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Abstract 1 

Our interactions with the visual world are guided by attention and visual working memory. 2 

Things that we look for and those we ignore are stored as templates that reflect our goals and the 3 

tasks at hand. The nature of such templates has been widely debated. A recent proposal is that 4 

these templates can be thought of as probabilistic representations of task-relevant features. 5 

Crucially, such probabilistic templates should accurately reflect feature probabilities in the 6 

environment. Here we ask whether observers can quickly form a correct internal model of a 7 

complex (bimodal) distribution of distractor features. We assessed observers’ representations by 8 

measuring the slowing of visual search when target features unexpectedly match a distractor 9 

template. Distractor stimuli were heterogeneous, randomly drawn on each trial from a bimodal 10 

probability distribution. Using two targets on each trial, we tested whether observers encode the 11 

full distribution, only one peak of it, or the average of the two peaks. Search was slower when 12 

the two targets corresponded to the two modes of a previous distractor distribution than when 13 

one target was at one of the modes and another between them or outside the distribution range. 14 

Furthermore, targets on the modes were reported later than targets between the modes that, in 15 

turn, were reported later than targets outside this range. This shows that observers use a correct 16 

internal model, representing both distribution modes using templates based on the full 17 

probability distribution rather than just one peak or simple summary statistics. The findings 18 

further confirm that performance in odd-one out search with repeated distractors cannot be 19 

described by a simple decision rule. Our findings indicate that probabilistic visual working 20 

memory templates guiding attention, dynamically adapt to task requirements, accurately 21 

reflecting the probabilistic nature of the input. 22 

Keywords: attentional templates, visual working memory, probabilistic representations, visual 23 
ensembles, summary statistics, visual search. 24 

  25 
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Probabilistic rejection templates in visual working memory 26 

Our senses are constantly bombarded with an overwhelming amount of information that needs to 27 

be filtered by the brain to guide action. This information, however, is not completely chaotic. For 28 

example, leaves on a tree usually have similar colors, and colors within a single leaf would be 29 

more similar to each other than to another leaf. Probabilistic models of vision (Bejjanki, Beck, 30 

Lu, & Pouget, 2011; Feldman, 2014; Girshick, Landy, & Simoncelli, 2011; Kersten, Mamassian, 31 

& Yuille, 2004; Ma, 2012; Rao, Olshausen, & Lewicki, 2002) suggest that the brain utilizes 32 

existing correlations in the environment and uses them in perception. However, some of the 33 

incoming information is not relevant for current behavior, and it is important to reject it while 34 

processing other stimuli in more detail. Traditionally, the rejection of irrelevant information 35 

within a specific feature dimension (e.g., orientation) is thought to be based on specific feature 36 

values (Woodman, Carlisle, & Reinhart, 2013). Here we ask whether such rejection can instead 37 

be based on probabilistic templates and whether such templates accurately reflect the 38 

probabilities of distractor features. If this is the case, then probabilistic inference in the brain 39 

does not start with perception, but sooner, when to-be-rejected templates are formed (based on 40 

previously encountered stimuli) to optimize the prioritization of what is perceived.  41 

Imagine a radiologist looking for signs of tumor in x-ray scans. Malignant signs can take 42 

many forms so the targets to look for are diverse. By many accounts, search in this and other 43 

contexts is thought to be guided by templates held in visual working memory (Woodman et al., 44 

2013). These templates reflect what one should look for, but may also reflect what should be 45 

ignored (Arita, Carlisle, & Woodman, 2012; Won & Geng, 2018). For example, distractors such 46 

as the rib cage on a lung scan are salient but not informative and radiologists can therefore ignore 47 

them. It is well known that information about to-be-ignored stimuli or features is kept in 48 

memory, but the way they are represented is still unknown.  49 

There are capacity limits in the amount of information that can be stored in visual 50 

working memory templates (Bundesen, 1990; Grubert & Eimer, 2013; Vickery, King, & Jiang, 51 

2005), with some authors even suggesting that only one template containing a single feature 52 

value can guide attention at any given time (Oberauer, 2002; Olivers, Peters, Houtkamp, & 53 

Roelfsema, 2011; van Moorselaar, Theeuwes, & Olivers, 2014). Alternatively, templates could 54 

be conceptualized as probabilistic entities of varying precision (Bays, 2015) rather than matches 55 

to exact feature values. While previous studies found some support for this, observers typically 56 
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reported features of single items (Ma, Husain, & Bays, 2014). However, in the real world such 57 

isolated features practically never occur. Furthermore, with a few exceptions (Arita et al., 2012; 58 

Won & Geng, 2018), templates for ignored information are rarely studied. For any inference 59 

based on the probabilistic representations, it is crucial that the internal model used by observers 60 

accurately reflects the environment. Here, we provide strong evidence for the probabilistic 61 

template view by showing that visual working memory templates for rejection mirror the 62 

probability distribution of distractor features. 63 

Our observers searched for two oddly oriented targets among distractors randomly drawn 64 

from a bimodal orientation distribution. To expose observers’ templates, after a sequence of 65 

learning trials with distractors randomly drawn from a bimodal distribution, targets on test trials 66 

could either correspond to regions of feature space previously used for distractors, fall in 67 

between the modes of the bimodal distribution, or have feature values outside the previous 68 

distribution range. We assume that observers’ templates reflect what has been relevant on recent 69 

trials. If templates contain features of distractors to be ignored, which then become targets on test 70 

trials, search should be slower than otherwise (Chetverikov, Campana, & Kristjánsson, 2016; 71 

Kristjánsson & Driver, 2008; Lamy, Antebi, Aviani, & Carmel, 2008; Maljkovic & Nakayama, 72 

1994; Wang, Kristjánsson, & Nakayama, 2005). Crucially, experiments with varied set size and 73 

trial numbers show that learning in this paradigm cannot be explained by the sampling of a few 74 

items (Chetverikov, Campana, & Kristjánsson, 2017d, 2017b). It also cannot be explained by 75 

simple decision rule learning (e.g., all stimuli that have features in a certain range are 76 

distractors), because observers response times, on average, reflect the shape of the distractor 77 

distribution rather than just a boundary between a target and distractors (Chetverikov et al., 2016, 78 

2017b; Chetverikov, Campana, & Kristjánsson, 2017c; Chetverikov, Hansmann-Roth, Tanrikulu, 79 

& Kristjansson, 2019). However, it is not yet clear whether each single set of learning trials can 80 

feed observers’ templates with the feature probability distribution of distractors, nor is it clear 81 

how accurately the information is stored in the templates.   82 

Under the strong probabilistic template hypothesis, templates would include information 83 

about both peaks of a bimodal distribution. That is, observers would develop an accurate internal 84 

model for the task and the template would accurately reflect the information about the full 85 

probability distribution. Alternatively, templates might include only a single peak (e.g., the 86 

attended one), or might reflect only the summary statistics, such as the averages of the whole 87 



PROBABILISTIC REJECTION TEMPLATES 5 

 

distribution (Alvarez, 2011). Using a two-target search task we were able to test whether 88 

observers encode both peaks of a distribution following a single learning sequence. The 89 

predictions of these models (see Simulations) are qualitatively different regarding both the order 90 

in which targets are reported in a two-target search, and search times. If observers accurately 91 

encode a bimodal distribution, on trials with a target on a peak and target between peaks, targets 92 

between the peaks (associated with a lower distractor probability) should be reported before 93 

targets on peaks (associated with the highest distractor probability, Figure 1A). In contrast, if 94 

only one peak is encoded or if the whole distribution is averaged, targets on peaks would be 95 

associated with a lower distractor probability and should be reported no later than targets 96 

between the peaks (associated with lower distractor probability in this case). Notably, while all 97 

three hypotheses postulate that observers can use probabilistic inference, only the first one 98 

assumes that the distractor probability distribution is encoded accurately, that is, that the 99 

observers use relatively accurate probabilistic templates. 100 

 101 
Figure 1. Panel A: The same physical bimodal distribution can be represented in different ways. Panel B: 102 
Example learning and test trials with distractor distributions and targets shown on the left. 103 

104 
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Experiment 105 

Ethics Statement. The study was approved by the ethics committee of St. Petersburg 106 

State University (#75, 21.06.2017). All participants signed a consent form before taking part in 107 

the study. 108 

Participants. Fifteen observers (ten female, age M = 25.67) at St. Petersburg State 109 

University, Russia,  participated voluntarily in a single experimental session lasting 110 

approximately 30 min. The data from two observers were excluded because their response times 111 

on test trials were too slow (M = 1464 and M = 1871 ms), compared with other observers (M = 112 

1064 ms). Following our previous studies (Chetverikov et al., 2016, 2017b, 2017c, 2017d), the 113 

design of this study utilized within-subject comparisons with a relatively small number of trained 114 

observers (each observer was trained for at least 100 trials before the main session) performing a 115 

large number of trials. The sample size and the trial numbers were similar to those in previous 116 

studies using the same paradigm.  117 

Method. We used a task similar to our previous studies (Chetverikov et al., 2016, 118 

2017b). Stimuli were presented on an Acer V193 display (19” with 1280 ´ 1024 pixel resolution) 119 

using PsychoPy 1.84.2 (Peirce, 2007, 2009). Viewing distance was ~ 60 cm. Observers searched 120 

for two oddly oriented lines in a 6×6 grid of 36 lines subtending 16°×16° at the centre of a 121 

display. The length of each line was 1.41°. Line positions were jittered by randomly adding a 122 

value between ±0.5° to both vertical and horizontal coordinates.  123 

Observers were instructed to search for two targets on each trial, with targets being the 124 

stimuli that were most different from all the others (“odd-one-out” search (Maljkovic & 125 

Nakayama, 1994)). Targets were randomly distributed between the four quadrants of the search 126 

display with the constraint that the two targets on a given trial could not appear in the same 127 

quadrant. Observers reported the locations of the targets by pressing one of four keys (‘f’, ‘g’, 128 

‘r’, ‘t’ on a standard keyboard) corresponding to the quadrants of the search display. They were 129 

informed that two targets would be presented on each trial and were encouraged to respond to 130 

each target as soon as they found it and not wait until both targets were found. 131 

Trials were organized in intertwined prime and test ‘streaks’. During prime streaks, 132 

distractors were randomly drawn from a bimodal distribution that included two uniform parts 133 

with orientations ranging from -30 to -20 and +20 to +30 relative to the overall mean. The 134 
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distribution mean was the same within streak but chosen randomly between streaks. Target 135 

orientations were selected randomly on each trial with the restriction that the distance between 136 

target orientation and distractor mean in feature space was 60 degrees at minimum. Prime streak 137 

length was set to 6-7 trials (with equal probability) because this streak length is sufficient to learn 138 

bimodal distributions with relative accuracy (Chetverikov et al., 2017b). 139 

Within test streaks, distractor orientations were randomly drawn from a truncated 140 

Gaussian with SD = 10 deg. and range 20 deg. Test streaks had one or two trials (with equal 141 

probability). Different target types were used on test trials: targets were either located on a peak 142 

of the previous bimodal distribution (“Peak”, at +/-25 deg. relative to the previous distractor 143 

mean), between the peaks (“Between”, at 0 deg.) or outside the previous distribution range 144 

(“Outside”, at +/- 50 deg.). Four types of test streaks were used: 1) with two targets either on two 145 

different peaks (“Peak + Peak”); 2) on a peak and in-between the peaks (“Peak + Between”); 3) 146 

on a peak and outside the previous distribution range (“Peak + Outside” – where the “outside” 147 

target was always 25 deg. away from the target peak, that is, either the two targets were oriented 148 

at +25 and +50 deg. or -25 and -50 relative to the previous distractors’ mean); 4) between the 149 

peaks and outside the range (“Outside + Between”). These four test types were presented equally 150 

often (40 repetitions by participant) in random order. The distractor mean was chosen to be 151 

equidistant from both test targets. The second test trial is not analyzed here as the priming effects 152 

from the learning streak are not likely to be significant after the first two-target test search. Two-153 

trial test streaks were added for consistency with previous studies and in order to reduce the 154 

potential effects of observers’ expectations regarding streak lengths.  155 

Observers participated in one session of approximately 1300 trials. Decision time was not 156 

limited but participants were encouraged to respond as quickly and accurately as possible. 157 

Feedback based on search time and accuracy on previous trials was shown in the upper-left 158 

corner of the screen to motivate participants (see Chetverikov et al., 2016, for details on feedback 159 

score calculation). The current trial number and the total number of trials were shown beneath 160 

the score. If observers made an error, the word "ERROR" appeared in red letters at display centre 161 

for 1 second. 162 

In addition to this two-target search experiment, we also ran a single-target search study 163 

(see Supplementary Experiment). The latter was used as a comparison for the single-target 164 
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search time analyses to ensure that the introduction of a second target and specific conditions of 165 

the main experiment did not affect the pattern of results.  166 

 167 

 168 
Figure 2. Experimental results and best-fitting predictions of the models (see Simulations). A: Results for 169 
different target types from the main Experiment (average search times ignoring the order in which the 170 
targets were reported) and the supplementary Experiment where observers searched for only one target on 171 
each trial. B: Results for two-target search from the main Experiment. C: Results for the order of target 172 
reporting from the main Experiment. D-F: Predictions for single-target search times, search times for two 173 
targets, and for the order in which targets would be reported in a two-target search. For A-C large dots 174 
show group means, bars show their 95% confidence intervals, smaller dots show individual observers’ 175 
means, and shaded areas show distributions of individual observers’ means. Abbreviations: RT – response 176 
times, P - target on a peak, B - target between the peaks, O - target outside the range of previous distractor 177 
distribution. The plus sign indicates that two targets of corresponding types are used. For the order of 178 
reporting, X|A+B means that target type X was reported first when target types A and B are combined.  179 

  180 
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Results 181 

Overall performance.  On learning trials, observers found both targets in most cases (M 182 

= 0.72 [0.67, 0.77]), though the share of trials where only one target was reported was high (M = 183 

0.27 [0.22, 0.31]; both targets were reported incorrectly on 1% of trials). On test trials, observers 184 

reported both targets correctly on M = 0.91 [0.89, 0.93] trials (accuracy was comparable to the 185 

results of single-target search in the Supplementary Experiment). The delay between the report 186 

on the first and the second target was relatively short, but longer on learning than on test trials 187 

(M = 263 [198, 326] vs. M = 176 [130, 233], respectively, t(12.0) = 4.13, p = .001). Similarly, 188 

the first target was reported later on learning than test trials (M = 973 [854, 1103] vs. M = 826 189 

[753, 904], respectively, t(12.0) = 5.23, p < .001). 190 

The learning effects were also comparable to those from the single-target search 191 

experiment (see supplement). A linear mixed-effects regression with Helmert contrasts 192 

(comparing each trial with the average of the following trials) showed that the first trial was 193 

slower, (B = 0.11, SE = 0.01, t(52.57) = 9.61, p < .001) and less accurate (B = -0.04, SE = 0.02, 194 

t(13.12) = -2.62, p = .021) than the later trials. The follow-up trials did not differ from one 195 

another. 196 

Test trials. Replicating previous results, search times differed depending on target type 197 

(F (2, 24) = 8.28, p = .003, 𝜂2G = .02, see Figure 2A). Observers search longer for “Peak” targets 198 

compared to “Between” targets, which were in turn, found later than “Outside” targets. 199 

Crucially, a repeated-measures ANOVA indicated that the time needed to find both targets on 200 

test trials was affected by the condition (F(3, 36) = 6.66, p = .002, 𝜂2G = .02, Figure 2B). 201 

Comparisons between conditions with the same feature difference between the targets showed 202 

that performance on “Peak + Peak” trials was slower than on “Outside + Between” trials (t(12.0) 203 

= 3.10, p = .009), while “Peak + Between” trials were not different from “Peak + Outside” 204 

(t(12.0) = -1.68, p = .118) trials. Finally, the “Peak + Peak” condition was also slower than the 205 

“Peak + Between” condition (t(12.0) = 2.58, p = .024).  206 

We then analyzed which type of target was reported first in each condition using a 207 

binomial mixed-effects regression. The results showed that targets on peaks were reported after 208 

targets between the peaks (Z = -2.01, p = .044, Figure 2C) or targets outside the preceding 209 
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distribution range (Z = -2.43, p = .015), while the latter were reported earlier than targets 210 

between the peaks (Z = 2.08, p = .037). 211 

In sum, search with two targets on the peaks was the most difficult. A comparison of the 212 

“Peak + Between” and “Peak + Outside” conditions showed only a numerical difference in total 213 

RT. However, in the “Peak + Between” condition, targets on peaks were reported later than 214 

targets between the peaks, whereas in the “Outside + Between” condition targets between the 215 

peaks were reported later than the “Outside” targets. This shows again that targets on peaks were 216 

the most unexpected for observers, followed by targets between the peaks, followed in turn by 217 

“Outside” targets that led to the fastest search times.  218 

Simulations.  We simulated the predictions from three models (Figure 2E-F; the 219 

simulation code is available at https://osf.io/rg2h8).  For our main model of interest, the 220 

“bimodal” model, we assumed that the probabilities of different distractors can be represented by 221 

two Gaussian templates (for simplicity, we ignore the fact that the stimuli distributions might be 222 

more accurately represented by non-Gaussian templates (Chetverikov, Campana, & Kristjánsson, 223 

2017a)) centered on the means of distractor distribution segments. We assumed that observers 224 

utilize the knowledge they obtained about distractors and targets optimally.  To find a target in a 225 

localization search task, an ideal observer , would compare the probability that a given noisy 226 

measurement of orientation x at each location L is a target versus the probability that it is a 227 

distractor (Ma, Navalpakkam, Beck, van den Berg, & Pouget, 2011; Ma, Shen, Dziugaite, & van 228 

den Berg, 2015): 229 

𝑝(𝐿|𝑥) ∝ 𝑝(𝐿)
𝑝(𝑥|𝑇)
𝑝(𝑥|𝐷) = 𝑝(𝐿)

𝑝(𝑥|𝑠-)𝑝(𝑠-|𝑇)𝑑𝑠-
𝑝(𝑥|𝑠-)𝑝(𝑠-|𝐷)𝑑𝑠-

 230 

where sL is a true stimulus value at this location, p(L) is the probability that a target is presented 231 

at this location, T and D are the parameters of target and distractor distributions, respectively. In 232 

our simulations, we assumed that internal representations of target and distractor distributions are 233 

independent and response times are inversely proportional to the amount of evidence p(L|x).  234 

Given that all locations in our experiment were equiprobable, that is, p(L) is the same for all 235 

locations, response times will, on average, be proportional to the probabilities of the test target θT 236 

under given distractor template parameters: 237 

𝑅𝑇 ∝ 𝑝(𝜃1|𝐷) 238 
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The width of the Gaussian templates was estimated by fitting the model to single-target 239 

response time data. To increase the robustness of the estimates, we used an approach similar to 240 

bootstrap aggregating (“bagging”), often employed in machine learning (Breiman, 1996). For 241 

each model we obtained 500 bootstrapped samples grouped by participant (that is, on each 242 

iteration, sampling with replacement was done for each subject and then the samples were 243 

combined). We then estimated the template widths for each sample by fitting response times as a 244 

linear function of the stimuli probability. For a “bimodal” model: 245 

𝑅𝑇21 = 𝑎 + 𝑏 6
1
2𝑝
(𝜃1|𝜇2, 𝜎) +

1
2𝑝
(𝜃1|𝜇<, 𝜎)= 246 

where µ1 = 25 and µ2 = -25, the means of bimodal distractor distribution peaks, and a and 247 

b are the scaling parameters necessary to translate the probabilities into response times. The 248 

template widths obtained for each sample were then averaged to get the resulting estimates. 249 

Estimated template widths were similar for the experiment reported here (18 deg.) and the 250 

supplemental experiment (21 deg.).  251 

For the “single-peak” model, we assumed that only one of the two peaks was encoded 252 

(with the same approach as with the “bimodal” model). Given that the peak means are 253 

equidistant to the overall distractor mean: 254 

𝑅𝑇21 = 𝑎 + 𝑏>𝑝(𝜃1|𝜇2, 𝜎)? 255 

The estimated template widths were 27 and 22 deg. for the main and the supplemental 256 

experiment.  257 

Finally, the “averaged” model was based on the idea that observers might use a single set 258 

of summary statistics to represent the stimuli. Accordingly, we assumed that observers use a 259 

single Gaussian template centered at the mean of the overall bimodal distribution: 260 

𝑅𝑇21 = 𝑎 + 𝑏>𝑝(𝜃1|0, 𝜎)? 261 

The template width was also obtained using ML optimization and bootstrapping. For the 262 

main experiment the estimated width was 114 deg., while for the supplemental experiment it was 263 

140 deg. (i.e., almost flat template), already suggesting that this model provides a poor fit to the 264 

experimental data.  265 

We then used the estimated template widths to obtain the predictions of the three models 266 

for the search times for different target types (Figure 2D), total search time for two targets in 267 

different conditions (Figure 2E), and for the order in which the targets should be reported (Figure 268 
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2F). For single-target search the equations were the same as when we estimated the template 269 

widths, however, we used the data averaged by target type for each subject to reduce the effect of 270 

trial-by-trial variability. Two-target search times were assumed to be proportional to a sum of 271 

two search times predicted in the same way as for a single target: 272 

𝑅𝑇<1 = 𝑎 + 𝑏>𝑝(𝜃12|𝐷) + 𝑝(𝜃1<|𝐷)? 273 

where D reflects the distractor distribution parameters for a given model, that is, the 274 

template mean(s) and its estimated width(s).  275 

Finally, we assumed that all other things being equal, the order in which the targets are 276 

reported would depend on the ratio of the probabilities of observing the test targets under the 277 

given distractors template: 278 

𝑃(𝑓𝑖𝑛𝑑	𝑇2	𝑓𝑖𝑟𝑠𝑡) = 0.5 + 𝑘	𝑙𝑜𝑔 6
𝑝(𝜃12|𝐷)
𝑝(𝜃1<|𝐷)

= 279 

with k as a scaling constant. The ratio was transformed to logarithm to allow for both 280 

positive and negative values.  281 

Figures 2D and 2E show that the bimodal model provided more accurate predictions for 282 

response times than the other models. For single-target response times, it accurately predicted 283 

that targets on peaks would be the hardest to find and targets between the peaks would be harder 284 

to find than targets outside the range of previously learned distractors. In contrast, the averaged 285 

model (∆BIC = 5.94; here and later ∆BIC refers to the difference in Bayesian Information 286 

Criterion compared to the bimodal model, positive values meaning that the bimodal model has 287 

better fit) suggested that the targets in-between the peaks would be hardest to find, while the 288 

single-peak model (∆BIC = 12.47) predicted relatively similar response times for between targets 289 

and targets on peaks. For two-target RTs, the bimodal model failed to predict slower search for 290 

the “outside + between” condition compared to the “peak + outside” condition. Note, however, 291 

that this difference was also not significant in our results. Speculatively, it might be a result of a 292 

higher similarity between the targets in the latter than in the former. Nevertheless, the predictions 293 

of the bimodal model were still better than of the averaged (∆BIC = 8.04) or the single-peak 294 

model (∆BIC = 6.59). 295 

Crucially, the bimodal, single-peak, and averaged models gave qualitatively different 296 

predictions for the order in which the targets would be found. For both the single-peak and 297 

averaged model, the probability of first reporting targets between the peaks when combined with 298 
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targets on peaks was below 0.5 (Figure 2C). As outlined in the introduction, when observers 299 

encode only one peak, on 50% of the trials, the “peak” target on test trials should be on this peak 300 

while in the other half of the trials it will be on the non-encoded peak. Depending on the width of 301 

the template, the average ratio of the probabilities for a target would vary: with very large or very 302 

small template widths, it will be close to 0.5 because targets between the peaks and at the non-303 

encoded peaks will be equally probable, and with intermediate template widths it will be below 304 

0.5 (note that this conclusion is not limited to the specific equation we used for determining the 305 

probability of finding one target before another; in fact, it could be shown that this is the case for 306 

any monotonic function describing the transformation of a ratio of probabilities of observing the 307 

target under a given Gaussian distractor template into average probability of a given reporting 308 

order). For the averaged model the target between the peaks should always be reported later than 309 

targets on the peaks. In contrast, for the bimodal model that accurately encodes the probabilities 310 

of distractors, the target between the peaks should be reported before the target at the peak. 311 

Accordingly, the bimodal model describes the results better than the single-target (∆BIC = 312 

13.11) or the averaged model (∆BIC = 6.86). 313 

  314 
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Discussion 315 

Can observers develop an accurate internal model for the probabilities of to-be-ignored items in a 316 

visual search task? We assessed the content of templates guiding visual search in the orientation 317 

domain, by measuring slowing for targets drawn from a preceding distractor orientation 318 

distribution. The distribution was bimodal and the searches used to probe the representations 319 

involved two simultaneous targets within a trial. Response times were slower when the targets 320 

corresponded to the two modes (“peaks”) of previous distractor distributions than when one 321 

target was from one of the modes and another from between them, while the latter combination 322 

of targets resulted in slower search than when one of the targets was outside the previous 323 

distractor range. Furthermore, the order in which the targets were reported on a test trial followed 324 

the distractor probabilities observed during prime trials. Targets outside the previous distractor 325 

range were reported earlier than the ones between the modes, while the latter were reported 326 

before the targets at the modes of previous distractor distribution. The search times and the order 327 

in which targets are reported allowed us to assess the internal model used by observers. 328 

We simulated the predictions of a bimodal, single-template, and averaged template 329 

models. The first model accurately reflects the actual distribution of distractor features, while the 330 

other two oversimplify it in different ways. We found that the bimodal model predicts the 331 

response times pattern for different target types and different conditions far better than the other 332 

models. Moreover, only the bimodal model could accurately predict the order in which the 333 

targets were reported. Both the single-template and the averaged-template model predicted that 334 

the target between the peaks should on average be reported after the targets at the peaks, while 335 

the reverse was accurately predicted by the bimodal model. The target between the peaks in the 336 

“Peak + Between” condition was on average reported before the target at one of the peaks. This 337 

shows that observers simultaneously represent both modes of distractor distributions. Their 338 

representations approximate the physical stimuli, and they fill in the gaps in probability space as 339 

demonstrated by slower responses when one of the targets was between the peaks compared to 340 

when it was outside the previous distractor range, or on the peaks. 341 

Notably, all three models can be considered probabilistic in a sense that they do provide 342 

observers with a measure of probability that a certain feature belongs to a distractor class. The 343 

difference is in the degree of simplification. The bimodal model reflects the probability 344 
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distribution accurately (with the assumption of Gaussian approximation). The two other models 345 

taken into consideration, however, diverge from an accurate representation in different ways: the 346 

“averaged” assumes the use of overall summary statistics, while the “single-peak” assumes the 347 

encoding of only one part of the distribution (which could be caused, for example, by biased 348 

sampling). Furthermore, every heuristic or decision rule can be cast in terms of probabilities 349 

(e.g., a delta function that assigns probability of 1 for one part of feature space and 0 for the rest). 350 

Here we show that the representations used by observers mirror the probability distribution of the 351 

stimuli. 352 

Unlike previous studies assessing how distracting information is stored in visual working 353 

memory (Arita et al., 2012; Won & Geng, 2018), the distractors in our studies were 354 

heterogeneous and were generated randomly based on a bimodal probability distribution. 355 

Nevertheless, observers were able to integrate the information about distractors into an 356 

approximate bimodal representation. Speculatively, this demonstrates that using homogeneous 357 

distractors may be an artificial limitation, perhaps brought on by earlier technical restrictions on 358 

experimental stimuli in pre-modern computer era. In the real world, distracting information is 359 

rarely homogeneous, so it may not be particularly surprising that humans are able to form 360 

accurate templates representing probability distributions. 361 

Following seminal accounts of priming of pop-out effects (Maljkovic & Nakayama, 362 

1994), we argue that the representations of distractor distributions are kept in visual working 363 

memory, rather than long-term memory. Woodman et al (Woodman et al., 2013) have 364 

demonstrated that the representation of a single attended target is transferred from VWM to long-365 

term memory in 5 to 7 trials. In contrast, we have previously shown that for simple distractor 366 

distributions (such as Gaussian or uniform) one or two trials are enough for observers to develop 367 

a probabilistic representation of distractors (Chetverikov et al., 2017b). Representations of more 368 

complex distractor distributions take more time (or trials) to develop, but they also progressively 369 

change with more repetitions: after one or two trials, bimodal distributions are represented as 370 

unimodal, and are only later transformed into bimodal ones. This indicates that more time (trials) 371 

is required for sharpening the representation, not for the transfer to long-term memory.  372 

A question of how the probabilistic templates for rejection are stored also taps into a 373 

more general question, regarding how working memory templates are stored. Recently, 374 

Christophel, Iamschinina and colleagues (2018) demonstrated that while attended stimuli in 375 
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visual working memory are represented both in parietal and frontal cortex in addition to visual 376 

cortex, the latter is not involved in representations of unattended stimuli. It is possible that 377 

rejection templates similarly do not involve early visual areas. However, unlike simple 378 

unattended items, templates for rejection are actively used by observers to guide attention. As 379 

such, their representation might require a level of precision only achievable with the recruitment 380 

of sensory areas.  381 

How specific are distractor templates? Won and Geng (Won & Geng, 2018) suggested 382 

that distractor templates might be more broadly tuned than target templates. This would allow 383 

easy generalization of suppression to similar distractors, while for targets such generalization 384 

might be harmful as it would lead to an increased number of false alarms. However, the exact 385 

costs of generalization for both target and distractor templates depend on the environment. 386 

Specific templates are necessary when a target is similar to distractors, but generalization is 387 

helpful otherwise. This has indeed been observed by Geng, DiQuattro, and Helm (Geng, 388 

DiQuattro, & Helm, 2017): when a target is similar to distractors, its template is sharpened and 389 

shifted away from distractors. Moreover, in the real environment we rarely know how exactly the 390 

target or distractors would look under a given illumination and point of view, making some 391 

degree of generalization essential for efficient search. In contrast, a typical visual search study 392 

would require a very narrow distribution of target features, making a narrow template useful. Our 393 

results suggest that distractor templates are specific enough to account for bimodality in the 394 

distractor distribution. It remains to be studied whether targets or distractors templates are more 395 

specific when their physical distributions are equally shaped.  396 

 In contrast to our previous studies (Chetverikov et al., 2016, 2017b, 2017d, 2017c; 397 

Hansmann-Roth, Chetverikov, & Kristjánsson, 2019), here, we “probed” the distractor 398 

representation only at three different points in the feature space. By using targets with a range of 399 

features that covered the full feature space, our previous research showed that observers encode 400 

the probability distribution of distractors. Here we extend these findings by showing that 401 

observers learn the distribution of distractors following a single learning streak. This 402 

demonstrates that the previously obtained results are not an artefact of aggregation over multiple 403 

trials but rather a true reflection of the templates’ content.  404 

Our results agree with previous findings on probabilistic concept learning. Briscoe and 405 

Feldman (2011) found that when observers have to form a decision rule based on a multimodal 406 
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probability distribution, they could do this, although performance became worse with increased 407 

mode number. We did not explicitly ask our observers to categorize the stimuli (as distractors 408 

and targets), but it is conceivable that they might do so if asked.  409 

We should note that one might interpret our results as simply demonstrating that humans 410 

are capable of learning a nonlinear classification rule/decision boundary over a disjoint set in 411 

feature space, and can use this to guide visual search. But we think that this alternative proposal 412 

is unlikely to hold water because for a simple classifier in this task, learning is not necessary. 413 

There is enough information on each trial to easily tell the target from distractors. Moreover, to 414 

include learning in the algorithm, learning of the target would suffice, as the target distribution is 415 

constant within the learning streak. The fact that our observers struggle with this shows that they 416 

do more than strictly necessary. Second, and perhaps more importantly, we showed in our 417 

previous work that observers learn the correct probabilities of the distractor features on average 418 

rather than learning a simple decision rule (Chetverikov et al., 2016, 2017b, 2017d, 2017c). A 419 

decision rule model cannot explain why the response time curves reflect distractor probability 420 

both within and outside the distractor distribution range. By using double-target search we 421 

further demonstrate that these results cannot be explained by a combination of different decision 422 

rules applied on different test trials.  423 

Conclusions 424 

We found that rejection templates are probabilistic, similarly to items in visual working 425 

memory that receive attention (Ma et al., 2014). However, our study also shows that templates 426 

for rejection do not need to be simple bell-shaped curves, as it is typically modelled in working 427 

memory studies. In contrast, they are dynamically adapted to task requirements, reflecting the 428 

probabilistic nature of the input. Whether such flexibility also characterizes templates for 429 

attended items remains to be seen. However, our results clearly demonstrate that probabilistic 430 

computations start in the brain even before something is perceived, to determine what should be 431 

prioritized in perception.   432 
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Supplemental experiment 551 

Method 552 

Participants. Fifteen observers (ten female, age M = 25.47) at St. Petersburg State 553 

University, Russia, took part in a single experimental session lasting approximately 30 min. Two 554 

of them were excluded because their response times were very high compared with the other 555 

observers (1356 and 1393 ms for excluded observers vs. 761 ms for the remaining sample). One 556 

more was excluded because of low accuracy (M = 0.71 vs. 0.83 for the remaining sample). The 557 

study was approved by the ethics committee of St. Petersburg State University. 558 

Procedure. We used a task similar to our previous studies (Chetverikov et al., 2016, 559 

2017b). Stimuli were presented on an Acer V193 display (19” with 1280 ´ 1024 pixel resolution) 560 

using PsychoPy 1.84.2 (Peirce, 2007, 2009). Viewing distance was ~ 60 cm. Observers searched 561 

for an oddly oriented line in a 6×6 grid of 36 lines subtending 16°×16° at the centre of a display. 562 

The length of each line was 1.41°. Line positions were jittered by randomly adding a value 563 

between ±0.5° to both vertical and horizontal coordinates. Observers indicated whether the target 564 

line was in the upper or the lower half of the screen by pressing the ‘i' or ‘j’ keys on a standard 565 

keyboard. Trials were organized in intertwined prime and test ‘streaks’. During prime streaks, 566 

distractors were randomly drawn from a bimodal distribution that included two uniform parts 567 

with orientations ranging from -40 to -20 and +20 to +40 relative to the overall mean. The 568 

distribution mean was the same within streak but chosen randomly between streaks. Target 569 

orientation was selected randomly on each trial with the restriction that the distance between 570 

target orientation and distractor mean in feature space was 60 degrees at minimum. Based on the 571 

results of previous studies, prime streak length was set to 6-7 trials because this streak length is 572 

sufficient to encode bimodal distributions with relative accuracy (Chetverikov et al., 2017b). 573 

Within test streaks, distractor orientations were randomly drawn from a truncated 574 

Gaussian with SD = 10 deg. and range 20 deg. Each test streak had two trials and the targets on 575 

these trials (target type) were either located on the “peaks” of the previous bimodal distribution 576 

(within the +/- 25 to 35 deg. range relative to the previous distractors’ mean), in-between the 577 

peaks (within 0 to +/-5 deg. range) or outside the previous distribution range (within +/- 55 to 90 578 

deg. range). Three types of test streaks were used with targets on the first and the second test trial 579 

either on two different peaks, on a peak and in-between the peaks, or on a peak and outside the 580 
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previous distribution range. These three conditions were presented equally often in random 581 

order. The order of targets within the test trials for each condition was counterbalanced. The 582 

distractor mean was chosen randomly with a distance to the target of no less than 60 deg. (as on 583 

prime trials). 584 

Observers participated in one session of approximately 1244 trials divided into 288 prime 585 

and test streaks. Decision time was not limited but participants were encouraged to respond as 586 

quickly and accurately as possible. Feedback based on search time and accuracy on previous 587 

trials was presented after each trial was shown in the upper-left corner of the screen to motivate 588 

participants. The current trial number and the total number of trials were shown beneath the 589 

score. If observers made an error, the word "ERROR" appeared in red letters at display centre for 590 

1 second. 591 

Results 592 

Overall performance. Participants were slower (M = 738 [683, 794] vs. M = 615 [589, 593 

643], t(11.0) = 5.67, p < .001, d = 1.64) and less accurate (M = 0.78 [0.75, 0.82] vs. M = 0.96 594 

[0.95, 0.97], t(11.0) = -10.29, p < .001, d = 2.97) on learning trials than test trials, due to the fact 595 

that learning trials had a broader distribution. Response times decreased while accuracy 596 

increased during learning trials: A linear mixed-effects regression indicated that the first trials in 597 

each learning sequence were slower, (B = 0.08, SE = 0.02, t(11.47) = 4.52, p < .001) and less 598 

accurate (B = -0.04, SE = 0.01, t(12.52) = -4.50, p < .001) than the later trials. 599 

Test trials. On test trials, observers’ performance depended on both target type and 600 

condition. Replicating the results of Chetverikov et al. (2017b), on the first trial in a test 601 

sequence observers responded more slowly when the target was at one of the peaks of the 602 

preceding distractor distribution than when it was in-between the peaks (t(11.0) = 3.94, p = .002, 603 

d = 1.14), while responses for the in-between the peaks targets were slower than when they were 604 

outside the range of the previous distribution (t(11.0) = 3.96, p = .002, d = 1.14).  605 


