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Abstract

Functional Data Analysis represents a field of growing interest in statistics. Biomedicine,

demography, public health, finance and environmental science are only a few examples

of fields that can greatly benefit from innovative functional data analysis techniques.

Within the broad range of challenges involving functional data, uncertainty quantifica-

tion in prediction represents a topic of great importance both from a methodological

and an application point of view. The thesis focuses on the development of methods to

create prediction sets, namely subsets of the sample space that include the new random

functional object we aim to predict with a certain nominal confidence level. The thesis

deals with three scenarios of increasing complexity, each time providing the presentation

of the methodologies used, ad-hoc simulation studies and a case study characterized by

a strong application interest.





Sommario

L’analisi dei dati funzionali rappresenta un settore di sempre maggiore interesse in sta-

tistica. Biomedicina, demografia, salute pubblica, finanza e scienze ambientali sono solo

alcuni dei campi che possono largamente beneficiare dallo sviluppo di tecniche innovative

per l’analisi dei dati funzionali. All’interno della vasta gamma di sfide che coinvolgono i

dati funzionali, la quantificazione dell’incertezza nel contesto predittivo rappresenta un

argomento assai rilevante sia dal punto di vista metodologico che da quello applicativo.

L’obiettivo della tesi è lo sviluppo di metodi per la creazione di insiemi predittivi, ossia

sottoinsiemi dello spazio campionario capaci di contenere l’oggetto funzionale aleatorio

che si vuole prevedere con un dato livello di confidenza nominale. La tesi tratta tre

scenari di complessità crescente, presentando di volta in volta la metodologia utilizzata,

proponendo studi di simulazione specifici e affrontando un caso studio dal forte interesse

applicativo.
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Introduction

Overview

Functional Data Analysis is the broad field of statistics whose purpose is to study sets

of curves (Ramsay and Silverman, 2005; Ferraty and Vieu, 2006). Despite the intrinsic

issues of the framework (e.g. the fact that a probability density function generally does

not exist for random functions Delaigle et al., 2010), Functional Data Analysis has

focused on a wide range of topics, such as classification, linear regression, functional

depth and nonparametric techniques (Goia and Vieu, 2016; Aneiros et al., 2019).

This thesis deals with uncertainty quantification in the prediction of functional data.

Within this broad field of research, the interest is in the generation of prediction sets,

namely subsets of the sample space that include a new random functional object with

a certain nominal confidence level. Intuitively, the main goal is to obtain either exact

- i.e. ensuring a coverage equal to the nominal confidence level - or at least valid - i.e.

ensuring a coverage no less than the nominal confidence level - prediction sets.

To do that, we build on top of Conformal Prediction (CP, Vovk et al., 2005; Shafer

and Vovk, 2008), a novel method of forecasting firstly developed in the Machine Learn-

ing community as a way to define prediction intervals for Support Vector Machines

(Gammerman et al., 1998). The interested reader can find a recent review in Fontana

et al. (2022). In the non-functional setting, Conformal Prediction is able to generate

distribution-free, valid/exact prediction intervals, while it has also been used as a data

exploration tool for Functional Data (Lei et al., 2015) via the use of a truncated basis

approach.

In addition to being valid/exact, the prediction sets we will focus on are characterized

by a specific shape. In the classical multivariate non-functional statistical setting, elliptic

regions have been and are still considered as the standard shapes for prediction sets.

Differently, in the functional context many authors (López-Pintado and Romo, 2009;

Lei et al., 2015) note how the focus should be on a particular type of prediction set,

commonly known as prediction band. In order to introduce it, we will consider the

3
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Figure 1: Example of importance of obtaining prediction bands.

simplest case of univariate functional data, but the same arguments can be generalized

to hold in the multivariate functional framework, that will be addressed starting from

Chapter 3. Formally, a band is defined as

{y ∈ Y(T ) : y(t) ∈ B(t), ∀t ∈ T } ,

with y : T → R, Y(T ) the space in which the random function Y takes value and

B(t) ⊆ R interval for each t ∈ T (López-Pintado and Romo, 2009; Degras, 2017). The

focus on this type of sets, that can be defined as the Cartesian product of the (infinitely

many) intervals {B(t) : t ∈ T }, comes from the fact that – differently from a generic

region of Y(T ) – such a shape can be easily visualized on a plot (i.e., it is a band, in

parallel coordinates, as noted by López-Pintado and Romo, 2009) and thus interpreted

with respect to the domain T . In order to clarify this concept, let us consider the

following example. Let C1 be a prediction band and let us consider the simple case

in which B(t) is the interval [0, 1] for each t ∈ T : in doing so, from a geometrical

point of view C1 is an infinite-dimensional hypercube. Specifically, let us focus on two

points of the domain, t1 and t2 respectively, and with a slight abuse of notation let us

indicate with C1(t1, t2) := {(y(t1), y(t2)) : (y(t1), y(t2)) ∈ [0, 1]× [0, 1]} the ”restriction”

of prediction band related to {t1, t2}. In addition, let C2 be for example a different

hypothetical prediction set having the shape of an infinite-dimensional hyper-sphere

such that for instance C2(t1, t2) := {(y(t1), y(t2)) : (y(t1)− 0.5)2+(y(t2)− 0.5)2 ≤ 0.52},
i.e. C2(t1, t2) is the closed disk of center (0.5,0.5) and radius 0.5. Both C1(t1, t2) and

C2(t1, t2) are plotted on the left side of Figure 1. Drawing conclusions only on the basis

of the behavior of the plotted functions in t1 and t2 and ignoring it in all the other

points of the domain, the right side of Figure 1 shows a function that does not belong

to C2 (the dashed curve y1) and a function that belongs to such set (the solid curve
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y2): indeed, conditional on the fact that y1(t1) = 1, the dashed curve y1 must satisfy

y1(t2) = 0.5 to be included in C2, as shown by the red dot on the left of Figure 1.

Conversely, conditional on the fact that y2(t1) = 0.5, y2(t2) can assume whatever value

between 0 and 1 to be included in C2, as shown by the blue solid vertical line on the

left of Figure 1. The fact that the point where y1 and y2 intersect (the black dot on

the right of Figure 1) determines whether to include or not a function in C2 on the

basis of the value assumed by that function in t1 represents an undeniable limit to the

visualization of prediction sets, especially considering that this phenomenon involves

all t ∈ T . Fortunately, this problem is completely avoided by prediction sets as C1,

and more generally by every prediction band: indeed, differently from prediction sets

characterized by other shapes, prediction bands always coincide with (and are not only

a subset of) their envelope.

In view of this, the thesis focuses on the development of methods that necessarily

output valid/exact prediction bands - instead of more general prediction sets - in three

scenarios of increasing complexity: in case of univariate i.i.d. functional data, in a re-

gression framework with multivariate functional response variable and in a multivariate

functional time series framework.

Main contributions of the thesis

The contributions of this thesis can be summarized as follows:

• in Chapter 1 functional prediction sets are formally defined and the Semi-Off-

Line Inductive Conformal framework is introduced. Specifically, we contribute in

two ways to the Conformal Prediction literature: via enriching the results about

the validity of Split Conformal prediction sets by making the exact probability

reached by them explicit (Theorem 1.1) and we provide what is to the best of our

knowledge the first formal proof of the exactness of Smoothed Split Conformal

prediction sets (Appendix A.2).

• in Chapter 2 we propose a new family of nonconformity measures inducing Con-

formal predictors able to create closed-form finite-sample valid or exact prediction

bands for i.i.d. univariate functional data under very minimal distributional as-

sumptions. The procedure is also fast, scalable, does not rely on functional di-

mension reduction techniques and allows the user to select different nonconformity

measures depending on the problem at hand always obtaining valid/exact bands.

Within this family of measures, we propose also a specific measure that guarantees

an asymptotic result in terms of efficiency.



6 Main contributions of the thesis

• in Chapter 3 we extend the results obtained in the previous chapter to multivariate

functional data and to a regression framework. Under the mild assumption of

exchangeable regression pairs, the procedure outputs closed-form finite-sample

either valid or exact multivariate simultaneous prediction bands for multivariate

functional response variable. The fact that the prediction bands modulate their

width based on the local behavior and magnitude of the functional data and that

they can be built around any regression estimator yields a very widely usable

method, which is fairly straightforward to implement. The method is used to

study the usage of a bike-sharing system in the Italian city of Milan in order to

identify the periods of time in which the imbalance between the picked up bikes

and the dropped off bikes could become critical based on some external covariates.

• in Chapter 4 we propose a scalable procedure that outputs closed-form simultane-

ous prediction bands for multivariate functional response variable in a time series

setting. The time dependence does not allow to obtain the aforementioned finite-

sample validity/exactness, but the method is still able to guarantee performance

bounds in terms of coverage and asymptotic exactness, both under some condi-

tions. After evaluating its performance on synthetic data, the method is applied

to build multivariate prediction bands for daily demand and offer curves in the

Italian gas market. The prediction framework thus obtained allows traders to di-

rectly evaluate the impact of their own offers/bids on the market, providing an

intriguing tool for the business practice.

In order to allow the interested reader to separately understand the content of the

three topics covered by the thesis, we introduce the specific problem and the related

bibliography - as well as the notation used - for each of the Chapters 2, 3, 4. For this

reason, the partial overlapping of contents between the chapters is aimed at creating

self-contained sections.



Chapter 1

Conformal Prediction

Let us consider a framework in which we are interested in quantifying the uncertainty

in predicting the new (possibly multivariate) functional response variable Y n+1 on the

basis of the new set of covariates xn+1, the observed regression data z1, . . . ,zn - which

are drawn from independent and identically distributed regression pairs Z1, . . . ,Zn ∼
P , Zi = (Xi,Y i), i ∈ {1, . . . , n} - and a given regression estimator, and we want

to achieve this goal even when there are only a few regression data (i.e., n is small)

and/or the regression estimator is poor. While in the traditional regression framework

in which the response variable is scalar this typically means to find an interval, in the

functional context we are considering it means to determine a subset of the sample space

to which the new response variable will hopefully belong. The setting considered here

is a general regression framework, but all definitions and results still hold in the case of

i.i.d. functional data.

The tool we use to develop our prediction sets is Conformal Prediction, a nonpara-

metric approach proposed in the multivariate (non-functional) literature for the first

time by Gammerman et al. (1998) and thoroughly described in Vovk et al. (2005), that

builds either valid or exact prediction sets under no assumptions other than exchange-

able data (see also Fontana et al., 2022, for a presentation of the topic more oriented

to a statistical audience). Moreover, the CP framework ensures that valid/exact pre-

diction sets are obtained regardless of the sample size n (i.e., not only asymptotically),

a fact that allows Conformal Prediction to be used in an extremely wide range of dif-

ferent scenarios. Specifically, we will focus on the Semi-Off-Line Inductive Conformal

framework, also known simply as Split Conformal (Papadopoulos et al., 2002), a com-

putationally and methodologically convenient alternative to the original Transductive

Conformal method. Split Conformal approach is characterized by two sub-frameworks:

Non-Smoothed Split Conformal framework and Smoothed Split Conformal framework.

7



8 Section 1.1 - Split Conformal

Since the term ‘Split Conformal’ itself is used to indicate ‘Non-Smoothed Split Con-

formal’, later in the discussion we will use the following two terms to indicate the two

sub-frameworks: Split Conformal, Smoothed Split Conformal. The two procedures are

defined in the next two sections.

1.1 Split Conformal

Consistently with the notation of Lei et al. (2018), a valid prediction set for Zn+1 =

(Xn+1,Y n+1) — which is independent from and identically distributed to Z1, . . . ,Zn

— is the set Cn,1−α based on Z1, . . . ,Zn such that

P (Y n+1 ∈ Cn,1−α (Xn+1)) ≥ 1− α (1.1)

for any significance level α ∈ (0, 1), with Cn,1−α (x) = {y ∈ Y(T ) : (x,y) ∈ Cn,1−α}
and Y(T ) the space in which Y i takes values (which will be formally defined in each

chapter on a case-by-case basis). It is possible to notice that the left side of Inequal-

ity (1.1) refers to the unconditional coverage reached by the prediction set, i.e., the

probability is taken over the i.i.d. draws Z1, . . . ,Zn+1. In order to avoid ambiguity,

later in the discussion the term coverage (or unconditional coverage) will be used to re-

fer to P (Y n+1 ∈ Cn,1−α (Xn+1)), the term conditional coverage1 will be used to refer to

P (Y n+1 ∈ Cn,1−α (Xn+1) |Cn,1−α (Xn+1)) and the terms empirical coverage and empirical

conditional coverage will be used to refer to the estimate - from simulated data - of the

coverage and conditional coverage respectively.

In order to present the Split Conformal approach, let us consider the following proce-

dure: given data z1, . . . ,zn, let {1, . . . , n} be randomly divided into two sets I1, I2 and

let us define the training set as {zh : h ∈ I1} and the calibration set as {zd : d ∈ I2},
with |I1| = m, |I2| = l and m, l ∈ N>0 such that n = m + l. Let us also define non-

conformity measure as any measurable function A({zh : h ∈ I1}, z) taking values in R̄,
which is the set of the affinely extended real numbers. The Split Conformal prediction

set for Y n+1 is defined as

Cn,1−α (xn+1) := {y ∈ Y(T ) : δy > α} ,
1It is important to notice that the definition of conditional coverage we provided is non-standard

since typically one conditions on the new set of covariates Xn+1 rather than on the prediction set.
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with

δy :=
|{d ∈ I2 ∪ {n+ 1} : Rd ≥ Rn+1}|

l + 1
,

and nonconformity scores Rd := A({zh : h ∈ I1}, zd) for d ∈ I2, Rn+1 := A({zh :

h ∈ I1}, (xn+1,y)). Intuitively, the nonconformity score Rd (Rn+1 respectively) scores

how different zd ((xn+1,y) respectively) is from the training set, and so δy indicates the

conformity of (xn+1,y) to the training set compared to the conformity of the elements

of the calibration set to the same training set (i.e., it is a valid p-value for testing the

null hypothesis that Y n+1 = y, Vovk et al., 2005). For example, common functional

depths represent outstanding candidates in the choice of the nonconformity measure.

The essential result (due to Vovk et al., 2005) traditionally evoked when dealing

with the Conformal approach concerns the validity of split prediction sets: indeed,

under the exchangeability assumption δy is uniformly distributed over {1/(l+1), 2/(l+

1), . . . , 1} and then Inequality (1.1) holds. Theorem 1.1 proves and enriches such known

result by making the exact probability reached by split prediction sets explicit, by only

assuming that nonconformity scores {Rd : d ∈ I2} have a continuous joint distribution

(an assumption that we will made hereafter). The proof is given in Appendix A.1.

Theorem 1.1. Let Cn,1−α (Xn+1) be a Split Conformal prediction set. If Z1, . . . ,Zn+1

are i.i.d. and {Rd : d ∈ I2} have a continuous joint distribution, then

P (Y n+1 ∈ Cn,1−α (Xn+1)) = 1− ⌊(l + 1)α⌋
l + 1

.

Specifically, Cn,1−α (Xn+1) always satisfies

1− α ≤ P (Y n+1 ∈ Cn,1−α (Xn+1)) < 1− α +
1

l + 1
. (1.2)

A natural consequence of the first part of Theorem 1.1 is that when ⌊(l + 1)α⌋ =

(l+1)α the procedure automatically outputs exact prediction sets: in practice, since in

most cases both α and l are given by the application in hand, such property should be

simply considered as an useful by-product that may occur in some circumstances. More

generally, Theorem 1.1 states that Conformal approach ensures an easy-to-compute

precise coverage for split prediction sets, and not only their validity. Furthermore, the

second part of Theorem 1.1 suggests that the coverage provided by Split Conformal

prediction sets is no less than 1−α and over-coverage is basically avoided when sample

size is large. In particular, Inequality 1.2 represents a minimal modification of Theorem

2 of Lei et al. (2018): the only difference - besides notation - is the change of ‘’≤” with

“<” in the upper bound of the inequality.
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1.2 Smoothed Split Conformal

Moving from the notation introduced in Section 1.1, an exact prediction set for Zn+1

is the set such that

P (Y n+1 ∈ Cn,1−α (Xn+1)) = 1− α. (1.3)

Let us consider a single realization of a uniform random variable in [0, 1], called τn+1,

which is independent from all the other random objects. The Smoothed Split Conformal

approach defines the prediction set for Y n+1 as:

Cn,1−α,τn+1 (xn+1) :=
{
y ∈ Y(T ) : δy,τn+1 > α

}
,

with

δy,τn+1 :=
|{d ∈ I2 : Rd > Rn+1}|+ τn+1 |{d ∈ I2 ∪ {n+ 1} : Rd = Rn+1}|

l + 1
.

By introducing the element of randomization τn+1, Smoothed Split Conformal prediction

sets are, by construction, finite-sample exact for any α, l: to the best of our knowledge,

in the literature there is no formal proof of this well-established result (due to Vovk

et al., 2005), and so a proof is given in Appendix A.2. It is important to notice that the

division of data into the training and calibration sets induces an element of randomness

into the procedure also in the Split Conformal scenario. A possible approach to limit

the effect of this evidence consists of combining prediction sets obtained from different

splits, but the results provided by Lei et al. (2018) suggest to perform a single split. As

a consequence, in this thesis the aforementioned single-split process is considered.



Chapter 2

Prediction bands for univariate i.i.d.

functional data

2.1 Introduction

One of the main roles of statistics in our new, data-rich world is to provide scientists,

business people and policy makers with tools able to deal with an increasing amount of

data, of increasing complexity. Automated sensor arrays and measuring systems now

provide huge quantities of high-frequency and high-dimensional data about all sorts of

social or physical phenomena.

Among the most popular toolboxes that have the capacity to deal with this kind

of complex data one can find Functional Data Analysis (FDA, Ramsay and Silverman,

2005). FDA is an ebullient field of statistics which aim is to develop theory and methods

to deal with data sets made of functions defined over a domain, either uni- or multi-

dimensional, and usually characterized by some degree of smoothness. Since in this

chapter we focus on univariate i.i.d. functional data, in the following we will indicate

with Y(T ) the family of functions y : T → R belonging to L∞(T ) with T closed and

bounded subset of Rη, η ∈ N>0, and with y1, . . . , yn possible realizations of n i.i.d.

random functions Y1, . . . , Yn ∼ P taking values in Y(T ). Without loss of generality,

hereafter we will consider η = 1 since it is the most common practical case.

Despite being born in relatively recent times (Ramsay, 1982), a plethora of standard

multivariate tools have ported to the functional realm: among others Functional Princi-

pal Component Analysis (Ramsay and Silverman, 2005, Chapter 10), Functional Linear

Regression (Ramsay and Silverman, 2005, Chapter 12) and Functional Boxplots (Sun

and Genton, 2011). A problem that, perhaps surprisingly, has not been covered in a

11
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satisfactory way in the FDA literature is the issue of uncertainty quantification in pre-

diction and forecasting. In a more formal way, the interest is in the creation of prediction

sets, namely subsets of Y(T ) that include a new function Yn+1 (i.i.d to Y1, . . . , Yn) with

a certain nominal confidence level 1−α. In particular, the aim is to obtain either exact

- i.e. ensuring a coverage equal to the nominal confidence level - or at least valid - i.e.

ensuring a coverage no less than the nominal confidence level - prediction sets. Recent

works in FDA provide novel insights into this very meaningful applied and theoretical

issue. These attempts can be broadly classified in two classes: a first one, composed

of works based mainly on parametric bootstrapping techniques (e.g., Degras, 2011; Cao

et al., 2012), and a second one, where a dimensionality reduction technique is applied to

render the naturally infinite-dimensional problem more tractable by projecting it on a

finite dimensional functional basis (e.g., Hyndman and Shahid Ullah, 2007; Antoniadis

et al., 2016). These approaches carry some shortcomings: the first group of techniques

is computationally intensive, thus requiring long calculation times, while the second

ones rely on the approximations introduced by basis projection. Both of them, in any

case, either rely on not easily provable distributional assumptions and/or on asymptotic

results.

In this chapter, we build on top of the literature about set prediction for functional

data and the approach presented in Chapter 1 (i.e. Conformal Prediction), by intro-

ducing several theoretical and methodological innovations.

1. In Section 2.2.1 we propose a nonconformity measure inducing a conformal predic-

tor able to create closed-form finite-sample either valid or exact prediction bands

of constant amplitude, under minimal distributional assumptions. The procedure

is fast, scalable and does not rely on widespread functional dimension reduction

techniques.

2. In Section 2.2.2 we propose a family of nonconformity measures (to which the non-

conformity measure introduced in Section 2.2.1 belongs) indexed by modulation

function sI1 that allows for prediction bands with non-constant width, but able

to keep all the aforementioned appealing properties. As a consequence, prediction

bands induced by the nonconformity measures belonging to this family can be

compared on the basis of features other than validity, such as efficiency (i.e. the

size).

3. In Section 2.2.2 we focus on a specific nonconformity measure belonging to this

family which leads to valid prediction bands asymptotically no less efficient than

those obtained by not modulating (Theorem 2.4, Theorem 2.5).
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Finally, in Section 2.3 we propose a simulation study to compare our method with four

alternatives, and in Section 2.4 we apply our approach to the Berkeley Growth Study

data set (Tuddenham and Snyder, 1954). Section 2.5 provides an overview of the main

results.

2.2 Methods

2.2.1 The Nonconformity Measure

Although some authors proposed different approaches to find prediction bands under

the Gaussian assumption (Yao et al., 2005) and through finite dimensional projection

(Lei et al., 2015), to the best of our knowledge no method to create valid prediction

bands by only assuming i.i.d. functional data and by avoiding dimension reduction is

available in the literature.

In light of this, we propose a fast and scalable Conformal predictor that outputs

closed-form finite-sample valid (or even exact) prediction bands under only the i.i.d.

assumption. Indeed, the Conformal framework ensures, by construction, that the pre-

diction sets obtained are always valid/exact (see Chapter 1), but other features such as

shape and size depend on the specific nonconformity measure used: as a consequence,

the core of the Conformal approach is represented by the choice of such measure.

In particular, the nonconformity measure we propose automatically allows to obtain

prediction bands and is based on the essential supremum:

A({yh : h ∈ I1}, y) = ess sup
t∈T

|y(t)− gI1(t)| , (2.1)

with gI1 : T → R a function belonging to L∞(T ) based on {yh : h ∈ I1} and acting as

a point predictor of the new observation. Although valid prediction bands are obtained

regardless the specific gI1 involved, a careful choice of this function helps to obtain small

prediction bands, a desirable property from an application point of view which will be

investigated in Section 2.2.2 (Lei et al., 2018). In view of this, gI1 is typically a point

predictor summarizing information provided by {yh : h ∈ I1}, e.g. the sample functional

mean. However, since the purpose of the chapter is to construct either valid or exact

prediction bands starting from any point predictor in order to obtain a widely usable

procedure, later in the discussion we will always consider gI1 as given - and properly

chosen by the expert according to the specific framework considered. Focusing on the

Split Conformal scenario (the minor changes needed for the Smoothed Split case are
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introduced in Appendix B.1) and by using Cn,1−α instead of Cn,1−α (xn+1) to indicate a

given prediction set due to the absence of covariates, first of all it is possible to notice

that if α ∈ (0, 1/(l + 1)) then Cn,1−α = Y(T ) since δy can not be less than 1/(l + 1):

for this reason, later in the discussion we will always consider α ∈ [1/(l + 1), 1), unless

otherwise stated. If α ∈ [1/(l + 1), 1), the definition of Cn,1−α and δy implies that

y ∈ Cn,1−α ⇐⇒ Rn+1 ≤ k, with k the ⌈(l + 1)(1 − α)⌉th smallest value in the set

{Rd : d ∈ I2}. Then

ess sup
t∈T

|y(t)− gI1(t)| ≤ k ⇐⇒

|y(t)− gI1(t)| ≤ k ∀t ∈ T ⇐⇒

y(t) ∈ [gI1(t)− k, gI1(t) + k] ∀t ∈ T .

Therefore, the Split Conformal prediction set induced by the nonconformity measure

(2.1) is

Cn,1−α := {y ∈ Y(T ) : y(t) ∈[gI1(t)− k, gI1(t) + k]

∀t ∈ T }. (2.2)

Besides having the shape of a a band, the introduced prediction set can be found

in closed form, an appealing property that incredibly speeds up computation time. In

addition, the Conformal framework and the simplicity of the nonconformity measure

ensure highly scalable prediction bands as, on top of the cost needed to build the point

predictor gI1 , the time required to find k increases linearly with l. Then, if a particularly

sophisticated predictor is chosen for gI1 , one is justified in expecting the total computa-

tion cost to be dominated by the calculation of such point predictor. Moreover, as usual

in the prediction framework the band is built around a “central” object (gI1 in this case),

a fact that further suggests to define this function as a data-driven point predictor. Fi-

nally, the prediction bands defined in (2.2) are simultaneous by construction, i.e. bands

ensuring the desired coverage globally (in addition to the pointwise validity). Similarly

to the multivariate (non-functional) setting, a simple concatenation of pointwise predic-

tion intervals based on the pointwise nonconformity score |y(t)− gI1(t)| for all t ∈ T
would lead to a prediction band: that is a subset of the simultaneous prediction band

(2.2) (the proof is given in Appendix B.1); with guaranteed pointwise coverage for all

t ∈ T ; but whose simultaneous coverage over the domain T can be dramatically lower

than the desired one. Moreover, in application scenarios where data are characterized

by specific features (e.g., positivity, monotonicity etc...), the approach presented in this
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Figure 2.1: The left panel shows the Split Conformal prediction band computed
as in (2.2) (solid light blue band) and that computed as in (2.4) by considering the
standard deviation function as sI1 (dashed purple band). For visualization, a random
subsample of y1, . . . , y198 is plotted. The right panel shows the empirical pointwise
conditional coverage reached by the first band (solid light blue line) and by the second
one (dashed purple line). α = 0.1.

section allows to remove portions of the observed prediction bands that violate such

known characteristics, without affecting the coverage and at the same time leading to

“smaller” prediction bands (as shown by Chernozhukov et al., 2019). An example of this

band trimming procedure is given in Section 2.4. This possibility is a desirable implica-

tion which derives from using a fully nonparametric approach to prediction, since this

takes away the burden of an explicit and possibly non-trivial modeling of the existing

constraints.

2.2.2 Improving Efficiency: the Choice of the Modulation Func-

tion

It can be easily noted that the width of (2.2) over T is constant and equal to 2k

but, intuitively, prediction bands that do not adapt their width according to the local

variability of functional data, even though theoretically sound, may be of limited interest

in real applications. Let us consider the following running example: let y1, . . . , y198 be

independent realizations of the random function Y (t) := X1+X2 cos(6πt)+X3 sin(6πt),

with t ∈ [0, 1] and (X1, X2, X3) being a Gaussian random vector such that E[Xi] = 0,

Var[Xi] = 1, Cov[Xi, Xj] = 0.6 for i, j = 1, 2, 3, i ̸= j. The solid light blue band in the

left panel of Figure 2.1 shows the prediction band obtained by the procedure presented

in Section 2.2.1 considering α = 0.1, m = n/2 and gI1 sample functional mean of the

training set: given the different variability of functional data over T , in the low-variance

parts of the domain the prediction band is dramatically large containing all the pointwise

evaluations of the functional data (see, for example, t = 0.5 and nearby points).
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A possible solution to this drawback consists of defining the following nonconformity

measure and nonconformity scores:

A({yh : h ∈ I1}, y) = ess sup
t∈T

∣∣∣∣y(t)− gI1(t)

sI1(t)

∣∣∣∣ , (2.3)

Rs
d := ess sup

t∈T

∣∣∣∣yd(t)− gI1(t)

sI1(t)

∣∣∣∣ ,
Rs

n+1 := ess sup
t∈T

∣∣∣∣y(t)− gI1(t)

sI1(t)

∣∣∣∣ ,
with d ∈ I2 and sI1 := s({yh : h ∈ I1}) : T → R>0 a function which belongs to L∞(T )

based on {yh : h ∈ I1}. At the interpretative level, the new nonconformity measure (2.3)

can be suitably considered as the nonconformity measure (2.1) taking the transformed

functions ys(t) := y(t)/sI1(t) and gsI1(t) = gI1(t)/sI1(t) ∀t ∈ T as input instead of the

original functions y(t), gI1(t). It is important to notice that, since sI1(t) > 0 ∀t ∈ T ,

the function sI1 modulates the original data without altering the order of the functions

at each point t: for this reason, later in the discussion the term modulation function will

be used to refer to sI1 .

Therefore, the Split Conformal prediction band induced by the nonconformity mea-

sure (2.3), obtained by replicating the computations of Section 2.2.1 (see Appendix B.2

for the proof for both the Split Conformal and Smoothed Split Conformal frameworks),

is

Cs
n,1−α :={y ∈ Y(T ) : y(t) ∈ (2.4)

[gI1(t)− kssI1(t), gI1(t) + kssI1(t)]∀t ∈ T },

with ks the ⌈(l + 1)(1 − α)⌉th smallest value in the set {Rs
d : d ∈ I2}. In other words,

the procedure presented in this section consists of modulating the data, computing the

prediction band (2.2) by using the transformed data and back-transforming it in the

non-modulated space: in so doing, prediction bands adapt their width according to the

specific modulation function chosen and their validity is guaranteed by the Conformal

framework. A similar consideration has been highlighted also in the scalar regression

setting by Lei et al. (2018), who proposed a locally weighted Split Conformal method

to vary the width of the prediction sets over the covariates x ∈ Rp.

In order to understand the modification introduced by the modulation function, let

us consider the aforementioned running example and specifically the left panel of Figure

2.1: in this case, the band obtained by considering the standard deviation function
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(Ramsay and Silverman, 2005) as sI1 (dashed purple band) is deeply different from the

solid light blue one and it seems to better adapt to the variability of the data over

T . Intuitively, one is justified in accepting the bands to become wider in the parts

of the domain where data show high variability in order to obtain narrower and more

informative prediction bands in those parts characterized by low variability.

Remark 2.1. Replacing function sI1 with sI2 does not allow to obtain closed-form valid

prediction bands. This is due to the fact that their dependence on the calibration set

involves {Rs
d : d ∈ I2 ∪ {n+ 1}} not being exchangeable, and consequently validity not

being guaranteed.

Remark 2.2. Prediction bands induced by the modulation functions sI1 and λ ·sI1 , with
λ ∈ R>0, are identical. The proof is given in Appendix B.2. As a consequence, an

equivalence relation naturally arises and so for each specific equivalence class (made up

of modulation functions equal up to a multiplicative factor) we will consider the modu-

lation function whose integral is equal to 1. In view of this, the original nonconformity

measure (2.1) can be interpreted as the nonconformity measure induced by the modu-

lation function s0(t) := 1/|T | ∀t ∈ T , whose notation does not include the subscript I1

to underline the lack of dependence of this function on the training set.

Remark 2.3. One of the aim of the introduction of sI1 is to reduce the variability of the

pointwise miscoverage over T . In order to clarify this concept, let us consider the right

panel of Figure 2.1. The solid light blue (dashed purple respectively) line shows the em-

pirical pointwise conditional coverage of the solid light blue (dashed purple respectively)

prediction band showed in the left panel of the same figure, that was obtained by setting

α = 0.1. The empirical conditional coverage has been computed considering the number

of times that 200,000 - independent from and identically distributed to the original sam-

ple - new functions belong to the two prediction bands over T . As expected, the absence

of modularization involves the empirical pointwise converage being highly variable over

T , whereas the use of the standard deviation function as modulation function leads to

an empirical pointwise coverage concentrated around 0.98.

However, in absence of an optimality criterion there are no formal reasons to prefer a

specific modulation function over another, as Conformal approach ensures valid predic-

tion sets regardless the choice of sI1 . In this regard, a criterion that naturally arises in

the prediction framework to discriminate between modulation functions is maximization

of efficiency, i.e. minimization of the size of prediction sets (Vovk et al., 2005) . The

reason of this choice is very intuitive: since prediction bands are, by construction, valid,

one is justified in seeking small prediction bands because they include subregions of the

sample space where the probability mass is concentrated (Lei et al., 2013). In view of



18 Section 2.2 - Methods

this, first of all it is essential to define what the size of a prediction band is, a nontrivial

topic in the functional framework. The definition we will consider is simply the area

between the upper and lower bound of the prediction band:

Q(sI1) :=

∫
T
2 · ks · sI1(t)dt = 2 · ks, (2.5)

that is equal to ks up to a constant since
∫
T sI1(t)dt = 1.

Formally, in the usual finite-dimensional setting the aim would be to find the optimal

modulation function that minimizes the risk functional E[ks]. Unfortunately, in the

functional setting even the concept of probability density function is generally not well

defined since there is no σ-finite dominating measure (Delaigle et al., 2010), and so that

minimization is not feasible for general P . As a consequence, the minimization problem

must be simplified: by considering ks as a non-random quantity depending on observed

functions y1, . . . , yn instead of random functions Y1, . . . , Yn, the aim becomes the direct

minimization of ks. Although initially it may seem like an oversimplification to some

readers, it is important to underline that this approach is made possible by a well-

established principle representing the core idea of many algorithms and methods (e.g.

machine learning techniques) known as empirical risk minimization principle (Vapnik,

1992).

The proposed adjustment reduces the complexity of the optimization task, but the

problem still presents tricky aspects. Indeed, not only the minimization can not be

analytically addressed by calculus of variations given the complexity of ks, but also the

optimal modulation function can not be uniquely determined given the specific structure

of Rs
d, d ∈ I2. In fact, the dependency of sI1 only on the functions of the training set

and of the numerator of Rs
d (i.e. |yd(t)− gI1(t)| , d ∈ I2) also on the functions of

the calibration set makes the optimization unfeasible for all P and the general problem

ill-posed.

In such a non-standard context, the line of reasoning must necessarily be changed.

Therefore, in the discussion below we focus on finding a function - called c-function

hereafter for the sake of simplicity - satisfying the definition of modulation function but

depending also on the calibration set through {yd : d ∈ I2} and such that

1. for m, l → +∞ it converges to a given function and its training counterpart

(i.e. the function - called t-function hereafter - equal to the c-function but whose

dependence on {yd : d ∈ I2} is replaced by the dependence on the training set

through {yh : h ∈ I1}) converges to the same function
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2. it leads to prediction bands that are not wider (in the sense of (2.5)) than those

obtained by not modulating (i.e. by using s0)

If these two conditions are met, the use of the t-function as modulation function ensures

that valid prediction bands are obtained (due to its dependence only on {yh : h ∈ I1})
and that asymptotically the second condition is satisfied. Specifically, that condition

represents a desirable and appealing property since, if violated, the modulation process

could represent a meaningless complication compared to the original nonconformity

measure (2.1).

In order to construct a c-function able to meet these two conditions, it is important to

focus on what ks is: ignoring just for now the contribution of the modulation function,

ks is a quantity derived by the ⌈(l + 1)(1− α)⌉th least extreme function between those

in the calibration set, in which the concept of ”extreme” is naturally induced by the

metric used. In light of this, the guidelines we decided to follow in the construction of a

meaningful c-function are two. First of all, the behavior of the l−⌈(l+1)(1−α)⌉ most

extreme functions in the calibration set should not be taken into account since they do

not affect the value of ks. Secondly, given the specific nonconformity measure considered,

the c-function should modulate data considering the remaining ⌈(l+1)(1−α)⌉ functions
on the basis of the most extreme value observed ∀t ∈ T .

Inspired by these guidelines, we propose the following c-function:

s̄cI1(t) :=
maxd∈H2 |yd(t)− gI1(t)|∫

T maxd∈H2 |yd(t)− gI1(t)|dt
(2.6)

with

H2 := {d ∈ I2 : ess sup
t∈T

|yd(t)− gI1(t)| ≤ k}

and k defined as in Section 2.2.1, i.e. the ⌈(l + 1)(1 − α)⌉th smallest value in the set

{Rd : d ∈ I2}. The corresponding t-function is

s̄I1(t) :=
maxh∈H1 |yh(t)− gI1(t)|∫

T maxh∈H1 |yh(t)− gI1(t)|dt
(2.7)

with H1 = I1 if ⌈(m+ 1)(1− α)⌉ > m, otherwise

H1 := {h ∈ I1 : ess sup
t∈T

|yh(t)− gI1(t)| ≤ γ}

with γ the ⌈(m+1)(1−α)⌉th smallest value in the set {ess supt∈T |yh(t)−gI1(t)| : h ∈ I1}.
In order not to overcomplicate the notation, in the definition of s̄cI1 and s̄I1 we

quietly assumed that both numerators are different from 0 ∀t ∈ T almost surely. If not,
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the adjustment described in Appendix B.2 is developed. From an operational point of

view, t-function s̄I1(t) ignores the most extreme functions (i.e. the functions belonging

to I1 \ H1) and modulates data on the basis of the remaining non-extreme functions.

Specifically, the dependence of γ on α allows to provide carefully chosen modulation

process according to the specific level 1− α chosen for the prediction set.

The fulfillment of the two aforementioned conditions by the function (2.6) is proved

by the following two theorems.

Theorem 2.4. Let m/n = θ with 0 < θ < 1 and let Var[gI1(t)] → 0 when m → +∞.

Then s̄cI1 and s̄I1 converge to the same function when n → +∞.

Theorem 2.5. Q(s0) ≥ Q(s̄cI1). Specifically, Q(s0) = Q(s̄cI1) if and only if maxd∈H2 |yd(t)−
gI1(t)| is constant almost everywhere.

Both proofs are given in Appendix B.2. It is important to notice that Theorem

2.4 requires very mild conditions, an evidence that allows it to hold in many general

contexts.

In light of this, the function (2.7) represents an outstanding candidate in the choice

of the modulation function since the Conformal setting and the nonconformity measure

(2.3) guarantee valid prediction bands - as well as all the other desirable properties

highlighted in Section 2.2.1 - and at the same time to asymptotically obtain prediction

bands no less efficient than those induced by s0.

The fact that s̄cI1(t) leads to prediction bands that are not wider than those obtained

by not modulating is not the only relevant result that is possible to obtain. The fol-

lowing Theorem shows that prediction bands induced by s̄cI1 are also smaller than those

induced by the functions belonging to a specific group. This theorem provides a fur-

ther theoretical justification for preferring function (2.7) to other possible modulation

functions.

Theorem 2.6. Let us define CH2 := I2 \ H2 and let t∗d be the value such that

|yd(t∗d)− gI1(t
∗
d)| = ess sup

t∈T
|yd(t)− gI1(t)| ∀d ∈ I2. (2.8)

If t∗d is not unique, it is randomly chosen from the values that satisfy (2.8).

Let sζI1 be a modulation function such that:

1. sζI1 ̸= s̄cI1 in the sense of Lebesgue, i.e. ∃ T ∗ ⊆ T such that sζI1(t) ̸= s̄cI1(t) ∀t ∈ T ∗

and µ(T ∗) > 0, with µ the Lebesgue measure

2. sζI1(t
∗
i ) ≤ s̄cI1(t

∗
i ) ∀i ∈ CH2
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If |H2| = ⌈(l + 1)(1− α)⌉, then Q(sζI1) > Q(s̄cI1).

The proof is given in Appendix B.2, along with the demonstration that Theorem

2.5 is not a direct consequence of Theorem 2.6 since s0 may not fulfill s0(t∗i ) ≤ s̄cI1(t
∗
i )

∀i ∈ CH2. Also in this case, the field of application of Theorem 2.6 is particularly wide

since the condition about the cardinality of |H2| is always met under the assumption

concerning the continuous joint distribution of {Rd : d ∈ I2} made in Chapter 1.

The definitions of functions (2.6), (2.7) and Theorems 2.4, 2.5 and 2.6 can be easily

generalized to hold also in the Smoothed Conformal framework. Technical details are

provided in Appendix B.2. Before moving on to the Simulation Study, we would like to

point out that the criterion used in this chapter to find an optimal modulation function

is different in nature from the typical results provided in the Conformal Prediction

framework (which for example are Oracle results, Lei et al., 2018). This choice is due

to the fact that the Conformal Prediction asymptotic optimality properties typically

require specifying models for the true data generating process and/or analyzing the

asymptotic properties of estimators, which is something out of scope given the intrinsic

issues of the functional context and the full generality that characterizes the chapter.

2.3 Simulation Study

2.3.1 Study Design

In this section, we summarize the results of a two-stage simulation study comparing

our approach with four alternative methods from the literature that will be detailed in

the following: Naive, Band Depth, Modified Band Depth, and Bootstrap. In Section

2.3.2 the empirical coverage is evaluated for each approach in three different scenarios,

whereas in Section 2.3.3 the prediction bands obtained by the methods that guarantee

a proper coverage are compared in terms of efficiency. The hierarchical structure of the

simulation study reflects the “nested” nature of the two features we are considering, i.e.

coverage and size: indeed, the size of a prediction set should be investigated only after

verifying that the method which outputted that specific prediction set guarantees the

desired coverage, which represents the primary aspect when assessing prediction sets.

Specifically, the three scenarios allow to compare the methods in three different

frameworks: when data show a constant variability over the domain (Scenario 1), when

data show a different variability over the domain (Scenario 2) and when data are char-

acterized by outliers (Scenario 3). Formally, the three scenarios are:
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• Scenario 1. ∀i = 1, . . . , n

yi(t) = xi1 + xi2 cos(6π( t+ ui)) + xi3 sin(6π (t+ ui))

with T = [0, 1], (x11, x12, x13)
T , . . . , (xn1, xn2, xn3)

T i.i.d. realizations of

X ∼ N3

(
0,
[

1 0.6 0.6
0.6 1 0.6
0.6 0.6 1

])
and u1, . . . , un i.i.d. realizations of

U ∼ Unif

[
−1

6
,
1

6

]
.

• Scenario 2. ∀i = 1, . . . , n

yi(t) =
13∑
j=1

cijB
ω
j (t)

with T = [0, 1], Bω
j (t) the b-spline basis system of order 4 with interior knots

ω = (0.1, 0.2, . . . , 0.9) and (c1,1, . . . , c1,13)
T , . . . , (cn,1, . . . , cn,13)

T i.i.d. realizations

of C = (C1, . . . , C13) ∼ N13 (0,Σ) such that Var[Ci] = 0.032 ∀i ̸= 7, Var[C7] =

0.0032 and Cov[Ci, Cj] = 0 for i, j = 1, . . . , 13, i ̸= j.

• Scenario 3. The scenario is the previous one after contamination with outliers.

Formally, (c1,1, . . . , c1,13)
T , . . . , (cn,1, . . . , cn,13)

T are i.i.d. realizations of a vector

random variable whose probability density function is a Gaussian mixture density

with weights (1−β, β), shared mean vector 0, the covariance matrix defined as in

Scenario 2 for the first group and such that Var[C7] = 0.32 instead of Var[C7] =

0.0032 for the second group.

A graphical representation of a replication for each scenario with n = 18 is provided in

Figure 2.2. The Conformal approach is evaluated in the Split Conformal framework and

considering three different modulation functions: s0, the normalized standard deviation

function sσI1 as natural representative of functions that capture data variability, and s̄I1 .

Since the focus of the work is not on the construction of sophisticated point predictors

gI1 but rather on the construction of valid prediction bands around any point predictor

gI1 , we hereby simply set gI1(t) = ȳI1(t).

The performance of our approach is compared to four alternative methods. These

are: Naive method, which outputs prediction bands defined as {y ∈ Y(T ) : y(t) ∈
[qα

2
(t) , q1−α

2
(t)] ∀t ∈ T } with qα (t) empirical quantile of order α for (y1(t), . . . , yn(t)).

Such approach represents a very naive solution to the prediction task we are considering
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Figure 2.2: Graphical representation of the scenarios. The sample size is n = 18.

and we expect it to suffer greatly from undercoverage; BD and MBD methods, which

output the sample (1 − α) central region induced by the band depth (BD) and the

modified band depth (MBD) respectively (Sun and Genton, 2011); Boot. method, which

outputs the band based on 2500 bootstrap samples, as proposed by Degras (2011). We

consider α = 0.1, β = 0.06 and three different sample sizes: n = 18, n = 198, n = 1998.

In order not to overcomplicate the simulation study, the ratio ρ = l/n is kept fixed and

equal to 0.5 as commonly suggested in the Conformal literature. A deeper investigation

about the possible effect of the ratio ρ = l/n on efficiency - even though possibly

interesting - is out of the scope of this work. The atypical values of n in the simulations

have been simply chosen to have a miscoverage exactly equal to α (indeed in these

cases ⌊(l + 1)α⌋/(l + 1) = α) and consequently making the simulation results easier to

read. Similar results would have been attained with rounded values of n (e.g. n = 20,

n = 200, n = 2000) by evaluating the empirical miscoverage considering the theoretical

one: ⌊(l+1)α⌋/(l+1) (see Theorem 1.1). The simulations are achieved by using the R

Programming Language (R Core Team, 2020) and the computation of the band depth

and the modified band depth by roahd package (Tarabelloni et al., 2018). Finally, every

combination of scenario and sample size is evaluated considering N = 500 replications.

2.3.2 Coverage

Table 2.1 shows the sample mean and the standard deviation of the empirical con-

ditional coverage provided by the prediction bands generated by each method for each

combination of sample size and scenario. Specifically, the empirical conditional cover-

age of a given prediction band (i.e. the empirical coverage obtained conditioning on the

prediction band obtained by the observed data) is computed as the fraction of times
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Conformal Method Alternative Methods
s0 sσI1 s̄I1 Naive MBD BD Boot.

n = 18 Scenario 1 0.902 0.900 0.900 0.409 0.504 0.547 0.875
(0.088) (0.085) (0.087) (0.092) (0.109) (0.111) (0.064)

Scenario 2 0.901 0.910 0.909 0.048 0.123 0.145 0.922
(0.089) (0.081) (0.083) (0.021) (0.044) (0.051) (0.042)

Scenario 3 0.904 0.904 0.907 0.049 0.124 0.148 0.932
(0.084) (0.089) (0.085) (0.023) (0.049) (0.055) (0.061)

n = 198 Scenario 1 0.901 0.902 0.901 0.625 0.861 0.900 0.865
(0.029) (0.030) (0.031) (0.031) (0.028) (0.028) (0.019)

Scenario 2 0.901 0.899 0.900 0.189 0.733 0.788 0.897
(0.029) (0.031) (0.029) (0.019) (0.036) (0.032) (0.015)

Scenario 3 0.897 0.900 0.899 0.197 0.742 0.798 0.892
(0.031) (0.030) (0.031) (0.020) (0.034) (0.030) (0.020)

n = 1998 Scenario 1 0.900 0.899 0.900 0.666 0.942 0.918 0.866
(0.010) (0.010) (0.010) (0.011) (0.006) (0.008) (0.008)

Scenario 2 0.900 0.900 0.899 0.233 0.958 0.971 0.899
(0.009) (0.010) (0.010) (0.007) (0.006) (0.005) (0.008)

Scenario 3 0.900 0.899 0.900 0.240 0.959 0.973 0.884
(0.010) (0.010) (0.010) (0.008) (0.006) (0.005) (0.007)

Table 2.1: For each combination of sample size and scenario, the first line shows
the sample mean of the empirical conditional coverage, the second line the sample
standard deviation in brackets. A combination of mean and st. deviation is gray-
colored if the corresponding 99% confidence t-interval for the (unconditional) coverage
includes value 1− α.

that 10,000 new functions - independent from and identically distributed to the orig-

inal sample - belong to such prediction band. The purpose of this scheme is twofold:

first of all, by averaging the N = 500 empirical conditional coverages obtained for each

combination of scenario and sample size it is possible to obtain the empirical coverage,

which is an estimate of the (unconditional) coverage. Secondly, this scheme allows to

evaluate the variability of the conditional coverage when the observed sample varies, a

particularly useful indication in real applications. In order to facilitate the visualization

of the results and to allow inferential conclusions, a specific combination of sample mean

and standard deviation is gray-colored in Table 2.1 if the corresponding 99% confidence

t-interval for the (unconditional) coverage includes 0.90, i.e. the value 1− α.

The simulation study fully confirms the theoretical property concerning the validity

of Split Conformal prediction sets with 53 out of the 54 99%-confidence intervals asso-

ciated to conformal bands including the nominal value 1− α. The evidence provided is

particularly appealing since the desired coverage is guaranteed also when a very small

sample size (n = 18) is considered, a framework in which such property is traditionally

hard to obtain. Vice versa, in almost all cases the alternative methods do not ensure the
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s0 sσI1 s̄I1
Mean st.dev Mean st.dev Mean st.dev

n = 18 Scenario 1 8.113 (2.044) 10.088 (3.618) 11.638 (4.309)
Scenario 2 0.142 (0.025) 0.165 (0.041) 0.185 (0.049)
Scenario 3 0.246 (0.192) 0.448 (0.550) 0.505 (0.633)

n = 198 Scenario 1 7.175 (0.560) 7.295 (0.608) 7.556 (0.647)
Scenario 2 0.127 (0.006) 0.109 (0.005) 0.120 (0.006)
Scenario 3 0.139 (0.013) 0.139 (0.013) 0.137 (0.020)

n = 1998 Scenario 1 7.059 (0.179) 7.065 (0.176) 7.128 (0.184)
Scenario 2 0.125 (0.002) 0.106 (0.001) 0.117 (0.002)
Scenario 3 0.136 (0.003) 0.137 (0.004) 0.131 (0.003)

Table 2.2: Size of the prediction bands. For each row, the lowest value of the sample
mean is gray-colored.

desired coverage with some estimates dramatically far from 1 − α, especially for small

sample sizes (i.e., n = 18). In view of this, in Section 2.3.3 only the efficiency of the

Conformal methods is evaluated and compared.

2.3.3 Efficiency

Table 2.2 shows the sample mean and the standard deviation of the size defined

as in Equation 2.5 of the prediction bands computed in the previous section for each

combination of modulation function, sample size and scenario. First of all, it is notice-

able that when n = 18 the absence of modulation (i.e. s0) seems to provide smaller

prediction bands than those induced by sσI1 and s̄I1 , conceivably because the extremely

low number of functions belonging to the training set (m = 9) leads to an unstable

and possibly misleading modulation function supporting the statistical intuition that

for small sample sizes simpler modulation functions should be preferred.

More deeply, focusing now on each scenario separately and considering the remaining

sample sizes, Scenario 1 represents a framework in which a constant width prediction

band is the ideal candidate since the horizontal shift due to the random variable U

induces constant variance along the domain. As a consequence, the pointwise evaluations

Y (t) are equally distributed ∀t ∈ T and so one is justified in expecting sσI1 and s̄I1 to be

of no practical use. The results confirm this conjecture, but the differences between the

three modulation functions seems to decrease as the sample size grows (see, for example,

the difference between s0 and s̄I1 when n increases from 198 to 1998).

Scenario 2 represents a completely different setting, in which a modulation process

is appropriate since the curves highlight a reduction of variability in the central part of

the domain. As expected, s0 induces larger predictions bands (on average) than those
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Figure 2.3: The prediction bands obtained considering a combination of modulation
functions (s0 at the top, sσI1 in the middle, s̄I1 at the bottom) and sample (the original
one on the left, the contaminated one on the right). In all cases, the dashed line
represents gI1 .

obtained by sσI1 and s̄I1 and it forces the band to be unnecessary large around t = 0.5.

On the other hand, the other two modulation functions (especially sσI1) provide a better

performance since they allow the band width to be adapted according to the behavior

of data over T .

Scenario 3 is obtained by contaminating Scenario 2 with outliers. Table 2.2 suggests

that s̄I1 outperforms both s0 and - unlike Scenario 2 - also sσI1 . In order to clarify this

evidence, let us consider a sample y1, . . . , y198 generated as in Scenario 2 that, after being

created, is exposed to a contamination process in which each function yi, i = 1, . . . , 198,

becomes an outlier as described in Scenario 3 with probability β = 0.06. Figure 2.3 shows

examples of prediction bands induced by the three modulation functions (s0 at the top,

sσI1 in the middle, s̄I1 at the bottom) obtained by considering the original sample (on

the left) and the contaminated one (on the right). Moving from Scenario 2 to Scenario

3 and focusing on sσI1 , it is possible to notice that the increased variability in the central

part of the domain due to the contamination process involves an increase in the band

width around t = 0.5. This behavior, although not surprising, is counterproductive

since the purpose of the method is to create prediction bands with coverage at the

level 1 − α = 0.9 and in this specific case ∼ 94% of the functions tends to be highly
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concentrated around gI1 in the central part of the domain, and not overdispersed. By

contrast, s̄I1 by construction removes the most extreme (in terms of measure (2.1))

functions and properly modulates data on the basis of the non-extreme functions keeping

the band shape unchanged. From a methodological point of view, this is due to the

dependency of s̄I1 on α which allows only a portion of the training set - chosen according

to the specific level 1− α - to be taken into account and the trend of the “misleading”

functions to be completely ignored. Overall, the evidence provided by this example -

together with the results provided by Table 2.2 - suggests that s0 is not affected by

the contamination process (pro) but does not modulate (con), sσI1 modulates (pro) but

overreacts to the contamination process (con), whereas s̄I1 is able to simultaneously

modulate (pro) and manage the contamination process (pro).

In short, the three scenarios seem to highlight that s0 is an outstanding candidate

when the sample size is very small, whereas a modulation process is useful in the very

common case in which the variability over T varies and the sample size is either moderate

or large. Specifically, s̄I1 provides encouraging results in some complex scenarios as it

focuses on the specific behavior of the central (according to the level 1− α) portion of

data.

2.4 Application

In order to show the wide generality of our approach, in this section we apply our

Conformal approach to a well known data set in the FDA community (i.e., the Berkeley

Growth Study data set Tuddenham and Snyder, 1954) that is characterized by features

that cannot be trivially framed in a standard probabilistic parametric model, i.e.: het-

eroscedasticity along the functional domain, phase misalignment, presence of outlier

curves, and positivity constraint. The specific data set contains in detail the heights (in

cm) of 54 female and 39 male children measured quarterly from 1 to 2 years, annually

from 2 to 8 years and biannually from 8 to 18 years. We focus on the first deriva-

tive of the growth curves, which are estimated in a standard fashion by R function

smooth.monotone of fda package (Ramsay et al., 2020) implementing monotonic cubic

regression splines (Ramsay and Silverman, 2005, chap. 6). Specifically, the prediction

bands here reported refer to the growth velocity curves between 4 and 18 years for girls

and boys separately comparing, in the Split Conformal framework, the three modula-

tion functions analyzed in Section 2.3 and with gI1 being simply for each group the

corresponding functional sample mean, α = 0.5, m = 27 for girls, m = 20 for boys.

The prediction bands are shown in Figure 2.4. Note that since the application at hand
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Figure 2.4: Berkeley Growth Study data: each panel shows the prediction band
obtained considering a different modulation function (s0 on the left, sσI1 in the middle,
s̄I1 on the right). In all cases, the dashed line represents gI1 . Predictions for girls at
the top and predictions for boys at the bottom.

does not allow the functions to be negative in any subset of the domain, the prediction

bands can be (and are indeed) truncated to 0 without decreasing their coverage.

Focusing on Figure 2.4, the graphical representation of the prediction bands high-

lights the well-known different growth path between girls and boys, in which the latter

group typically starts to grow later but achieves higher growth velocities. In terms of the

role of modulation functions, their impact on female growth velocity prediction seems

to be less than the one on the male bands. From a prediction point of view, girls’ curves

represent a simpler scenario in which the variance is lower along the domain, while boys’

curves represent a more tricky scenario with strong heteroscedasticity of the functions

over T (due to the joint presence of misalignment of data and a very localized high peak

around 13 years of age). As expected from these considerations, the prediction bands

for a new girl’s velocity curve obtained using the different modulation functions are rel-

atively similar, with the prediction band associated to s̄I1 being aslightly narrower due

to the presence of outliers. Instead focusing on boys’ curves, the strong heteroscedas-

ticity forces the prediction band induced by s0 to be uselessly large in some parts of the

domain, whereas in general the prediction band induced by sσI1 seems to be smoother

than that induced by s̄I1 , whose “bumps” are caused by the specific modulation func-

tion used. Both for boys and girls s̄I1 outputs the smallest prediction band, as shown

in Table 2.3 where the quantity Q(·)/|T | is reported. As mentioned at the beginning
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s0 sσI1 s̄I1
Females 2.904 3.244 2.811
Males 3.334 3.107 2.690

Table 2.3: Berkeley Growth Study data: average width of the prediction bands.

of the section, the results shown are obtained without aligning the raw data since the

aim is to predict the actual growth curve of a new individual. However, it is interesting

to notice that the development of the procedure with aligned data may have an impact

on the size and shape of the obtained prediction bands (e.g. by creating smaller predic-

tion bands due to the decrease in data variability) as long as the alignment procedure

maintains the assumptions underlying the Conformal approach.

2.5 Conclusion

The creation of prediction sets for univariate i.i.d. functional data is still an open

problem of paramount importance in statistical methodology research. In order to define

and compute them, the great majority of methods currently presented in the literature

rely on non-provable distributional assumption, dimension reduction techniques and/or

asymptotic arguments. On the contrary, the approach proposed in this chapter repre-

sents an innovative proposal in this field: indeed, the Conformal framework ensures that

finite-sample either valid or exact prediction sets are obtained under minimal distribu-

tional assumptions, whereas the specific family of nonconformity measures introduced

guarantees - besides prediction sets that are bands - also a fast, scalable and closed-

form solution. Moreover, despite the fact that our approach works regardless the specific

choice of sI1 (which can be chosen, for example, a priori), we proposed a specific data-

driven modulation function, namely s̄I1 , which leads to prediction bands asymptotically

no less efficient than those obtained by not modulating.

Our procedure is able to achieve encouraging results and could represent a promising

starting point for future developments, but at least two aspects, among others, should

be carefully investigated. First of all, the division of data into the training and calibra-

tion sets induces an intrinsic element of randomness into the method and, although this

phenomenon is well known in the Conformal literature, a quantification of the effect of

the split process - and also of the values m and l - on the procedure has not yet been

properly analyzed. Secondly, the prediction sets proposed in this chapter are purposely

shaped as functional bands. This geometrical characterization in most application sce-

narios can be considered well suited. Nevertheless, one can think at more complicated
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scenarios (e.g., functional mixtures) where prediction set made of multiple bands could

be considered more suited from an application point of view. This possible extension

will be the object of future work.



Chapter 3

Prediction bands for multivariate

functional data in a regression

framework

3.1 Introduction

Functional Data Analysis (FDA, Ramsay and Silverman, 2005) is a fairly established

field of statistics whose goal is to develop theory and methods to treat datasets composed

of smooth functions. Since the first seminal paper by Jim O. Ramsay (Ramsay, 1982),

the research concerning FDA has focused on a wide range of topics: classification, linear

regression, functional depth and nonparametric techniques are only a few examples of

up-to-date fields of research, and a detailed presentation of some of the most modern

topics concerning FDA can be found, for example, in Goia and Vieu (2016); Aneiros

et al. (2019).

Among them, various inferential tools have been developed to deal with functional

data. Simultaneous confidence bands (for recent contributions see, e.g., Choi and

Reimherr, 2018; Telschow and Schwartzman, 2022) and related testing procedures such

as envelope tests (see, e.g., Myllymäki et al., 2017; Lopez-Pintado and Qian, 2021)

represent key instruments to make inferential conclusions on functional parameters.

Closely related to these procedures (as suggested by the work Liebl and Reimherr,

2019) is the creation of prediction sets, namely subsets of the sample space including a

new functional observation with a certain nominal confidence level 1−α. Some very re-

cent works in FDA provide some knowledge into this theoretical (but yet full of applied

repercussions) issue. A first group of approaches consists of works principally based

on parametric bootstrapping techniques (e.g., Degras, 2011; Cao et al., 2012), and a

31
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second one is characterized by the application of dimensionality reduction techniques to

manage the naturally infinite dimensionality (e.g., Hyndman and Shahid Ullah, 2007;

Antoniadis et al., 2016). These first two groups carry obvious drawbacks since they are

either based on not easily provable distributional assumptions and/or on asymptotic re-

sults. In addition, the first class of approaches is computationally demanding, whereas

the second one relies on the approximations induced by basis projection. A third group

is based on the novel approach to forecasting in the framework of Conformal Prediction

presented in Chapter 2. This approach is able to output either exact — i.e., ensuring

a coverage equal to 1− α — or valid — i.e., ensuring a coverage no less than 1− α —

prediction bands under minimal distributional assumptions and in an efficient way, thus

bypassing the aforementioned methodological shortcomings. However, this is done in

the setting of univariate i.i.d. functional data. The objective of the present work is to

complement the results obtained in Chapter 2 by extending the method to multivariate

functional data and to a regression framework. As will become clearer below, Conformal

Prediction is strongly connected to another ebullient field of research in FDA, namely

the functional depth, with which it shares the goal of evaluating the centrality/confor-

mity of a given functional observation with respect to a group of observed functions.

Actually, functional depths (see, e.g., Nagy, 2016; Gijbels and Nagy, 2017, for some

recent contributions on the topic) can be used directly — i.e., without considering the

Conformal Prediction framework — to construct prediction sets in a very intuitive and

simple way, but in doing so no theoretical guarantee in terms of coverage is obtained.

In order to clarify this aspect, a simulation study comparing the approach proposed in

this work with the (1− α) · 100% central region induced by a specific functional depth

is provided in Section 3.3.

Formally, we will consider independent and identically distributed regression pairs

Z1, . . . ,Zn ∼ P , with Zi = (Xi,Y i) consisting of a multivariate functional response

variable Y i and a set of (not necessarily scalar) covariates Xi i ∈ {1, . . . , n}. Let

Y i = (Yi,1, . . . , Yi,p) be a multivariate random function such that its j-th component Yi,j

(j ∈ {1, . . . , p}) is a random function taking values in L∞(Tj), which is the family of

bounded functions y : Tj → R with Tj compact subset of Rdj , dj ∈ N>0, with N>0 the

set of positive integers. For the sake of brevity, later in the discussion we will indicate

the space L∞(T1) × · · · × L∞(Tp) in which Y i takes values as
∏p

j=1 L
∞(Tj). Note that

the framework considered is extremely wide since both the domain Tj and the image

of Yi,j (i.e., the subset of L∞(Tj) made up of all the possible realizations of Yi,j) are

allowed to be very different when j varies. Xi is the set made up of all the covariates

related to Yi,1, . . . , Yi,p (although each Yi,j need not necessarily depend on the whole
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set of covariates Xi). It belongs to a measurable space and can be very general: for

example, Xi can be a usual vector of predictors, or it can be a set of functional covariates

allowing for a function-on-function regression model, or it can contain both scalar and

functional predictors. Let µj(xi) = E[Yi,j|Xi = xi] denote the regression function for

the j-th component of the i-th observation, and consistently with this notation let us

define the scalar value [µj(xi)](t) = E[Yi,j(t)|Xi = xi].

The aim of the chapter is to build a procedure able to output valid/exact multivariate

functional prediction bands under no assumptions on P and µ1(·), . . . , µp(·) other than
i.i.d. regression pairs. A multivariate functional prediction band is a specific kind of pre-

diction set that can be defined, consistently with the definition of univariate functional

prediction band provided in the Introduction of the thesis, as{
y = (y1, . . . , yp) ∈

p∏
j=1

L∞(Tj) : yj(t) ∈ Bj(t), ∀j ∈ {1, . . . , p}, ∀t ∈ Tj

}
,

with Bj(t) an interval ∀j, t. Prediction bands are so relevant in the functional set

prediction framework — despite their inability to reflect the shape properties of data

(Nagy et al., 2017) — due to their conceptual simplicity and because they can be plotted

in parallel coordinates (Inselberg, 1985). For the sake of simplicity, later in the chapter

the term prediction band will be used to indicate a multivariate functional prediction

band, unless otherwise specified.

The chapter is organized as follows: in Section 3.2 we present the method developed;

in Section 3.3 we discuss two simulation studies aimed at investigating different aspects

of the method; in Section 3.4 we apply our method to a real-world application; in Section

3.5 we provide an overview of the main findings and sketch directions of future research.

3.2 Methods

3.2.1 The Nonconformity Measure

Let us consider the Split Conformal method presented in Chapter 1.1. Moving from

the results obtained in Chapter 2 and inspired by a depth of infimal type (Mosler,

2013) based on the univariate projection depth (Zuo, 2003), we propose the following
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nonconformity measure and nonconformity scores:

A({zh : h ∈ I1}, z̃) = sup
j∈{1,...,p}

(
ess sup

t∈Tj

∣∣∣∣ ỹj(t)− [µ̂j(x̃)](t)

sj(t)

∣∣∣∣
)
, (3.1)

Rd = sup
j∈{1,...,p}

(
ess sup

t∈Tj

∣∣∣∣yd,j(t)− [µ̂j(xd)](t)

sj(t)

∣∣∣∣
)
, d ∈ I2, (3.2)

Rn+1 = sup
j∈{1,...,p}

(
ess sup

t∈Tj

∣∣∣∣yj(t)− [µ̂j(xn+1)](t)

sj(t)

∣∣∣∣
)
,

with z̃ = (x̃, ỹ), ỹ = (ỹ1, . . . , ỹp), yj the j-th component of y, [µ̂j(xd)](t) estimate

of [µj(xd)](t) based on {zh : h ∈ I1}, s = {sj}pj=1 set of modulation functions with

sj : Tj → R>0 a (strictly positive) function belonging to L∞(Tj) based on {zh : h ∈ I1}
called modulation function. In doing so, the simpler notation [µ̂j(xd)](t) (sj, respec-

tively) is used instead of [µ̂j
I1(xd)](t) (sj,I1 , respectively) to facilitate readability. It

is fundamental to notice that no specific assumptions are made on the estimators

[µ̂1(·)](t), . . . , [µ̂p(·)](t) (considered in this case as random variables instead of observed

values) since the Conformal framework only requires the nonconformity scores Rd and

Rn+1 to be computed on the basis of the observations belonging to the training set and

on zd and (xn+1,y) respectively. As a consequence, finite-sample, either valid or exact

prediction sets are obtained regardless the choice of the regression estimators, allowing

Conformal Inference to be satisfactorily performed also when the underlying model is

completely misspecified.

By considering the Split Conformal method and the nonconformity measure (3.1), if

α ∈ (0, 1/(l + 1)) then Cn,1−α(xn+1) =
∏p

j=1 L
∞(Tj) since δy is always greater or equal

than 1/(l+1). If α ∈ [1/(l+1), 1) (representing the scenario on which we will focus on

hereafter), then

Cn,1−α(xn+1) :=

{
y ∈

p∏
j=1

L∞(Tj) : yj(t) ∈
[
[µ̂j(xn+1)](t)− ks · sj(t), [µ̂j(xn+1)](t) + ks · sj(t)],

∀j ∈ {1, . . . , p}, ∀t ∈ Tj

}
,

with ks the ⌈(l+1)(1−α)⌉th smallest value in the set {Rd : d ∈ I2}, and the superscript s

introduced in order to emphasize the dependence of ks on s. The computation needed to

find analytically Cn,1−α(xn+1) is provided in Appendix C.1, together with the definition

of Cn,1−α,τn+1 (xn+1), i.e., the Smoothed Split Conformal prediction set induced by the

nonconformity measure (3.1).

From a practical point of view, first of all the observed sample z1, . . . ,zn is used to
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compute ks and s1, . . . , sp, and after that the prediction set is built around the regression

estimates [µ̂j(xn+1)](t), j ∈ {1, . . . , p}. Despite the fact that no specific constraints on

[µ̂j(·)](t) are required by the Split Conformal framework, the choice of the regression

estimators is fundamental in providing small prediction sets, a key topic that will be

investigated in Section 3.2.2: indeed, intuitively one is justified in expecting prediction

sets to be smaller when improved regression estimators are chosen since they typically

provide smaller nonconformity scores and so a smaller value of ks (Lei et al., 2018).

However, later in the discussion (and specifically in Section 3.3 and Section 3.4) we will

always consider the regression estimators as given by the application at hand: in fact,

our aim is to construct valid/exact prediction sets in general and arbitrary prediction

scenarios and not only in specific, well informed frameworks.

Under the exchangeability assumption of the regression pairs and regardless the

choice of s and [µ̂j(·)](t), the prediction sets induced by the nonconformity measure

(3.1) are:

• either finite-sample valid (Split Conformal method) or finite-sample exact (Smoothed

Split Conformal method) for any distribution P ;

• in closed form;

• bands;

• scalable. Indeed, conditional on the computational cost required to calculate the

regression estimates and the set of modulation functions (a set that can be chosen

to be computationally parsimonious), and by keeping the ratio l/n fixed when n

grows, the time required to compute ks (and therefore to output the prediction

set) increases linearly with l, and so linearly with n.

Note that nonconformity measure (3.1) ensures multivariate simultaneous bands,

i.e., bands guaranteeing the desired coverage globally (i.e., for the multivariate random

function Y n+1). Proper multivariate simultaneous coverage represents a leap forward

with respect to univariate simultaneous coverage (i.e., coverage holding for Yn+1,j) and

pointwise coverage (i.e., coverage holding for Yn+1,j(t)).

Alongside the choice to base the nonconformity measure on the essential supremum,

the set s of (strictly positive) modulation functions sj represents the core of our ap-

proach. First of all, one can notice that prediction bands induced by {sj}pj=1 and by

{λ · sj}pj=1 coincide ∀λ ∈ R>0 (see Appendix C.1 for the proof), and so later in the dis-

cussion we will consider, for any equivalence class, the set of modulation functions such

that
∑p

j=1

∫
Tj sj(t)dt = 1. In the next section, we detail the role of s by highlighting its
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impact on the efficiency (i.e., the size) of the prediction bands and we propose a specific

set of modulation functions able to guarantee an asymptotic result in terms of efficiency.

3.2.2 The Choice of the Set of Modulation Functions

Intuitively, in addition to the appealing properties presented in Section 3.2.1, a pre-

diction band should modulate its width over T1, . . . , Tp according to the local variability

of the data. Specifically, the aim is to obtain prediction bands able to properly manage

the fact that: focusing on the j-th component, the pointwise evaluations of functional

data may be characterized by highly different variability when t ∈ Tj varies; the p

components may be characterized by different magnitude. In order to achieve these two

purposes, a careful choice of a data-driven set of modulation functions s is recommended.

In order to clarify this concept, let us consider the following example: let p = 2 with

y1, . . . ,y200 independent realizations of Y 1, . . . ,Y 200 such that Yi,1(t) = β1(t) + εi,1(t)

and Yi,2(t) = β2(t) + εi,2(t), i ∈ {1, . . . , 200}, T1 = T2 = [0, 1], with the systematic

components defined simply as β1(t) = 1, β2(t) = 0 ∀t ∈ [0, 1] and the independent

functional error components {εi,1}200i=1 ({εi,2}200i=1 respectively) obtained by means of a B-

spline basis expansion (Fourier basis expansion respectively) with normally distributed

random vectors as coefficients. In full generality, we consider [µ̂j(xn+1)](t) = β̂j(t),

j ∈ {1, 2}, with β̂1(t), β̂2(t) the estimates, based on {zh : h ∈ I1}, obtained by fitting

the two concurrent function-on-function linear models (Ramsay and Silverman, 2005).

This example represents the simplest, almost trivial regression scenario which allows

to — hopefully — easily understand the crucial role of s, but the discussion presented

hereafter naturally holds also when decidedly more complex regression functions and

regression estimators are taken into account. Fig. 3.1 shows the multivariate prediction

band for Y 201 = (Y201,1, Y201,2) obtained by considering two different sets of modulation

functions: the two panels at the top of the Fig. 3.1 show the multivariate prediction

band obtained by not modulating (i.e., by setting s1(t) = s2(t) = 1/
∑2

j=1 |Tj| = 1/2 ∝ 1

∀t ∈ [0, 1], with |·| the Lebesgue measure), whereas the two panels at the bottom of

the same figure show the prediction band obtained by considering the two standard

deviation functions of the functional residuals as modulation functions (after normal-

ization in order to meet the condition
∑2

j=1

∫
Tj sj(t)dt = 1). In order to distinguish the

two sets of modulation functions, later in the discussion we will denote the first set by

s0 := {s0j}
p
j=1 and the second one by sσ := {sσj }

p
j=1. The prediction sets are obtained

by considering the Split Conformal framework and by setting α = 0.25, m = l = 100.

Focusing on the two panels at the top of Figure 3.1, it is possible to notice that the two

univariate prediction bands are far from desirable: specifically, the univariate prediction
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Figure 3.1: Split Conformal multivariate prediction band for Y 201 = (Y201,1, Y201,2)
obtained by considering {s0j}2j=1 (at the top) and {sσj }2j=1 (at the bottom) as set of
modulation functions. The dashed yellow lines represent the regression estimates.
α = 0.25, n = 200, m = l = 100.

band related to Y201,1 is large along all the domain T1, whereas the one related to Y201,2

contains almost all the pointwise evaluations of the functional data in the low-variance

parts of T2 but excludes many pointwise evaluations in the other, high-variance parts

of the domain. In this specific case, the absence of a modulation process does not allow

to take into account: first of all, the different variability of the data over T1 and T2

respectively; secondly, the different magnitude that characterizes the two components.

In doing so, one is justified in expecting that a procedure based on {s0j}2j=1, although

able to output a valid prediction band, may be of limited practical use in real applica-

tions. Vice versa, the set of modulation functions {sσj }2j=1 properly adapts the width of

the prediction band according to the local variability of functional data, allowing for a

meaningful, interpretable and useful prediction band.

Beyond these common-sense considerations, a criterion that is both reasonable and

well-established in Conformal Prediction to discriminate between procedures able to

guarantee validity is the minimization of the size of the prediction sets outputted (also

known, in the Conformal framework, as maximization of efficiency, Balasubramanian

et al., 2014): this choice is due to the fact that desirable prediction sets should include

subsets of the sample space where the probability mass is highly concentrated (Lei et al.,

2013). In the context of the thesis, the aim would be to find the nonconformity measure
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A({zh : h ∈ I1}, ·) (and so, practically, the set of modulation functions s) inducing

the smallest prediction bands. The first, fundamental step in assessing the size of a

prediction band for multivariate functional data is the definition of the concept of ‘size’,

a nontrivial task if compared to the traditional univariate and multivariate statistical

settings. By generalizing the definition given in Chapter 2 to the multivariate case, we

define the size of a multivariate prediction band as the sum of the p areas between the

upper and lower bound of the p univariate prediction bands:

Q(s) :=

p∑
j=1

∫
Tj
2 · ks · sj(t)dt = 2 · ks, (3.3)

where the equality is due to the fact that
∑p

j=1

∫
Tj sj(t)dt = 1. Since Q(s) is a random

variable depending on Z1, . . . ,Zn, the task of finding the set of modulation functions

minimizing the risk functional E[Q(s)] is unfeasible in the case of no assumptions on

P . A simplification of such a complex task consists of considering the quantity to

be minimized ks(∝ Q(s)) as an observed value depending on z1, . . . ,zn instead of on

Z1, . . . ,Zn according to the empirical risk minimization principle (Vapnik, 1992). In

doing so, the optimization problem is certainly simplified, but its resolution still remains

unfeasible due to the specific structure of ks. Indeed, ks is a specific empirical quantile of

{Rd : d ∈ I2}, and Rd (see Equation 3.2) depends by construction both on the training

set through {zh : h ∈ I1} and on the calibration set through zd. Since by construction

the set of modulation functions s depends only on the training set (as its dependence

on the calibration set would imply not to obtain closed-form valid prediction bands), no

rule minimizing ks only by combining the elements of the training set (i.e., by varying

s) can be found for general z1, . . . ,zn.

In view of this, we propose an alternative, unconventional strategy to build a set

of modulation functions able to guarantee an asymptotic result in terms of efficiency.

Specifically, the purpose is to find a couple of sets of functions (s̄, s̄c) such that:

• s̄c := {s̄cj}
p
j=1 is a set of functions such that s̄cj meets the definition of modulation

function, but depends also on the calibration set through {zd : d ∈ I2}.

• prediction bands obtained by using s̄c as set of modulation functions are smaller

than or equal to (in terms of Equation 3.3) those induced by the set of modulation

functions s0 for every possible value of n and for every possible observed sample

z1, . . . ,zn.

• s̄ = {s̄j}pj=1 is a set of modulation functions such that s̄cj and s̄j converge to the

same function when m, l → +∞, ∀j ∈ {1, . . . , p}.
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In doing so, prediction bands induced by the set of modulation functions s̄ are char-

acterized by all the appealing properties presented in Section 3.2.1 (including validity)

and are asymptotically not wider than those induced by s0 regardless the specific sam-

ple z1, . . . ,zn. From the operational point of view, a natural candidate for s̄j is to

consider s̄cj and to replace its dependence on {zd : d ∈ I2} with the dependence on

{zh : h ∈ I1}, and consequently to check their convergence to the same function. In

order to find (s̄, s̄c) satisfying the aforementioned conditions, let us consider the struc-

ture of ks: operationally, ks computes a summary of the multivariate functional residual

for every observation in the calibration set, and selects the ⌈(l + 1)(1 − α)⌉th smallest

value among them. In particular: the summary is naturally induced by the specific

nonconformity measure used, which searches the greatest value of the absolute value of

the modulated multivariate functional residual over the p domains T1, . . . , Tp; k
s is not

affected by the l − ⌈(l + 1)(1 − α)⌉ greatest values of {Rd : d ∈ I2}. In view of this,

a proper candidate for s̄c should ignore the elements of {zd : d ∈ I2} leading to the

l−⌈(l+1)(1−α)⌉ greatest values of {Rd : d ∈ I2} and should modulate data based on

the most extreme value observed ∀t ∈ Tj, j ∈ {1, . . . , p}.
Therefore, the couple of sets of functions (s̄, s̄c) we propose — which represents a

generalization of the finding of Chapter 2, and which induces nonconformity scores

related to the notion of infimal depth introduced by Narisetty and Nair (2016) — is

defined below. Formally, the set of functions s̄c is such that for j ∈ {1, . . . , p}, t ∈ Tj:

s̄cj(t) :=
maxd∈H2 |yd,j(t)− [µ̂j(xd)](t)|∑p

j=1

∫
Tj maxd∈H2 |yd,j(t)− [µ̂j(xd)](t)|dt

with

H2 :=
{
d ∈ I2 : sup

j∈{1,...,p}

(
ess sup

t∈Tj
|yd,j(t)− [µ̂j(xd)](t)|

)
≤ k

}
and k = ks0/

∑p
j=1 |Tj| the ⌈(l + 1)(1− α)⌉th smallest value in the set

{
sup

j∈{1,...,p}

(
ess sup

t∈Tj

∣∣yd,j(t)− [µ̂j(xd)](t)
∣∣) : d ∈ I2

}
.

For the sake of simplicity, we assume maxd∈H2 |yd,j(t)−[µ̂j(xd)](t)| ≠ 0 ∀j ∈ {1, . . . , p}, t ∈
Tj. If this condition does not hold for at least one couple (t, j) but the condition∑p

j=1

∫
Tj maxd∈H2 |yd,j(t)− [µ̂j(xd)](t)|dt ̸= 0 still holds, in order to have that s̄cj(t) > 0,

j ∈ {1, . . . , p}, t ∈ Tj it is sufficient to add a small, positive value to s̄cj(t) and to normal-

ize accordingly. Vice versa, the case in which
∑p

j=1

∫
Tj maxd∈H2 |yd,j(t)− [µ̂j(xd)](t)|dt =

0 represents a pathological case of no practical interest.
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The set of modulation functions s̄ is such that for j ∈ {1, . . . , p}, t ∈ Tj:

s̄j(t) :=
maxh∈H1 |yh,j(t)− [µ̂j(xh)](t)|∑p

j=1

∫
Tj maxh∈H1 |yh,j(t)− [µ̂j(xh)](t)|dt

with H1 = I1 if ⌈(m+ 1)(1− α)⌉ > m, otherwise

H1 :=
{
h ∈ I1 : sup

j∈{1,...,p}

(
ess sup

t∈Tj
|yh,j(t)− [µ̂j(xh)](t)|

)
≤ γ

}
and γ the ⌈(m+ 1)(1− α)⌉th smallest value in the set

{
sup

j∈{1,...,p}

(
ess sup

t∈Tj

∣∣yh,j(t)− [µ̂j(xh)](t)
∣∣) : h ∈ I1

}
.

If ∃(t, j) such that maxh∈H1 |yh,j(t) − [µ̂j(xh)](t)| = 0, the adjustment used for s̄cj is

implemented.

Specifically, the fact that the set of modulation functions s̄ depends on α (through γ)

allows for a procedure able to modulate data according to the specific value 1− α, i.e.,

the desired nominal coverage. In addition, such an unconventional set of modulation

functions is particularly useful when functional residuals show a non-standard behavior

(e.g., there are outliers). The following two theorems show that (s̄, s̄c) satisfies the

aforementioned conditions.

Theorem 3.1. Let m/n = θ with 0 < θ < 1 and let Var
[
[µ̂j(Xi)](t)

]
→ 0 ∀i ∈

{1, . . . , n}, ∀t ∈ Tj, ∀j ∈ {1, . . . , p} when m → +∞. Then s̄cj and s̄j converge to the

same function, j ∈ {1, . . . , p}, when n → +∞.

Theorem 3.2. If at least one of the functions {s̄cj(t)}
p
j=1 is not constant almost every-

where over its domain, then Q(s0) > Q(s̄c). Otherwise, Q(s0) = Q(s̄c).

See C.2 for both proofs, together with the generalization of (s̄, s̄c), Theorem 3.1

and Theorem 3.2 to the Smoothed Split Conformal framework. Due to the very mild

conditions required by the two theorems to hold, the set of modulation functions s̄ can be

used in many general frameworks and provides a new, we believe appealing data-driven

alternative to other solutions (e.g., sσ). In the next section, the set of modulation

functions s̄ is compared to other sets of modulation functions in different simulated

scenarios.
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3.3 Simulation Study

In this section we perform two simulation studies aimed at evaluating different prac-

tical aspects of the method presented in Section 3.2. In Section 3.3.1, the empirical cov-

erage provided by the prediction bands induced by our method is evaluated in different

scenarios, considering different sample sizes and different kinds of model misspecifica-

tion, and the results are compared with those obtained by considering the corresponding

depth-based approach. In Section 3.3.2, the three sets of modulation functions presented

in Section 3.2 ({s0j}
p
j=1, {sσj }

p
j=1, {s̄j}

p
j=1) are compared in terms of efficiency in order

to highlight their strengths and weaknesses.

In both simulation studies, some quantities are kept fixed: p = 2, T1 = T2 = [0, 1],

α = 0.10. Three possible sample sizes are taken into account: n = 20, n = 200, n =

2000. We focus on the Split Conformal method and since the coverage reached by

Split Conformal prediction set is 1 − ⌊(l + 1)α⌋/(l + 1) (see Theorem 1.1), the size

of the calibration set is set equal to l = 9, l = 99, l = 999 respectively in order to

obtain 1 − ⌊(l + 1)α⌋/(l + 1) = 1 − α and consequently to facilitate the readability

of the results. A possible alternative would be to consider a different value of l (e.g.,

n/2) and to evaluate the empirical coverage taking into account the coverage 1− ⌊(l +
1)α⌋/(l + 1). Each combination of simulation study, scenario, method, sample size,

regression estimators and set of modulation functions is evaluated based on N = 5000

replications. Specifically, for each replication, a sample z1, . . . ,zn+1 is generated and

n randomly chosen elements are assigned to the training and calibration sets, whereas

the remaining element is considered as the one we aim to predict (however, for the sake

of simplicity, hereafter we will simply define the two sets as {zi}ni=1 and zn+1). All

simulations are computed using the R Programming Language (R Core Team, 2020).

3.3.1 Simulation Study 1: Coverage

The aim of the simulation study in this section is to compare the empirical cover-

age (computed as the fraction of the N = 5000 replications in which yn+1 belongs to

Cn,1−α (xn+1)) reached by the method presented in Section 3.2 (CP Method) with that

obtained by an alternative method in different scenarios and for different values of n.

The alternative method (D Method) is a depth-based approach, in which the prediction

band is defined as the sample (1−α) ·100% central region as computed in Sun and Gen-

ton (2011). In detail, to allow a meaningful comparison between the two approaches,

the band depth used in Sun and Genton (2011) has been replaced by the nonconfor-

mity measure in Equation 3.1. Technically, after computing the nonconformity score in
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Equation 3.2 ∀d ∈ {1, . . . , n} by calculating [µ̂j(xd)](t) and sj(t) without splitting the

data into training and calibration sets (i.e., by using the whole information provided

by z1, . . . ,zn), the prediction band is determined by the envelope of the (1− α) · 100%
central region.

The simulation study consists of two scenarios. In the first one, the systematic com-

ponent generating data is linear and, in addition to the case in which the model is

correctly specified, two different kinds of model misspecification are taken into account:

misspecification due to omitted relevant variable and misspecification due to inclusion

of irrelevant variable (see Rao, 1971). In the second scenario, a third kind of model mis-

specification is evaluated, i.e., functional form misspecification (see Wooldridge, 1994).

The two scenarios are formally defined as follows:

• Scenario 1

Yi,1(t) =β0(t) + β1(t)wi + εi,1(t), i ∈ {1, . . . , n+ 1}, t ∈ [0, 1]

Yi,2(t) =β0(t) + β2(t)w
2
i + εi,2(t), i ∈ {1, . . . , n+ 1}, t ∈ [0, 1]

with wi = i/(n+ 1), β0(t), β1(t), β2(t) generated by means of a B-spline basis ex-

pansion of order four, with six basis functions, equally spaced knots, coefficients

generated independently by a standard normal random variable and εi,1(t), εi,2(t)

independent functional errors obtained by means of the same B-spline basis ex-

pansion with independent standard normal random variables as coefficients. It is

important to notice that regression coefficient functions β0, β1, β2 are generated

only once, i.e., they do not vary between the N = 5000 replications.

• Scenario 2

Yi,1(t) = exp(β0(t) + β1(t)wi + εi,1(t)), i ∈ {1, . . . , n+ 1}, t ∈ [0, 1]

Yi,2(t) = exp(β0(t) + β2(t)w
2
i + εi,2(t)), i ∈ {1, . . . , n+ 1}, t ∈ [0, 1]

with wi, β0(t), β1(t), β2(t), εi,1(t), εi,2(t) defined as in Scenario 1.

Both scenarios are evaluated considering the following three regression estimates:

• Set of Covariates 1; [µ̂1(xi)](t) = [µ̂2(xi)](t) = β̂0(t),

• Set of Covariates 2; [µ̂1(xi)](t) = β̂0(t) + β̂1(t)wi and [µ̂2(xi)](t) = β̂0(t) + β̂2(t)w
2
i ,
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Scenario 1 — CP Method
n Set of Cov. 1 Set of Cov. 2 Set of Cov. 3
20 0.894[0.886,0.903] 0.896[0.888,0.905] 0.904[0.896,0.912]
200 0.902[0.894,0.910] 0.894[0.885,0.903] 0.901[0.893,0.909]
2000 0.899[0.890,0.907] 0.906[0.898,0.914] 0.902[0.894,0.911]

Scenario 1 — D Method
n Set of Cov. 1 Set of Cov. 2 Set of Cov. 3
20 0.136[0.127,0.146] 0.105[0.096,0.113] 0.067[0.060,0.074]
200 0.680[0.667,0.693] 0.671[0.658,0.684] 0.673[0.660,0.686]
2000 0.862[0.853,0.872] 0.858[0.848,0.867] 0.856[0.846,0.866]

Scenario 2 — CP Method
n Set of Cov. 1 Set of Cov. 2 Set of Cov. 3
20 0.907[0.899,0.915] 0.899[0.890,0.907] 0.904[0.896,0.913]
200 0.899[0.891,0.907] 0.898[0.890,0.907] 0.901[0.893,0.909]
2000 0.893[0.884,0.901] 0.893[0.884,0.901] 0.899[0.891,0.908]

Scenario 2 — D Method
n Set of Cov. 1 Set of Cov. 2 Set of Cov. 3
20 0.150[0.140,0.160] 0.129[0.120,0.138] 0.107[0.098,0.115]
200 0.714[0.701,0.727] 0.691[0.679,0.704] 0.679[0.666,0.692]
2000 0.859[0.849,0.868] 0.868[0.859,0.878] 0.872[0.863,0.881]

Table 3.1: Simulation study 1: empirical coverage and related 95% confidence in-
terval [p̂± 1.96

√
p̂(1− p̂)/N ] in brackets reached by the method presented in Section

3.2 (CP Method) and those obtained by the alternative method (D Method) for each
combination of scenario, sample size and set of covariates. α = 0.10, set of modulation
functions {sσj }2j=1.

• Set of Covariates 3; [µ̂1(xi)](t) = [µ̂2(xi)](t) = β̂0(t) + β̂1(t)wi + β̂2(t)w
2
i ,

with β̂0(t), β̂1(t), β̂2(t) the estimates obtained by fitting each time the corresponding

function-on-scalar linear model. Focusing on Scenario 1, ‘Set of Covariates 1’ represents

the omitted relevant variable case, ‘Set of Covariates 2’ represents the case in which the

model is correctly specified and ‘Set of Covariates 3’ represents the case in which an

irrelevant variable is included, whereas Scenario 2 is characterized by functional form

misspecification.

Table 3.1 shows the empirical coverage p̂, as well as the 95% confidence interval

[p̂± 1.96
√

p̂(1− p̂)/N ], obtained for each combination of scenario, method, sample size

and set of covariates considering the set of modulation functions {sσj }2j=1. As regards

our method (CP Method), the results are decidedly satisfactory, since the empirical

coverages are really close to 1− α = 0.90 and the observed confidence intervals always

include the desired coverage regardless the specific combination of scenario, sample size

and set of covariates considered. Specifically, the method is able to guarantee the desired

coverage also when the sample size is small and the model misspecified. Vice versa, the
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prediction bands induced by the depth-based approach (D Method) are characterized

by empirical coverages really far from 1− α, particularly when n = 20. In light of this,

the Conformal Prediction framework seems to be fundamental to construct prediction

bands having the desired coverage.

3.3.2 Simulation Study 2: Efficiency

The aim of the simulation study of this section is to compare the three sets of

modulation functions ({s0j}
p
j=1, {sσj }

p
j=1, {s̄j}

p
j=1) in terms of efficiency (i.e., size of the

prediction bands). Specifically, for each of the N = 5000 replications the size of the

observed prediction band Cn,1−α (xn+1) is defined as the average value Q(·)/2 (see Equa-

tion 3.3). Three different scenarios are taken into account: focusing just for now on

the error terms and ignoring the systematic components, in the first scenario the error

terms are characterized by a constant variability over the domains, in the second sce-

nario the variability differs whereas in the third scenario the presence of outliers further

complicates their specification. Formally, the three scenarios are:

• Scenario 1. The two systematic components are defined as in the first scenario of

Section 3.3.1, while the independent functional errors εi,1(t), εi,2(t) are defined as

follows:

εi,j(t) =Bi+(n+1)(j−1),1+

Bi+(n+1)(j−1),2 cos
(
10π

(
t+ Ui+(n+1)(j−1)

))
+

Bi+(n+1)(j−1),3 sin
(
10π

(
t+ Ui+(n+1)(j−1)

))
i ∈ {1, . . . , n+1}, j ∈ {1, 2}, t ∈ [0, 1], with i.i.d. random vectorsB1, . . . ,B2(n+1) ∼
N3(0,Σ), Σ having the entries on the main diagonal equal to 1 and the entries

outside the main diagonal equal to 0.7, i.i.d. random variables U1, . . . , U2(n+1) ∼
U [−0.5, 0.5].

• Scenario 2. The two systematic components are defined as in the first scenario of

Section 3.3.1, while the independent functional errors εi,1(t), εi,2(t) are obtained by

means of a B-spline basis expansion of order four, with 13 basis functions, equally

spaced knots and normal random vectors as vectors of coefficients. Specifically,

the 2 · (n + 1) (observed) vectors of coefficients are independent realizations of

C = (C1, . . . , C13) ∼ N13(0,Σ) with Σ diagonal matrix such that Var[Ca] = 0.001,

a ̸= 7, Var[C7] = 9 · 10−6.

• Scenario 3
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Yi,1(t) =β0(t) + ηi,1(t), i ∈ {1, . . . , n+ 1}, t ∈ [0, 1],

Yi,2(t) =β0(t) + ηi,2(t), i ∈ {1, . . . , n+ 1}, t ∈ [0, 1]

with β0(t) = 0 ∀t ∈ [0, 1],

ηi,j(t) =β1(t)wi,j + εi,j(t), i ∈ {1, . . . , n+ 1}, j ∈ {1, 2}, t ∈ [0, 1]

with β1(t) obtained by means of a B-spline basis expansion of order four, with 13

basis, equally spaced knots and all coefficients equal to 0 but the seventh equal to

0.5, εi,j(t) defined as in Scenario 2, and if n = 20 then wi,j = 0 ∀{i, j} ≠ {1, 1},
w1,1 = 1, whereas if n ∈ {200, 2000} then

wi,j =

1 if i ∈
{
j + 40 · ζ : ζ ∈ {0, 1, . . . , n

40
− 1}

}
0 otherwise

.

Despite the complex notation, the introduction of wi,j is aimed at obtaining that

∼ 5% of the multivariate functions y1, . . . ,yn+1 (i.e., 1 out of 21 when n = 20, 10

out of 201 when n = 200, 100 out of 2001 when n = 2000) is characterized, in one

of the two components, by the anomalous behavior induced by β1(t). We propose

such an unconventional structure for the error terms to simulate, for example, a

regression framework in which relevant variables are not available.

All three scenarios are evaluated considering only one set of covariates each, namely

the case in which the corresponding model is correctly specified. Fig. 3.2 shows, for

each scenario, a realization of the error terms {εi,1}n+1
i=1 ({ηi,1}n+1

i=1 for Scenario 3) when

n = 20.

After verifying that all scenarios ensure the desired coverage (see Table 3.2, in which

25 out of the 27 confidence intervals at level 95% include the nominal value 1−α), Table

3.3 shows the median size (first and third quartile in brackets) of theN = 5000 prediction

bands obtained for each combination of scenario, sample size and set of modulation

functions. All three scenarios share the evidence that the prediction bands induced by

{s0j}2j=1 are typically smaller than those induced by the other two sets of modulation

functions when the sample size is very small (n = 20). This is due to the fact that

regression estimates obtained with a small training set size likely provide an unreliable

(and potentially misleading) set of modulation functions, leading to a preference for a
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Figure 3.2: Example of realization of the error term related to {Yi,1}n+1
i=1 . First

scenario at the top, second scenario in the middle, third scenario at the bottom.
n = 20.

Scenario 1
n {s0j}2j=1 {sσj }2j=1 {s̄j}2j=1

20 0.889[0.880,0.898] 0.897[0.889,0.905] 0.896[0.888,0.905]
200 0.900[0.891,0.908] 0.896[0.888,0.905] 0.900[0.891,0.908]
2000 0.900[0.891,0.908] 0.903[0.894,0.911] 0.894[0.886,0.903]

Scenario 2
n {s0j}2j=1 {sσj }2j=1 {s̄j}2j=1

20 0.893[0.885,0.902] 0.896[0.888,0.905] 0.896[0.888,0.905]
200 0.897[0.889,0.906] 0.900[0.892,0.908] 0.901[0.893,0.910]
2000 0.899[0.890,0.907] 0.895[0.887,0.904] 0.906[0.898,0.914]

Scenario 3
n {s0j}2j=1 {sσj }2j=1 {s̄j}2j=1

20 0.898[0.889,0.906] 0.902[0.894,0.910] 0.902[0.894,0.910]
200 0.901[0.893,0.909] 0.899[0.891,0.908] 0.890[0.881,0.898]
2000 0.898[0.890,0.907] 0.901[0.893,0.909] 0.895[0.887,0.904]

Table 3.2: Simulation study 2: empirical coverage and related 95% confidence in-
terval in brackets for each combination of scenario, sample size and set of modulation
functions. α = 0.10. The values in bold highlight that the corresponding confidence
intervals do not include 1− α = 0.9.

set of modulation functions not depending on I1. As proof of that, it is not surprising

that the two data-driven sets of modulation functions {sσj }2j=1, {s̄j}2j=1 deliver the worst

performance in the most complex Scenario, i.e., Scenario 3. Focusing on the other two

sample sizes, in Scenario 1 the choice of not modulating seems appropriate due to the

equal magnitude of the two components and the constant variability over T1, T2, but,

as expected, the difference between the three alternative sets of modulation functions
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Scenario 1
n {s0j}2j=1 {sσj }2j=1 {s̄j}2j=1

20 9.599[8.348,11.116] 12.205[10.121,14.853] 14.241[11.730,17.798]
200 8.658[8.289,9.077] 8.835[8.442,9.246] 9.315[8.892,9.784]
2000 8.568[8.449,8.692] 8.587[8.469,8.712] 8.681[8.561,8.806]

Scenario 2
n {s0j}2j=1 {sσj }2j=1 {s̄j}2j=1

20 0.168[0.152,0.188] 0.190[0.167,0.221] 0.213[0.186,0.249]
200 0.148[0.144,0.153] 0.126[0.123,0.130] 0.139[0.135,0.144]
2000 0.146[0.145,0.148] 0.122[0.121,0.123] 0.134[0.133,0.136]

Scenario 3
n {s0j}2j=1 {sσj }2j=1 {s̄j}2j=1

20 0.201[0.157,0.667] 0.294[0.212,1.767] 0.407[0.277,1.869]
200 0.162[0.155,0.170] 0.167[0.161,0.172] 0.151[0.145,0.158]
2000 0.160[0.157,0.162] 0.161[0.160,0.163] 0.145[0.143,0.147]

Table 3.3: Simulation Study 2: median size (first and third quartile in brackets) for
each combination of scenario, sample size and set of modulation functions. α = 0.10.

decreases when n grows. Differently from Scenario 1, Scenario 2 is characterized by

multivariate residuals showing a lower variability in the central portion of T1 and T2: as

a consequence, {s0j}2j=1 provides large prediction bands since it is not able to adapt the

width of the band according to the local variability of the residuals, whereas {sσj }2j=1 is

particularly effective since it induces a modulation process based on the two standard

deviation functions. Finally, {s̄j}2j=1 represents the best solution in Scenario 3 given

its ability to focus on the ‘least extreme’ ∼ (1 − α) · 100% of data: indeed, differently

from {s0j}2j=1 it is able to reduce the width of the band in the central part of the

domains, and differently from {sσj }2j=1 it does not uselessly enlarge the band in the

same subinterval of T1, T2. Consequently, the simulation study seems to confirm the

statistical intuition given in Section 3.2.2 that the newly launched set of modulation

functions {s̄j}pj=1 represents an interesting solution when functional residuals show a

non-standard behavior and a modulation process driven by the value 1− α is needed.

3.4 Case Study: Analysis of Bike Mobility in the

City of Milan

In order to illustrate the application potential of the method presented in this chapter,

in this section we focus on a case study concerning urban mobility, and specifically

the usage of a bike-sharing system in the Italian city of Milan. Moving from the raw
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Figure 3.3: Dropoff and pickup rates (top left, top right respectively), corresponding
functional predictions (center left, center right) and functional residuals (bottom left,
bottom right). Yellow curves refer to 29 February; continuous curves refer to the
observations in the training set, dashed curves to those in the calibration set.

data and the context presented in Torti et al. (2021), the aim is to study the behavior

of subscribers of Bikemi, a bike sharing system active in the city in which bikes are

picked up and dropped off in specific docking stations located through the city. Starting

from raw data providing various information about picked up bikes (simply pickups

hereafter) and dropped off bikes (simply dropoffs hereafter) for each day considered, and

focusing our attention — as an example — on the Duomo district only (i.e., the area in

which Milan’s cathedral is), the multivariate functional response variable yi = (yi,1, yi,2)

representing the rate of dropoffs (yi,1) and pickups (yi,2) is obtained via a standard

kernel density estimation smoothing method (see, e.g., Hastie et al., 2009). In doing

so, yi,1(t) (yi,2(t)) represents the dropoff (pickup) rate at time t, with t ranging from 7

a.m. day i to 1 a.m. the next day (consequently, we assume that day i ends at 1 a.m.

the next day). The period considered starts on 25 January 2016 and ends on 6 March

2016: due to an error in the data collection, 25 February is removed from the dataset in

accordance with Torti et al. (2021), and so the sample size is n = 41. Data are shown

in the two top panels of Fig. 3.3.
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Like in Torti et al. (2021), the regression estimates are obtained by fitting a con-

current function-on-function linear model (Ramsay and Silverman, 2005). The model

hereby used includes as covariates a functional intercept, the temperature function (after

subtracting the average daily temperature function of the period considered) in degrees

Celsius, and a dummy variable indicating whether day i is a weekday or not. Since the

rates cannot be negative in any subinterval of the domain, the predicted functions are

truncated to 0. However, as discussed in Section 3.2.1, the purpose is to construct valid,

meaningful and interpretable prediction bands also when simple regression estimators

are specified. In view of this, the choice of the covariates, as well as the functional form

of the model, represents an aspect of limited interest in the framework considered, but

carefully chosen alternative models (e.g., the nonparametric additive one of Ferraty and

Vieu, 2009) could surely provide more accurate and reliable estimates.

The method presented in Section 3.2 is performed by considering the three sets of

modulation functions {s0j}2j=1, {sσj }2j=1, {s̄j}2j=1, α = 0.25 and m = 22, l = 19 in order

to assign, as in the simulation studies, about half of the observations to the training set

and to obtain the value 1− ⌊(l + 1)α⌋/(l + 1) equal to 1− α. To remain as neutral as

possible, we will consider the case in which — after having labeled the days considered

with numbers from 1 to 41 — the observations referring to an odd day are assigned

to the training set and those referring to an even day to the calibration set, with the

observation related to day 20 assigned to the training set to satisfy m = 22. Two

possible prediction scenarios are taken into account for the scope of visualization: in the

first, we construct the multivariate prediction band for a weekday having the average

temperature function of the period as temperature function; in the second, we construct

it for a warmer than usual weekday. Fig. 3.4 shows, for each of the three sets of

modulation functions ({s0j}2j=1 in the first row, {sσj }2j=1 in the second row, {s̄j}2j=1 in

the third row), the prediction sets induced by the two scenarios (first set of covariates

in the first column, second in the second column). In particular, each panel shows the

prediction band for the dropoff rate (light blue band) and the pickup rate (red band),

with the two dashed lines representing the corresponding regression estimates. As for

the predicted functions, the prediction bands are truncated to 0, as the rates cannot be

negative in any subinterval of the domain. Note that this truncation does not involve any

kind of drawback since the coverage reached by the prediction sets remains unchanged if

a null probability portion of the bands is removed from the prediction bands. It is evident

that the prediction bands for dropoffs induced by {sσj }2j=1 are quite large in the initial

portion of the domain compared to those obtained by not modulating (i.e., {s0j}2j=1) and

by the proposed set {s̄j}2j=1. In order to clarify this aspect, let us consider Fig. 3.3.
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Figure 3.4: Prediction bands for the dropoff rate (light blue band) and the pickup
rate (red band). Each panel refers to a combination of set of modulation functions
({s0j}2j=1 at the top, {sσj }2j=1 in the middle, {s̄j}2j=1 at the bottom) and scenario
(first set of covariates on the left, second on the right). The dashed lines indicate
the corresponding regression estimates. α = 0.25. Split into calibration/training set:
even/odd(+ day 20) days.

Focusing on the residual functions of the dropoff rates (i.e., the panel at the bottom left

of the figure), it is easily noticeable that the yellow curve (referring to weekday 35, i.e.,

29 February, which is assigned to the training set) shows an anomalous behavior in the

initial part of the domain. The panel at the top left of the same figure suggests that

this is due to the fact that day 35 was characterized by an unusually low dropoff rate

compared to that observed in the other weekdays (which are the curves showing a pick

around 9 a.m.). Consequently, by using {sσj }2j=1 it is natural to obtain prediction bands

for dropoffs extremely wide in the first portion of the domain since this outlier has a huge

impact on the modulation process, while the corresponding prediction bands obtained

by not modulating are not adversely affected as {s0j}2j=1 does not modulate the width

of the band according to the local variability of the residuals. In view of this, the set

of modulation functions {s̄j}2j=1 represents an intriguing solution since, in addition to

modulate the width of the band along the domains, induces a modulation process which

is not misled by the anomalous behavior of day 35. However, similar considerations

would have been made also if other observations than the one related to day 35 had

been assigned to the training set, as can be noticed by analyzing the functional residuals

of the observations assigned to the calibration set in the two panels at the bottom of
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Fig. 3.3 (dashed curves for the calibration set; continuous curves for the training set).

Despite the small sample size, the prediction sets of Fig. 3.4 can provide profitable

information: first of all, subscribers of Bikemi seem to mainly use bikes to go to Duomo

in the morning, whereas in the early evening the bike flow is reversed. Moving from

the first set of covariates (weekday-temperature equal to the mean temperature of the

period) to the second one (weekday-warm day), we notice that a higher temperature

does not strongly affect people’s behavior in the morning, whereas it involves a moderate

increase in dropoffs and, at the same time, a big increase in pickups in the period of

time around 7 p.m.. The information provided by the prediction bands can be indeed

very useful to fleet managers in identifying the periods of time in which the imbalance

between pickups and dropoffs could become critical based on the day of the week, the

temperature function and other possible carefully chosen covariates.

3.5 Conclusion and Further Developments

In the present chapter we have developed a procedure aimed at creating prediction

bands for multivariate functional data in a regression framework. Moving from the

approach proposed in Chapter 2 for univariate i.i.d. functional data, the method pre-

sented in this chapter builds finite-sample either exact or valid prediction bands under

the only assumption of exchangeable regression pairs with multivariate functional re-

sponse. Despite the paramount importance of this topic both from the methodological

and applied point of view, to the best of our knowledge our method represents the first

proposal able to ensure such important features. These properties, together with the

fact that the procedure is scalable and the bands can be easily found in closed form,

allow to obtain meaningful prediction bands regardless the regression estimator used,

leading to a methodology which can be applied in a wide range of application scenarios.

Moreover, we have introduced a specific set of modulation functions (namely {s̄j}pj=1)

achieving an asymptotic result in terms of efficiency regardless the sample observed

z1, . . . ,zn and inducing prediction bands whose width varies along the domains and

across the components according to the local behavior. The simulation study and the

real-world application provided in Section 3.3 and 3.4 respectively confirm the potential

of the approach. Nevertheless, many possible directions still remain unexplored. First

of all, it would be extremely interesting to extend some approaches recently developed

in Conformal literature to the functional context, such as the conformalized quantile

regression method of Romano et al. (2019) or the Distributional Conformal prediction

approach of Chernozhukov et al. (2021). Secondly, we plan to explore the impact of the
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regression estimator on the size of the prediction sets.



Chapter 4

Prediction bands for multivariate

functional time series

4.1 Introduction

Since 2000 we have witnessed a revolution in terms of the availability of computa-

tional power and storage space, which are now ubiquitous and cheap. This new context

has triggered a revolution in paradigm also in statistics and in the professional prac-

tice of modern statisticians and forecasters, who now face way less methodological and

practical limitations with respect to their older collegues.

For instance, when dealing with continuous phenomena over a spatial or a temporal

domain (e.g. a trajectory, a surface or a demand/offer curve) instead of using standard

scalar statistics and working on a statistical summary of these objects, a practitioner

may decide to turn to Functional Data Analysis (FDA)(Ramsay and Silverman, 2005;

Ferraty and Vieu, 2006; Horváth and Kokoszka, 2012; Wang et al., 2016).

A field of research with very promising applications is Functional Time Series (FTS),

namely the study of methods and the development of applications to deal with functional

data characterised by some kind of temporal dependency. The interested reader may

refer to Hörmann and Kokoszka (2012) for a review of the theoretical underpinnings and

some definitions on the field. The main focus of FTS, as testified by the very rich out-

standing literature, has been the issue of one-step ahead forecasting. Among the many

contributions that may be found in the literature, Chen et al. (2021) provides a review

of some of the work on point prediction for FTS using autoregressive models, Ferraty

et al. (2002); Ferraty and Vieu (2004) present nonparametric methods and Canale and

Vantini (2016) presents an extension for the forecasting of FTS with constraints. On a

slightly different line of reasoning Hyndman and Shang (2009) proposes a method based

53
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on dimensionality reduction via weighted functional principal component and weighted

functional partial least squares regression while Gao and Shang (2017) proposes a vector

error-correcting model, still based on dimensionality reduction of functional data.

The great majority of the presented work in FTS forecasting focuses on point pre-

dictions: the issue of providing quantification of uncertainty is usually addressed using

extensions of the Bootstrap to non i.i.d cases (see e.g. Paparoditis and Shang (2021),

which also provides a good introduction to the field, as well as Rossini and Canale (2019)

where a remarkable extension to the constrained FTS case is presented). Bootstrap-

based methods, though, are shown to have relatively weak finite-sample properties, and

are of course very computationally intensive.

The aim of the present chapter is to propose distribution-free prediction bands for

multivariate functional time series guaranteeing finite-sample performance bounds in

terms of coverage and asymptotic exactness, i.e. coverage asymptotically equal to the

nominal confidence level. To do that, we move from a relatively new contribution

by Chernozhukov et al. (2018) showing an extension of Conformal methods to time

dependent data.

From the application point of view, we focus on the issue of forecasting in energy

markets, and specifically in the Italian gas market. The specific regulatory framework of

Italian energy markets has given birth to big and novel challenges to the players in the

market: producers, brokers and utilities need to be able to forecast with great accuracy

exchanged quantities as well as prices on the markets. This is of key importance for tac-

tical and strategic planning in producing, storing and trading energy. Uncertainties and

their quantification are of key importance in this context: having reliable assessments

regarding the uncertainty of the predictions obtained provides invaluable insights to risk

management and represents the basis for any reliable hedging strategy in trading.

Forecasts, though, should not only be constrained to spot quantities and prices:

the market is a dynamic object, and it is crucial to be able to understand not only its

behaviour at equilibrium but also its ”shape” in terms of position and slope of its demand

and offer curves, allowing traders to evaluate the possible effect of their offers/bids on

the market. To do so, the FDA approach has proven to be a very powerful method: the

already cited Canale and Vantini (2016) alongside Shah and Lisi (2020) represent some

recent contributions in the field of FDA with respect to jointly predicting demand and

offer curves for the gas/electricity market. One may refer to the references contained

in the two papers for a thorough representation of the history of the field in terms of

price and demand forecasting in the electricity and gas markets. Expanding on Canale

and Vantini (2016), Rossini and Canale (2019) adds uncertainty quantification to the
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framework presented for the gas market. As previously said though, these bands have

no finite-sample coverage guarantee. The aim of our application test case is thus to

show how our methodological proposal may provide more reliable information in terms

of prediction uncertainty to energy traders.

The chapter is structured as follows: Section 4.2 presents the proposed method and its

theoretical underpinnings in detail, while in Section 4.3 and 4.3.1 we present a simulation

study to assess the properties of the method and its results. The application is presented

in Section 4.4 while Section 4.5 presents conclusions and draws further developments.

4.2 Methods

Let Z1, . . . ,ZT be a time series such that Zt = (Xt,Y t) consists of a set of covariates

Xt and a multivariate functional response variable Y t, t ∈ {1, . . . , T}. Let Y t =

(Yt,1, . . . , Yt,p) be a multivariate random function where its j-th component Yt,j (j =

1, . . . , p) is a random function which takes values in L∞(Qj), that is the family of

limited functions y : Qj → R with Qj closed and bounded subset of Rdj , dj ∈ N>0.

For simplicity, later in the discussion we will use
∏p

j=1 L
∞(Qj) to indicate the space

L∞(Q1) × · · · × L∞(Qp) in which Y t takes values. The framework considered is very

general since it includes the case of univariate functional response variable (when p = 1)

as a special case, but it also allows the p > 1 domains Qj and images of Yt,j to be

greatly different when j changes. Xt belongs to a measurable space and contains the

lagged functional response variable, in addition to possible external predictors (which

can be, for example, scalar or functional covariates). As regards the notation, it is

important to notice that two components of Y t (Yt,1 and Yt,2 for example) may share

some (or even all) the covariates, but generally speaking Xt represents the set of all the

covariates related to Yt,1, . . . , Yt,p. Let µj(xt) = E(Yt,j|Xt = xt) be the regression map

for the j-th component evaluated at xt, and similarly let us define the scalar quantity

[µj(xt)](q) = E(Yt,j(q)|Xt = xt).

Our aim is to introduce a procedure able to create simultaneous prediction sets for

Y T+1 (i.e. prediction sets holding for the multivariate random function Y T+1 glob-

ally, and not only for its j-th component YT+1,j) based on the information provided

by Z1, . . . ,ZT and by XT+1 and ensuring performance bounds in terms of uncondi-

tional coverage. By recalling the definition of prediction set introduced in Chapter 1,

the purpose is to obtain prediction sets CT,1−α (XT+1) whose unconditional coverage

P (Y T+1 ∈ CT,1−α (XT+1)) is close to the nominal confidence level 1−α under mild con-

ditions on the data generating process and being characterized - as in Chapter 3 - by a
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particular shape, i.e. they are multivariate functional prediction bands.

Moving from the literature on inference via permutations (see, e.g., Rubin, 1984;

Romano, 1990; Lehmann and Romano, 2006) and on Conformal Prediction, we present

a modification of the Conformal inference able to account for time series dependence.

Intuitively, the idea is to generalize the Conformal approach traditionally used when the

regression pairs Z1, . . . ,ZT+1 are i.i.d. by randomizing blocks of observations. Specifi-

cally, we extend the non-overlapping blocking scheme proposed by Chernozhukov et al.

(2018) to the Split Conformal framework. This extension is mentioned as possible in

Chernozhukov et al. (2018), nevertheless to the best of our knowledge it has never been

formally built - or even taken into account - in the literature. In light of this, first of all

the procedure we built is presented, then its logic is explained.

Let m, l be two strictly positive integers such that T = m+ l, and let us define I1 and

I2 as two sets of sizem and l respectively such that I1∪I2 = {1, . . . , T}, I1∩I2 = ∅. Let
z1, . . . ,zT be realizations of Z1, . . . ,ZT , with {zh : h ∈ I1} denoting the training set of

size m and {zh : h ∈ I2} denoting the calibration set of size l, and let b ∈ {1, . . . , l+1}
be a value such that (l+1)/b is an integer1. In accordance with the Conformal Prediction

framework, let us also define any measurable function A({zh : h ∈ I1}, z) which takes

values in R̄ as nonconformity measure. As suggested by the name, the purpose of

the nonconformity measure is to score how different the generic element z is from the

elements of the training set: for example, in the traditional non-functional regression

framework in which the response variable is scalar and the set of covariates is a vector, a

popular choice of nonconformity measure is the absolute value of the regression residual

obtained by fitting the regression algorithm on the training set. For any given value

of b, it is therefore possible to define the collection of (l + 1)/b index permutations

Π = {πi : 1 ≤ i ≤ (l + 1)/b}, whose element πi : {1, . . . , l + 1} −→ {1, . . . , l + 1} is the

bijective function defined as:

πi(t) =

{
t+ (i− 1)b if 1 ≤ t ≤ l − (i− 1)b+ 1

t+ (i− 1)b− l − 1 if l − (i− 1)b+ 2 ≤ t ≤ l + 1.

The permutation scheme Π is an algebraic group containing the identity element (as

π1(t) = t ∀t ∈ {1, . . . , l + 1}) which naturally induces the set of scalar values DΠ =

{πi(l + 1) : 1 ≤ i ≤ (l + 1)/b} ⊆ {1, . . . , l + 1}, which is the set of integers used to

identify the observations for which the nonconformity scores will be calculated.

1(l + 1)/b is assumed to be an integer for simplicity, but the procedure can be easily generalized to
include values of b such that (l + 1)/b is not integer-valued.
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The prediction set for Y T+1 (which is a multivariate prediction band or not depending

on the choice of the nonconformity measure) is therefore defined as

CT,1−α (xT+1) :=

{
y ∈

p∏
j=1

L∞(Qj) : δy > α

}
,

with

δy :=
|{d ∈ DΠ : Rωd

≥ RT+1}|
|DΠ|

,

|DΠ| = (l+1)/b, ωd the dth smallest value in the set I2∪{T+1} and nonconformity scores

Rωd
:= A({zh : h ∈ I1}, zωd

), RT+1 := A({zh : h ∈ I1}, zT+1), where zT+1 = (xT+1,y).

Since T+1 is always included in {ωd : d ∈ DΠ} (being l+1 = π1(l+1) and ωl+1 = T+1),

δy can be conveniently rewritten as

δy =
1 + |{d ∈ {πi(l + 1) : 2 ≤ i ≤ (l + 1)/b} : Rωd

≥ RT+1}|
|DΠ|

.

Intuitively, the idea is the one introduced by Split Conformal Prediction: after ran-

domly dividing the observed data into the training and calibration sets, the prediction

set CT,1−α (xT+1) is defined as the set of all y ∈
∏p

j=1 L
∞(Qj) such that (xT+1,y) is sim-

ilar - in terms of nonconformity measure A - to the training set {zh : h ∈ I1} compared

to the conformity of the elements of the calibration set to the same training set. Dif-

ferently from the Split Conformal Prediction framework, the permutation scheme here

proposed randomizes the elements of the calibration set by considering blocks of obser-

vations of length b, and it computes the nonconformity scores for (l+1)/b− 1 elements

of the calibration set (one for each block) and for zT+1. In so doing, when b increases

the nonconformity scores are computed for observations more distant in time from each

other (and so one is justified in expecting the dependence between the nonconformity

scores to decrease under some conditions on the data generating process, a fundamen-

tal aspect as we will see shortly), but the number of nonconformity scores computed

decreases. On the other hand, when b = 1 the approach here proposed is equivalent

to the Split Conformal approach, and the nonconformity scores are computed for each

observation in the calibration set.

Regardless the value of b, the permutation scheme Π guarantees that, if the regres-

sion pairs Z1, . . . ,ZT+1 are i.i.d. (or even exchangeable), the prediction sets obtained

are finite-sample valid, i.e. P (Y T+1 ∈ CT,1−α (XT+1)) ≥ 1 − α ∀ T, α ∈ (0, 1), due

to the fact that the nonconformity scores are exchangeable. The proof can be triv-

ially obtained by generalizing the well-established result holding in the Split Conformal
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framework (Vovk et al., 2005). As in the Conformal setting, the result concerning the

validity of the prediction sets induced by the permutation scheme Π can be enriched

by proving that, if the nonconformity scores have a continuous joint distribution, then

P (Y T+1 ∈ CT,1−α (XT+1)) = 1 − ⌊α(l+1)/b⌋
(l+1)/b

, i.e. the unconditional coverage is equal to

an easy-to-compute value and it is not only greater than or equal to 1− α. Also in this

case, the proof can be trivially obtained by generalizing Theorem 1.1.

If the regression pairs are not exchangeable, as in our case, the aforementioned results

do not hold. Nevertheless, two desirable properties can still be obtained under some

conditions: finite-sample performance bounds in terms of unconditional coverage and

asymptotic exactness (i.e. unconditional coverage asymptotically equal to the nominal

confidence level 1 − α). These results, which represent an extension of a result due to

Chernozhukov et al. (2018) to the Split framework, are reported in Theorem 4.1.

In order to introduce Theorem 4.1, let A∗ be an oracle nonconformity measure in-

ducing oracle nonconformity score R∗
ωd
, which is typically the population counterpart

of Rωd
: for example, in the aforementioned non-functional regression setting, the oracle

nonconformity score might be the magnitude of the error term. For notational simplic-

ity, let us define l̄ = |DΠ| = (l+ 1)/b and let {δ1l̄, δ2m, γ1l̄, γ2m} be sequences of positive

scalar values converging to 0 when l̄, m → 0. Finally, let F̃ (a) := 1
l̄

∑
d∈DΠ

1
{
R∗

ωd
< a
}

and F (a) = P (R∗
T+1 < a).

Theorem 4.1. If

• supa∈R |F̃ (a)− F (a)| ≤ δ1l̄ with probability 1− γ1l̄,

• 1
l̄

∑
d∈DΠ

[
Rωd

−R∗
ωd

]2 ≤ δ22m with probability 1− γ2m,

• |RT+1 −R∗
T+1| ≤ δ2m with probability 1− γ2m,

• The probability density function of R∗
T+1 is bounded above by a constant D,

then

|P (Y T+1 ∈ CT,1−α (XT+1))− (1− α)| ≤ 6δ1l̄ + 2δ2m + 2D
(
δ2m + 2

√
δ2m

)
+ γ1l̄ + γ2m

(4.1)

∀ α ∈ (0, 1).

The first condition concerns the approximate ergodicity of F̃ (a) for F (a), a con-

dition which holds for strongly mixing time series using the permutation scheme Π

(Chernozhukov et al., 2018). The remaining conditions mainly concern the relation-

ship between the nonconformity scores and the oracle nonconformity scores: intuitively,
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δ2m bounds the discrepancy between the nonconformity scores and their oracle counter-

parts. The proof of the Theorem mimics the proof of Theorem 2 in Chernozhukov et al.

(2018) if {δ1n, δ2n, γ1n, γ2n} are respectively replaced by {δ1l̄, δ2m, γ1l̄, γ2m}. We thus

cross-refer to Chernozhukov et al. (2018) for details. Considering the Split framework

of the manuscript, we require the four sequences {δ1l̄, δ2m, γ1l̄, γ2m} to depend on m and

l̄ respectively according to their specific role: indeed, Rωd
depends on the information

provided by the training set, and so one is justified in requiring it to better approximate

R∗
ωd

when the training set size m increases. As a consequence, {δ2m, γ2m} should depend

on m. Conversely, the training set size does not affect F̃ (a) and F (a) respectively since

the training set does not affect the oracle nonconformity scores, and so the requirement

is that the oracle nonconformity scores computed on the observations of the calibration

set provide a proper approximation to R∗
T+1 when the calibration set size increases. In

so doing, {δ1l̄, γ1l̄} should depend on l̄.

Theorem 4.1 provides, under some conditions, finite-sample performance bounds in

terms of unconditional coverage regardless the value of b and it guarantees that the

prediction sets are asymptotically exact since the right side of Inequality (4.1) converges

to 0 when m, l̄ → 0. In order to use the presented procedure in practical applications,

we will consider a specific member of the family of nonconformity measures introduced

in Chapter 3, i.e. the one inducing the following nonconformity scores:

Rωd
= sup

j∈{1,...,p}

(
ess sup
q∈Qj

∣∣∣∣yωd,j(q)− [µ̂j(xωd
)](q)

sj(q)

∣∣∣∣
)
, d ∈ {DΠ \ {l + 1}} ,

RT+1 = sup
j∈{1,...,p}

(
ess sup
q∈Qj

∣∣∣∣yj(q)− [µ̂j(xT+1)](q)

sj(q)

∣∣∣∣
)
,

with yj the j-th component of y, [µ̂j(xωd
)](q) estimate of [µj(xωd

)](q) based on the

training set {zh : h ∈ I1}, sj the standard deviation function of the functional regression

residuals of the observations belonging to the training set, i.e.:

sj(q) :=

(∑
h∈I1

(
yh,j(q)− [µ̂j(xh)](q)

)2)1/2

. (4.2)

By considering this nonconformity measure, if α ∈ [b/(l+1), 1) (which is the scenario

we will consider hereafter because if α ∈ (0, b/(l+1)) then CT,1−α (xT+1) =
∏p

j=1 L
∞(Qj)
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since δy is always greater than or equal to b/(l + 1)), then

CT,1−α (xT+1) :=

{
y ∈

p∏
j=1

L∞(Qj) : yj(q) ∈
[
[µ̂j(xT+1)](q)− ks · sj(q),

[µ̂j(xT+1)](q) + ks · sj(q)]

∀j ∈ {1, . . . , p}, ∀q ∈ Qj

}
,

with ks the ⌈(l + 1)(1− α)/b⌉th smallest value in the set {Rωd
: d ∈ {DΠ \ {l + 1}}}.

Differently from the case in which the regression pairs are i.i.d, in the framework of

the manuscript the choice of the point predictors is key since it affects the relationship

between the nonconformity score Rωd
and its oracle counterpart R∗

ωd
, and so the validity

of Theorem 4.1: for example, strong model misspecification represents the typical case

in which the validity of Theorem 4.1 is compromised, whereas the aforementioned results

about the finite-sample unconditional coverage still holds in the i.i.d. setting also when

the model is heavily misspecified. In addition, two further aspects depend on [µ̂j(xh)](q).

First of all, one is justified in expecting prediction bands to be smaller when accurate

regression estimators are used as they usually output smaller nonconformity scores (and

so a smaller k). Secondly, the regression estimators have a fundamental impact on

the computational cost: indeed, the procedure here developed is highly scalable since,

conditional on the computational cost required to obtain the regression estimates and sj,

the time needed to compute the prediction set increases linearly with T by assuming the

ratio T/l and b fixed, and consequently the computational effort is mainly determined

by the regression estimators used.

The strategy proposed in this Section represents a theoretically sound framework to

obtain prediction bands when dealing with multivariate functional time series. In order

to provide a comprehensive presentation of the method, in Section 4.3 we develop a

simulation study whose aim is to evaluate the procedure in different scenarios, whereas

in Section 4.4 the strategy is applied to real data in order to show its utility in real-world

applications.

4.3 Simulation Study

In this Section we evaluate the procedure presented in Section 4.2 through a simula-

tion study. Specifically, our aim is to analyze two different aspects: first of all (and most

importantly) we estimate the coverage by computing the empirical coverage in various

settings in order to compare it to the nominal confidence level 1 − α; the estimation
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procedure is detailed in Section 4.3.1. Secondly, we evaluate the size of the prediction

bands obtained since, intuitively, a small prediction band is preferable because it in-

cludes subregions of the sample space where the probability mass is highly concentrated

(Lei et al., 2013) and it is typically more informative in practical applications.

We focus on a specific data generating process, that is evaluated by considering

different values of T, b and kinds of model misspecification. The data generating process

(obtained by setting p = 1, i.e. Y t = Yt,1) is formally defined as follows:

Yt,1(q) = g′(q) · Ȳ t = Ȳt,1 + Ȳt,2
sin(2πq)√

1/2
+ Ȳt,3

cos(2πq)√
1/2

with Ȳ
′
t = [Ȳt,1, Ȳt,2, Ȳt,3] a VAR(2) process, i.e.:

Ȳ t = Ψ̄1Ȳ t−1 + Ψ̄2Ȳ t−2 + ϵ̄t,

with Ψ̄i =
Υi

2·||Υi|| for i = 1, 2 and

Υ1 =


0.8 0.3 0.3

0.3 0.8 0.3

0.3 0.3 0.8

 ,

Υ2 =


0.5 0.1 0.1

0.1 0.5 0.1

0.1 0.1 0.5

 ,

|| · || the Frobenius norm and ϵ̄t multivariate Student’s T random variable with 4 degrees

of freedom and scale matrix:

Σ =


0.5 0.3 0.3

0.3 0.5 0.3

0.3 0.3 0.5

 .

In so doing, the VAR(2) process is stable since det(I3 − Ψ̄1 · u− Ψ̄2 · u2) ̸= 0 ∀|u| ≤ 1.

A graphical representation of a replication with T = 25 is provided in Figure 4.1.

Seven models are taken into account:

• Oracle Model The point predictions are obtained by considering both g(q) and

Ψ̄1, Ψ̄2 as known. In other words, the point prediction for Yt,1(q) is simply given

by g′(q)(Ψ̄1ȳt−1 + Ψ̄2ȳt−2) ∀t ∈ {3, . . . , T + 1}.
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Figure 4.1: Graphical representation of the simulated data. The sample size is
T = 25, with older functions being darker.

• VAR Models The point predictions are obtained by considering g(q) as known

and Ψ̄1, Ψ̄2 as unknown. Specifically, the point prediction for Yt,1(q) is obtained

by estimating r matrices Ψ̄1, . . . , Ψ̄r by fitting a VAR(r) model on {z̄h : h ∈ I1},
with z̄h = (x̄h, ȳh), x̄h = {ȳh−1, . . . , ȳh−r} and r ∈ {1, 2, 3}. In so doing, the

estimation issue is converted to a problem of estimating the Fourier coefficients

(Chen et al., 2021).

• FAR Models The point predictions are obtained by considering both g(q) and

Ψ̄1, Ψ̄2 as unknown. The point predictions are obtained by fitting (on the training

set, as usual) a concurrent function-on-function autoregressive model of order

r ∈ {1, 2, 3}, i.e.:

yt,1(q) =
r∑

i=1

βi(q)yt−i,1(q) + at(q),

with at(q) finite-variance mean-zero error process uncorrelated with the linear

systematic component and such that at1 is independent from at2 , t
1 ̸= t2.

The purpose is to evaluate the procedure by taking into account scenarios character-

ized by a decreasing knowledge of the data generating process. The first model (Oracle

Model) represents the ideal case in which the oracle nonconformity scores can be com-

puted since both Ψ̄1, Ψ̄2 and the subspace in which the observations lie are known, the

second set of models (Var Models with r ∈ {1, 2, 3}) represents a more challenging case

in which only the subspace in which the observations live is known, whereas the third

set of models (FAR Models with r ∈ {1, 2, 3}) represents the general case in which

the dynamic over time of the phenomenon must be derived by the available data. The

simulation scheme here proposed allows to investigate, in addition to the Oracle Model
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Empirical Coverage - Oracle Model
b = 1 T = 25 0.753[0.737,0.769]

T = 50 0.752[0.736,0.768]
T = 100 0.748[0.732,0.764]
T = 1000 0.743[0.727,0.759]

b = 3 T = 50 0.744[0.728,0.760]
T = 100 0.738[0.722,0.754]
T = 1000 0.743[0.727,0.759]

b = 6 T = 100 0.745[0.729,0.760]
T = 1000 0.743[0.727,0.759]

Table 4.1: Empirical coverage (99% confidence interval in brackets). Oracle Model.
α=0.25.

and the case in which the model is correctly specified (VAR Model with r = 2), three

widespread kinds of model misspecification: the misspecification due to omitted relevant

variable (VAR Model with r = 1, see Rao, 1971), misspecification due to inclusion of

irrelevant variable (VAR Model with r = 3, see Rao, 1971) and the functional form

misspecification (FAR Models, see Wooldridge, 1994, since the data generating process

can not be rewritten as a FAR Model).

We consider Q1 = [0, 1] and α = 0.25. In order to fulfill the four conditions

required ((l + 1)/b integer-valued; α ∈ [b/(l + 1), 1); a training set size allowing

to estimate a VAR(r) model; ⌊α(l + 1)/b⌋b/(l + 1) = α for consistency with the

i.i.d. framework), we set (T, l) = {(25, 7), (50, 23), (100, 47), (1000, 479)} when b = 1,

(T, l) = {(50, 23), (100, 47), (1000, 479)} when b = 3 and (T, l) = {(100, 47), (1000, 479)}
when b = 6. As usual in the time series setting, the first r observations (2 observations

when the Oracle Model is considered, respectively) are taken into account only as co-

variates, and so the training set size is equal to T − l − r (T − l − 2 when the Oracle

Model is considered, respectively). Practically, for each value of T , we evaluate the

procedure by considering N = 5000 replications for each combination of point predictor

and value of b. The simulations are achieved by using the R Programming Language

(R Core Team, 2020), and the generation of data by fts.rar function of freqdom.fda

package (Hormann and Kidzinski, 2017).

4.3.1 Results

Table 4.1 and Table 4.2 show the empirical coverage, together with the related

99% confidence interval in square brackets, reached by the procedure presented in the

manuscript. Specifically, the empirical coverage is simply computed as the fraction of

the N = 5000 replications in which yT+1 belongs to CT,1−α (xT+1), and the confidence



64 Section 4.3 - Simulation Study

Empirical Coverage - VAR Model
r=1 r=2 r=3

b = 1 T = 25 0.741[0.725,0.757] 0.735[0.719,0.751] 0.754[0.738,0.770]
T = 50 0.737[0.721,0.753] 0.746[0.730,0.762] 0.742[0.726,0.758]
T = 100 0.731[0.714,0.747] 0.743[0.727,0.759] 0.738[0.722,0.754]
T = 1000 0.743[0.727,0.759] 0.744[0.728,0.760] 0.742[0.726,0.758]

b = 3 T = 50 0.735[0.719,0.751] 0.742[0.726,0.758] 0.743[0.727,0.759]
T = 100 0.737[0.721,0.753] 0.738[0.722,0.754] 0.736[0.720,0.752]
T = 1000 0.743[0.727,0.759] 0.745[0.729,0.761] 0.744[0.728,0.760]

b = 6 T = 100 0.737[0.721,0.753] 0.740[0.724,0.756] 0.741[0.725,0.757]
T = 1000 0.746[0.730,0.762] 0.745[0.729,0.761] 0.743[0.727,0.759]

Empirical Coverage - FAR Model
r=1 r=2 r=3

b = 1 T = 25 0.745[0.729,0.761] 0.742[0.726,0.758] 0.741[0.725,0.757]
T = 50 0.738[0.722,0.754] 0.750[0.734,0.766] 0.747[0.731,0.763]
T = 100 0.733[0.717,0.749] 0.742[0.726,0.758] 0.740[0.724,0.756]
T = 1000 0.743[0.727,0.759] 0.742[0.726,0.758] 0.743[0.727,0.759]

b = 3 T = 50 0.736[0.720,0.752] 0.750[0.734,0.766] 0.742[0.726,0.758]
T = 100 0.736[0.720,0.752] 0.738[0.722,0.754] 0.743[0.727,0.759]
T = 1000 0.741[0.725,0.757] 0.744[0.728,0.760] 0.743[0.727,0.759]

b = 6 T = 100 0.736[0.720,0.752] 0.742[0.726,0.758] 0.740[0.724,0.756]
T = 1000 0.745[0.729,0.760] 0.744[0.728,0.760] 0.744[0.728,0.760]

Table 4.2: Empirical coverage (99% confidence interval in brackets). VAR Models
and FAR Models. α=0.25. The values in bold indicate that the corresponding conf.
intervals do not include 1− α.

interval is reported in order to provide an idea of the variability of the phenomenon,

rather than to make inferential conclusion on the unconditional coverage in the various

settings. The evidence is quite satisfactory as for any value of b, sample size T and model

the empirical coverage is close to 1− α = 0.75, as suggested by the fact that only 2 out

of the 63 confidence intervals (the cells in bold in the tables) do not include the nominal

confidence level. The result provided by the simulation study is particularly appealing

since it suggests that an appropriate coverage is reached also when the sample size is

very small, a fact that allows the procedure to be applied in many practical frameworks.

Although comparing the size of prediction bands obtained in scenarios characterized

by (potentially) different unconditional coverages may lead to misleading conclusions, in

light of the evidence provided so far we evaluate this aspect when the model, the value

of T and the value of b vary. To do that, we define, according to the definition provided

in Chapter 3 (see Equation 3.3), the size of a multivariate prediction band as the sum

of the p areas between the upper and lower bound of the p univariate prediction bands,

i.e.
∑p

j=1

∫
Qj

2 · ks · sj(q)dq (that, in this case, is simply
∫
Q1

2 · ks · s1(q)dq). Figure

4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8 show the boxplots concerning the size of the N = 5000
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Figure 4.2: Set size. Oracle Model. α = 0.25.
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Figure 4.3: Set size. VAR Model, r = 1. α = 0.25.
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Figure 4.4: Set size. VAR Model, r = 2. α = 0.25.
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Figure 4.5: Set size. VAR Model, r = 3. α = 0.25. For visualization purpose, the
most extreme value (equal to 210.54) obtained when b = 1, T = 25 is removed.
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Figure 4.6: Set size. FAR Model, r = 1. α = 0.25.
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Figure 4.7: Set size. FAR Model, r = 2. α = 0.25.
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Figure 4.8: Set size. FAR Model, r = 3. α = 0.25.

prediction bands. By considering each point predictor separately, it is possible to notice

that, given b, the band size tends to decrease when T increases and, given T , it tends to

decrease when b decreases: this evidence is not surprising since when T increases (and

so l) and when b decreases a greater number of nonconformity scores is computed. Also

the training set size has a relevant impact on the phenomenon since one is justified in

expecting the band size to decrease when m grows because more accurate regression

estimates provide smaller nonconformity scores, as suggested by analyzing the three

couples (T, b) = {(25, 1), (50, 3), (100, 6)} in which the number of nonconformity scores

computed is constant.

The Oracle model outperforms the VAR models and the FAR models for every value

of T , b, as expected. By considering the VAR models and the FAR models, when the

sample size is very small (T=25) the order of the model providing the best performance

in terms of size is r = 1 since higher values of r may provide unstable estimation

procedures. Vice versa, the importance of using a model correctly specified is evident

when T is large: indeed, the VAR Model with r = 2 represents the best choice overall

(Oracle Model excluded) when T = 1000, and it outperforms the other two VAR models

(r = 1, r = 3) also when T = 100. Specifically, when T = 1000 the VAR model with a

relevant variable omitted (r = 1) is largely outperformed by the other two VAR models

(r = 1, r = 3) since the estimation of a single matrix Ψ̄1 represents an undeniable limit

in obtaining accurate regression estimates.

In light of the evidence provided in this Section, the procedure seems reliable in

the frequent practical scenarios characterized by small sample size and/or model mis-

specification, whereas b = 1 represents the best balance between guarantee in terms of

coverage and exhaustive use of the information provided by the available data.
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4.4 Application to the Italian Gas Market

In this Section, we apply the procedure developed in Section 4.2 to a specific Italian

gas market, namely the MGS (Mercato Gas in Stoccaggio), in order to create simulta-

neous prediction bands for the daily offer and demand curves. It should nevertheless

be noted that our method can be applied to many application scenarios, such as other

energy or non-energy markets. The MGS is a market in which users - authorized by the

energy regulator Gestore Mercati Energetici (GME) - and the pipeline manager (Snam

S.p.A.) day by day submit supply offers and demand bids for the gas stored, which is

traded through an auction mechanism.

Specifically, for each day the supply offers (demand bids, respectively) are sorted by

price in ascending (descending, respectively) order, and the demand and offer curves

are built - starting from raw data provided in XML format by GME (https://www.

mercatoelettrico.org/en/) - by considering the cumulative sum of the quantities

(expressed in MWh). In doing so, by construction both daily offer and demand curves

are positive monotonic (increasing and decreasing, respectively) step functions. The

intersection of the two curves provides the price Pt at which the gas is traded (expressed

in Euro/MWh) and the total quantity exchanged Qt, and every offer/bid to the left of

the intersection is accepted and consequently traded at price Pt.

The creation of prediction bands is strategic for energy traders’ decision-making since

it allows to evaluate the possible effect of offers/bids on the shape of the curves (and

consequently on both the price Pt and the quantity exchanged Qt), an aspect that cannot

be directly included by usual non-functional procedures for interval price prediction. In

order to show the useful insights that the procedure built in Section 4.2 can provide, we

create simultaneous prediction bands for the offer (Yt,1) and demand (Yt,2) curve for each

day in the six-month period between 1 August 2019 and 31 January 2020. For each of

the 184 days we aim to predict, we build the corresponding prediction band based on the

information provided by the rolling window of 90 days2 (i.e. T = 90) including the most

up-to-date information available. We set the function domains Q1 = Q2 = [0, 2 · 105] as
all demand and offer curves are observed in this range and at the same time the total

quantity exchanged Qt always belongs to this interval in the period taken into account.

The offer and demand curves considered in the analysis are displayed in Figure 4.9.

2We considered different values of T : 45,60,90,180,365. We chose T = 90 since it outputs the
smallest prediction bands in the period considered.

https://www.mercatoelettrico.org/en/
https://www.mercatoelettrico.org/en/


Chapter 4 - Prediction bands for multivariate functional time series 69

10

15

20

25

0 50000 100000 150000 200000

Quantity (MWh)

P
ric

e 
(E

ur
o/

M
W

h)

Offer Curves

10

15

20

25

0 50000 100000 150000 200000

Quantity (MWh)

P
ric

e 
(E

ur
o/

M
W

h)

Demand Curves

Figure 4.9: The offer (at the top) and demand (at the bottom) curves considered
in the analysis, with older functions being darker.

In order to obtain the needed point predictions, we consider the following simple

concurrent function-on-function autoregressive model with a scalar covariate:

yt,j(q) = β1j(q)yt−8,j(q) + β2j(q)Pt−2 + at(q), j ∈ {1, 2}, q ∈ Qj, (4.3)

with at(q) defined as in Section 4.3. The inclusion of the lagged curve at time t− 8 and

of the lagged (scalar) price at time t − 2 is motivated by the fact that they represent

the most up-to-date information available for a trader participating in the auction for

day t due to GME’s regulation. However, model (4.3) does not guarantee that the point

predictions are monotonic functions. In view of this, after obtaining β̂1j, β̂2j ∀j = 1, 2,

we simply obtain monotonic point predictions by defining the point prediction for the

offer curve at time t evaluated at q, i.e. [µ̂1
I1(xt)](q), as follows:

[µ̂1
I1(xt)](q) =

ŷt,1(q) if ŷt,1(q) = maxx∈[0,q] ŷt,1(x)

ŷt,1(q
′
) + (q − q

′
)
(

ŷt,1(q
′′
)−ŷt,1(q

′
)

q′′−q′

)
otherwise

(4.4)

with ŷt,1 the predicted offer curve obtained by fitting model (4.3) using OLS, q
′
:=

max
{
argmaxx∈[0,q]ŷt,1(x)

}
and q

′′
:= min {x ∈ [q, 200000]|ŷt,1(x) ≥ ŷt,1(q)}. The specu-

lar procedure is developed to obtain [µ̂2
I1(xt)](q), i.e. the point prediction for the demand

curve at time t evaluated at q. Vice versa, the fact that the point predictions are not

step functions does not represent a limit since the prices at which the steps happen can
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Figure 4.10: Multivariate prediction bands with α = 0.5 (darker regions) and α =
0.25 (lighter regions). The continuous lines represent the observed offer and demand
curves, whereas the dashed lines represent the fitted ones. The black cross indicates
(Qt, Pt).

be absolutely continuous random variables, and consequently the expectation of this

kind of random step function is a continuous function (Pelagatti, 2013). Model (4.3)

and the correction induced by (4.4) certainly represent an oversimplification of the phe-

nomenon analyzed, and one is justified in expecting other variables (such as the trading

activity on the other energy markets) to have an important impact on the MGS’s dy-

namics: however, the purpose of this Section is to illustrate the application potential of

the procedure presented in Section 4.2 in a general and arbitrary prediction scenario,

rather than when a particularly sophisticated model is built.

The last, fundamental step is the definition of the significance level α, of the calibra-

tion set size l, of the training set size m and of b. We consider two possible values of α,

i.e. 0.5 and 0.25, and b = 1 in light of the evidence provided by Section 4.3. We also

set l = 39 and, given the aforementioned delay in the information concerning lagged

curves, we consider m = T − l− 8 = 43 in order to obtain a value of m/l close to 1 and

a value of l such that ⌊α(l + 1)/b⌋b/(l + 1) = α, as in Section 4.3.

Figure 4.10 shows the multivariate prediction bands obtained for one of the day we

aim to predict (29 January 2020), with the panel at the top (at the bottom, respectively)

showing the portions of the multivariate prediction bands related to the offer curve (de-

mand curve, respectively): in both cases, the darker region indicates the prediction

bands obtained by considering α = 0.5 (i.e. nominal confidence level 1 − α = 0.50),
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whereas the lighter one denotes those obtained by considering α = 0.25 (i.e. nominal

confidence level 1 − α = 0.75). For the sake of completeness, the observed (continu-

ous line) and fitted (dashed line) curves, together with the price Pt and the quantity

exchanged Qt (black cross), are also displayed. Since the curves are monotonic by con-

struction, the upper and the lower bounds of the prediction bands were made monotonic

before being plotted: indeed, the procedure does not guarantee that such bounds are

monotonic, but the fully nonparametric approach induced by the permutation scheme Π

allows to made them monotonic by removing portions of the prediction bands associated

to regions of the functional space that violate known features (e.g. monotonicity) of the

function to be predicted, without decreasing the unconditional coverage. It is absolutely

evident that the prediction bands are decidedly wider in the first part of the domain,

especially in the panel at the bottom of the figure, and this is due to the fact that the

behavior of the two curves in that portion of the domain is hardly predictable. The

main reason of this phenomenon is the conduct of the pipeline manager Snam S.p.A.:

indeed, in the period considered it typically submits extremely low supply offers and

high demand bids - if compared to other traders’ offers/bids - in order to be sure to

sell/buy the quantity needed, but this makes the uncertainty quantification a particu-

larly tough task if no information on Snam’s trading intentions is available. As proof of

that, we created a fictional scenario by removing all the offers/bids made by Snam in

the period considered, and we therefore computed the corresponding 184 multivariate

prediction bands in the period 1 August 2019-31 January 2020: in doing so, the size in

the initial part of the domain [0,25000] of the two univariate prediction bands composing

each multivariate prediction band (related to the offer and demand curve respectively,

and formally defined as
∫ 25000

0
2 ·ks ·sj(q)dq, j = 1, 2) decreases by 45.2% (median value)

for the offer curve and by 72.4% (median value) for the demand curve when α = 0.50

is considered. A very similar result is obtained when α = 0.25 is taken into account.

In view of this, the inclusion in model (4.3) of information aimed at capturing Snam’s

behavior represents a possible future development that is highly likely to create smaller

(and consequently more informative) prediction bands.

A further useful by-product of the procedure related to this specific application is

that it allows to automatically obtain a prediction region for (Qt, Pt) by considering the

region in which the prediction band for the offer curve and that for the demand curve

overlap. As an example, the region for 29 January 2020 computed with α = 0.50 is

represented in the left panel of Figure 4.11. By computing the fraction of times that

the observed (Qt, Pt) effectively belongs to the prediction region thus obtained over the

184 days considered, we obtain that 92.4% of the time the observed prediction region
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Figure 4.11: The left panel shows the prediction region for (Qt, Pt) (29 January 2020,
α = 0.50), together with the value of (Qt, Pt) effectively observed (black cross). The
right panel shows the same prediction region (dashed darker lines) and the prediction
region obtained by submitting an extra demand bid of 20000 MWh at 12 Euro/MWh
(lighter region).

contains the observed intersection point when α = 0.50, and that 97.8% of the time

when α = 0.25. This evidence is appealing especially when compared to the fraction

of times that the observed offer and demand curves effectively belong to the observed

multivariate prediction bands, that is 52.7% when α = 0.50 (i.e. nominal confidence

level 1 − α = 0.50) and 75.5% when α = 0.25 (i.e. nominal confidence level 1 − α =

0.75), respectively. It is fundamental to notice that the last two percentages do not

represent empirical coverages, and more generally provide no relevant information about

the unconditional coverage reached by the procedure developed, since the prediction

bands computed in this Section are obtained by repeating the procedure day after day

and by considering a rolling window. However, it is still possible to obtain a theoretical

result concerning the unconditional coverage of the aforementioned prediction region by

simply reasoning about how it is built: indeed, by construction if the observed offer curve

and the observed demand curve effectively jointly belong to the observed multivariate

prediction band, and if the intersection point exists (an event always verified in the

period considered), then the intersection point necessarily belongs to the area in which

the two univariate prediction bands overlap. As a consequence, by construction, if the

two curves intersect, than the unconditional coverage reached by the prediction region

is greater or equal than P (Y T+1 ∈ CT,1−α (XT+1)). In light of this and of the empirical

results provided, we conclude that the prediction region naturally induced by the method

described in Section 4.2 represents a promising tool - both from a theoretical and an

application point of view - that can be profitably included in traders’ tool kit.
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The analysis here presented also allows to exploit the market from a speculative

perspective: indeed, from a given trader’s point of view, the procedure presented in

this manuscript allows to directly evaluate the impact of any extra offer/bid on the

prediction bands for tomorrow’s offer and demand curves, and consequently on the

prediction region for the intersection point. As an example, a trader may want to

evaluate the effect of a demand bid of 20000 MWh at 12 Euro/MWh on tomorrow’s

intersection point: to do that, the user can add this bid to the predicted demand curve,

thereby inducing a change in the multivariate prediction band and consequently in the

prediction region. The resulting prediction region for 29 January 2020 is displayed in

the right panel of Figure 4.11.

The evidence showed in this Section is obviously limited to a few examples. In order

to provide a comprehensive overview of the results obtained in the period considered,

we developed a Shiny app (available at https://jacopodiquigiovanni.shinyapps.

io/ItalianGasMarketApp/) that allows to interactively choose the scenario of interest

and to visualize the associated results. Specifically, the top left panel allows the user to

dynamically change five inputs, that are: the day for which the predictions are made

(between 1 August 2019 and 31 January 2020), the nominal confidence level 1 − α,

the type of extra bid/offer (assuming two possible values: Demand, Offer) you want

to evaluate the impact of, its quantity and its price. The top right panel and the

bottom right panel show the portion of multivariate prediction band related to the

offer and demand curve respectively, together with the observed curves, for the day and

the nominal confidence level selected. In doing so, it is possible to verify whether the

couple of curves would have been contained in the multivariate prediction band or not

if the procedure had been implemented in the real world. Finally, the bottom left panel

shows the prediction region for (Qt, Pt) obtained for the day and the nominal confidence

level selected (dark blue region), as well as the value of (Qt, Pt) effectively observed

(red cross), allowing the user to check the accuracy of the prediction. In addition, it

shows also the prediction region obtained by including the extra bid/offer in tomorrow’s

predicted demand/offer curve (light blue region), allowing this tool to be used for the

purposes mentioned above.

4.5 Conclusions and Further Developments

The present chapter deals with the demand for methods able to quantify uncertainty

in the multivariate functional time series prediction framework. The approach developed

in this chapter extends the non-overlapping blocking scheme proposed by Chernozhukov

https://jacopodiquigiovanni.shinyapps.io/ItalianGasMarketApp/
https://jacopodiquigiovanni.shinyapps.io/ItalianGasMarketApp/
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et al. (2018) to the Split context in order to create simultaneous prediction bands for

forthcoming multivariate random function Y T+1. The procedure inherits the guaran-

tees for the unconditional coverage in terms of finite-sample performance bounds and of

asymptotic exactness under some conditions concerning the oracle nonconformity mea-

sure A∗ and the nonconformity measure A, but can be also satisfactorily applied to the

multivariate functional context due to the Split process and to the specific nonconfor-

mity measure used. Theorem 4.1 provides a theoretically sound prediction framework

based on assumptions similar to the ones introduced by Chernozhukov et al. (2018).

However these assumptions could be tricky to assess in practice - and further work must

be developed to find sufficient conditions that imply the conditions required by Theorem

4.1 . For this reason, we combined our theoretical work with a simulation study aimed

at evaluating the procedure in situations in which Theorem 4.1 is violated, as in the case

of model misspecification. The results obtained are encouraging: the empirical coverage

values are close to the nominal confidence level 1 − α also when the sample size T is

small or the model is misspecified, regardless the value of b. In view of this, we applied

the method described in Section 4.2 to a real-world scenario of strong interest, namely

the prediction of daily offer and demand curves in the Italian gas market. We built the

corresponding simultaneous prediction bands for each day in a six-month period based

on a rolling window including the most up-to-date information available. Despite the

fact that the point predictors considered can surely be improved to provide more ac-

curate regression estimates, we used standard functional regression estimators to show

the wide applicability of the procedure, also in a speculative perspective. In order to

provide a complete overview of the study, we developed a Shiny app able to display

the predicted bands, as well as the related prediction regions for (Qt, Pt), under several

operative conditions. Being based on a Split framework, our proposal shares both the

strenghts (namely, the simple mathematical tractability and ease of implementation)

and the weaknesses of the prediction methods based on Split Conformal. In fact the

random subdivision of the sample intrinsically induces an element of randomness in the

method and is not particularly efficient in its use of data. To improve on this, a very

promising area of research is to employ derivations of the original Conformal approach

such as the jackknife+ procedure (Barber et al., 2021) and extensions (see, for example,

Xu and Xie, 2020) in a functional context.
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Appendix for Chapter 1

A.1 Proof of Theorem 1.1

Under the hypothesis of the theorem, (l + 1)δY ∼ U{1, 2, . . . , l + 1} holds. Since

Cn,1−α (xn+1) := {y ∈ Y(T ) : δy > α}, as a consequence:

P (Y n+1 ∈ Cn,1−α (Xn+1)) = P ((l + 1)δY > (l + 1)α)

= 1− P ((l + 1)δY ≤ (l + 1)α)

= 1− ⌊(l + 1)α⌋
l + 1

.

In addition, since
⌊(l + 1)α⌋

l + 1
≤ (l + 1)α

l + 1
= α

then P (Y n+1 ∈ Cn,1−α (Xn+1)) ≥ 1− α. Finally, since

⌊(l + 1)α⌋
l + 1

>
(l + 1)α− 1

l + 1
= α− 1

l + 1

then P (Y n+1 ∈ Cn,1−α (Xn+1)) < 1− α + 1
l+1

.

A.2 Exactness of Smoothed Split Conformal predic-

tion sets

Let us consider the hypothesis of Theorem 1.1. Let us notice that

δy,τn+1 :=
|{d ∈ I2 : Rd > Rn+1}|+ τn+1 |{d ∈ I2 ∪ {n+ 1} : Rd = Rn+1}|

l + 1

=
τn+1

l + 1
+

|{d ∈ I2 : Rd ≥ Rn+1}|
l + 1

.
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Under the hypothesis of Theorem 1.1, |{d ∈ I2 : Rd ≥ Rn+1}| ∼ U{0, 1, . . . , l} holds. As

a consequence:

P
(
Y n+1 ∈ Cn,1−α,τn+1 (xn+1) |τn+1

)
= P

(
δY ,τn+1 > α|τn+1

)
= P (|{d ∈ I2 : Rd ≥ Rn+1}| > (l + 1)α− τn+1|τn+1)

= 1− P (|{d ∈ I2 : Rd ≥ Rn+1}| ≤ (l + 1)α− τn+1|τn+1)

= 1− ⌊(l + 1)α− τn+1⌋+ 1

l + 1
.

Let us call f(τn+1) = 1 · 1{τn+1 ∈ [0, 1]}. Then

P
(
Y n+1 ∈ Cn,1−α,τn+1 (xn+1)

)
=

∫ 1

0

P
(
Y n+1 ∈ Cn,1−α,τn+1 (xn+1) |τn+1

)
f(τn+1)dτn+1

=1−(∫ (l+1)α−⌊(l+1)α⌋

0

⌊(l + 1)α− τn+1⌋+ 1

l + 1
dτn+1+∫ 1

(l+1)α−⌊(l+1)α⌋

⌊(l + 1)α− τn+1⌋+ 1

l + 1
dτn+1

)
.

Let us consider
∫ (l+1)α−⌊(l+1)α⌋
0

⌊(l+1)α−τn+1⌋+1
l+1

dτn+1. Since if τn+1 ≤ (l+1)α−⌊(l+1)α⌋
then ⌊(l + 1)α− τn+1⌋ = ⌊(l + 1)α⌋, we can notice that

∫ (l+1)α−⌊(l+1)α⌋

0

⌊(l + 1)α− τn+1⌋+ 1

l + 1
dτn+1

=

∫ (l+1)α−⌊(l+1)α⌋

0

⌊(l + 1)α⌋+ 1

l + 1
dτn+1

=
⌊(l + 1)α⌋+ 1

l + 1
· ((l + 1)α− ⌊(l + 1)α⌋) .
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Let us consider
∫ 1

(l+1)α−⌊(l+1)α⌋
⌊(l+1)α−τn+1⌋+1

l+1
dτn+1. Since if τn+1 > (l+1)α−⌊(l+1)α⌋

then ⌊(l + 1)α− τn+1⌋ = ⌊(l + 1)α⌋ − 1, we can notice that∫ 1

(l+1)α−⌊(l+1)α⌋

⌊(l + 1)α− τn+1⌋+ 1

l + 1
dτn+1

=

∫ 1

(l+1)α−⌊(l+1)α⌋

⌊(l + 1)α⌋
l + 1

dτn+1

=
⌊(l + 1)α⌋

l + 1
· (1− ((l + 1)α− ⌊(l + 1)α⌋)) .

Then

P
(
Y n+1 ∈ Cn,1−α,τn+1 (xn+1)

)
=1−(

⌊(l + 1)α⌋+ 1

l + 1
· ((l + 1)α− ⌊(l + 1)α⌋)+

⌊(l + 1)α⌋
l + 1

· (1− ((l + 1)α− ⌊(l + 1)α⌋))

)
=1− α.
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Appendix for Chapter 2

B.1 Appendix for Chapter 2.2.1

Smoothed Split Conformal prediction set induced by nonconformity mea-

sure (2.1)

First of all let us notice that, by definition, Cn,1−α,τn+1 = Cn,1−α when τn+1 = 1.

Since δy,τn+1 can not be less than τn+1/(l + 1) and can not be greater than (l +

τn+1)/(l + 1), we consider the case in which α ∈ [τn+1/(l + 1), (l + τn+1)/(l + 1)). Let

us define w the ⌈l + τn+1 − (l + 1)α⌉th smallest value in the set {Rd : d ∈ I2}, and rn

(vn respectively) the number of elements in the set {Rd : d ∈ I2} that are equal to w

and that are to the right (left respectively) of w in the sorted version of the set. Under

the assumption concerning the continuous joint distribution of {Rd : d ∈ I2} made in

Chapter 1 rn = vn = 0 holds, but generally speaking we assume rn, vn ∈ N≥0 such

that rn + vn ≤ l − 1. By performing calculations similar to those needed in the Split

Conformal scenario, we obtain that:

• if

τn+1 >
(l + 1)α− ⌊(l + 1)α− τn+1⌋+ rn

rn + vn + 2

then y ∈ Cn,1−α,τn+1 ⇐⇒ Rn+1 ≤ w and so

Cn,1−α,τn+1 = {y ∈ Y(T ) : y(t) ∈ [gI1(t)− w,

gI1(t) + w] ∀t ∈ T }

• if

τn+1 ≤
(l + 1)α− ⌊(l + 1)α− τn+1⌋+ rn

rn + vn + 2
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then y ∈ Cn,1−α,τn+1 ⇐⇒ Rn+1 < w and so

Cn,1−α,τn+1 = {y ∈ Y(T ) : y(t) ∈
(
gI1(t)− w,

gI1(t) + w
)

∀t ∈ T }.

Proof that the concatenation of pointwise prediction intervals leads to a

prediction band that is a subset of the simultaneous prediction band (2.2).

Let Un,1−α be the pointwise prediction set. Let us define R̃d(t) := |yd(t)− gI1(t)| ∀t ∈
T , d ∈ I2, R̃n+1(t) := |y(t)− gI1(t)| for a given y ∈ Y(T ) and k̃(t) the ⌈(l+1)(1−α)⌉th
smallest value in the set {R̃d(t) : d ∈ I2}. By construction Rd = ess supt∈T R̃d(t),

and so Rd ≥ R̃d(t) ∀t ∈ T , d ∈ I2 and then k ≥ k̃(t) ∀t ∈ T . Let us consider

y ∈ Un,1−α, i.e. y(t) ∈ [gI1(t) − k̃(t), gI1(t) + k̃(t)] ∀t ∈ T . Since k ≥ k̃(t), also

y(t) ∈ [gI1(t)− k, gI1(t) + k] ∀t ∈ T , i.e. y ∈ Cn,1−α.

Since the converse is not necessarily true (in the sense that y ∈ Cn,1−α does not imply

y ∈ Un,1−α), we conclude that Un,1−α ⊆ Cn,1−α.

B.2 Appendix for Chapter 2.2.2

Proof of the prediction set induced by the nonconformity measure A({yh :

h ∈ I1}, y) = ess supt∈T

∣∣∣y(t)−gI1 (t)

sI1 (t)

∣∣∣.
Let us consider the Split Conformal framework. For a given y ∈ Y(T ), let us define

δsy :=

∣∣{d ∈ I2 ∪ {n+ 1} : Rs
d ≥ Rs

n+1

}∣∣
l + 1

.

The Split Conformal prediction set is defined as Cs
n,1−α :=

{
y ∈ Y(T ) : δsy > α

}
. As a

consequence, y ∈ Cs
n,1−α ⇐⇒ Rs

n+1 ≤ ks, with ks the ⌈(l + 1)(1− α)⌉th smallest value

in the set {Rs
d : d ∈ I2}. Then:

ess sup
t∈T

∣∣∣∣y(t)− gI1(t)

sI1(t)

∣∣∣∣ ≤ ks

⇐⇒
∣∣∣∣y(t)− gI1(t)

sI1(t)

∣∣∣∣ ≤ ks ∀t ∈ T

⇐⇒ y(t) ∈ [gI1(t)− kssI1(t), gI1(t) + kssI1(t)] ∀t ∈ T .

Therefore, the Split Conformal prediction set is

Cs
n,1−α := {y ∈ Y(T ) : y(t) ∈ [gI1(t)− kssI1(t), gI1(t) + kssI1(t)] ∀t ∈ T } .
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Let us consider the Smoothed Split Conformal framework. Let us define for a given

y ∈ Y(T )

δsy,τn+1
:=

∣∣{d ∈ I2 : R
s
d > Rs

n+1

}∣∣+ τn+1

∣∣{d ∈ I2 ∪ {n+ 1} : Rs
d = Rs

n+1

}∣∣
l + 1

Cs
n,1−α,τn+1

:=
{
y ∈ Y(T ) : δsy,τn+1

> α
}
.

By reconsidering the computations provided in Appendix B.1 and by substituting δy,τn+1

with δsy,τn+1
, w with ws, Rd with Rs

d, rn with rsn and vn with vsn it is possible to notice

that

• if

τn+1 >
(l + 1)α− ⌊(l + 1)α− τn+1⌋+ rsn

rsn + vsn + 2

then

Cs
n,1−α,τn+1

= {y ∈ Y(T ) : y(t) ∈ [gI1(t)− wssI1(t),

gI1(t) + wssI1(t)] ∀t ∈ T }

• if

τn+1 ≤
(l + 1)α− ⌊(l + 1)α− τn+1⌋+ rsn

rsn + vsn + 2

then

Cs
n,1−α,τn+1

= {y ∈ Y(T ) : y(t) ∈
(
gI1(t)− wssI1(t),

gI1(t) + wssI1(t)
)

∀t ∈ T }.

Proof of Remark 2.2.

Let us define Cλ·s
n,1−α the prediction set obtained by considering the modulation func-

tion λ · sI1 . The nonconformity scores are

Rλ·s
d =ess sup

t∈T

∣∣∣∣yd(t)− gI1(t)

λ · sI1(t)

∣∣∣∣ = 1

λ
Rs

d, d ∈ I2

Rλ·s
n+1 =ess sup

t∈T

∣∣∣∣y(t)− gI1(t)

λ · sI1(t)

∣∣∣∣ = 1

λ
Rs

n+1.

Let us also define

δλ·sy :=

∣∣{d ∈ I2 ∪ {n+ 1} : Rλ·s
d ≥ Rλ·s

n+1

}∣∣
l + 1

.
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The Split Conformal prediction set is defined as Cλ·s
n,1−α :=

{
y ∈ Y(T ) : δλ·sy > α

}
. As a

consequence, y ∈ Cλ·s
n,1−α ⇐⇒ Rλ·s

n+1 ≤ kλ·s, with kλ·s the ⌈(l+1)(1−α)⌉th smallest value

in the set {Rλ·s
d : d ∈ I2}. In addition, since Rλ·s

d = Rs
d/λ ∀d ∈ I2, then kλ·s = ks/λ.

Then:

Rλ·s
n+1 ≤ kλ·s

⇐⇒ 1

λ
Rs

n+1 ≤
ks

λ

⇐⇒ Rs
n+1 ≤ ks,

and since y ∈ Cs
n,1−α ⇐⇒ Rs

n+1 ≤ ks, then Cλ·s
n,1−α = Cs

n,1−α.

Adjustment procedure of s̄cI1 and s̄I1

If maxd∈H2 |yd(t) − gI1(t)| = 0 for at least one value t but the condition∫
T maxd∈H2 |yd(t) − gI1(t)|dt ̸= 0 still holds, in order to ensure that s̄cI1(t) > 0

∀t ∈ T it is sufficient to add an arbitrarily (small) positive value to s̄cI1(t) ∀t ∈ T
and to adjust the normalization constant accordingly. The pathological case in which∫
T maxd∈H2 |yd(t) − gI1(t)|dt = 0 is addressed only when yd(t) = gI1(t) ∀d ∈ H2 and

almost every t ∈ T and it represents a case of no practical interest.

Should ∃ t ∈ T such that maxh∈H1 |yh(t)− gI1(t)| = 0, the same procedure is devel-

oped.

Proof of Theorem 2.4.

Let us focus on s̄I1(t). Since m/n = θ with 0 < θ < 1, if n → +∞ then m →
+∞. By definition, the scalar γ is the empirical quantile of order ⌈(m+ 1)(1− α)⌉) of
{ess supt∈T |yh(t)− gI1(t)| : h ∈ I1}. First of all note that

lim
m→+∞

⌈(m+ 1)(1− α)⌉
m

= lim
m→+∞

m+ 1− ⌊(m+ 1)α⌋
m

and since
(m+ 1)α− 1

m
≤ ⌊(m+ 1)α⌋

m
≤ (m+ 1)α

m
∀m ∈ N

and

lim
m→+∞

(m+ 1)α− 1

m
= lim

m→+∞

(m+ 1)α

m
= α
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then by the squeeze theorem (also known as the sandwich theorem) we obtain that

lim
m→+∞

⌊(m+ 1)α⌋
m

= α

and then

lim
m→+∞

⌈(m+ 1)(1− α)⌉)
m

= 1− α.

As a consequence, γ is the empirical quantile of order 1− α when m → +∞.

For convenience, let us define xh := ess supt∈T |yh(t)− gI1(t)| ∀ h ∈ I1. The random

variables {Xh : h ∈ I1} from which {xh : h ∈ I1} are drawn are continuous and they are

asymptotically i.i.d. as Var[gI1(t)] → 0. The Glivenko-Cantelli theorem ensures that the

empirical distribution function of these variables converges uniformly (and almost surely

pointwise) to its distribution function, and then also the empirical quantiles converge

in distribution (and so in probability) to the corresponding theoretical quantiles, as

shown for example by Van der Vaart (2000, chap. 21). Specifically, empirical quantile

γ converges to q1−α, the theoretical quantile of order 1 − α. As a consequence, when

m → +∞:

H1 := {h ∈ I1 : ess sup
t∈T

|yh(t)− gI1(t)| ≤ q1−α}

with q1−α deterministic quantity. Let us focus on the numerator of s̄I1(t) since the

denominator is just a normalizing constant. ∀t ∈ T , the sequence {maxh∈H1 |yh(t) −
gI1(t)|}m is eventually bounded by q1−α and is eventually increasing since {|H1|}m is

eventually increasing. By the monotone convergence theorem, the sequence converges

to its supremum.

In order to prove the convergence of the numerator of s̄cI1 to the same limit function,

it is sufficient to consider the previous computations by noting that if n → +∞ then

l = n(1 − θ) → +∞ and by substituting γ with k, m with l, H1 with H2 and I1 with

I2 (except for gI1 that is naturally not substituted by gI2). Since the numerators of s̄I1

and s̄cI1 converge to the same function, also the two normalizing constants converge to

the same quantity.

Proof of Theorem 2.5.

The proof consists of two steps. At the first step we show that ks̄c =
∫
T maxd∈H2

|yd(t) − gI1(t)|dt, a fundamental result to obtain, at the second step, the proof of the

theorem.

I step

In order not to overcomplicate the proof, first of all let us consider the case in which
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|H2| = ⌈(l+1)(1−α)⌉. It is important to notice that under the assumption concerning

the continuous joint distribution of {Rd : d ∈ I2} made in Section 1 such condition

is always satisfied. However, the result proved at this first step holds also when this

assumption is violated, and its proof requires just minor changes. Therefore, for the

sake of completeness such proof is addressed below.

• ∀i ∈ H2 the following relationship holds ∀t ∈ T :∣∣∣∣yi(t)− gI1(t)

s̄cI1(t)

∣∣∣∣
=

∫
T
max
d∈H2

|yd(t)− gI1(t)|dt ·
|yi(t)− gI1(t)|

maxd∈H2 |yd(t)− gI1(t)|

≤
∫
T
max
d∈H2

|yd(t)− gI1(t)|dt,

and then

Rs̄c

i := ess sup
t∈T

∣∣∣∣yi(t)− gI1(t)

s̄cI1(t)

∣∣∣∣ ≤ ∫
T
max
d∈H2

|yd(t)− gI1(t)|dt.

Specifically, ∃ i ∈ H2 such that Rs̄c

i =
∫
T maxd∈H2 |yd(t) − gI1(t)|dt since ∀t ∈ T

at least one function yi satisfies |yi(t)− gI1(t)| = maxd∈H2 |yd(t)− gI1(t)|.

• Let us define CH2 := I2 \ H2 and let t∗d be the value such that

|yd(t∗d)− gI1(t
∗
d)| = ess sup

t∈T
|yd(t)− gI1(t)| ∀d ∈ I2.

If t∗d is not unique, it is randomly chosen from the values that satisfy that condition.

∀i ∈ CH2, by definition of H2 we obtain that |yi(t∗i )− gI1(t
∗
i )| > maxd∈H2 |yd(t∗i )−

gI1(t
∗
i )| and so the following relationship holds:∣∣∣∣yi(t∗i )− gI1(t

∗
i )

s̄cI1(t
∗
i )

∣∣∣∣
=

∫
T
max
d∈H2

|yd(t)− gI1(t)|dt ·
|yi(t∗i )− gI1(t

∗
i )|

maxd∈H2 |yd(t∗i )− gI1(t
∗
i )|

>

∫
T
max
d∈H2

|yd(t)− gI1(t)|dt.

As a consequence,

Rs̄c

i := ess sup
t∈T

∣∣∣∣yi(t)− gI1(t)

s̄cI1(t)

∣∣∣∣ > ∫
T
max
d∈H2

|yd(t)− gI1(t)|dt.
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Since:

• |H2| = ⌈(l + 1)(1− α)⌉

• ∀i ∈ H2 Rs̄c

i ≤
∫
T maxd∈H2 |yd(t) − gI1(t)|dt and ∃ i ∈ H2 such that Rs̄c

i =∫
T maxd∈H2 |yd(t)− gI1(t)|dt

• ∀i ∈ CH2 Rs̄c

i >
∫
T maxd∈H2 |yd(t)− gI1(t)|dt

we conclude that ks̄c =
∫
T maxd∈H2 |yd(t)− gI1(t)|dt, with ks̄c the ⌈(l + 1)(1− α)⌉th

smallest value in the set {Rs̄c

d : d ∈ I2}.
If |H2| > ⌈(l + 1)(1 − α)⌉, then Rs̄c

i =
∫
T maxd∈H2 |yd(t) − gI1(t)|dt is valid ∀i ∈ H2

such that ess supt∈T |yi(t)− gI1(t)| = k and in the same way we can conclude that

ks̄c =
∫
T maxd∈H2 |yd(t)− gI1(t)|dt.

II step

Let us define ∀d ∈ I2

Rs0

d := ess sup
t∈T

∣∣∣∣yd(t)− gI1(t)

s0(t)

∣∣∣∣ = |T | ess sup
t∈T

|yd(t)− gI1(t)| .

Since ks0 is the ⌈(l+ 1)(1− α)⌉th smallest value in the set {Rs0

d : d ∈ I2}, by definition

of H2 we obtain that

ks0 = |T |max
d∈H2

(
ess sup

t∈T
|yd(t)− gI1(t)|

)
= |T | ess sup

t∈T

(
max
d∈H2

|yd(t)− gI1(t)|
)
.

Since at the first step we proved that ks̄c =
∫
T maxd∈H2 |yd(t) − gI1(t)|dt, we obtain

that

ks0 − ks̄c = |T | ess sup
t∈T

(
max
d∈H2

|yd(t)− gI1(t)|
)
−
∫
T
max
d∈H2

|yd(t)− gI1(t)|dt.

Since the right side of the equation is greater than or equal to 0 by the integral mean

value theorem, then Q(s0) ≥ Q(s̄cI1).

The same theorem ensures that

|T | ess sup
t∈T

(
max
d∈H2

|yd(t)− gI1(t)|
)

=

∫
T
max
d∈H2

|yd(t)− gI1(t)|dt

⇐⇒ max
d∈H2

|yd(t)− gI1(t)| is constant almost everywhere,

i.e. if and only if s̄cI1(t) = s̄0(t) almost everywhere.
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Proof of Theorem 2.6.

We have already shown at the first step of previous proof ot Theorem 2.5 that ks̄c =∫
T maxd∈H2 |yd(t)−gI1(t)|dt. Since by assumption sζI1(t

∗
i ) ≤ s̄cI1(t

∗
i ) ∀i ∈ CH2 and |H2| =

⌈(l+1)(1−α)⌉, let us define ai ≥ 0 ∀i ∈ CH2 the value such that sζI1(t
∗
i ) = s̄cI1(t

∗
i )− ai.

• Case 1 : If ∃ x ∈ CH2 s.t. ax > 0, ∃ i ∈ H2 such that∣∣∣∣∣yi(t∗x)− gI1(t
∗
x)

sζI1(t
∗
x)

∣∣∣∣∣
=

∣∣∣∣yi(t∗x)− gI1(t
∗
x)

s̄cI1(t
∗
x)− ax

∣∣∣∣
=

∫
T
max
d∈H2

|yd(t)− gI1(t)|dt ×

|yi(t∗x)− gI1(t
∗
x)|

maxd∈H2 |yd(t∗x)− gI1(t
∗
x)| − ax ·

∫
T maxd∈H2 |yd(t)− gI1(t)|dt

>

∫
T
max
d∈H2

|yd(t)− gI1(t)|dt

since ∀t ∈ T (and specifically for t∗x) at least one function yi satisfies |yi(t) −
gI1(t)| = maxd∈H2 |yd(t)− gI1(t)|.

Case 2 : If ai = 0 ∀i ∈ CH2, there exist at least two values t↓, t↑ ∈ T ∗ such that

sζI1(t↓) < s̄cI1(t↓) and sζI1(t↑) > s̄cI1(t↑) since otherwise sζI1(t) = s̄cI1(t) ∀t ∈ T ∗. Let

us define a↓ > 0 the value such that sζI1(t↓) = s̄cI1(t↓) − a↓. Therefore ∃ i ∈ H2

such that ∣∣∣∣∣yi(t↓)− gI1(t↓)

sζI1(t↓)

∣∣∣∣∣
=

∣∣∣∣yi(t↓)− gI1(t↓)

s̄cI1(t↓)− a↓

∣∣∣∣
=

∫
T
max
d∈H2

|yd(t)− gI1(t)|dt ×

|yi(t↓)− gI1(t↓)|
maxd∈H2 |yd(t↓)− gI1(t↓)| − a↓ ·

∫
T maxd∈H2 |yd(t)− gI1(t)|dt

>

∫
T
max
d∈H2

|yd(t)− gI1(t)|dt

since ∀t ∈ T (and specifically for t↓) at least one function yi satisfies |yi(t) −
gI1(t)| = maxd∈H2 |yd(t)− gI1(t)|.
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As a consequence, in both cases (∃x ∈ CH2 s.t. ax > 0 and ai = 0 ∀i ∈ CH2) we

obtain that ∃ i ∈ H2 such that

Rsζ

i := ess sup
t∈T

∣∣∣∣∣yi(t)− gI1(t)

sζI1(t)

∣∣∣∣∣ >
∫
T
max
d∈H2

|yd(t)− gI1(t)|dt.

• ∀i ∈ CH2, by definition of H2 we obtain that |yi(t∗i )− gI1(t
∗
i )| > maxd∈H2 |yd(t∗i )−

gI1(t
∗
i )| and so the following relationship holds:∣∣∣∣∣yi(t∗i )− gI1(t

∗
i )

sζI1(t
∗
i )

∣∣∣∣∣
=

∣∣∣∣yi(t∗i )− gI1(t
∗
i )

s̄cI1(t
∗
i )− ai

∣∣∣∣
=

∫
T
max
d∈H2

|yd(t)− gI1(t)|dt ×

|yi(t∗i )− gI1(t
∗
i )|

maxd∈H2 |yd(t∗i )− gI1(t
∗
i )| − ai ·

∫
T maxd∈H2 |yd(t)− gI1(t)|dt

>

∫
T
max
d∈H2

|yd(t)− gI1(t)|dt.

As a consequence,

Rsζ

i := ess sup
t∈T

∣∣∣∣∣yi(t)− gI1(t)

sζI1(t)

∣∣∣∣∣ >
∫
T
max
d∈H2

|yd(t)− gI1(t)|dt.

Since:

• |H2| = ⌈(l + 1)(1− α)⌉

• ∃ i ∈ H2 such that Rsζ

i >
∫
T maxd∈H2 |yd(t)− gI1(t)|dt

• ∀i ∈ CH2 Rsζ

i >
∫
T maxd∈H2 |yd(t)− gI1(t)|dt

we conclude that ksζ >
∫
T maxd∈H2 |yd(t) − gI1(t)|dt, i.e. ksζ > ks̄c , with ksζ the

⌈(l + 1)(1− α)⌉th smallest value in the set {Rsζ

d : d ∈ I2}.
Proof that Theorem 2.6 does not imply Theorem 2.5.

Theorem 2.6 does not imply Theorem 2.5 since s0 may not fulfill s0(t∗i ) ≤ s̄cI1(t
∗
i )

∀i ∈ CH2. In fact, ∀i ∈ CH2:

s0(t∗i ) ≤ s̄cI1(t
∗
i ) ⇐⇒

∫
T maxd∈H2 |yd(t)− gI1(t)|dt

|T |
≤ max

d∈H2

|yd(t∗i )− gI1(t
∗
i )|
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and the condition on the right side is not always satisfied because no constraints are

imposed on yd(t
∗
i ), with d ∈ H2, i ∈ CH2.

Generalization of functions (2.6), (2.7), Theorems 2.4, 2.5 and 2.6 to the

Smoothed Split Conformal framework .

The functions s̄cI1 and s̄I1 are defined as in Section 2.2.2 except for k (γ respectively)

that is the ⌈l+ τn+1− (l+1)α⌉th (⌈m+ τn+1− (m+1)α⌉th respectively) smallest value

in the corresponding set; similarly, if ⌈m + τn+1 − (m + 1)α⌉ > m then H1 = I1 and if

⌈m+τn+1−(m+1)α⌉ ≤ 0 we arbitrarily set s̄I1 = s0. The theorems of Section 2.2.2 still

hold by substituting ⌈(l+ 1)(1− α)⌉, ⌈(m+ 1)(1− α)⌉ with ⌈l+ τn+1 − (l+ 1)α⌉, ⌈m+

τn+1 − (m+ 1)α⌉.
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Appendix for Chapter 3

C.1 Appendix for Chapter 3.2.1

Computation to find Cn,1−α(xn+1)

Since

δy =
|{d ∈ I2 ∪ {n+ 1} : Rd ≥ Rn+1}|

l + 1
,

Cn,1−α (xn+1) =

{
y ∈

p∏
j=1

L∞(Tj) : δy > α

}
,

if α ∈ [1/(l+1), 1), then y ∈ Cn,1−α(xn+1) ⇐⇒ Rn+1 ≤ ks, with ks the ⌈(l+1)(1−α)⌉th
smallest value in the set {Rd : d ∈ I2}. Then

sup
j∈{1,...,p}

(
ess sup

t∈Tj

∣∣∣∣yj(t)− [µ̂j(xn+1)](t)

sj(t)

∣∣∣∣
)

≤ ks

⇐⇒
∣∣∣∣yj(t)− [µ̂j(xn+1)](t)

sj(t)

∣∣∣∣ ≤ ks ∀j ∈ {1, . . . , p},∀t ∈ Tj

⇐⇒ yj(t) ∈
[
[µ̂j(xn+1)](t)− ks · sj(t),

[µ̂j(xn+1)](t) + ks · sj(t)] ∀j ∈ {1, . . . , p},∀t ∈ Tj.

As a consequence, the Split Conformal prediction set is

Cn,1−α(xn+1) :=

{
y ∈

p∏
j=1

L∞(Tj) : yj(t) ∈
[
[µ̂j(xn+1)](t)− ks · sj(t),

[µ̂j(xn+1)](t) + ks · sj(t)]

∀j ∈ {1, . . . , p}, ∀t ∈ Tj

}
.
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Computation to find Cn,1−α,τn+1(xn+1)

Consistently with the Split Conformal scenario, let us define

δy,τn+1 :=
|{d ∈ I2 : Rd > Rn+1}|+ τn+1 |{d ∈ I2 ∪ {n+ 1} : Rd = Rn+1}|

l + 1

Cn,1−α,τn+1 (xn+1) :=

{
y ∈

p∏
j=1

L∞(Tj) : δy,τn+1 > α

}
.

By definition, Cn,1−α,1(xn+1) = Cn,1−α(xn+1).

Since δy,τn+1 ∈ [τn+1/(l+1), (l+ τn+1)/(l+1)], we will focus on the scenario in which

α ∈ [τn+1/(l+1), (l+ τn+1)/(l+1)). Let us define ws the ⌈l+ τn+1− (l+1)α⌉th smallest

value in the set {Rd : d ∈ I2}, and rsn (vsn respectively) the number of elements in the

set {Rd : d ∈ I2} that are equal to ws and that are to the right (left respectively) of ws

in the sorted version of the set. Note that rsn = vsn = 0 when the assumption about the

continuous joint distribution of {Rd : d ∈ I2} is satisfied, but generally speaking we will

consider rsn, v
s
n ∈ N≥0 such that rsn + vsn ≤ l − 1. By replicating calculations similar to

those performed in the Split Conformal framework, we obtain that:

• if

τn+1 >
(l + 1)α− ⌊(l + 1)α− τn+1⌋+ rsn

rsn + vsn + 2

then y ∈ Cn,1−α,τn+1(xn+1) ⇐⇒ Rn+1 ≤ ws and so

Cn,1−α,τn+1(xn+1) :=

{
y ∈

p∏
j=1

L∞(Tj) : yj(t) ∈
[
[µ̂j(xn+1)](t)− ws · sj(t),

[µ̂j(xn+1)](t) + ws · sj(t)]

∀j ∈ {1, . . . , p},∀t ∈ Tj

}
.

• if

τn+1 ≤
(l + 1)α− ⌊(l + 1)α− τn+1⌋+ rsn

rsn + vsn + 2

then y ∈ Cn,1−α,τn+1(xn+1) ⇐⇒ Rn+1 < ws and so

Cn,1−α,τn+1(xn+1) :=

{
y ∈

p∏
j=1

L∞(Tj) : yj(t) ∈
(
[µ̂j(xn+1)](t)− ws · sj(t),

[µ̂j(xn+1)](t) + ws · sj(t)
)

∀j ∈ {1, . . . , p},∀t ∈ Tj

}
.
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Proof that prediction bands induced by {sj,}pj=1 and by {λ · sj}pj=1 coincide

∀λ ∈ R>0

Let Cλ·s
n,1−α(xn+1) (Cs

n,1−α(xn+1) respectively) be the prediction band induced by the

set of modulation functions {λ · sj}pj=1 ({sj}
p
j=1 respectively) and Rλ·s

d (Rs
d respectively)

the nonconformity score induced by the corresponding set of modulation funcions. The

nonconformity scores induced by {λ · sj}pj=1 are:

Rλ·s
d = sup

j∈{1,...,p}

(
ess sup

t∈Tj

∣∣∣∣ydj(t)− [µ̂j(xdj)](t)

λ · sj(t)

∣∣∣∣
)

=
1

λ
Rs

d, d ∈ I2

Rλ·s
n+1 = sup

j∈{1,...,p}

(
ess sup

t∈Tj

∣∣∣∣yj(t)− [µ̂j(xn+1,j)](t)

λ · sj(t)

∣∣∣∣
)

=
1

λ
Rs

n+1.

Moreover, let us define:

δλ·sy :=

∣∣{d ∈ I2 ∪ {n+ 1} : Rλ·s
d ≥ Rλ·s

n+1

}∣∣
l + 1

,

with, as usual, Cλ·s
n,1−α(xn+1) :=

{
y ∈

∏p
j=1 L

∞(Tj) : δ
λ·s
y > α

}
. As a consequence, y ∈

Cλ·s
n,1−α(xn+1) ⇐⇒ Rλ·s

n+1 ≤ kλ·s, with kλ·s the ⌈(l + 1)(1 − α)⌉th smallest value in the

set {Rλ·s
d : d ∈ I2}. Since Rλ·s

d = Rs
d/λ ∀d ∈ I2, then kλ·s = ks/λ. Then:

Rλ·s
n+1 ≤ kλ·s

⇐⇒ 1

λ
Rs

n+1 ≤
ks

λ

⇐⇒ Rs
n+1 ≤ ks,

and since y ∈ Cs
n,1−α(xn+1) ⇐⇒ Rs

n+1 ≤ ks, then Cλ·s
n,1−α(xn+1) coincides with

Cs
n,1−α(xn+1).

C.2 Appendix for Chapter 3.2.2

Proof of Theorem 3.1

Let us consider s̄j(t), with j ∈ {1, . . . , p}. Since m/n = θ with 0 < θ < 1, if n → +∞
then m → +∞. The scalar γ is the empirical quantile of order ⌈(m + 1)(1 − α)⌉) of
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{supj∈{1,...,p}

(
ess supt∈Tj |yh,j(t)− [µ̂j(xh)](t)|

)
: h ∈ I1}. First of all note that

lim
m→+∞

⌈(m+ 1)(1− α)⌉
m

= lim
m→+∞

m+ 1− ⌊(m+ 1)α⌋
m

and since
(m+ 1)α− 1

m
≤ ⌊(m+ 1)α⌋

m
≤ (m+ 1)α

m
∀m ∈ N,

lim
m→+∞

(m+ 1)α− 1

m
= lim

m→+∞

(m+ 1)α

m
= α

then by the squeeze theorem we know that

lim
m→+∞

⌊(m+ 1)α⌋
m

= α

and then

lim
m→+∞

⌈(m+ 1)(1− α)⌉)
m

= 1− α.

Consequently, γ is the empirical quantile of order 1− α when m → +∞.

Let us define wh := supj∈{1,...,p}

(
ess supt∈Tj |yh,j(t)− [µ̂j(xh)](t)|

)
∀ h ∈ I1. The

random variables {Wh : h ∈ I1} from which {wh : h ∈ I1} are drawn are continuous

and after Var
[
[µ̂j(Xh)](t)

]
→ 0 ∀j ∈ {1, . . . , p} they become i.i.d.. The Glivenko-

Cantelli theorem guarantees that the empirical distribution function of these variables

converges uniformly and almost surely pointwise to its distribution function, and so

also the empirical quantiles converge in distribution - and so in probability - to the

corresponding theoretical quantiles (see, for example, Van der Vaart, 2000, chap. 21).

In so doing, empirical quantile γ converges to q1−α, the theoretical quantile of order

1− α. As a consequence:

H1 := {h ∈ I1 : sup
j∈{1,...,p}

(
ess sup

t∈Tj

∣∣yh,j(t)− [µ̂j(xh)](t)
∣∣) ≤ q1−α}

when m → +∞, with q1−α non-random quantity. Let us consider the numerator of s̄j(t)

∀j ∈ {1, . . . , p} as the denominator is a normalizing constant. ∀t ∈ Tj, the sequence

{maxh∈H1 |yh,j(t) − [µ̂j(xh)](t)|}m is eventually bounded by q1−α and is eventually in-

creasing since {|H1|}m is eventually increasing. Therefore the sequence converges to its

supremum by the monotone convergence theorem.

As regards s̄cj, first of all it is possible to notice that if n → +∞ then l = n(1− θ) →
+∞. In order to show the convergence of the numerator of s̄cj to the same limit function,



Appendix 95

it is sufficient to consider the previous calculations by substituting γ with k, m with l,

H1 with H2 and I1 with I2. Finally, as the numerators of s̄j and s̄cj converge to the

same function ∀j ∈ {1, . . . , p}, also the two normalizing constants converge to the same

value.

Proof of Theorem 3.2

For the sake of simplicity, let us focus on the case in which |H2| = ⌈(l + 1)(1− α)⌉.
Under the assumption concerning the continuous joint distribution of {Rd : d ∈ I2}
made in Chapter 1 such condition is always satisfied, but for the sake of completeness

the proof when this assumption is violated is addressed below.

• ∀d ∈ H2, ∀j ∈ {1, . . . , p} the following relationship holds ∀t ∈ Tj:∣∣∣∣yd,j(t)− [µ̂j(xd)](t)

s̄cj(t)

∣∣∣∣
=

p∑
j=1

∫
Tj
max
d∈H2

|yd,j(t)− [µ̂j(xd)](t)|dt ·
|yd,j(t)− [µ̂j(xd)](t)|

maxd∈H2 |yd,j(t)− [µ̂j(xd)](t)|

≤
p∑

j=1

∫
Tj
max
d∈H2

|yd,j(t)− [µ̂j(xd)](t)|dt.

By indicating with Rs̄c

d the nonconformity score induced by the set of functions

s̄c, then

Rs̄c

d := sup
j∈{1,...,p}

(
ess sup

t∈Tj

∣∣∣∣yd,j(t)− [µ̂j(xd)](t)

s̄cj(t)

∣∣∣∣
)

≤
p∑

j=1

∫
Tj
max
d∈H2

|yd,j(t)− [µ̂j(xd)](t)|dt.

Specifically, ∃ d ∈ H2 such that Rs̄c

d =
∑p

j=1

∫
Tj maxd∈H2 |yd,j(t) − [µ̂j(xd)](t)|dt

since ∀j ∈ {1, . . . , p} and ∀t ∈ Tj at least one function yd,j satisfies

|yd,j(t)− [µ̂j(xd)](t)| = maxd∈H2 |yd,j(t)− [µ̂j(xd,j)](t)|.

• Let us define CH2 := I2 \ H2 and let (t∗d, j
∗
d) be the couple of values such that

∣∣yd,j∗d (t∗d)− [µ̂j∗d (xd)](t
∗
d)
∣∣ = sup

j∈{1,...,p}

(
ess sup

t∈Tj

∣∣yd,j(t)− [µ̂j(xd)](t)
∣∣) ∀d ∈ I2.

If (t∗d, b
∗
d) is not unique, it is randomly chosen from the couples satisfying that

condition.
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∀b ∈ CH2, by definition of H2 it is possible to notice that∣∣yb,j∗b (t∗b)− [µ̂j∗b (xb)](t
∗
b)
∣∣ > maxd∈H2 |yd,j∗b (t

∗
b) − [µ̂j∗b (xd)](t

∗
b)| and so the fol-

lowing relationship holds:∣∣∣∣∣yb,j∗b (t∗b)− [µ̂j∗b (xb)](t
∗
b)

s̄cj∗b
(t∗b)

∣∣∣∣∣
=

p∑
j=1

∫
Tj
max
d∈H2

|yd,j(t)− [µ̂j(xd)](t)|dt ·
∣∣yb,j∗b (t∗b)− [µ̂j∗b (xb)](t

∗
b)
∣∣

maxd∈H2 |yd,j∗b (t
∗
b)− [µ̂j∗b (xd)](t∗b)|

>

p∑
j=1

∫
Tj
max
d∈H2

|yd,j(t)− [µ̂j(xd)](t)|dt.

Consequently,

Rs̄c

b := sup
j∈{1,...,p}

(
ess sup

t∈Tj

∣∣∣∣yb,j(t)− [µ̂j(xb)](t)

s̄cj(t)

∣∣∣∣
)

>

p∑
j=1

∫
Tj
max
d∈H2

|yd,j(t)− [µ̂j(xd)](t)|dt.

Since:

• |H2| = ⌈(l + 1)(1− α)⌉

• ∀d ∈ H2 Rs̄c

d ≤
∑p

j=1

∫
Tj maxd∈H2 |yd,j(t) − [µ̂j(xd)](t)|dt and ∃ d ∈ H2 such that

Rs̄c

d =
∑p

j=1

∫
Tj maxd∈H2 |yd,j(t)− [µ̂j(xd)](t)|dt

• ∀b ∈ CH2 Rs̄c

b >
∑p

j=1

∫
Tj maxd∈H2 |yd,j(t)− [µ̂j(xd)](t)|dt

we conclude that ks̄c =
∑p

j=1

∫
Tj maxd∈H2 |yd,j(t) − [µ̂j(xd)](t)|dt, with ks̄c the ⌈(l +

1)(1− α)⌉th smallest value in the set {Rs̄c

d : d ∈ I2}.
If |H2| > ⌈(l + 1)(1 − α)⌉, then Rs̄c

d =
∑p

j=1

∫
Tj maxd∈H2 |yd,j(t) − [µ̂j(xd)](t)|dt is

valid ∀d ∈ H2 such that supj∈{1,...,p}

(
ess supt∈Tj |yd,j(t)− [µ̂j(xd)](t)|

)
= k and we can

conclude also in this case that ks̄c =
∑p

j=1

∫
Tj maxd∈H2 |yd,j(t)− [µ̂j(xd)](t)|dt.

Focusing now on the set of modulation functions s0, ∀d ∈ I2:

Rs0

d := sup
j∈{1,...,p}

(
ess sup

t∈Tj

∣∣∣∣yd,j(t)− [µ̂j(xd)](t)

s0j(t)

∣∣∣∣
)

= sup
j∈{1,...,p}

(
ess sup

t∈Tj

∣∣yd,j(t)− [µ̂j(xd)](t)
∣∣)· p∑

j=1

|Tj| .
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Since ks0 is the ⌈(l+ 1)(1− α)⌉th smallest value in the set {Rs0

d : d ∈ I2}, by definition

of H2 we can notice that

ks0 =max
d∈H2

Rs0

d

=max
d∈H2

(
sup

j∈{1,...,p}

(
ess sup

t∈Tj

∣∣yd,j(t)− [µ̂j(xd)](t)
∣∣)) ·

p∑
j=1

|Tj|

= sup
j∈{1,...,p}

(
ess sup

t∈Tj

(
max
d∈H2

∣∣yd,j(t)− [µ̂j(xd)](t)
∣∣)) ·

p∑
j=1

|Tj| .

Since by the integral mean value theorem we know that ∀j ∈ {1, . . . , p}

ess sup
t∈Tj

(
max
d∈H2

∣∣yd,j(t)− [µ̂j(xd)](t)
∣∣) · |Tj| ≥

∫
Tj
max
d∈H2

∣∣yd,j(t)− [µ̂j(xd)](t)
∣∣ dt,

then the following relationship is valid:

p∑
j=1

ess sup
t∈Tj

(
max
d∈H2

∣∣yd,j(t)− [µ̂j(xd)](t)
∣∣) · |Tj| ≥

p∑
j=1

∫
Tj
max
d∈H2

∣∣yd,j(t)− [µ̂j(xd)](t)
∣∣ dt.
(C.1)

In addition, by definition ∀j ∈ {1, . . . , p}

sup
j∈{1,...,p}

(
ess sup

t∈Tj

(
max
d∈H2

∣∣yd,j(t)− [µ̂j(xd)](t)
∣∣)) ≥ ess sup

t∈Tj

(
max
d∈H2

∣∣yd,j(t)− [µ̂j(xd)](t)
∣∣)

and so:

p∑
j=1

sup
j∈{1,...,p}

(
ess sup

t∈Tj

(
max
d∈H2

∣∣yd,j(t)− [µ̂j(xd)](t)
∣∣)) · |Tj|

= sup
j∈{1,...,p}

(
ess sup

t∈Tj

(
max
d∈H2

∣∣yd,j(t)− [µ̂j(xd)](t)
∣∣)) ·

p∑
j=1

|Tj|

≥
p∑

j=1

ess sup
t∈Tj

(
max
d∈H2

∣∣yd,j(t)− [µ̂j(xd)](t)
∣∣) · |Tj| .

(C.2)

By combining Inequality C.1 and Inequality C.2 we can notice that

sup
j∈{1,...,p}

(
ess sup

t∈Tj

(
max
d∈H2

∣∣yd,j(t)− [µ̂j(xd)](t)
∣∣))· p∑

j=1

|Tj| ≥
p∑

j=1

∫
Tj
max
d∈H2

∣∣yd,j(t)− [µ̂j(xd)](t)
∣∣ dt,
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i.e. ks0 ≥ ks̄c . Then, Q(s0) ≥ Q(s̄c).

Specifically, the integral mean value theorem guarantees that ∀j ∈ {1, . . . , p}

ess sup
t∈Tj

(
max
d∈H2

∣∣yd,j(t)− [µ̂j(xd)](t)
∣∣) · |Tj| =

∫
Tj
max
d∈H2

∣∣yd,j(t)− [µ̂j(xd)](t)
∣∣ dt

⇐⇒ max
d∈H2

∣∣yd,j(t)− [µ̂j(xd)](t)
∣∣ is constant almost everywhere,

i.e. if and only if s̄cj(t) is constant almost everywhere over Tj. Consequently, if at least

one of the functions s̄c1(t), . . . , s̄
c
p(t) is not constant almost everywhere over its domain

then the left side of Inequality C.1 is strictly greater than the right side (implying

Q(s0) > Q(s̄c)); otherwise, Q(s0) = Q(s̄c).

Generalization of (s̄, s̄c), Theorem 3.1 and Theorem 3.2 to the Smoothed

Split Conformal framework

The functions s̄c and s̄ are defined as in the Split Conformal framework, except for: k

(γ respectively) that is the ⌈l+τn+1− (l+1)α⌉th (⌈m+τn+1− (m+1)α⌉th respectively)

smallest value in the corresponding set; similarly to the Split Conformal framework,

if ⌈m + τn+1 − (m + 1)α⌉ > m then H1 = I1 and if ⌈m + τn+1 − (m + 1)α⌉ ≤ 0

we arbitrarily set s̄j = s0j . Theorem 3.1 and Theorem 3.2 still hold by substituting

⌈(l + 1)(1− α)⌉, ⌈(m+ 1)(1− α)⌉ with ⌈l + τn+1 − (l + 1)α⌉, ⌈m+ τn+1 − (m+ 1)α⌉.
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