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Abstract
A new deforestation and land-use change scenario generator model (FOREST-SAGE) is

presented that is designed to interface directly with dynamic vegetation models used in lat-

est generation earth system models. The model requires a regional-scale scenario for

aggregate land-use change that may be time-dependent, provided by observational studies

or by regional land-use change/economic models for future projections. These land-use cat-

egories of the observations/economic model are first translated into equivalent plant func-

tion types used by the particular vegetation model, and then FOREST-SAGE disaggregates

the regional-scale scenario to the local grid-scale of the earth system model using a set of

risk-rules based on factors such as proximity to transport networks, distance weighted pop-

ulation density, forest fragmentation and presence of protected areas and logging conces-

sions. These rules presently focus on the conversion of forest to agriculture and pasture

use, but could be generalized to other land use change conversions. After introducing the

model, an evaluation of its performance is shown for the land-cover changes that have

occurred in the Central African Basin from 2001–2010 using retrievals from MODerate Res-

olution Imaging Spectroradiometer Vegetation Continuous Field data. The model is able to

broadly reproduce the spatial patterns of forest cover change observed by MODIS, and the

use of the local-scale risk factors enables FOREST-SAGE to improve land use change pat-

terns considerably relative to benchmark scenarios used in the latest Coupled Model Inter-

comparison Project integrations. The uncertainty to the various risk factors is investigated

using an ensemble of investigations, and it is shown that the model is sensitive to the popu-

lation density, forest fragmentation and reforestation factors specified.

1 Introduction
Deforestation has long been considered a critical issue for the future preservation of ecosystems
and reducing CO2 emissions. Additionally, many studies highlight the strong impact that land-
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use change (LUC) can have on both the local and regional climate through albedo and surface
flux changes as well as the indirect CO2 response, using both regional and global models [1–5].
Understanding the effects of land-use and land-cover change (LULCC) on climate is crucial if
human influence on climate and the potential effectiveness of land-use (LU) based mitigation
strategies such as reforestation or biofuels are to be assessed.

Deforestation estimates are uncertain and vary considerably despite inexorably improving
remote sensing technology. Taking Central Africa as an example, estimates of deforestation
rates are 0.53% per year in southern Cameroon [6], while Duveiller et al. [7] used Landsat
images to estimate 0.21% per year for Central Africa, rates that are two and four times lower
than for South America and Asia, respectively. In contrast, Hansen et al. [8] applied the MOD-
erate Resolution Imaging Spectroradiometer (MODIS) for deriving forest cover products to cali-
brate Landsat data in the Congo River Basin and found a deforestation rate lower than 0.1% per
year. Zhang et al. [9] analyzed Landsat TM images conclude that from the 1980s to 1990s the
annual rate of deforestation was 0.42% varying from 0.03% to 2.72% in the Congo Basin, which
is similar to the previously reported values of 0.41% [10]. A recent FAO report on the rainforest
[11] gives the annual deforestation rate for the period 2000–2010 as 0.23% in the Congo Basin,
about 0.43% in the Amazon Basin and about 0.41% in the Southeast Asia. Nevertheless, despite
these varying estimates the consensus is that tropical forest systems are at risk [12].

Estimating factors that drive LUC is also challenging, since these can vary from region to
region, and the factors are multiple and interacting [13–15]. Local scale drivers of deforestation
are often related to access to local markets (distance to the nearest roads and population cen-
tres) and the population density that drives demand [16–18]. Soil quality and terrain slope will
determine land productivity. Non local markets can also drive LUC [14, 15] if access to ports is
adequate and climate is suitable for high value, export-oriented crops. Related to this, if LUC in
the form of deforestation is driven by wood harvesting demands [19, 20], the value of the tree
species themselves can have an obvious impact.

Existing forest degradation and fragmentation increase access and thus deforestation rates
[14]. In terms of national legislation, granting of logging concessions or conversely establish-
ment of national parks or other protective measures are very important [21–27].

To complicate matters further, macro-scale factors are also at play with global economic
conditions and regional legislation and policy driving external deforestation demand, with
land cleared for livestock rearing in Brazil for example [28–30], or EU policy on biofuel subsi-
dies driving clearance for oil palm plantations in Asia [31, 32]. National or international policy
for protection (e.g. the United Nations collaborative initiative on Reducing Emissions from
Deforestation and forest Degradation UN-REDD) or Central Africa Regional Program for the
Environment (CARPE) in the Congo Basin can also reduce deforestation rate, (e.g. halved in
the Central Africa in designated reserve areas [21, 22, 26, 33]).

In order to understand how this complex web of drivers affects present day deforestation
and possibly predict future changes in LU it is useful to derive models. Many deforestation
models are derived locally using regressions between observed deforestation rates and the local
predictor values [6, 34, 35]. Thus the influence of local factors determine the spatial pattern of
deforestation, while the unspecified global factors are implicitly included in the overall defores-
tation rates, but are necessarily time invariant. Such models can be accurate on a national or
regional scale and are useful to define risk maps for short-term deforestation rates. However,
they are unlikely to be able to provide future scenarios of deforestation as the local and global
conditions may change considerably. Moreover, the great variability in driving determinants
between locations means that such models cannot be applied to other regions without re-deriv-
ing the regressions coefficients, and it is difficult to incorporate different scenarios for future
macroscale deforestation drivers.
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The lack of generality of the deforestation models has inhibited the development of general-
ized deforestation scenario generators for use in climate studies. Another concern is the appar-
ent mismatch of scales with many of the deforestation models working on very fine spatial
scales, with the impact of roads and towns determined to have an e-folding spatial impact scale
ofO(10 km) [36, 37] which implies that factors are essentially subgrid-scale relative to current
generation of global climate models. This has meant that until recently, studies of interactions
of deforestation and climate were often idealized, where large-scale deforestation is applied as a
discrete step change and the model run to equilibrium to gauge the impact on local climate [5,
38, 39]. While useful for gauging LUC-driven climate sensitivity, such idealized experiments
preclude the investigation of gradual realistic forest change, which could reveal the existence of
climate “tipping points” where local climates could switch discretely from one state to another
at a certain critical deforestation or LUC [40, 41]. Such behavior is not considered unlikely as
the relationship between climate and LU could be highly-nonlinear, as illustrated in the semi-
nal paper of Charney [42].

More recently, a number of projected scenarios for future LU have been developed by vari-
ous modelling groups [43–45]. The impacts assessment modelling framework of the fifth
assessment report of the Intergovernmental Panel on Climate Change (IPCC) produced four
sets of LU maps associated with each of the four greenhouse gas representative concentration
pathways (RCPs) [46–49]. These formed the basis of an optional experimental line for the cli-
mate modelling groups to examine the impact of realistic LUC. Twin climate model runs were
conducted with and without anthropogenically driven LUC to assess its impact on climate rela-
tive to greenhouse gas emissions. In the climate model experiments, anthropogenic LUC had a
limited impact on climate [50, 51].

In order to set up these LUC experiments, a number of technical challenges had to be
addressed. Firstly, the integrated assessment models (IAMs) provided very different informa-
tion in terms of LUC (with one model only providing national averages for example). Thus the
HYDE model was used to consistently convert the IAM LU information to a 2×2 degree grid of
5 basic LUC types, which were further disaggregated to 0.5 degree resolution [52]. However,
the HYDE model output still required interpolation to the climate model grid with the land
transitions translated to each climate model’s respective land cover classes. Moreover, as illus-
trated schematically in Fig 1, the offline nature of the HYDE LU transitions complicates the
task of simultaneously employing an online dynamical global vegetation model (DGVM), since
various inconsistencies may arise. For example, the HYDE model may allocate deforestation to
satisfy wood harvesting demands in a cell in which the DGVM has already simulated forest
die-back due to climate change. In such cases, models must implement ad hoc rules to spatially
reallocate land use trends, which may vary from model to model.

In order to increase the consistency of the modelling approach between climate modelling
groups, account for local scale drivers of LUC, and most importantly permit fully coupled cli-
mate model integrations that account for anthropogenic LUC while using a dynamic vegetation
model, this work presents a new model for disaggregating coarse scale or national level land use
change information directly on the fine grid resolution of widely used digital vegetation models.

The FOREST-SAGE model will attempt to include local determinants of deforestation vari-
ables such as access to market, population density, transport network and forest fragmentation
[14] in a reasonable but idealized way compatible with previous models to provide spatial dis-
tributions of deforestation. However, rather than applying regression coefficients for the overall
rate of deforestation, the gross regional deforestation rates will be externally specified, for
example by idealized function of the time or by an ensemble of economically and politically
driven land use change scenarios (e.g. [52]), in a similar vein to the IPCC AR5 future emissions
scenarios.

Generalized Deforestation Model for Climate Modelling Studies
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The model provides output directly in terms of the plant function types employed by the
LU scheme coupled to the climate model. By doing this, the model can be integrated on-line, in
particular this allows the integration simulations with a DGVM, as shown in Fig 2, where the
climate-DGVM coupled run calls FOREST-SAGE once per year, passing the DGVMs PFT
map as initial conditions. FOREST-SAGE then allocates the coarse scale anthropogenic land
use change information (for example, provided by HYDE at 2×2 degree resolution) to the fine-
scale DGVM resolution using local drivers. The resulting modified map of PFTs percentages in
each cell is passed back to the DVGM to initialize the next one year coupled integration. In this
way, the coupling between the climate model and DGVM is unmodified, and the anthropo-
genic LUC is incorporated consistently. In this paper, the model is presented and then evalu-
ated by simulating present day LUC in the Congo.

2 Materials and Methods

2.1 FOREST-SAGEmodel description
The FOREST-SAGE model is designed to be flexible and can run on a variety of resolutions
and can be initialized using satellite observations or dynamical vegetation models PFT maps.
The version used in this study is available in S1 File. The model can be operated regionally or
even locally with higher resolution input. The focus here is on deforestation but the technique
could be applied to a spectrum of LUC types. For each region of interest O, annual macro-

Fig 1. Schematic of HYDE integration into a coupled climate-land surfacemodel. The method employed to convert the five HYDE categories into land
categories used by ESMs is not straight-forward and a mismatch between the land surface model and the HYDE 3.1 land cover classification can appear.

doi:10.1371/journal.pone.0136154.g001
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region deforestation rates (MO) are defined according to a future scenario such as “business as
usual”. The factorMO allows the model to differentiate between greatly differing economic and
policy drivers of deforestation between regions, which result in the higher rates in Asia com-
pared to, say, Africa. The deforestation rate is specified as a function of timeMO(t) in each
deforestation scenario, which may account for potential future policy changes or economic/
population developments. In fact, socio-economic factors associated with deforestation remain
poorly understood [14], partly because different factors operate unevenly in different countries
and partly because of the scarcity of reliable data [15, 53].

In the illustrative example in this initial work, the deforestation rate will be static and equal to
the observational derived deforestation rate. However, the deforestation rate could alternatively
be dynamically specified as a function of global or regional forecast cover, reflecting the potential
introduction of more stringent conservation legislation in response to future lower forest cover
e.g. large-scale die-back simulated as part of an Integrated Assessment modelling framework [54].

In summary, rather than simply extending past LUC rates into the future as regression mod-
els, FOREST-SAGE has the potential to generate ensembles of LUC scenarios to evaluate risk

Fig 2. Schematic of FOREST-SAGE integration into a coupled climate-land surfacemodel. The schematic emphasizes how FOREST-SAGE translates
global anthropogenic land-use scenarios to ESMs grid-scale land cover on-line in a fully coupled way.

doi:10.1371/journal.pone.0136154.g002
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assessment ranging from business as usual to drastically reduced deforestation to investigate
the impact of a wide variety of potential pathways. The integration time step for FOREST--
SAGE is one year. The model predicts an annual deforestation risk factor for each and every
forested grid-cell in the model domain (with the focus here on tropical regions), according to
the local risk factors outlined below. The deforestation rate is proportional to risk in each cell,
but scaled to give the macro rateMO(t) for each area. If the model is operated offline, this new
modified map after one year is used to initialize the following year’s time-step and FOREST--
SAGE thus generates a series of annual potential land cover states. However, FOREST-SAGE
can be fully coupled with a climate model using a dynamic vegetation model in which case
land cover classes would also be updated by these models.

In FOREST-SAGE there are several factors (Fig 3) that affect the local distribution of defor-
estation risk (rtot), namely the proximity to roads (rroad) and rivers (rriver) that permit access to
markets, proximity to population centres and their population density (rpop), location within
protected areas designated under national or international agreements (rpark) or within desig-
nated logging concessions (rlog), which determines access, and lastly the existing local forest
cover fraction itself, (rfrag). Presently, factors that influence land suitability for agriculture such
as soil type or terrain slope that can play an important role in the deforestation/regrowing [55,
56] are not accounted for but may be easily incorporated into the flexible framework. The
deforestation risk, at each grid-cell location i, associated with each of these factors are multipli-
catively combined to provide a total deforestation risk:

rtoti ¼ rroadi rpopi rriveri rparki rlogi rfragi : ð1Þ

Fig 3. Overview of the local drivers’ spatial distribution. The input data used to initialize the model are
summarized in Table 1.

doi:10.1371/journal.pone.0136154.g003
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The individual factors are not normalized since they are combined multiplicatively, thus it
is the relative change of risk across the determining input factors that is relevant (Fig 4). A sim-
ple example is the risk associated with national parks, where the relevant parameter is the ratio
of risk between being located within or outside of a protected area.

Once rtoti is determined for each location i of the input plant function type (PFT) map, the
forest cover change is calculated as:

@f
@t

� MO

XNO

i¼1

fi ¼
XNO

i¼1

Di þ
XNO

i¼1

Ai; ð2Þ

where Di is the gross deforestation rate proportional to the risk and equal to:

XNO

i¼1

Di ¼ aO
XNO

i¼1

rtoti fi: ð3Þ

In Eq 3, αO is the scale factor derived for each macro-zone O:

aOðtÞ ¼
MOð

PNO
i¼1 fiÞ �

PNO
i¼1 AiPNO

i¼1 r
tot
i fi

; ð4Þ

where Ai is the reforestation rate, the index i is a function of macro-region O to emphasize
that the summation is performed only for the points NO lying with each macro deforestation

Fig 4. Deforestation risk associated to the experiment 1 (Table 3). The panel a is referred to the forest cover risk (rfrag), while the panel b to the risk
related both to the protected area (rpark) and to the logging concessions (rlog). In the panel c is shown the risk associated to the roads (rroad) while the panel d
is connected to the population centres risk (rpop). Finally the panel e is related to the river risk (rriver) and lastly in the panel f is shown the global deforestation
risk (rtot).

doi:10.1371/journal.pone.0136154.g004
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zone and fi is the percent forest cover in location i. For brevity hereinafter O will be implied in
the equations.

For each of the drivers the simplest mathematical function possible has been chosen in
order to minimize the degrees of freedom. Each driver is then governed by two variables that
describe the relative magnitude of the maximum impact (k) that the drivers can have on LUC
and their spatial influence (l). The local deforestation impacts are now introduced in turn.

Forest cover. The deforestation rate is a function of the forest cover, f, itself. If the forest
cover is zero then obviously no deforestation can take place. Likewise previous work has shown
that forest fragmentation can lead to increased human access and consequentially much greater
deforestation along the forest boundaries [20, 21]. The edges can extend deep into remaining
forest areas increasing the number of forest fragments that can lead, for example, an increase of
the edge-related fires that can penetrate up to few kilometers into fragmented forest [20].

Using an edge feedback model, Cumming et al. [57] showed that edges can significantly
amplify the effects of deforestation (with a maximum edge effect when the forest cover is 50%)
leading to a rapid deforestation rate (up to 3-4 times faster than those occur under a linear
deforestation model). Thus, in our implementation, the deforestation risk increases from zero
with no forest cover to a maximum at intermediate cover, then reducing to zero with 100% for-
est cover. This is incorporated into the model by first calculating a distance weighted forest
density for each grid-cell:

f i ¼
PNO

j¼1 fje
�di;j=lf

PNO
j¼1 e

�di;j=lf
; ð5Þ

where di,j is the distance between locations i and j and lf is the distance weighting, set to 2.5
km. Next, a function based on a symmetrical beta distribution is applied:

rfragi ¼ ðkfrag � 1Þ fi
pð1� fiÞp
0:52p

þ 1; ð6Þ

where p is the beta function shape parameter which determines how quickly deforestation

risk changes with increasing fragmentation. In the above expression fi has been used in the sec-
ond term on the RHS to increase risk near forest edges, while f is used in the first term to relate
forest risk directly to the local cover when sparse coverage remains (edge effects are less impor-
tant). The maximum risk occurs when mean homogeneous forest cover is 50%, hence the nor-
malization factor which ensures that the risk is equal to kfrag at this value.

Roads and Rivers. Roads increase land value by permitting access to markets and can
drastically increase deforestation rates. A classic example of this effect was the 1960s construc-
tion of the coastal road in north east Brazil which greatly accelerated the deforestation rates in
the coastal region [58]. The impact of the road on deforestation falls as a function of the dis-
tance to the road and thus is parameterized as:

rroadi ¼ ðkroad � 1Þe�droadi =lroad þ 1 ð7Þ

where droad
i is the distance of location i to the nearest road, and lroad is the exponential decay

of the impact of roads. For simplicity, no distinction is made between minor or major roads or
between paved or unpaved roads: it is only the distance and thus ease of access to the road net-
work, per se, that is important. Setting the value for lroad is not straightforward as regression
models indicate a wide range of values depending on the region in question and indicates that
roads have a small scale impact, with the majority of deforestation occurring in narrow corri-
dors ofO (10 km) along newly built roads [59]. However roads can influence deforestation rate
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at distance of many tens of kilometers [60]. Southworth et al. [59] using multi-temporal Land-
sat images evaluated the deforestation impact of the new Inter-Oceanic Highway over the bor-
der between Peru, Brazil and Bolivia. The results of this analysis showed values of lroad ranging
from few kilometers up to around 45 km depending on the development of the area. FOREST--
SAGE presently uses the current road network in its calculations and does not yet contain a
parameterization to add new roads with population development.

Similarly to the roads, rivers can provide an easier access to the forest, [61, 62] and the
deforestation “risk” associated with them is parametrized as:

rriveri ¼ ðkriver � 1Þe�driveri =lriver þ 1 ð8Þ

where driver
i is the distance of location i to the nearest river, and lriver is an exponential decay

of the impact of rivers.
Population centres. Closely related to the issue of the roads is the vicinity of major and

minor population centres, which provide a market for products and increase the risk of defor-
estation. Many observational studies simply use the distance to the nearest town or population
centre to quantify deforestation risk [63], but this is likely to oversimplify matters, as it neglects
the size and population density of the town in question, and moreover does not allow the vicin-
ity of multiple population centres to be accounted for. FOREST-SAGE, therefore, modifies this
approach by first calculating a distance weighted population density for each location:

pi ¼
PNO

j¼1 pje
�di;j=lp

PNO
j¼1 e

�di;j=lp
ð9Þ

where pj is the population density in the grid-cell j and lp is the e-folding distance weighting.
The risk factor associated with a grid-cell location due to weighted population density is then
represented as:

rpopi ¼ ðkpop � 1Þð1� e�pi =dpÞ þ 1 ð10Þ

where dp is the e-folding increase with population density.
The distance weighted population factor allows the distance and market size/land value to

be generically incorporated, since land value is related directly to both factors. A location close
to a small urban centre will have a similar deforestation risk as a location at a larger distance
from densely inhabited metropolis. Nevertheless, deforestation and land-use change in the
vicinity of urban centres can have a wide range of causes, the diversity of which is obviously
neglected in this approach.

Protected areas and logging concessions. Protected areas, national parks and logging

concessions are simply treated. The risk factor rparki is set to a constant value equal to kpark if
point i is found within a national park. This factor represents the ratio of the decrease in defor-

estation risk associated with the respective designation status, and thus rparki is set to unity if

location i is not located in a park. Logging concessions are treated similarly, with rlogi set to klog,
representing the increase in deforestation risk associated with logging concessions. For exam-
ple, if designation of an area as a logging concession inside a certain macro region is thought to
make deforestation four times more likely then klog is set to 4.0 for all points inside concessions.
The value for kpark on the other hand should take a value smaller than 1.0 if policy is effectively
enforced. Policy enforcement and policing of illegal logging activities varies greatly from coun-
try to country, and even potentially on a sub-national scale. Likewise, conflict and natural
disasters can change policy enforcement drastically as a function of time. Concerning this spa-
tial variation, if a regional user has explicit knowledge of policy enforcement in a particular
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country or district, this can be incorporated by defining a separate macro-region in FOREST--
SAGE and adjusting these risk factors appropriately for this region.

Reforestation. Reforestation can significantly offset deforestation rates [63]. Reforestation
patterns are often spatially distinct from deforestation [33], with the degree and rate of refores-
tation strongly depending on the cause of the clearance [64]. Representing this process is not
straightforward as it depends both on the potential vegetation (i.e. the vegetation that would
exist on a given area for given climatic conditions in the absence of major disturbances) and
also on the motivation for deforestation. For example, clearance for permanent agriculture,
ranching or urban expansion may lead to limited or no regrowth, whereas shifting non-perma-
nent agriculture can lead to regrowth after a period of years, and clearance for wood harvesting
is followed by immediate regrowth [64]. The regrowth algorithm converts the PFT to the cate-
gories that are associated with natural forest cover in the location in question using a potential
vegetation coverage dataset as the reference that can be derived from a model source (CLM) or
by observations (MODIS). In the present demonstration, the potential vegetation cover f t is
given by the maximum value of forest cover of the MODIS retrievals in the Congo region at
86%. The natural forest cover is then f t reduced in each location i, to account for the possibility
of permanent LUC without regrowth. For this, the assumption is made that permanent defor-
estation is more likely to occur in the locations with higher weighted population densities, such

that the modified potential forest cover is given by fte
�pi =trp , where τrp determines how the likeli-

hood of permanent deforestation changes as a function of weighted population density. Thus
the algorithm specifies the regrowth rate as:

A
i
¼ f te

�pi =trp � f i
tr

ð11Þ

where Ai is set to zero if fi exceeds the modified potential forest cover and τr specifies the
regrowth timescale. One difficulty in discerning regrowth from remote sensing observations is
that it is often difficult to distinguish forest regeneration from deforestation and degradation if
the two are co-located [65], as occurring with regeneration of secondary forest in regions of
rotational farming.

Stochasticity. In order to sample uncertainty in the model settings, the FOREST-SAGE
model allows the application of perturbed physics ensembles (PPEs), generated by varying the
single values of parameters over time in FOREST-SAGE ensemble member during simulations.
By perturbing FOREST-SAGE model physical parameters within plausible ranges (±10%) to
create different variants, it is possible both to sample model uncertainty and to evaluate model
performance with observations. In addition, in order to increase the ensemble spread of FOR-
EST-SAGE to take into consideration the spatial uncertainties, a stochastic perturbation to
model physics has been added to the percentage tree cover matrix using a pseudo-random
number generator [66].

2.2 Experiment setup
In order to evaluate the FOREST-SAGE model and test its parameter sensitivity, a simple ideal-
ized experiment in Central Africa has been conducted. The experiment uses satellite data from
MODIS to initialize the model in 2001, and then integrates the model forward in time for one
decade to evaluate whether and how well the model can reproduce the broad spatial patterns of
deforestation. The only parameter that is specified from the satellite observations is the mean
linear deforestation rate over the region; no spatial information is used and instead all of the
parameter settings relating to spatial drivers are taken directly from literature where available.
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Congo region. The region simulated lies between 3.5S to 3.5N in latitude and 18.75E to
25.5E in longitude (Fig 3). This area corresponds to the core of Congo Basin, characterized by
the presence of evergreen tropical forest [67] with swamp forest present along the rivers. The
forest typically is very dense and often precludes the development of shrubs and grasses [67].

The Congo presently is subject to a low deforestation rate relative to other tropical forests
[68], a mere 0.01% per year presently according to the MODIS data used in this study. How-
ever, the Congo is the only rainforest where annual deforestation rates are rising [33]. More-
over, in the Central Africa an increase of LUC can be expected in the following years due to
both the high rate of population growth, ranging from 2.5–3.5% year−1, [33] and to a network
of more than 50.000 kilometers of new logging roads [25]. The Congo Basin has a forest area of
around 2 million square kilometers representing about 18% of the world’s tropical forests [69]
and forest sector activities contribute to 3–8% of the gross domestic product (GDP) in Central
Africa [70].

FOREST-SAGE input data. The model uses freely available GIS datasets for the local
drivers of roads and rivers [71], population density [72], protected areas and logging conces-
sions [25], with futher details provided in Table 1. Of particular interest for the Congo region
are the data concerning parks and logging concessions. Despite a lower deforestation rate com-
pared to other tropical forests, the Congo rainforest ecosystem is likely to become increasingly
fragile as result of enhancing commercial logging. The data for protected area (PAs) was
derived from the World database on Protected Areas (WDPA, version release 2010) that con-
tains both spatial and attribute data with the shapefiles projected to the experiment resolution
of 5 km. Although the level of designation of park is also available in the database (local,
national or international) and FOREST-SAGE allows the user to specify a different value of
rpark for each level, no information on the protection level as a function of park status was
found, and rpark is constant for all parks. Currently, more than 600,000 km2, 30% of forest are
under logging concessions [25]. Logging concessions have a positive feedback on the deforesta-
tion rate because logging companies build roads through the rainforest and clear large areas of
forest increasing accessibility to remote areas. The logging concession dataset was provided by
the Woods Hole Research Center [25].

Table 1. Details of the input data used to initialize the model.

Input Reference Source Brief Description

Forest Cover [75] http://glcf.umd.edu/
data/vcf/

The dataset is derived from all seven bands of the MODerate-
resolution Imaging Spectroradiometer (MODIS) sensor onboard
NASA’s Terra satellite.

Roads and
Rivers

[71] http://www.diva-gis.
org/gData

The database is derived from the Digital Chart of the World
(1:1000000 scale) and it is divided into 2094 tiles that represent
5-degree by 5-degree area of the globe.

Population [72] http://www.afripop.
org/

AfriPop dataset provides per-grid square estimates of numbers of
people at 1 km of horizontal resolution. The population data primarily
comes both from censuses 1993–2010 and from settlements maps
derived from Landsat imagery.

Parks IUCN and UNEP. The World Database
on Protected Areas (WDPA).
UNEP-WCMC.

http://www.
protectedplanet.net
http://www.wdpa.org/

The World database on Protected Areas (WDPA) provides data for
protected areas (PAs) by ArcGIS shapefiles in polygon format which
are converted to a binary map at the resolution of FOREST-SAGE
maps. The release date of the version incorporated is of 2010.

Loggings [25] http://www.whrc.org/ The logging concession dataset was provided by the Woods Hole
Research Center

doi:10.1371/journal.pone.0136154.t001
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2.3 Strength and scale of LUC drivers
In as far as is possible, the constants that define relative importance and spatial impact of each
driver have been taken from studies in the literature (Table 2), which are not always available
in the focus region of Central Africa. For many of these factors our literature review only
revealed a single or a limited number of studies, or in some cases such as rivers, none at all, and
thus the uncertainty in their specification is considerable.

To investigate the impact the parameter setting uncertainty may have, the FOREST-SAGE
parameter settings are explored in a simple, two-stage multiple parameters ensemble simula-
tion setup. In the first stage, an ensemble of 729 experiments is conducted, given by the combi-
nation of the six model parameters deemed to have the larger uncertainty, each of which is
allocated one of three possible values in each experiment. The parameter values are chosen to
sample the range given in the literature, or an estimated range of uncertainty where only a sin-
gle observed value is available. Details are specified in Table 2. The best three experiments in
terms of spatial correlation, minimum bias and minimum RMSE are also given in the table
(data are available in Supporting Information: S2 File, S3 File and S4 File, respectively). The
focus is on six key parameters in this first step due to the prohibitive computational cost of
investigating all possible parameter values of the full FOREST-SAGE parameter-set in a multi-
ple parameters ensemble framework.

Once the best set of parameter settings are achieved for these six variables, the second stage
involves further sensitivity experiments (Fig 5) in which the full FOREST-SAGE parameter set
are around this initial best setting. Starting from the constant values used in the experiment 1
(Table 3), chosen as benchmark due to greatest spatial correlation between modelled and
observed forest cover change, a single value parameter has been modified in every run: the
results, averaged at 50 km, are then compared with MODIS-VCF, adopting as metrics the
change in spatial correlation, mean bias or root mean square error. Each of the twelve FOR-
EST-SAGE parameters is set to one of five values. In order to increase the ensemble spread,
simulations with both PPEs and a stochastic perturbation to model physics have been included
(Fig 5).

Concerning the values used in the two-stage, multiple parameters ensemble framework,
from the complete FOREST-SAGE parameter set, the impact of roads is perhaps one of the
best documented effects in the literature, but despite this, the uncertainty is high. The spatial
impact of roads, for example, can range from O < 10 km [59] along newly built roads, up to
O 100 km [60]. Instead smaller distances has been chosen for the rivers (ranging from 1 to
10 km).

Table 2. Summary of the 729 ensemble experiments set by the choice of different valued parameters. The three experiments pointed out have been
chosen using as metric the best spatial correlation (experiment 1), the minimum BIAS (experiment 2) and the minimumRMSE (experiment 3).

Driver Reference Articles Ensemble Mean Exp. 1(S2 File) Exp. 2(S3 File) Exp. 3(S4 File)

Roads [17, 37, 59, 60] O 10-45-100 km O 100 km O 10 km O 100 km

Population [9, 16, 18, 33] 8-30-100 people per km2 100 people per km2 8 people per km2 100 people per km2

Rivers [61, 62] O 1-5-10 km O 1 km O 5 km O 1 km

Parks [33, 62] 0.5-0.8-1.0 (50-75-100%) No Impact (1.0) No Impact (1.0) No Impact (1.0)

Logging Concessions [25, 33] 1.0-1.3-2.0 (100-130-200%) 130% (1.3) 200% (2.0) 130% (1.3)

Reforestation [64, 81, 83] 30-40-60 years−1 60 years−1 60 years−1 40 years−1

R 0.61 0.68 0.56 0.68

RMSE 0.26 0.24 0.26 0.23

BIAS -0.009 0.005 0.0001 -0.007

doi:10.1371/journal.pone.0136154.t002
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Fig 5. FOREST-SAGEmodel sensitivity. The 240 sensitivity experiments are performed changing each time a single valued parameter setting the
experiment 1 as reference and comparing the results (averaged at 50 km) against the MODIS trend 2001-2010. To evaluate the model sensitivity a perturbed
physics ensembles (PPEs) have been conducted and, also, in order to increase the ensemble spread of FOREST-SAGE and to take into consideration the
spatial uncertainties, a stochastic perturbation to model physics has been added. On the y-axis the spatial correlation is shown, while on the x-axis the
parameter values are given. The panels a−c−d−f−g−l are referred to the weights of fragmentation, logging, road, park, river, population respectively. The
panel b is referred to the p−q beta distribution parameters, while the panel i is referred to the reforestation rate. Moreover the panels e−h−m are referred to
the e-folding spatial scale of roads, rivers, population while the panel n is referred to the e folding increase with population density.

doi:10.1371/journal.pone.0136154.g005

Table 3. Summary of the constant values used in the experiment 1 of Table 2. The experiment 1 out-
puts have been attached in Supporting Information (S2 File).

Variable Description Value

kroads Weight of the Roads 3.5

kpop Weight of the population 3.5

krivers Weight of the Rivers 3.5

kfrag Weight of the fragmentation 3.5

klog Weight of the logging area 1.3

kpark Weight of the protected area 1.0

p—q Beta distribution parameters 4-4

lroad e folding spatial scale roads 100 km

lriver e folding spatial scale rivers 1 Km

lp e folding spatial scale population 15 Km

dp e folding increase with population 100 people km �2

τrp Population sensitivity of permanent deforestation 200 people km �2

τr Reforestation rate 60yr−1

doi:10.1371/journal.pone.0136154.t003
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Setting the risk factors for logging concession/national parks is challenging, as the resulting
LUC it depends on the time-frame over which the logging concession resources will be extracted,
and the level of policy enforcement for protected areas. Thus it is important to evaluate the sensi-
tivity of FOREST-SAGE to different risk settings. The allocation of protected status can reduce
deforestation rates by a factor of 50% in this region [33], whereas the occurrence of logging con-
cessions does not have a clear impact on deforestation rates [33]. For the logging concessions a
set of values ranging from “no impact”, to “high impact” (from 1.0 to 4.0) has been chosen and
similarly for the protected area different levels of policy enforcements have been tested.

Regarding the population drivers, starting from Ernst et al. [33], several tests have been per-
formed, assuming a critical population density value ranging from 8 to 100 people per km2,
while for the population spatial impact lp values ranging from 5 to 30 km have been selected.
For the reforestation time τr values between 15 years and 75 years have been chosen and, in
absence of a high resolution potential vegetation map over the Congo area, a value equal to the
maximum forest cover value (i.e fi=86%) has been chosen as ft. The p and q parameters have
been changed in order to modify the shape of the beta function ranging from the assumption
of an equal probability deforestation at different percentage of forest cover (p and q equal to
1.0) to a high risk value centered around the 50% of forest cover (p and q equal to 5.0).

While it is relatively easy to find parameter values for the spatial distribution of the defores-
tation risk (Table 2), instead the sources of information for the k parameters are scarce and
show a wide range of values [6, 16, 59]. In addition the deforestation risk calculated from
remote sensing is often overestimated due to the complexity of discrimination between the
individual forcing acting on a single pixel (i.e the risk is often the sum of different local drivers).
Nevertheless, in order to verify the relative importance of a driver compared to the others a
wide range of possible values has been adopted, assuming values between 1.0 and 7.0.

2.4 Satellite data
While FOREST-SAGE is designed to be interfaced directly with land-surface models such as
CLM, for this evaluation the model has been initialized with land cover information derived
fromMODerate-resolution Imaging Spectroradiometer Vegetation Continuous Field (MOD-
IS-VCF) [73, 74]. Specifically, the percentage tree cover dataset (collection 5 version 1 release
data, MOD44B) [75] has been used as input. The MODIS-VCF product combines MODIS and
LandSat information to produce an annual dataset (presently available from 2000 to 2010)
with 250 meters spatial resolution of the following parameters: Percent tree cover, Quality
Assurance (QA) bad data flag, QA cloudy data and standard deviation of models. For full
details of the retrieval algorithm see Hansen et al. [76, 77].

The percent tree cover describes the percent canopy cover in each pixel (values ranging
from 0 to 100) and is accompanied by the QA bad data that is a quality flag defining the pixels
having poor/good quality because of cloud coverage, high aerosol, cloud shadow or view
zenith> 45°, while the QA cloudy data is a quality flag focused on the cloud coverage only.
The Collection 5 VCF products are still under active development and the treatment of cloud-
affected pixel in the retrieval algorithm is a remaining challenge (Dimiceli C. M., personal com-
munication) and is a caveat of this work. For each year, pixels with a bad-quality flag exceeding
12.5% are rejected from the analysis.

The Congo Basin, in common with other tropical areas, is characterized by high cloud cov-
erage [8], especially near the west coast, which is the main source of uncertainty for the forest
evaluation from satellite [78]. In 2000 the area affected by low quality was considerably greater
than for the subsequent years (almost half of the Congo Basin area was not available according
to the QA criterion applied) and thus FOREST-SAGE was initialized in the year 2001.
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The MODIS product is presently available until 2010, and thus the FOREST-SAGE model is
integrated from 2001 to 2010, with the domain mean deforestation rate of 0.01% applied to
match the mean observed rate using the MODIS-VCF data. It is acknowledged that 9 years is a
relatively short period for examining deforestation trends, and thus with this dataset it is pres-
ently only possible to calculate the annual linear trend over the decade. In any case, year-to-
year variability in the leaf canopy due to climate variations, along with changing spatial avail-
ability of satellite data due to changing cloud cover precludes the examination of year-by-year
variations in land cover.

The MODIS data is aggregated to 5 km resolution, which is the resolution used for the
model integrations. This resolution is on the borderline of resolving the impact of deforestation
drivers such as vicinity to roads and cities which have been assessed to have an e-folding
impact on the order of 10 km [36, 37]. However, as deforestation is essentially a stochastic pro-
cess (i.e roads increase deforestation, but not uniformly along their length, but rather in spo-
radic settlements), the model outputs have been averaged to 50 km for the evaluation statistics.
The linear regression fit to the simulated land cover change is then compared to the linear
regression fit to the satellite observed LUC in each pixel that passes the data quality criterion.

2.5 HYDE benchmark model
In order to gauge the performance of the FOREST-SAGE model over the Congo region, it is
compared to benchmark LUC scenarios provided by the HYDE model database [52]. The
HYDE database consists of two components. The first is a historical database of LU informa-
tion including proxies such as population density and distribution. A set of statistical rules are
used in the model to convert this information to an annual, gridded map of land use for the
period 1500–2005 [79].

The second component of the database was the use of the model to convert the future LUC
scenarios to a consistent gridded format. These were provided by the four IAMs: MESSAGE,
AIM, GCAM and IMAGE that are respectively expressing the Representative Concentration
Pathways (RCPs) defined by their total radiative forcing: RCP8.5 [49], RCP6.0 [48], RCP4.5
[47] and RCP2.6 [46]. Hurtt et al. [52] describes the process of how the historical and scenario
periods are merged to provide a smooth, harmonized set of LUC scenarios for 1500 to 2100.

The HYDE land-use outputs do not provide direct forest cover, but instead are expressed in
terms of primary and secondary land cover proportions, in addition to urban, pasture and crop
coverage. Thus, the forest fraction is derived by combining the primary and secondary fraction
with a map for potential vegetation coverage [80]. The forested area has been calculated as the
sum of primary and secondary forest.

The MODIS observational period of 2001 to 2010 spans the historical and future scenario
datasets. Therefore four HYDE-derived estimates of the 2001–2010 change in forest cover are
derived, which are identical for the historical period 2001–2005, and differ substantially for the
period 2006–2010 according to the scenario used. The change in land cover for the historical
period 2001–2005 is effectively zero for the region in question, and the 2001–2010 trends are
almost entirely due to the scenario employed.

3 Results

3.1 Parameter sensitivity for the Congo simulations
Here, the sensitivity of the FOREST-SAGE simulations to the model parameter settings in the
two-stage multiple parameters ensemble simulations is reported.

The multiple parameters ensemble demonstrates that the model is most sensitive to the
fragmentation and population k values (Fig 5a–5l), it is relatively most insensitive to the roads
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and river k values (Fig 5d–5g). A possible explanation of the weak dependency to the roads/riv-
ers can be associated both to the ubiquity of these networks (Fig 3) and, in the road case, to the
large lroad value adopted (Table 3) that decreases the sensitivity to k (Fig 4).

The spatial impact of the local drivers plays an important role in the correct detection of the
patterns, giving higher correlation when the roads can influence the deforestation up to 100
km, in accordance with Pfaff et al. [60], while the river impact is confined to the first 10 km
(after this threshold the correlation starts to decrease). The population spatial impact is almost
flat for values higher than 10 km, while, for evaluating the forest cover change the presence/
absence of population appears more important than the population density itself. FOREST--
SAGE shows the highest sensitivity to the fragmentation, both to the strength of the driver
(kfrag) and to the shape of the beta function (Fig 5). A maximum probability deforestation risk
centered at 50% of forest cover [57] results in the highest correlation, whereas removing the
fragmentation effect altogether (p and q equal to 1.0) results in the lowest correlation.

Although the reforestation timescale shows the highest correlation when adopting a time
scale of 60 years that is slightly higher than values found in literature [81], setting a time scale
of 40 years significantly improves the model’s spatial variance when compared with MODIS
observations (Fig 6f). The logging concessions clearly increase the deforestation risk, reaching
the highest correlation assuming a deforestation risk of 30% higher for the points inside a log-
ging concession when compared to the surrounding. In contrast, protected areas have a limited
impact on the correlation due to their small extent relative to the logging concessions, never-
theless, the analysis suggests that the protection’s impact is less in this area than stated in Ernst
et al. [33]. Andam et al. [82] noted that the remoteness of a protected area was often key to its
level of protection, rather than policy enforcement, indicating that the risk factor for parks is
likely to be rather heterogeneous. Hereinafter the experiment 1 (“S2 File” is available in Supple-
mentary Information) has been designated as the reference for the following comparisons.

3.2 Deforestation simulations
The spatial patterns of deforestation observed by MODIS and simulated by FOREST-SAGE
and HYDE are shown in Figs 6 and 7. There is a good agreement between the FOREST-SAGE
output and the satellite retrieval with a maximum spatial correlation of 0.68 (Table 2). The spa-
tial variability appears to be primarily driven by population density and forest accessibility, in
particular the deforestation is clearly more accentuated along the Congo river, in accordance
with Duveiller et al. [7], and generally in the northern part of the domain where a higher popu-
lation density is present. Furthermore deforestation appears more active in presence of logging
concessions and where the forest cover is not so dense.

In the southern part of the region, where the reforestation process is relatively dominant,
the correlation between FOREST-SAGE and MODIS-VCF is lower (R* 0.61) compared to
the northern region (R* 0.74). The problem with reforestation process modelling is due both
to its complexity [83] and to the lack of a clear link to other forest cover changes [33]. In gen-
eral the model tends to well reproduce the forest cover trend along the Salonga National Park,
slightly overestimating a net increase in forest cover change process along the Salonga National
Park (South) and underestimating it along the northern boarder of the same protected area.

Along the Congo River, where the density of population/logging concessions is higher, the
model is underestimating the net forest cover change (Fig 6c, 6e, and 6g). Nevertheless, in this
first validation attempt, FOREST-SAGE showed the ability to capture the main spatial patterns
of deforestation, even if with a slight underestimation of the signal strength.

While the FOREST-SAGE model has obvious deficiencies in the spatial patterns of LUC
and their magnitude, the advantage of using local scale drivers for present-day and near-term
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LUC simulation is apparent if the model is compared to the benchmark simulations of the
HYDE model database (Fig 7). Comparing the four harmonized scenarios of LU, none are able
to capture the spatial variability or magnitude of the forest cover trend. In addition to the spa-
tial misrepresentation, the forest change also shows a problem in the magnitude of the signal in
two scenarios of RCP6.0 and RCP8.5.

Regarding the historical period, it is important to reemphasize the remarks of [79], that
while observations and proxy are used as input to the process, the HYDE database is a model
product, and does not represent direct observations of land use. It is also recalled that the
HYDE LUC for the period 2001–2005 is very limited, and the differences in these projections is
entirely due to scenario used. Akkermans et al. [84] called for an improved representation of
the RCP deforestation scenarios at least at regional level. This comparison confirms that such
improvements can potentially be made in the near-term projections of LUC by employing a
model such as FOREST-SAGE at the interface between an broad regional LUC scenario (for
example provided by integrating directly the IAM or harmonized HYDE output over a coarse
scale), and the climate model, accounting for local-scale drivers. As illustrated in the

Fig 6. MODIS (panel a) and FOREST-SAGE (panels b−d−f) trend years 2001–2010. The displayed panels b−d−f are referred to the FOREST-SAGE
experiments 1–3 (Table 2) respectively, while the panels (c−e−g) represent the difference between FOREST-SAGE and MODIS. Negative values indicate a
deforestation trend, while positive values an increase in forest cover.

doi:10.1371/journal.pone.0136154.g006
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introduction, this would also have the advantage of being able to integrate the local scale,
anthropogenic LUC model on-line with a climate model coupled to a dynamical vegetation
model, ensuring that both anthropogenic and natural vegetation changes occur in tandem and
in a self-consistent way.

4 Discussion
A new model has been introduced, FOREST-SAGE, which is designed to allow anthropogenic
land-use change to be fully integrated with the dynamic modelling of vegetation in earth sys-
tem models, with the ultimate goal of improving the understanding of the role of LUC on the
Climate System. The model takes generalized regional scenarios of LUC and disaggregates
them to a fine spatial scale accounting for local LUC risk factors (roads, population density,
forest fragmentation, logging concessions and national parks) and producing annual changes
in plant function types as used by dynamical vegetation models. The risk factors are presently
specified for the conversion of primary forest to agriculture/pastoral use, but the aim is to gen-
eralize the model to other land use conversions later.

In this first experiment, FOREST-SAGE has been tested in an ‘offline’mode, in an attempt
to simulate recent trends in forest cover in Central Africa, using a recently developed forest
cover retrieval MODIS-VCF to initialize the model in 2001, and then to evaluate the simula-
tions for subsequent years. All the local risk factors were obtained from the open literature and
no information is used fromMODIS-VCF in the model, with the exception of its initialization.
As many of these factors are highly uncertain, multiple experiments were conducted in a
grand-ensemble. This initial experiment demonstrated a broad ability of the model to repro-
duce spatial patterns of deforestation and forest recovery, and the model was particularly sensi-
tive to parameters regarding the population, fragmentation and logging concessions, while the
ubiquitous transport network had a lesser effect indicating the need to improve the model to

Fig 7. MODIS (panel a) and HYDE (panels b−c−d−e) trend for years 2001–2010. The displayed panels b−c−d−e are referred to the AIM (RCP6.0),
IMAGE (RCP2.6), MESSAGE (RCP8.5) and GCAM (RCP4.5) models respectively. Due to the weak magnitude signal of AIM and MESSAGE, panels b−d
are shown with differing color scales.

doi:10.1371/journal.pone.0136154.g007
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differentiate between minor and major routes, and also to account for the presently neglected
topography and soil quality, which may determine where along major routes settlements are
most likely to occur. Further refinements that could benefit the model include the identifica-
tion of active logging concessions in the area and taking into account the effectiveness of the
parks in reducing deforestation. The most significant limitation of the model for its use in cli-
mate projections is the use of static maps of risk factors, rather than attempting to project the
impact of future population growth on the transport network [29] and population centres.
This shortcoming is in common with many present LUC models.

FOREST-SAGE is not necessarily new in its treatment of the local deforestation risk factors
[43] but attempts to provide a model to interface knowledge of local scale drivers of LUC in a
generalized framework that can be interfaced directly with dynamic vegetation models such as
the commonly used land-surface climate model. While the generality of the model required for
climate modelling implies that the model may not necessarily match the ability of a regionally-
derived regression model for past LUC, the flexibility of the approach implies that it can easily
be improved by tuning the relationships over local or regional scales, and (the approach)
extended to include other drivers and factors presently neglected that may be regionally impor-
tant. The current state-of-the-art in harmonized land-use scenarios is represented by the His-
tory Database of the Global Environment (HYDE) dataset [52] that provides historical and
future land-use data with future projections ESMs. However, each modelling system must then
translate these projections into their respective PFTs, and the use of offline projections implies
that they are not always consistent with the dynamic vegetation model’s local vegetation cover,
and each modelling centre must introduce their own set of rules to resolve such conflicts [50,
51]. By using FOREST-SAGE to translate global anthropogenic land-use scenarios to earth sys-
tem model grid-scale land cover on-line in a fully coupled way, such feedbacks can be incorpo-
rated and the self-consistent treatment of LUC and vegetation is facilitated. A future
manuscript will demonstrate the model being used to integrate anthropogenic LUC projections
from the HYDE model seamlessly to a coupled climate-land surface modelling framework
using an active DGVM.

Supporting Information
S1 File. FOREST-SAGE source code. FOREST-SAGE version 1.0 source code combined with
FortranGIS library package containing shapelib module. The model is written in Fortran90
and requires Fortran and NetCDF libraries installed.
(ZIP)

S2 File. FOREST-SAGE best correlation experiment. The file has been initialized by MOD-
IS-VCF 2001 using the setting of experiment 1 and contains 10 years of FOREST-SAGE simu-
lations at 5 km of horizontal resolution.
(NC)

S3 File. FOREST-SAGE minimum BIAS experiment. The file has been initialized by MOD-
IS-VCF 2001 using the setting of experiment 2 and contains 10 years of FOREST-SAGE simu-
lations at 5 km of horizontal resolution.
(NC)

S4 File. FOREST-SAGE minimum RMSE experiment. The file has been initialized by MOD-
IS-VCF 2001 using the setting of experiment 3 and contains 10 years of FOREST-SAGE simu-
lations at 5 km of horizontal resolution.
(NC)
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