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Abstract: We consider a Dirichlet problem for the Poisson equation in a periodically
perforated domain. The geometry of the domain is controlled by two parameters: a real
number ε > 0 proportional to the radius of the holes and a map φ, which models the
shape of the holes. So, if g denotes the Dirichlet boundary datum and f the Poisson
datum, we have a solution for each quadruple (ε, φ, g, f). Our aim is to study how the
solution depends on (ε, φ, g, f), especially when ε is very small and the holes narrow
to points. In contrast with previous works, we don’t introduce the assumption that f
has zero integral on the fundamental periodicity cell. This brings in a certain singular
behavior for ε close to 0. We show that, when the dimension n of the ambient space is
greater than or equal to 3, a suitable restriction of the solution can be represented with
an analytic map of the quadruple (ε, φ, g, f) multiplied by the factor 1/εn−2. In case of
dimension n = 2, we have to add log ε times the integral of f/2π.
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1 Introduction

The object of this paper is to study a singular perturbation of a Dirichlet-Poisson prob-
lem in a periodically perforated domain. The aim is to show that the solution can
be written as a combination of real analytic maps and–possibly singular but completely
known–elementary functions of the perturbation parameters. The geometry of the prob-
lem is controlled by two parameters: a positive real number ε that determines the size
of the holes and a shape function φ that deforms the boundary of a certain reference
domain Ω into the shape of the holes. To wit, the holes are shifted copies of εφ(∂Ω) and
thus, for ε that tends to zero, they shrink down to points. Next, a function g denotes
the Dirichlet datum and a function f the Poisson datum and the problem is such that
we have a unique solution for each choice of the four variables ε, φ, g, and f . So it makes
sense to ask ourselves what we can say of the map that takes a quadruple (ε, φ, g, f) to
the corresponding solution. In particular, we want to see what happens when ε is close
to zero and the holes are shrinking to points.

The interest for periodic problems for the Laplace equations is (in part) motivated
by their relevance in the applications. For instance, problems of this kind arise in the
study of effective properties of composite materials. The reader may find some examples
in the works of Ammari, Kang, and Lim [2], Ammari, Kang, and Touibi [3], Drygaś,
Gluzman, Mityushev, and Nawalaniec [9], Gluzman, Mityushev, and Nawalaniec [13],
and Kapanadze, Mishuris, and Pesetskaya [14, 15].
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Indeed, we have ourselves already written on this topic. In particular, the problem of
this paper is very similar to those of [29] and [30]. There is a critical difference though:
in [29] we take the Poisson datum f equal to 0 and in [30] the function f is required to
have zero integral on the periodicity cell, whereas here we abandon this assumption. As
a consequence, we have to deal with a specific singular behavior that appears for ε close
to zero: If the ambient space has dimension n ≥ 3, the solution shows a singularity of the
order of 1/εn−2, and, for n = 2, a (log ε)-singularity. Also, in the previous works [29, 30]
the number ε was solely responsible for the geometric deformation of the problem, and
thus only homothetic transformations of the holes were allowed. Here, instead, the holes
can change shape according to the function φ and we analyze the joint dependence on
the set of variables (ε, φ, g, f).

We now describe our problem in detail. We fix once for all

n ∈ N \ {0, 1} and q11, . . . , qnn ∈ ]0,+∞[ ,

where N denotes the set of natural numbers including 0. We set

q :=


q11 0 · · · 0
0 q22 · · · 0
...

...
. . .

...
0 0 · · · qnn

 and Q :=

n∏
j=1

]0, qjj [ ⊆ Rn.

The set Q is the fundamental periodicity cell and the diagonal matrix q is the periodicity
matrix associated with the cell Q.

We consider a set Ω ⊆ Rn satisfying the following assumption:

Ω is a bounded open connected subset of Rn of class C1,α

such that Rn \ Ω is connected.
(1)

In (1), as well as in the rest of the paper, α is a fixed number in the open interval ]0, 1[
and the symbol · denotes the closure of a set. For the definition of sets and functions of
the Schauder class Cj,α (j ∈ N) we refer, e.g., to Gilbarg and Trudinger [12].

The boundary ∂Ω of Ω plays the role of a reference set and the boundary of the
holes is obtained rescaling and shifting the image of ∂Ω under a suitable map φ. The
set of the functions φ that we allow is denoted by A1,α

∂Ω and consists of the functions
of C1,α(∂Ω,Rn) := (C1,α(∂Ω))n that are injective and have injective differential at all
points of ∂Ω. We can verify that A1,α

∂Ω is open in C1,α(∂Ω,Rn) (see, e.g., Lanza de
Cristoforis and Rossi [24, Lem. 2.2, p. 197] and [23, Lem. 2.5, p. 143]). Moreover, if
φ ∈ A1,α

∂Ω , then the Jordan-Leray separation theorem (see, e.g, Deimling [8, Thm. 5.2,
p. 26]) ensures that φ(∂Ω) splits Rn into exactly two open connected components. We
denote by I[φ] the bounded one.

Next we fix a point
p ∈ Q ,

which is the point where the hole in the reference periodicity cell shrinks to. It will be
convenient to consider perturbations around a fixed

φ0 ∈ A1,α
∂Ω .

There is no loss of generality in this choice, because φ0 can be any function of A1,α
∂Ω . The

advantage is that there exist a real number ε0 > 0 and an open neighborhood Oφ0
of φ0

in A1,α
∂Ω such that

p+ εI[φ] ⊆ Q ∀(ε, φ) ∈ ]−ε0, ε0[×Oφ0
. (2)

Then, for these ε’s and φ’s we can define the hole

Ωε,φ := p+ εI[φ] ∀(ε, φ) ∈ ]−ε0, ε0[×Oφ0
,

which is contained in Q, has size proportional to ε, and shape determined by φ. When
ε tends to 0, the hole shrinks toward the point p while its shape changes according to φ
(see Figure 1).
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Figure 1: A 2-dimensional example of perforated reference periodicity cell. The hole
Ωε,φ shrinks toward the point p when ε tends to 0.
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Figure 2: A 2-dimensional example of periodically perforeted set S[Ωε,φ]−.

The periodic set of holes is given by

S[Ωε,φ] :=
⋃
z∈Zn

(qz + Ωε,φ) ,

and the periodic domain where we define the Poisson equation is

S[Ωε,φ]− := Rn \ S[Ωε,φ] ∀(ε, φ) ∈ ]−ε0, ε0[×Oφ0
,

that is, the domain obtained removing from Rn the periodic set of holes S[Ωε,φ] (see
Figure 2). When ε approaches zero, the hole in the cell qz +Q shrinks toward qz + p.

We now introduce suitable spaces for the functional data of the problem. For the
right-hand side of the Dirichlet boundary condition we take a function

g ∈ C1,α(∂Ω) ,

which we properly transplant to be defined on ∂Ωε,φ = p+ εφ(∂Ω). As for the Poisson
datum, regularity has to be chosen more carefully. Lanza de Cristoforis in [18] and
Preciso in [33, 34] shown that Roumieu analytic functions produce analytic composition
operators and analytic Newtonian potentials, a feature that will come handy later on
in our analysis. Moreover, since we are dealing with a periodic problem, we have to
take periodicity into account. So, the right-hand side of the Poisson equation will be a
function

f ∈ C0
q,ω,ρ(Rn) ,

where ρ > 0 is fixed and C0
q,ω,ρ(Rn) denotes the Roumieu class of q-periodic analytic

functions (see (5) for the exact definition of C0
q,ω,ρ(Rn), see also [30]).
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All the ingredients are now introduced and we can state our Dirichlet-Poisson prob-
lem. For a quadruple (ε, φ, g, f) ∈ ]0, ε0[×Oφ0 × C1,α(∂Ω)× C0

q,ω,ρ(Rn), we look at
∆u(x) = f(x) ∀x ∈ S[Ωε,φ]−,
u(x+ qz) = u(x) ∀x ∈ S[Ωε,φ]−, ∀z ∈ Zn,
u(x) = g ◦ φ(−1)(ε−1(x− p)) ∀x ∈ ∂Ωε,φ .

(3)

It is well known that problem (3) has a unique solution and that such solution belongs to
C1,α(S[Ωε,φ]−) (see Theorem 3.1, see also [30, Prop. 2.2]). To emphasize the dependence
on (ε, φ, g, f), we denote it by

u[ε, φ, g, f ] .

Then our goal is to describe the map

]0, ε0[×Oφ0 × C1,α(∂Ω)× C0
q,ω,ρ(Rn) 3 (ε, φ, g, f) 7→ u[ε, φ, g, f ] ∈ C1,α(S[Ωε,φ]−) .

We observe, however, that the space in the right-hand side depends on ε, and so it
is not suited to be the codomain of a function that depends on ε itself. To fix this
inconvenience, we take an open bounded set V compactly contained in Rn\(p+qZn) and
for ε sufficiently small consider the restriction of u[ε, φ, g, f ] to V . So that u[ε, φ, g, f ]|V
belongs to C2(V ), a space that does not depend on ε.

In our main Theorem 4.1 we see that, for a possibly smaller ε0 > 0 and pos-
sibly shrinking the open neighborhood Oφ0

of φ0, the map that takes (ε, φ, g, f) to
u[ε, φ, g, f ]|V is described by the formula

u[ε, φ, g, f ]|V =
1

εn−2
U[ε, φ, g, f ] + δ2,n

log ε

2π

ˆ
Q

f(x) dx ,

where δ2,n is the Kronecker delta symbol and where

U : ]−ε0, ε0[×Oφ0
× C1,α(∂Ω)× C0

q,ω,ρ(Rn)→ C2(V )

is real analytic (here C2(V ) could be replaced with Ck(V ) for any k > 0). The formula
above makes evident that for n = 2 the singular behavior of the solution only appears
as soon as f has non-zero integral over Q. The same is true for n ≥ 3, as we can deduce
comparing this result with those in [30].

Usually, boundary value problems in singularly perturbed domains are studied with
the methods of Asymptotic Analysis, as we can find in the works of Kozlov, Maz’ya and
Movchan [16], Maz’ya, Movchan, and Nieves [26], Mazya, Nazarov and Plamenewskii [27,
28], Novotny and Soko lowski [32], and so on. In this paper we adopt a different approach,
named Functional Analytic Approach, which is more suited to obtain representation
formulas in terms of analytic functions (see [5] for a detailed introduction). For this
specific problem we will employ some periodic potential theory and we will exploit the
idea of [31] (later developed in [22] and [25]) of using the periodic Newtonian potential
corrected with a suitable multiple of the periodic fundamental solution of the Laplace
equation. The singular behavior that arises when f has non-zero integral over Q is
related to the fact that, in that case, the problem{

∆u(x) = f(x) ∀x ∈ Rn,
u(x+ qz) = u(x) ∀x ∈ Rn, ∀z ∈ Zn, (4)

has no solution (as one can check applying the Divergence Theorem to u in Q). Problem
(4) may be seen as the limit of (3) as ε goes to 0. Indeed, in a recent paper Feppon and
Ammari [10] have related the appearance of singular behaviors to the failure of similar
compatibility conditions. The problems studied in [10] are not too far from the one that
we analyze in this paper, but involve some specific generalized periodicity conditions.
We also mention that the result that we present here is, in a sense, a periodic counterpart
of a result obtained by Lanza de Cristoforis [19, 20] for a bounded domain with a single
small hole.

The paper is organized as follows: In Section 2 we list some preliminary results of
periodic potential theory that are used in Section 3 to transform problem (3) into an
equivalent system of integral equations. In Section 4 we prove our main Theorem 4.1.
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2 Preliminaries of potential theory

As mentioned in the introduction, we use periodic potential theory to transform problem
(3) into an equivalent system of integral equations. More precisely, we use the periodic
double layer potential, whose definition differs from that of the classical double layer
potential because we replace the fundamental solution of the Laplace operator ∆ =∑n
j=1 ∂

2
xj with a periodic analog. This will be a q-periodic tempered distribution Sq,n

such that

∆Sq,n =
∑
z∈Zn

δqz −
1

|Q|n
,

where δqz denotes the Dirac distribution with mass in qz and where | · |n denotes the
n-dimensional measure of a set. To define Sq,n we can take

Sq,n(x) := −
∑

z∈Zn\{0}

1

|Q|n4π2|q−1z|2 e
2πi(q−1z)·x ,

where the series converges in the sense of distributions on Rn (cf., e.g., Ammari and
Kang [1, p. 53], [5, §2.1]). It can be shown that Sq,n is real analytic in Rn \ qZn and is
locally integrable in Rn (cf., e.g., [5, Thms. 12.3, 12.4]).

We will also find useful to write Sq,n as the sum of the classical fundamental solution
of the Laplacian

Sn(x) :=

{
1
s2

log |x| ∀x ∈ R2 \ {0}, if n = 2,
1

(2−n)sn
|x|2−n ∀x ∈ Rn \ {0}, if n ≥ 3,

and a remainder Rq,n := Sq,n − Sn which is regular around the origin. Here above sn
is the (n − 1)-dimensional measure of the boundary ∂Bn(0, 1) of the unit ball Bn(0, 1)
in Rn. We note that Rq,n has an analytic extension to (Rn \ qZn) ∪ {0}, which we still
denote by Rq,n, and that

∆Rq,n =
∑

z∈Zn\{0}
δqz −

1

|Q|n

in the sense of distributions (see, e.g., [5, Thm. 12.4]).
We now recall the definition of the classical (not periodic) double layer potential. We

introduce another set Ω̃, which we use as a dummy for our definitions: Ω̃ is a bounded

open connected subset of Rn of class C1,α such that Rn \ Ω̃ is connected. The classical
double layer potential supported on Ω̃ and with density θ ∈ C1,α(∂Ω̃) is defined by

wΩ̃[θ](t) := −
ˆ
∂Ω̃

νΩ̃(s) ·DSn(t− s)θ(s) dσs ∀t ∈ Rn ,

where νΩ̃ denotes the outward unit normal to ∂Ω̃ and the symbol “·” denotes the scalar
product in Rn. As is well known, the restriction wΩ̃[θ]|Ω̃ extends to a function w+

Ω̃
[θ]

in C1,α(Ω̃) and the restriction wΩ̃[θ]|Rn\Ω̃ extends to a function w−
Ω̃

[θ] in C1,α
loc (Rn \ Ω̃).

Moreover, at the boundary we have the jump formula:

w±
Ω̃

[θ]|∂Ω̃ = ±1

2
θ + wΩ̃[θ]|∂Ω̃ ∀θ ∈ C1,α(∂Ω̃)

(cf. Folland [11, Ch. 3], [5, § 4.5]).
To define the periodic double layer potential we need some more notation about

periodic domains. If Ω̃Q is an arbitrary subset of Rn such that Ω̃Q ⊆ Q (another
dummy set), we set

S[Ω̃Q] :=
⋃
z∈Zn

(qz + Ω̃Q) = qZn + Ω̃Q , S[Ω̃Q]− := Rn \ S[Ω̃Q] .

Then a function u from S[Ω̃Q] or from S[Ω̃Q]− to R is q-periodic if u(x+ qz) = u(x) for
all x in the domain of definition of u and for all z ∈ Zn. For j ∈ {0, 1} and α ∈ ]0, 1[,
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we denote by Cj,αq (S[Ω̃Q]) and Cj,αq (S[Ω̃Q]−) the spaces of q-periodic functions of class

Cj,α in S[Ω̃Q] and in S[Ω̃Q]−, respectively (cf. [5, p. 491]).

If Ω̃Q is of class C1,α, then the periodic double layer potential with density µ ∈
C1,α(∂Ω̃Q) is defined by

wq,Ω̃Q [µ](x) := −
ˆ
∂Ω̃Q

νΩ̃Q
(y) ·DSq,n(x− y)µ(y) dσy ∀x ∈ Rn ,

and we see that the expression in the right-hand side differs from that in the definition
of wΩ̃[µ] because we replace Sn with Sq,n.

It is well known that the restriction wq,Ω̃Q [µ]|Sq [Ω̃Q] extends to a function w+

q,Ω̃Q
[µ]

of C1,α
q (Sq[Ω̃Q]) and the restriction wq,Ω̃Q [µ]|Sq [Ω̃Q]− extends to a function w−

q,Ω̃Q
[µ] of

C1,α
q (Sq[Ω̃Q]−). Moreover, on the boundary of Ω̃Q we have the jump formula

w±
q,Ω̃Q

[µ]|∂Ω̃Q
= ±1

2
µ+ wq,Ω̃Q [µ]|∂Ω̃Q

∀µ ∈ C1,α(∂Ω̃Q)

(cf., e.g., [5, Thm. 12.10]).

As mentioned in the introduction, we will use Roumieu analytic functions. The
advantage is that the composition operator

(u, v) 7→ u ◦ v
is real analytic in the pair of (u, v) if u is taken in a Roumieu class and v in a Schauder
space (see Proposition 2.2 below). Also, Roumieu analytic functions produce Roumieu
analytic Newtonian potentials (see Theorem 2.1). So, for all bounded open subsets Ω̃ of
Rn and ρ > 0, we set

C0
ω,ρ(Ω̃) :=

{
u ∈ C∞(Ω̃) : sup

β∈Nn
ρ|β|

|β|! ‖D
βu‖

C0(Ω̃)
< +∞

}
,

and

‖u‖
C0
ω,ρ(Ω̃)

:= sup
β∈Nn

ρ|β|

|β|! ‖D
βu‖

C0(Ω̃)
∀u ∈ C0

ω,ρ(Ω̃) ,

where |β| := β1 + · · ·+ βn is the length of the multi-index β := (β1, . . . , βn) ∈ Nn. As is

well known, the Roumieu class
(
C0
ω,ρ(Ω̃), ‖ · ‖

C0
ω,ρ(Ω̃)

)
is a Banach space.

If k ∈ N, then we set

Ckq (Rn) := {u ∈ Ck(Rn) : u(x+ qz) = u(x) ∀x ∈ Rn ,∀z ∈ Zn} ,
and

C∞q (Rn) := {u ∈ C∞(Rn) : u(x+ qz) = u(x) ∀x ∈ Rn ,∀z ∈ Zn} .
Similarly, if ρ > 0, we set

C0
q,ω,ρ(Rn) :=

{
u ∈ C∞q (Rn) : sup

β∈Nn
ρ|β|

|β|! ‖D
βu‖C0(Q) < +∞

}
, (5)

and

‖u‖C0
q,ω,ρ(Rn) := sup

β∈Nn
ρ|β|

|β|! ‖D
βu‖C0(Q) ∀u ∈ C0

q,ω,ρ(Rn) .

We can see that the periodic Roumieu class
(
C0
q,ω,ρ(Rn), ‖·‖C0

q,ω,ρ(Rn)

)
is a Banach space.

It is common to use Newtonian potentials to convert boundary value problems for
the Poisson equation into boundary value problems for the Laplace equation. To keep
this tradition alive we need to introduce a periodic analog of the Newtonian potential:
if h ∈ C0

q (Rn), then we set

Pq[h](x) :=

ˆ
Q

Sq,n(x− y)h(y) dy ∀x ∈ Rn .

Some of the properties of the periodic Newtonian potential are listed in the following
theorem (we refer to [4] for an exhaustive overview).
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Theorem 2.1. The following statements hold.

(i) Let f ∈ C1
q (Rn). Then Pq[f ] ∈ C2

q (Rn) and

∆Pq[f ](x) = f(x)− 1

|Q|n

ˆ
Q

f(y) dy ∀x ∈ Rn .

(ii) Let ρ > 0. Then there exists ρ′ ∈ ]0, ρ] such that Pq[f ] ∈ C0
q,ω,ρ′(Rn) for all

f ∈ C0
q,ω,ρ(Rn) and such that Pq[·] is linear and continuous from C0

q,ω,ρ(Rn) to
C0
q,ω,ρ′(Rn).

Then we introduce a slight variant of Preciso [33, Prop. 4.2.16, p. 51] and [34,
Prop. 1.1, p. 101] on the real analyticity of a composition operator (see also Lanza
de Cristoforis [17, Prop. 2.17, Rem. 2.19] and [19, Prop. 9, p. 214]).

Proposition 2.2. Let m, h, k ∈ N, h, k ≥ 1. Let α ∈ ]0, 1], ρ > 0. Let Ω′, Ω′′ be
bounded open connected subsets of Rh, Rk, respectively. Let Ω′′ be of class C1. Then
the operator T defined by

T [u, v] := u ◦ v
for all (u, v) ∈ C0

Ω′,ρ(Ω
′)×Cm,α(Ω′′,Ω′) is real analytic from the open subset C0

Ω′,ρ(Ω
′)×

Cm,α(Ω′′,Ω′) of C0
Ω′,ρ(Ω

′)× Cm,α(Ω′′,Rh) to Cm,α(Ω′′).

Finally, we need a last technical lemma about the real analytic dependence of certain
maps related to the change of variables in integrals and to the pullback of the outer
normal field. For a proof we refer to Lanza de Cristoforis and Rossi [23, p. 166] and to
Lanza de Cristoforis [19, Prop. 1].

Lemma 2.3. Let α, Ω be as in (1). Then the following statements hold.

(i) For each ψ ∈ A1,α
∂Ω , there exists a unique σ̃[ψ] ∈ C0,α(∂Ω) such that σ̃[ψ] > 0 and

ˆ
ψ(∂Ω)

w(s) dσs =

ˆ
∂Ω

w ◦ ψ(y)σ̃[ψ](y) dσy, ∀w ∈ L1(ψ(∂Ω)).

Moreover, the map σ̃[·] from A1,α
∂Ω to C0,α(∂Ω) is real analytic.

(ii) The map from A1,α
∂Ω to C0,α(∂Ω,Rn) that takes ψ to νI[ψ] ◦ ψ is real analytic.

3 Formulation of problem (3) in terms of integral
equations

First we convert problem (3) into a Dirichlet problem for the Laplace equation. In
order to do so, we would use a function whose Laplacian equals the right-hand side
f ∈ C0

q,ω,ρ(Rn) of the first equation in problem (3). The natural candidate would be the
periodic Newtonian potential Pq[f ]. However, we have

∆Pq[f ](x) = f(x)− 1

|Q|n

ˆ
Q

f(y) dy ∀x ∈ S[Ωε,φ]− . (6)

So we need to get rid of the term 1
|Q|n
´
Q
f(y) dy in equation (6): We note that the

function from Rn \ (p+ qZn) to R that takes x to −Sq,n(x− p)
´
Q
f(y) dy is q-periodic

and analytic, and that

∆

[
− Sq,n(x− p)

ˆ
Q

f(y) dy

]
=

1

|Q|n

ˆ
Q

f(y) dy ∀x ∈ Rn \ (p+ qZn) .

As a consequence,

∆

[
Pq[f ](x)− Sq,n(x− p)

ˆ
Q

f(y) dy

]
= f(x) ∀x ∈ S[Ωε,φ]− (7)

7



and we can use the corrected Newtonian potential

Pq[f ](x)− Sq,n(x− p)
ˆ
Q

f(y) dy

to transform problem (3) into a Dirichlet problem for the Laplace equation, that in turn
we can analyze using the periodic double layer potential.

This is what we do to prove the following Theorem 3.1: first we transform the
Dirichlet-Poisson problem into a Dirichlet-Laplace problem, and then we represent the
solution as the sum of a constant and a double layer potential with a density that satisfies
a certain boundary integral equation pulled-back to ∂Ω.

Theorem 3.1. Let α ∈ ]0, 1[. Let ρ > 0. Let p ∈ Q. Let Ω be as in (1). Let
(φ0, g0, f0) ∈ A1,α

∂Ω × C1,α(∂Ω) × C0
q,ω,ρ(Rn). Let ε0, Oφ0

be as in (2). Let (ε, φ, g, f) ∈
]0, ε0[×Oφ0×C1,α(∂Ω)×C0

q,ω,ρ(Rn). Then problem (3) has a unique solution u[ε, φ, g, f ]

in C1,α
q (S[Ωε,φ]−), which is delivered by the formula

u[ε, φ, g, f ](x) := ω(ε, φ, g, f, x) + Pq[f ](x)− Sq,n(x− p)
ˆ
Q

f(y) dy

+ δ2,n
log ε

2π

ˆ
Q

f(y) dy ∀x ∈ S[Ωε,φ]− ,
(8)

where

ω(ε, φ, g, f, x) := w−q,Ωε,φ [θ ◦ φ(−1)(ε−1(· − p))](x) + c ∀x ∈ S[Ωε,φ]−

and where (θ, c) is the unique solution in C1,α(∂Ω)×R of the system of integral equations

−1

2
θ(t)−

ˆ
∂Ω

νI[φ] ◦ φ(s) ·DSn(φ(t)− φ(s))θ(s)σ̃[φ](s) dσs (9)

−εn−1

ˆ
∂Ω

νI[φ] ◦ φ(s) ·DRq,n(ε(φ(t)− φ(s)))θ(s)σ̃[φ](s) dσs + c

= g(t)−
ˆ
Q

Sq,n(p+ εφ(t)− y)f(y) dy

+
1

εn−2
Sn(φ(t))

ˆ
Q

f(y) dy +Rq,n(εφ(t))

ˆ
Q

f(y) dy ∀t ∈ ∂Ω ,

ˆ
∂Ω

θσ̃[φ] dσ = 0 . (10)

Proof. By (7) we can see that a function u ∈ C1,α
q (S[Ωε,φ]−) solves problem (3) if and

only if the function

u(x)− Pq[f ](x) + Sq,n(x− p)
ˆ
Q

f(y) dy − δ2,n
log ε

2π

ˆ
Q

f(y) dy ∀x ∈ S[Ωε,φ]−

is a solution of the following boundary value problem
∆ω(x) = 0 ∀x ∈ S[Ωε,φ]− ,
ω(x+ qz) = ω(x) ∀x ∈ S[Ωε,φ]− ,∀z ∈ Zn ,
ω(x) = g ◦ φ(−1)(ε−1(x− p))− Pq[f ](x)

+Sq,n(x− p)
´
Q
f(y) dy − δ2,n log ε

2π

´
Q
f(y) dy ∀x ∈ ∂Ωε,φ .

(11)
By [5, Prop. 12.24] the solution of problem (11) exists, is unique, belongs to C1,α

q (S[Ωε,φ]−),
and can be written as

ω(x) = w−q,Ωε,φ [θ ◦ φ(−1)(ε−1(· − p))](x) + c ∀x ∈ S[Ωε,φ]− ,

where (θ, c) is the unique pair in C1,α(∂Ω)× R such that
´
∂Ω
θσ̃[φ] dσ = 0 and

−1

2
θ ◦ φ(−1)(ε−1(x− p)) + wq,Ωε,φ [θ ◦ φ(−1)(ε−1(· − p))](x) + c
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= g ◦ φ(−1)(ε−1(x− p))− Pq[f ](x)

+Sq,n(x− p)
ˆ
Q

f(y) dy − δ2,n
log ε

2π

ˆ
Q

f(y) dy ∀x ∈ ∂Ωε,φ .

By a change of variable, the last equation can be rewritten as

−1

2
θ(t)− εn−1

ˆ
∂Ω

νΩε,φ(p+ εφ(s))DSq,n(p+ εφ(t)− (p+ εφ(s)))θ(s)σ̃[φ](s) dσs + c

= g(t)−
ˆ
Q

Sq,n(p+ εφ(t)− y)f(y) dy

+ Sq,n(p+ εφ(t)− p)
ˆ
Q

f(y) dy − δ2,n
log ε

2π

ˆ
Q

f(y) dy ∀t ∈ ∂Ω .

(12)

Then we note that

Sq,n(εφ(t))

ˆ
Q

f(y) dy =
1

εn−2
Sn(φ(t))

ˆ
Q

f(y) dy + δ2,n
log ε

2π

ˆ
Q

f(y) dy

+Rq,n(εφ(t))

ˆ
Q

f(y) dy ∀t ∈ ∂Ω

and, since
νΩε,φ(p+ εφ(s)) = νI[φ] ◦ φ(s) ∀s ∈ ∂Ω

(cf., e.g., Lanza de Cristoforis [20, Lem. 3.1]), equation (12) can be rewritten as

−1

2
θ(t)− εn−1

ˆ
∂Ω

νI[φ] ◦ φ(s)DSq,n(ε(φ(t)− φ(s)))θ(s)σ̃[φ](s) dσs + c

= g(t)−
ˆ
Q

Sq,n(p+ εφ(t)− y)f(y) dy

+
1

εn−2
Sn(φ(t))

ˆ
Q

f(y) dy +Rq,n(εφ(t))

ˆ
Q

f(y) dy ∀t ∈ ∂Ω ,

which is easily seen to be equivalent to (9).

We denote by (θε,φ,g,f , cε,φ,g,f ) the unique solution of (9)–(10). We would like, how-
ever, to have integral equations that are defined also for ε = 0, and system (9)-(10) is
not. So we rescale and take

(θ#
ε,φ,g,f , c

#
ε,φ,g,f ) := εn−2(θε,φ,g,f , cε,φ,g,f )

for all (ε, φ, g, f) ∈ ]0, ε0[×Oφ0
× C1,α(∂Ω)× C0

q,ω,ρ(Rn). We see that (θ#
ε,φ,g,f , c

#
ε,φ,g,f )

coincide with the unique pair (θ#, c#) ∈ C1,α(∂Ω)× R such that

−1

2
θ#(t)−

ˆ
∂Ω

νI[φ] ◦ φ(s) ·DSn(φ(t)− φ(s))θ#(s)σ̃[φ](s) dσs (13)

−εn−1

ˆ
∂Ω

νI[φ] ◦ φ(s) ·DRq,n(ε(φ(t)− φ(s)))θ#(s)σ̃[φ](s) dσs + c#

= εn−2g(t)− εn−2

ˆ
Q

Sq,n(p+ εφ(t)− y)f(y) dy

+Sn(φ(t))

ˆ
Q

f(y) dy + εn−2Rq,n(εφ(t))

ˆ
Q

f(y) dy ∀t ∈ ∂Ω ,

ˆ
∂Ω

θ#σ̃[φ] dσ = 0 , (14)

and (13)-(14) makes sense also for ε = 0.

Using (θ#
ε,φ,g,f , c

#
ε,φ,g,f ) instead of (θε,φ,g,f , cε,φ,g,f ) we obtain from Theorem 3.1 the

following alternative representation formula for u[ε, φ, g, f ].

9



Corollary 3.2. Let α ∈ ]0, 1[. Let ρ > 0. Let p ∈ Q. Let Ω be as in (1). Let
(φ0, g0, f0) ∈ A1,α

∂Ω × C1,α(∂Ω) × C0
q,ω,ρ(Rn). Let ε0, Oφ0 be as in (2). Let (ε, φ, g, f) ∈

]0, ε0[×Oφ0
×C1,α(∂Ω)×C0

q,ω,ρ(Rn). Then the unique solution u[ε, φ, g, f ] in C1,α
q (S[Ωε,φ]−)

of problem (3) (which is also given by (8)) can be written as

u[ε, φ, g, f ](x) =
1

εn−2
w−q,Ωε,φ [θ#

ε,φ,g,f ◦ φ(−1)(ε−1(· − p))](x) +
1

εn−2
c#ε,φ,g,f

+ Pq[f ](x)− Sq,n(x− p)
ˆ
Q

f(y) dy

+ δ2,n
log ε

2π

ˆ
Q

f(y) dy ∀x ∈ S[Ωε,φ]− ,

where (θ#
ε,φ,g,f , c

#
ε,φ,g,f ) is the unique solution in C1,α(∂Ω)× R of system (13)-(14).

For (ε, φ, g, f) that tends to (0, φ0, g0, f0) system (13)-(14) turns into the following
“limiting system of integral equations,”

−1

2
θ#(t)−

ˆ
∂Ω

νI[φ0] ◦ φ0(s) ·DSn(φ0(t)− φ0(s))θ#(s)σ̃[φ0](s) dσs + c# (15)

= δ2,ng0(t)− δ2,n
ˆ
Q

Sq,n(p− y)f0(y) dy

+Sn(φ0(t))

ˆ
Q

f0(y) dy + δ2,nRq,n(0)

ˆ
Q

f0(y) dy ∀t ∈ ∂Ω ,

ˆ
∂Ω

θ#σ̃[φ0] dσ = 0 . (16)

In the following Theorem 3.3 we prove that (15)-(16) has a solution and that such
solution is unique. As we shall see, system (15)-(16) is related to a specific boundary
value problem, which we call the “limiting boundary value problem.” The proof of
Theorem 3.3 follows the guidelines of the proof of [29, Lem. 3.4].

Theorem 3.3. Let α ∈ ]0, 1[. Let ρ > 0. Let p ∈ Q. Let Ω be as in (1). Let
(φ0, g0, f0) ∈ A1,α

∂Ω ×C1,α(∂Ω)×C0
q,ω,ρ(Rn). Let τ̃ be the unique solution in C0,α(∂Ω) of{

− 1
2τ(t) +

´
∂Ω
νI[φ0] ◦ φ0(t) ·DSn(φ0(t)− φ0(s))τ(s)σ̃[φ0](s) dσs = 0 ∀t ∈ ∂Ω ,´

∂Ω
τ σ̃[φ0]dσ = 1 .

(17)
Then the following statements hold.

(i) The limiting system (15)-(16) has one and only one solution (θ̃#, c̃#) in C1,α(∂Ω)×
R. Moreover,

c̃# =

ˆ
∂Ω

g#
n τ̃ σ̃[φ0] dσ ,

where, for all t ∈ ∂Ω we have

g#
n (t) :=


g0(t)−

´
Q
Sq,n(p− y)f0(y) dy + Sn(φ0(t))

´
Q
f0(y) dy

+Rq,n(0)
´
Q
f0(y) dy if n = 2 ,

Sn(φ0(t))
´
Q
f0(y) dy if n ≥ 3 .

(ii) The limiting boundary value problem
∆u(x) = 0 ∀x ∈ Rn \ I[φ0] ,

u(x) = g#
n ◦ φ(−1)

0 (x) ∀x ∈ φ0(∂Ω) ,
limx→∞ u(x) = c̃# ,

(18)

has one and only one solution ũ# in C1,α
loc (Rn \ I[φ0]). Moreover,

ũ#(x) = w−I[φ0][θ̃
# ◦ φ(−1)

0 ](x) + c̃# ∀x ∈ Rn \ I[φ0] . (19)
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Proof. By classical potential theory (cf., e.g., Folland [11, Ch. 3 ], [5, Lem. 6.34]) and by
the theorem of change of variable in integrals, we can see that problem (17) has a unique
solution τ̃ ∈ C0,α(∂Ω). Then the validity of statement (i) follows by [5, Thm. 6.37 (i)]
and, once more, by the theorem of change of variable in integrals.

To prove statement (ii) we first observe that problem (18) has at most one continuous
solution (this follows by a classical argument based on the Maximum Principle). Then,
by the properties of the classical double layer potentials and exploiting the fact that
(θ̃#, c̃#) is a solution of (15)-(16), we can see that the function ũ# in (19) is harmonic
and satisfies the second and the third conditions in (18) (cf. [5, § 4.5]). Thus it coincides
with the unique solution of (18).

We might be curious to know what is the constant c̃# that appears in Theorem 3.3.
In the following remark we attempt an explanation.

Remark 3.4. By the computations of [7, Lem. 7.2], we can verify that if n = 2, then
ũ# coincides with the unique solution of

∆u(x) = 0 ∀x ∈ R2 \ I[φ0] ,

u(x) = g#
n ◦ φ(−1)

0 (x) ∀x ∈ φ0(∂Ω) ,
supx∈R2\I[φ0] |u(x)| < +∞ ,

and that
c̃# = lim

x→∞
ũ#(x) .

If, instead, n ≥ 3, then an extension of the 2-dimensional argument of [7, Lem. 7.2] to
the (n ≥ 3)-dimensional case shows that

c̃# =
1

(2− n)sn

ˆ
Q

f0(y) dy
(

lim
x→∞

|x|n−2H0(x)
)−1

,

where H0 is the unique function of C1,α
loc (Rn \ I[φ0]) such that ∆H0(x) = 0 ∀x ∈ Rn \ I[φ0] ,

H0(x) = 1 ∀x ∈ φ0(∂Ω) ,
limx→∞H0(x) = 0

and where we can see that the limit

lim
x→∞

|x|n−2H0(x)

exists and belongs to ]0,+∞[ (see, e.g., Folland [11, Chap. 2, Prop. 2.74]). In particular,
we have

c̃# 6= 0 as soon as

ˆ
Q

f0(y)dy 6= 0.

In the following Theorem 3.5 we consider the map that takes (ε, φ, g, f) to (θ#
ε,φ,g,f , c

#
ε,φ,g,f )

and prove that it has a real analytic continuation in a neighborhood of (0, φ0, g0, f0).
The proof of Theorem 3.5 exploits the Implicit Function Theorem for real analytic maps
in Banach spaces (cf., e.g., Deimling [8, Thm. 15.3]).

Theorem 3.5. Let α ∈ ]0, 1[. Let ρ > 0. Let p ∈ Q. Let Ω be as in (1). Let
(φ0, g0, f0) ∈ A1,α

∂Ω × C1,α(∂Ω)× C0
q,ω,ρ(Rn). Let ε0, Oφ0

be as in (2). Then there exist

ε#,1 ∈ ]0, ε0[, an open neighborhood O′φ0
of φ0 in A1,α

∂Ω , an open neighborhood U0 of

(g0, f0) in C1,α(∂Ω)× C0
q,ω,ρ(Rn), and a real analytic map

(Θ#, C#) : ]−ε#,1, ε#,1[×O′φ0
× U0 → C1,α(∂Ω)× R

such that

(Θ#[ε, φ, g, f ], C#[ε, φ, g, f ]) = (θ#
ε,φ,g,f , c

#
ε,φ,g,f ) ∀(ε, φ, g, f) ∈ ]0, ε#,1[×O′φ0

× U0 ,

(Θ#[0, φ0, g0, f0], C#[0, φ0, g0, f0]) = (θ̃#, c̃#) .
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Proof. Let Λ# := (Λ#,1,Λ#,2) be the map from ]−ε0, ε0[×Oφ0×C1,α(∂Ω)×C0
q,ω,ρ(Rn)×

C1,α(∂Ω)× R to C1,α(∂Ω)× R defined by

Λ#,1[ε, φ, g, f, θ#, c#](t) := −1

2
θ#(t)−

ˆ
∂Ω

νI[φ] ◦ φ(s) ·DSn(φ(t)− φ(s))θ#(s)σ̃[φ](s) dσs

−εn−1

ˆ
∂Ω

νI[φ] ◦ φ(s) ·DRq,n(ε(φ(t)− φ(s)))θ#(s)σ̃[φ](s) dσs + c#

−εn−2g(t) + εn−2

ˆ
Q

Sq,n(p+ εφ(t)− y)f(y) dy

−Sn(φ(t))

ˆ
Q

f(y) dy − εn−2Rq,n(εφ(t))

ˆ
Q

f(y) dy ∀t ∈ ∂Ω ,

Λ#,2[ε, φ, g, f, θ#, c#] :=

ˆ
∂Ω

θ#σ̃[φ] dσ ,

for all (ε, φ, g, f, θ#, c#) ∈ ]−ε0, ε0[×Oφ0 × C1,α(∂Ω)× C0
q,ω,ρ(Rn)× C1,α(∂Ω)× R.

We first note that equation Λ#[0, φ0, g0, f0, θ
#, c#] = 0 in the unknown (θ#, c#) ∈

C1,α(∂Ω)×R is equivalent to the limiting system (15)-(16), which has one and only one
solution (θ̃#, c̃#) in C1,α(∂Ω)× R. Similarly, if (ε, φ, g, f) ∈ ]0, ε0[×Oφ0

× C1,α(∂Ω)×
C0
q,ω,ρ(Rn), then equation Λ#[ε, φ, g, f, θ#, c#] = 0 in the unknown (θ#, c#) ∈ C1,α(∂Ω)×

R is equivalent to the system (13)-(14) and has one and only one solution (θ#
ε,φ,g,f , c

#
ε,φ,g,f ) ∈

C1,α(∂Ω)× R.
Then we observe that Λ# is real analytic in a neighborhood of (0, φ0, g0, f0, θ̃

#, c̃#).
Namely, it is real analytic from ]−ε0, ε0[×Oφ0

×C1,α(∂Ω)×C0
q,ω,ρ(Rn)×C1,α(∂Ω)×R to

C1,α(∂Ω)×R. This follows by the real analyticity results for the double layer potential of
Lanza de Cristoforis and Rossi [24, Thm. 4.11 (iii)], by real analyticity results for integral
operators with real analytic kernel (cf. [21]), by the regularity result for volume potentials
of Theorem 2.1, by the analyticity results for the composition operator of Valent [35,
Thm. 5.2, p. 44], by Proposition 2.2, by Lemma 2.3, and by standard calculus in Banach
spaces.

Since we plan to use the Implicit Function Theorem, we now consider the partial
differential ∂(θ#,c#)Λ#[0, φ0, g0, f0, θ̃

#, c̃#] of Λ# at (0, φ0, g0, f0, θ̃
#, c̃#) with respect to

the variable (θ#, c#). By standard calculus in Banach spaces we have

∂(θ#,c#)Λ#,1[0, φ0, g0, f0, θ̃
#, c̃#](θ, c)(t)

= −1

2
θ(t)−

ˆ
∂Ω

νI[φ0] ◦ φ0(s) ·DSn(φ0(t)− φ0(s))θ(s)σ̃[φ0](s) dσs + c ∀t ∈ ∂Ω ,

∂(θ#,c#)Λ#,2[0, φ0, g0, f0, θ̃
#, c̃#](θ, c) =

ˆ
∂Ω

θσ̃[φ0] dσ ,

for all (θ, c) ∈ C1,α(∂Ω) × R. By arguing as in the proofs of Theorem 3.3 (i) and of
[5, Prop. 13.10], we can see that ∂(θ#,c#)Λ#[0, φ0, g0, f0, θ̃

#, c̃#] is a bijection. Then

by the Open Mapping Theorem, the operator ∂(θ#,c#)Λ#[0, φ0, g0, f0, θ̃
#, c̃#] is also a

homeomorphism from C1,α(∂Ω)× R to itself.
We can invoke the Implicit Function Theorem for real analytic maps in Banach

spaces (cf., e.g., Deimling [8, Thm. 15.3]) and deduce the existence of ε#,1, O′φ0
, U0, and

(Θ#, C#) as in the statement.

4 A functional analytic representation theorem for
the solution

We are ready to prove our main Theorem 4.1. As mentioned in the introduction, we
will write the map (ε, φ, g, f) 7→ u[ε, φ, g, f ]V as a combination of real analytic maps
of (ε, φ, g, f) and–possibly singular but completely known–elementary functions of ε. In
particular, we will focus on the case where (ε, φ, g, f) is close to a quadruple (0, φ0, g0, f0)
with the size parameter ε equal to 0, which is interesting also because of the singular
behavior that appears when

´
Q
f0 dx 6= 0. Theorem 4.1 is a consequence of Theorem 3.5
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on the analytic continuation of (ε, φ, g, f) 7→ (θ#
ε,φ,g,f , c

#
ε,φ,g,f ) and of the representation

formula for u[ε, φ, g, f ] of Corollary 3.2.

Theorem 4.1. Let α ∈ ]0, 1[. Let ρ > 0. Let p ∈ Q. Let Ω be as in (1). Let
(φ0, g0, f0) ∈ A1,α

∂Ω × C1,α(∂Ω) × C0
q,ω,ρ(Rn). Let ε#,1, O′φ0

, U0 be as in Theorem 3.5.
Let V be a bounded open subset of Rn \ (p+ qZn). Then there exist ε#,2 ∈ ]0, ε#,1[, an

open neighborhood O′′φ0
of φ0 in A1,α

∂Ω contained in O′φ0
, and a real analytic map U from

]−ε#,2, ε#,2[×O′′φ0
× U0 to C2(V ) such that

V ⊆ S[Ωε,φ]− ∀(ε, φ) ∈ ]−ε#,2, ε#,2[×O′′φ0
(20)

and

u[ε, φ, g, f ]|V =
1

εn−2
U[ε, φ, g, f ] + δ2,n

log ε

2π

ˆ
Q

f(y) dy

∀(ε, φ, g, f) ∈ ]0, ε#,2[×O′′φ0
× U0 .

(21)

Moreover,

U[0, φ0, g0, f0](x) = c̃# + δ2,nPq[f0](x)− δ2,nSq,n(x− p)
ˆ
Q

f0(y) dy ∀x ∈ V . (22)

Proof. Clearly, (20) holds true for ε#,2 and O′′φ0
small enough. Then we note that

u[ε, φ, g, f ](x) = − ε
ˆ
∂Ω

νI[φ] ◦ φ(s) ·DSq,n(x− p− εφ(s))Θ#[ε, φ, g, f ](s)σ̃[φ](s) dσs

+
1

εn−2
C#[ε, φ, g, f ] + Pq[f ](x)− Sq,n(x− p)

ˆ
Q

f(y) dy

+ δ2,n
log ε

2π

ˆ
Q

f(y) dy

for all x ∈ V and all (ε, φ, g, f) ∈ ]0, ε#,2[×O′′φ0
× U0 and we set

U[ε, φ, g, f ](x) := −εn−1

ˆ
∂Ω

νI[φ] ◦ φ(s) ·DSq,n(x− p− εφ(s))Θ#[ε, φ, g, f ](s)σ̃[φ](s) dσs

+ C#[ε, φ, g, f ] + εn−2Pq[f ](x)− εn−2Sq,n(x− p)
ˆ
Q

f(y) dy

for all x ∈ V and all (ε, φ, g, f) ∈ ]−ε#,2, ε#,2[×O′′φ0
× U0. By Theorem 2.1, by Lemma

2.3, by real analyticity results for integral operators with real analytic kernel (cf. [21]),
and by standard calculus in Banach spaces, we deduce that U is a real analytic map from
]−ε#,2, ε#,2[×O′′φ0

×U0 to C2(V ) such that equality (21) holds. Since C#[0, φ0, g0, f0] =

c̃#, we also deduce the validity of (22).

If we fix (φ, g, f) = (φ0, g0, f0) ∈ A1,α
∂Ω × C1,α(∂Ω)× C0

q,ω,ρ(Rn) with

ˆ
Q

f0 dx 6= 0 ,

then formula (21) shows that for n = 2 the function u[ε, φ0, g0, f0] displays a singular
behavior of order log ε as ε tends to 0. Under the same assumptions on the triple (φ, g, f),
we can see that, for n ≥ 3, u[ε, φ0, g0, f0] has a singularity of order ε2−n as ε tends to
0. This can be deduced from (21) and (22) and remembering that c̃# 6= 0 (cf. Remark
3.4).

Also, the fact that U is real analytic means that we can expand U[ε, φ, g, f ] into a
power series that converges (in norm) for (ε, φ, g, f) in a neighborhood of (0, φ0, g0, f0).
The approach presented in this paper can be used to compute the corresponding coeffi-
cients (see, e.g., [5, 6, 7]).
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bilità e le loro Applicazioni” (GNAMPA) of the “Istituto Nazionale di Alta Matematica”
(INdAM). P.M. acknowledges the support from EU through the H2020-MSCA-RISE-
2020 project EffectFact, Grant agreement ID: 101008140.

References

[1] H. Ammari and H. Kang, Polarization and moment tensors. With applications to
inverse problems and effective medium theory. Applied Mathematical Sciences, 162.
Springer, New York, 2007.

[2] H. Ammari, H. Kang, and M. Lim, Effective parameters of elastic composites.
Indiana Univ. Math. J. 55 (2006), no. 3, 903–922.

[3] H. Ammari, H. Kang, and K. Touibi, Boundary layer techniques for deriving the
effective properties of composite materials. Asymptot. Anal. 41 (2005), no. 2, 119–
140.

[4] M. Dalla Riva, M. Lanza de Cristoforis, and P. Musolino, Mapping properties of
weakly singular periodic volume potentials in Roumieu classes. J. Integral Equations
Appl. 32 (2020), no. 2, 129–149.

[5] M. Dalla Riva, M. Lanza de Cristoforis, and P. Musolino, Singularly perturbed
boundary value problems–a functional analytic approach. Springer, Cham, 2021.

[6] M. Dalla Riva, P. Musolino, and R. Pukhtaievych, Series expansion for the effective
conductivity of a periodic dilute composite with thermal resistance at the two-phase
interface. Asymptot. Anal. 111 (2019), no. 3–4, 217–250.

[7] M. Dalla Riva, P. Musolino, and S.V. Rogosin, Series expansions for the solution
of the Dirichlet problem in a planar domain with a small hole. Asymptot. Anal. 92
(2015), no. 3-4, 339–361.

[8] K. Deimling, Nonlinear functional analysis. Springer-Verlag, Berlin, 1985.
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