4.9 will not rely directly on Kakutani's theorem; it
will consist of approximating the measure m0 by a sequence of probability measures
(m0,n)n>0, such that m0,n is supported in \Theta n. Hence, it will be possible to apply
Lemma 4.8 and obtain a sequence of relaxed mean field equilibrium \mu n related to
m0,n, which will be proved to be tight in \scrP (\Gamma ). The relaxed mean field equilibrium
\mu related to m0 will then be obtained as a cluster point of the sequence \mu n for the
narrow convergence in \scrP (\Gamma ). The assumption on m0 will imply that \mu \in \scrP m0

(\Gamma ).
The fact that supp(\mu ) \subset 

\bigcup 
(x,v)\in supp(m0)

\Gamma \mu ,opt[x, v] will be obtained by applying a
key argument which is a modification of Lemma 4.6.

Theorem 4.9. Let m0 be a probability measure on \Xi such that

(4.29) m0(\Xi \setminus \Xi ad) = 0.
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Under the assumptions made above on L, F , and G (including Assumption 4.3), there
exists a constrained MFG equilibrium associated with the initial distribution m0, i.e.,
a probability measure \mu \in \scrP m0

(\Gamma ) such that (3.5) holds.

Proof. From (4.28) and (4.29), there exists n0 > 0 such that m0(\Theta n) > 0 for
n > n0. For n > n0, we set m0,n = 1

m0(\Theta n)
m0| \Theta n

. With a slight abuse of notation, let

m0,n also denote the probability on \Xi obtained by extending m0,n by 0 outside \Theta n,
i.e., m0,n(B) = 1

m0(\Theta n)
m0(B\cap \Theta n), for any measurable subset B of \Xi . It is clear that

m0,n converges narrowly to m0, from (4.28) and (4.29). Let \mu n \in \scrP m0,n

\bigl( 
\Gamma C(n,M)

\bigr) 
be a constrained MFG equilibrium associated with the initial distribution m0,n, the
existence of which comes from Lemma 4.8. With a similar abuse of notation as above,
let \mu n also denote the probability on \Gamma obtained by extending \mu n by 0 outside \Gamma C(n,M).

We claim that \{ \mu n, n > n0\} is tight in \scrP (\Gamma ), i.e., that for each \epsilon > 0, there exists
a compact K\epsilon \subset \Gamma such that

(4.30) \mu n(\Gamma \setminus K\epsilon ) < \epsilon for each n > n0.

From the increasing character of the sequence \Theta n, (4.28), and (4.29), we observe that
for each \epsilon > 0, there exists n1 > 0 such that m0(\Theta n1

) > 1  - \epsilon . Let us prove (4.30)
with K\epsilon = \Gamma C(n1,M).

Since for all n > n0, \mu n \in \scrP m0,n
(\Gamma ) is an MFG equilibrium, we see that for all

measurable B \subset \Xi ,

m0,n(B) = \mu n \{ (\xi , \eta ) \in supp(\mu n) : (\xi (0), \eta (0)) \in B\} \leq \mu n

\left(  \bigcup 
(x,v)\in B

\Gamma opt,\mu n [x, v]

\right)  .

Taking B = \Theta n1 and using Proposition 4.7, we see that

m0,n (\Theta n1) \leq \mu n

\left(  \bigcup 
(x,v)\in \Theta n1

\Gamma opt,\mu n [x, v]

\right)  \leq \mu n

\bigl( 
\Gamma C(n1,M)

\bigr) 
(note that the constant C(n1,M) does not depend on \mu n).

On the other hand,

m0,n (\Theta n1
) \geq m0(\Theta n1

) > 1 - \epsilon if n > n1,
m0,n (\Theta n1) = 1 if n0 < n \leq n1.

In both cases, \mu n

\bigl( 
\Gamma C(n1,M)

\bigr) 
\geq 1  - \epsilon and therefore \mu n

\bigl( 
\Gamma \setminus \Gamma C(n1,M)

\bigr) 
\leq \epsilon , and the

claim is proved.

Thanks to the Prokhorov theorem, possibly after the extraction of subsequence
that we still name \mu n, we deduce that there exists \mu \in \scrP (\Gamma ) such that \mu n converges
narrowly to \mu .

We claim that \mu is an MFG equilibrium related to m0. We already know that
\mu \in \scrP (\Gamma ). There remains to prove that

\bullet \mu \in \scrP m0
(\Gamma ), i.e., that e0\sharp \mu = m0;

\bullet \mu satisfies (3.5).
The fact that e0\sharp \mu = m0 stems from Lemma 3.1 and from the fact that m0,n

narrowly converges to m0.
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In order to prove (3.5), we recall that from Kuratowski's theorem (see [6]),

supp(\mu ) \subset lim inf
n\rightarrow \infty 

supp(\mu n),

which means that for all (\xi , \eta ) \in supp(\mu ), there exists a sequence (\xi n, \eta n) \in supp(\mu n),
such that (\xi n, \eta n) \rightarrow (\xi , \eta ) uniformly. From Definition 3.5, (\xi n(0), \eta n(0)) \in supp(m0,n)
\subset supp(m0). Hence, (\xi (0), \eta (0)) \in supp(m0). We also know that (\xi (0), \eta (0)) \in 
\Xi ad because (\xi , \eta ) \in \Gamma . Therefore, setting (xn, vn) = (\xi n(0), \eta n(0)) and (x, v) =
(\xi (0), \eta (0)), we see that (\xi n, \eta n) \in \Gamma opt,\mu n [xn, vn] and that limn\rightarrow \infty (xn, vn) = (x, v) \in 
supp(m0)\cap \Xi ad. Applying Proposition 4.10 below, which is a generalization of Theo-
rem 4.1, we may pass to the limit and conclude that (\xi , \eta ) \in \Gamma opt,\mu [x, v]; this achieves
the proof.

Proposition 4.10. Under the assumptions made above on L, F , and G (includ-
ing Assumption 4.3), consider a sequence (\mu i)i\in \BbbN , \mu 

i \in \scrP (\Gamma ), such that \mu i converges
narrowly to \mu \in \scrP (\Gamma ). Consider a sequence (\xi i, \eta i)i\in \BbbN , (\xi 

i, \eta i) \in \Gamma , such that

1. (\xi i, \eta i) \in \Gamma opt,\mu i

[xi, vi], where (xi, vi) = (\xi i(0), \eta i(0));
2. (\xi i, \eta i) tends to (\xi , \eta ) \in \Gamma uniformly. Note that this implies that (x, v) \in \Xi ad and

(\xi , \eta ) \in \Gamma [x, v], where (x, v) = limi\rightarrow \infty (xi, vi).
Then (\xi , \eta ) \in \Gamma opt,\mu [x, v].

Proof. We skip the proof because it follows the same lines as that of Theorem 4.1
(see section 4.1). In particular, it includes an adaptation of Lemma 4.6. The necessary
modifications are obvious.

Remark 4.6. Finally, note that all the results contained in section 4 can be gen-
eralized in a straightforward manner to the case when \Omega is a half-space (for example
\Omega = \{ x \in \BbbR n : x1 < 0\} ) or a strip (for example \Omega = \{ x \in \BbbR n :  - 1 < x1 < 0\} ).

Acknowledgment. We would like to thank P. Cardaliaguet for an enlightening
discussion concerning the argument in section 4.3.
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