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A B S T R A C T   

Radon is a radioactive gas and a major source of ionizing radiation exposure for humans. Consequently, it can 
pose serious health threats when it accumulates in confined environments. In Europe, recent legislation has been 
adopted to address radon exposure in dwellings; this law establishes national reference levels and guidelines for 
defining Radon Priority Areas (RPAs). This study focuses on mapping the Geogenic Radon Potential (GRP) as a 
foundation for identifying RPAs and, consequently, assessing radon risk in indoor environments. Here, GRP is 
proposed as a hazard indicator, indicating the potential for radon to enter buildings from geological sources. 
Various approaches, including multivariate geospatial analysis and the application of artificial intelligence 
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algorithms, have been utilised to generate continuous spatial maps of GRP based on point measurements. In this 
study, we employed a robust multivariate machine learning algorithm (Random Forest) to create the GRP map of 
the central sector of the Pusteria Valley, incorporating other variables from census tracts such as land use as a 
vulnerability factor, and population as an exposure factor to create the risk map. The Pusteria Valley in northern 
Italy was chosen as the pilot site due to its well-known geological, structural, and geochemical features. The 
results indicate that high Rn risk areas are associated with high GRP values, as well as residential areas and high 
population density. Starting with the GRP map (e.g., Rn hazard), a new geological-based definition of the RPAs is 
proposed as fundamental tool for mapping Collective Radon Risk Areas in line with the main objective of Eu-
ropean regulations, which is to differentiate them from Individual Risk Areas.   

1. Introduction 

Radon (222Rn, hereafter referred to as Rn) is a radioactive gas 
considered the primary source of ionizing radiation exposure for the 
population. Its potentially harmful effects on human health have been 
extensively documented (Zeeb and Shannoun, 2009). Rn gas represents 
a significant hazard when it accumulates in indoor environments, such 
as residential houses and workplaces (Indoor Radon). 

Exposure to indoor radon is a serious issue that has prompted Europe 
to introduce legislation (Basic Safety Standards Directive 2013/59/ 
EURATOM). This legislation, on one hand, establishes maximal national 
reference levels aimed at reducing Indoor Radon Concentration (IRC) 
exposure. On the other hand, it encourages public administrations to 
define Radon Priority Areas (RPAs). Therefore, it is essential to identify 
areas characterised by the highest Rn hazard for the population. 

Rn gas has a natural origin and its concentration in the environment 
can vary depending on the geological characteristics of an area. In 
particular, the Geogenic Radon Potential (GRP) can be considered an 
optimal Rn hazard indicator as it conceptualizes “what Earth delivers in 
terms of radon” from geogenic sources (e.g., radionuclides content in 
rocks and soils, faults and fractures) to the atmosphere (Bossew, 2015; 
Bossew et al., 2020). 

The GRP is characterised by the interaction of three natural 
processes: 

• Background Radon Source (BRS) represents the process that pro-
duces Rn through the natural decay of uranium (U) and thorium (Th) 
(220Rn), which are present in rocks and soils.  

• Tectonically Enhanced Radon (TER, Benà et al., 2022) accounts for 
processes that allow radon to migrate more easily towards the sur-
face through permeable pathways (e.g., faults and fractures in the 
crust) from deeper sources, caused by increased stress and pressure 
conditions associated with tectonic activity.  

• Surface Radon Exhalation (SRE) is the process by which radon gas is 
released from the ground into the atmosphere. SRE considers vari-
ables affecting radon movement in the shallow soil up to the soil/ 
atmosphere interface (e.g., land morphology, soil permeability, at-
mospheric pressure, humidity, and temperature). This quantity of 
radon represents the amount that could potentially enter buildings, 
although BRS and TER are the dominant geological radon sources. 

Over the years, several approaches have been applied to estimate the 
GRP over an area (e.g., Neznal et al., 2004; Bossew, 2015; Pásztor et al., 
2016; Ciotoli et al., 2017; Giustini et al., 2019; Petermann et al., 2021; 
Coletti et al., 2022). 

A widely used method to define the GRP, due to its simplicity, was 
proposed by Neznal et al. (2004). Neznal’s approach is based on the 
measurement of two quantities: Rn concentration in the soil and soil 
permeability. 

More recently, Pásztor et al. (2016) and Ciotoli et al. (2017) applied 
multivariate geospatial analysis (regression kriging and geographical 
weighted regression, respectively) to model GRP, using Soil Gas Radon 
Concentration (SGRC) and selected environmental proxies for the first 
time. 

In the past three years, researchers have developed more advanced 
multivariate techniques, such as regression kriging (Coletti et al., 2022) 
and Machine Learning (ML, Petermann et al., 2021) algorithms which 
include several predictor variables associated with the geogenic Rn 
component. However, it is important to emphasise that all these tech-
niques require the measurement of SGRC or IRC as a response variable. 

An issue faced by many European nations is the lack of sufficient 
SGRC measurements to support GRP mapping. As a consequence, the 
Geogenic Radon Hazard Index was proposed (Bossew et al., 2020). The 
Geogenic Radon Hazard Index concept arose from the need to determine 
a particular indicator using regionally accessible geological variables. 
The Geogenic Radon Hazard Index values for regions with consistent 
geogenic factors but different data sources should be comparable. 

Cinelli et al. (2015) proposed a method for achieving consistency. It 
involved assigning weights to continuous or categorical input variables 
(covariates) based on their contribution to the index. Another way to 
enhance data consistency is the application of techniques that do not 
require a response variable (i.e., Spatial Multi Criteria Decision Analysis, 
Ciotoli et al., 2020). 

It is crucial to map GRP as accurately as possible using a robust 
methodology, as GRP represents the amount of radon that could 
potentially enter buildings and is considered the most significant spatial 
predictor of IRC. In this context, the Basic Safety Standards European 
Directive 59/2013, transposed into Italian law by Legislative Decree 
n.101/2020, further emphasises the importance of identifying RPAs. 
Originally, RPAs were defined as areas where the annual average IRC in 
a significant number of dwellings is expected to exceed the reference 
level of 300 Bq m− 3. However, the concept and interpretation of “sig-
nificant number of buildings” in the European Directive remained 
unclear. 

Recently, Petermann et al. (2022) highlighted that the interpretation 
of “significant number” of buildings is factually based on the concept of 
geogenic hazard, and it relates to a relevant percentage of buildings 
within an area, regardless the number of houses or people affected. This 
concept does not encompass the collective concept of geogenic risk. 

On the other hand, there is no uniform decision at the regional scale 
regarding the selection of the reference level and the threshold of 
probability percentage (p0) of buildings exceeding the reference level. In 
general, the majority of European nations (including Finland, Germany, 
Greece, Montenegro, and Spain) adhere to the European Directive, 
adopting the recommended reference level of 300 Bq m− 3 and a prob-
ability threshold of 10 % (Bossew, 2018). For instance, Italy has a 
reference level of 300 Bq m− 3and a p0 of 15 % (D. Lgs. n. 101/2020). A 
map illustrating the confusing diversity of RPA definitions across Europe 
has been compiled in Bossew and Suhr (2023, see Fig. 2 in the cited 
paper). 

As reported in Bossew and Petermann (2021), the goals of the 
legislation in term of radiation protection from Rn indoor are twofold: 
(i) protect people from high Rn exposure to reduce individual risk (even 
if few people are involved); (ii) avoid high exposure to the community: 
the harm to society is proportional to the collective risk. 

European legislation aims to reduce the detriment from Rn exposure 
(i.e., the number of lung cancer deaths) and, as a consequence, reduce 
collective exposure. Collective exposure can be assessed by introducing 
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the concept of collective risk, which complements the individual risk 
concept (the “classical” RPA). Collective risk can be understood as 
consisting of many small individual risk zones. 

Based on these considerations, we propose mapping Collective 
Radon Risk Areas (CRAs) by applying the definition of risk, which 
combines hazard, vulnerability and exposure factors. We use this 
concept as complementary to mapping Individual Risk Areas (IRAs) 
associated with IRC (i.e., “classical” RPA). 

The main goal of this research is to demonstrate in a test area the 
efficacy of CRAs maps in defining Rn risk areas. We base this on the GRP 
map (the hazard factor) elaborated using a ML technique (i.e., Random 
Forest, RF). The test area chosen is the Pusteria Valley, which has been 
selected because of its well-known geological, structural, and 
geochemical characteristics, and the availability of numerous additional 
data (Benà et al., 2022). The obtained GRP map (hazard) was merged 
with the land use type (vulnerability) and population (exposure) data 
from census tracts available from the ISTAT (Istituto Nazionale di Sta-
tistica) website to identify CRAs. 

2. Methods 

2.1. Test area 

The test area is located in the Pustertal/Pusteria Valley in the Italian 
Eastern Alps (Bolzano province, see Fig. 1 in Benà et al., 2022) and it has 
been selected because of its well-known geological and structural 
characteristics. Into details, the study area is located across the complex 
Pusteria Fault System which comprises three main faults: the 
Deffereggen-Anterselva-Valles (DAV) mylonitic zone (Müller et al., 
2000); the Kalkstein-Vallarga (KV) fault (Borsi et al., 1978) and the 
Pusteria fault (Schmid et al., 1989). The Pusteria fault separates two 
different domains in the study area: (i) the Austroalpine crystalline 
basement (to the north) that is mainly composed by micashists and 
paragneiss (locally grading to migmatites) (Sassi et al., 2004); (ii) the 
Southalpine crystalline basement (to the south) which consists of a thick 
phyllitic sequence (Spiess et al., 2010) with Permian granite intrusions. 
The test area and the fault system are also well known from a 
geochemical point of view since its high degassing has been previously 
documented in Benà et al. (2022). 

Geographically, the study area includes a part of three main mu-
nicipalities: Terenten/Terento (~1800 inhabitants) to the western part, 
Kiens/Chienes (~3000 inhabitants) to the central part and Pfalzen/ 
Falzes (~2900 inhabitants) to the eastern part. In the mentioned mu-
nicipalities, the population is mainly grouped in residential areas and 
housing units; however, most of the study area is mountainous and 
sparsely populated. In general, the residential houses have 3 to 4 floors 
spanning from the basement (− 1) and the second floor (2) where pre-
sent; the building materials are mainly brick and concrete, occasionally 
local rocks and wood (Verdi et al., 2004). 

The test zone has been also chosen due to the availability of 
numerous additional data (see for example the in-situ measurements 
from Benà et al., 2022; the primary base maps available online in the 
Bolzano Province Geo-catalogue; the census variables and the de-
mographic data available on the online ISTAT-Istituto Nazionale di Sta-
tistica website; indoor radon surveys reported in Minach et al., 1999 and 
Verdi et al., 2004, but not utilised in the current work to define the 
CRAs). 

2.2. Experimental strategy 

A dataset including different variables (e.g., response and predictors) 
was used to elaborate the GRP map for the study area. This was achieved 
by employing a ML technique, specifically the Random Forest (Breiman, 
2001), to predict radon values at grid points. The resulting GRP map 
served as the hazard factor in the risk equation (Eq. (2), as detailed in 
Section 2.4) and was multiplied by census tract data for land use and 

population density, representing the vulnerability and the exposure 
factors, respectively. 

Fig. 1 shows the flowchart of the applied procedures. Data processing 
was carried out using ArcGIS Pro 3.1.2 (copyright 2023@ESRI Inc.) and 
Scikit-learn library in Python PyCharm 2023.1.2 (Copyright © 
2010–2023 JetBrains s.r.o.). 

2.3. Dataset 

The dataset comprises one response variable (SGRC) and ten inde-
pendent variables, which were either measured on-site or derived from 
primary base maps available online through the Bolzano Province Geo- 
catalogue (http://geokatalog.buergernetz.bz.it/geokatalog/#!). These 
ten variables were selected as potential predictors for ML regression 
models. 

Soil gas surveys (222Rn, 220Rn, CO2) (Benà et al., 2022), Terrestrial 
Gamma Dose Rate (TGDR), and permeability measurements were 
collected on-site during two separate field campaigns in the summers 
2021 and 2022, conducted under similar and stable climatic conditions. 
The Digital Terrain Model (DTM) at a 2.5 m resolution and fault density 
data were obtained from the base maps available in the Bolzano Prov-
ince Geo-catalogue. 

The potential predictors underwent pre-processing using geospatial 
analysis to generate 50 × 50 m raster maps (refer to Fig. S1 in Supple-
mentary materials). We used the “Extract multi-value to point” tool in 
ArcGIS Pro to assign values of the predictors to each node of the raster 
maps, ensuring that we had a value for each predictor variable for each 
Rn observation. The resulting dataset, containing the predictors and the 
response variable (SGRC), was used to train the Random Forest (RF) 
model. Once the best model was identified, it was applied to a regular 
50x50m point fishnet, corresponding to the centroids of the predictor 
raster grid. The final dataset consists of 27,758 points, encompassing 
complete information for all predictors. The following sections provide a 
detailed description of the response variable and the predictors. 

2.3.1. Response variable 
SGRC (kBq m− 3) was used as the response (dependent) variable in 

the Random Forest Regression algorithm to create the GRP map. The 
original Rn dataset is composed by soil gas radon surveys obtained in the 
field according to the methodology and sample pattern described in 
detail by Benà et al. (2022). In particular, 278 SGRC values have been 
collected in the study area (~60 km2) and correspond to a sampling 
density of 4–5 points of measurements per km2. This sampling density, 
in case of SGRC measurements, is perfectly in line with other known 
studies in the literature carrying out a similar methodological approach 
(see for example: Ciotoli et al., 2007, 2017; Pásztor et al., 2016; Iovine 
et al., 2018; Coletti et al., 2022; Petermann et al., 2021). 

2.3.2. On-site predictor variables 
Five predictors were measured in the field: thoron (220Rn) and car-

bon dioxide (CO2) concentration in soil gas, TGDR, permeability, and 
222Rn dissolved in groundwater. Thoron and carbon dioxide (CO2) were 
measured using the same method and at the same sampling locations as 
described in Benà et al. (2022). 

2.3.2.1. TGDR measurements. The TGDR has been utilised as a proxy for 
the BRS contribution in the geogenic radon component. In particular, 
this variable is referred to the Rn produce by the decay of the principal 
radionuclides content in rocks (238U, 232Th) and it simulates the lith-
ological background; in fact, terrestrial radiation also varies according 
to the lithology, genesis and age of rocks and by adsorption at the Earth’s 
surface (Cinelli et al., 2019). 

TGDR measurement were performed in-situ at 76 sampling points 
using a NaI γ-ray portable scintillometer (Scintrex GRS-500) pre-set to a 
total count rate window corresponding to the energy interval range 
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between 80 and 3000 keV. The device was held 1 m above the ground for 
a measuring time required to achieve a 3 % accuracy. The sensitivity 
factor of the Scintrex GRS-500 is 3.40 cps/nGyh, allowing the counting 
rates to be converted into the International System unit of gamma dose 
rate (μSv/h, Giustini et al., 2019, 2022). Geostatistical analysis, 
including experimental variogram calculation, modelling, and kriging, 
was employed to generate a prediction map of the TGDR (see Fig. S2a 
and b in the Supplementary materials). 

2.3.2.2. Permeability. Soil gas permeability directly affects the migra-
tion of radon gas from the ground, primarily through advection along 
fractures and faults, as well as in the shallow soil primarily through 
diffusion mechanisms (Nuhu et al., 2021; Neznal and Neznal, 2005). The 
radon concentration in soil gas is directly dependent on the geological 
characteristics of the area, such as the radionuclides concentration in 
rocks and soils, and the presence of fractures and faults. It can also be 
strongly influenced by soil permeability, which relates to soil pore di-
mensions and soil moisture content (Benavente et al., 2019; Lara et al., 
2015). Additionally, other physical characteristics of soils, including soil 
texture and grain size, significantly impact the mechanisms of radon 
emanation and exhalation in the soil environment (Huynh Nguyen et al., 
2018; Yang et al., 2019). 

In the study area, soil permeability was measured at 76 sampling 
points using a custom permeameter developed by the University of 
Roma Tre, designed to connect directly to the same probe used for soil 
gas sampling (Castelluccio et al., 2015). The soil is assumed to be ho-
mogeneous and isotropic, and standard state conditions are considered. 
Air is assumed to be incompressible. The calculation of the soil perme-
ability (k) is based on Darcy’s equation and expressed in square meters 

(m2). Geostatistical analysis, including experimental variogram calcu-
lation, modelling, and kriging, was employed to obtain a prediction map 
of soil permeability (see Fig. S3a and b in the Supplementary material). 

2.3.2.3. Radon dissolved in groundwater. Dissolved 222Rn was measured 
at 22 water springs in the study area. Water samples from the selected 
springs had already undergone chemical-physical analysis by the Agen-
zia provinciale per l’ambiente e la tutela del clima - Laboratorio analisi acque 
e cromatografia (Bolzano Province) in 2022. 

Rn in groundwater is significant since an amount of the Indoor Radon 
Concentrations derive from the groundwater through the drinking water 
supply systems. This variable has the potential to affect the IRC, espe-
cially in cases where groundwater levels are close to the surface. In Italy, 
the reference level regarding the radon dissolved in groundwater 
intended to serve as drinking water is 100 Bq/L (see 59/2013/EURA-
TOM and the transposed D. Lgs. n. 101/2020 in the Italian regulations). 
In the study area, all the municipalities use drinking water from 
captured springs located at high altitude (>1600 m.a.s.l.) and these are 
therefore analysed for the study. Water was directly sampled from the 
springs using glass bottles. Rn concentrations were measured using the 
RAD7 system (Durridge Company Inc.) in sniff mode, connected to the 
Big Bottle RAD H2O and drystick (drierite desiccant) accessories. Before 
measurements, the system was purged to ensure that the moisture 
content inside the system was reduced to <10 % humidity. The sampled 
bottle was then connected in a closed air-loop mode to the RAD7 system. 
During system operation, continuous circulation gradually enriched the 
air within the closed loop with the dissolved Rn from the water sample. 
Each measurement was conducted with a 5-minute integration period 
and repeated until the difference between the last two readings was 

Fig. 1. Flowchart of the mapping process and procedures. SGRC = Soil Gas Radon Concentration; perm = soil permeability; TGDR = Terrestrial Gamma Dose Rate; 
220Rn = thoron; CO2 = carbon dioxide concentration in soil gas; H2O = concentration of radon dissolved in water; FD = fault density; DTM = digital terrain model; 
slope = slope; solar = solar radiation; loc type = location type: P dens = population density; GRP map = Geogenic Radon Potential map; RPAs = Radon Priority 
Areas. SGRC, permeability, TGDR, thoron, carbon dioxide, radon dissolved in water, faults, DTM were pre-processed in order to apply the RF (Random Forest) 
algorithm (first step) to construct the GRP map (hazard factor). The GRP map was then multiplied by the location type (vulnerability factor) and population density 
(exposure factor) to construct the CRAs map. 
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<5–10 %. The final result was calculated by averaging the previous two 
integrations. Thiessen polygons were constructed to create a map of 
areas of influence around the water springs. The water springs repre-
sented the centroid of the Thiessen polygons, where the measured dis-
solved radon value (i.e., the centroid) was assumed to be representative 
of the entire area underlying the polygon. 

2.3.3. Derived predictor variables 

2.3.3.1. Fault density. Faults and fractures serve as the primary path-
ways for the migration of radon and other gases, such as CO2 and 
methane (CH4), in the subsoil from deep sources (Ciotoli et al., 2007, 
2014, 2017, 2020; Giustini et al., 2019). Therefore, the network of the 
fractured zones characterising the study area has been used as a proxy 
for secondary permeability. The distribution of the main faults in the 
study area (Keim et al., 2013) was converted into a fault density (FD) 
map using the quadratic kernel density function (Silverman, 1986), as 
described in Benà et al. (2022). 

2.3.3.2. Digital terrain model (DTM). DTM of the study area, repre-
senting elevation, was used as a proxy for meteorological conditions that 
can strongly affect radon migration and exhalation mechanisms. The 
Radon mobility can be impacted by the presence of slopes, hills, and 
depressions, which can alter air flow and soil pressure (Gundersen et al., 
1992). Radon may not accumulate as much in areas with rough terrain 
because air circulation and groundwater drainage may be higher in such 
terrains. Conversely, low-lying areas and depressions may act as radon 
traps, resulting in higher concentrations in soil gas (Sukanya et al., 
2021). Furthermore, Griffiths et al. (2014) emphasised the importance 
of considering topographic interactions when estimating radon con-
centrations across different geographical areas. The DTM (2.5 m/pixel) 
of the Bolzano Province is available from the Geo-catalogue of the 
Bolzano Province (http://geokatalog.buergernetz.bz.it/geokatalog/#!). 
The “Surface Parameters tool of Spatial Analyst” in ArcGIS Pro was 
applied to the DTM to create maps of additional potential proxies: slope, 
solar radiation (e.g., Areal Solar Radiation) and aspect. Slope can be 
used as a proxy for soil moisture and shallow soil meteorological con-
ditions, while solar radiation serves as a proxy for microclimate and 
temperature. Aspect (i.e., slope exposure) refers to the compass direc-
tion of the downhill slope faces in relation to the sun. In detail, slope 
conditions, such as the angle, aspect, and elevation of a land surface, can 
strongly influence local weather patterns and microclimates, acting as 
proxies for various meteorological conditions (e.g., sun exposure, rain-
fall distribution, wind patterns, temperature gradients), all of which 
may impact radon generation and movement (Zalloni et al., 2018). 

2.4. Predictor selection 

Predictor selection was carried out using Least Absolute Shrinkage 
and Selection Operator (LASSO) regression. LASSO regression is an 
extension of ordinary least squares (OLS) regression used in statistical 
modelling and ML to estimate the relationships between variables and 
make predictions (Tibshirani, 1996, 2011; Durrant et al., 2021). This 
technique aims to strike a balance between model simplicity and accu-
racy by introducing a penalty term into the traditional linear regression 
model, which enables sparse solutions in which some coefficients are 
forced to be exactly zero. LASSO is especially useful for variable selec-
tion because it can automatically identify only the most relevant vari-
ables while discarding irrelevant or redundant ones, particularly when 
we assume that many of the features do not significantly contribute to 
the target variable (Durrant et al., 2021; Handorf et al., 2020). It also 
helps prevent overfitting by removing variables with low predictive 
value, potentially making the model more robust across datasets. 
Furthermore, because it can choose between correlated explanatory 
variables, it can aid in optimising models with high multicollinearity. In 

simple terms, LASSO regression adds a penalty term to the Mean 
Squared Error (MSE) used in linear regressions. This penalty term is 
proportional to the sum of the absolute values of the variable co-
efficients. LASSO regression seeks coefficient values that minimize the 
sum of the MSE and the penalty. 

The LASSO regression cost function is defined as follows (Eq. (1)): 

J(β) =
(

1
n

)

*
∑

(yi − ŷi)
2
+ l*

∑⃒
⃒βj

⃒
⃒ (1)  

where  

• J(β) is the cost function  
• n is the number of data or physical samples (statistically, the sample 

size)  
• yi is the actual output for the i-th sample  
• ŷi is the predicted output for the i-th sample  
• βj represents the coefficients (weights) associated with each feature 
• l is the regularization parameter that controls the amount of regu-

larization applied to the model. Higher values of l lead to more 
regularization, resulting in a more pronounced feature shrinkage and 
potentially some coefficients becoming exactly zero. 

In this work, LASSO regression was implemented in Python code 
using the Scikit-learn module (sklearn.linear_model.Lasso). 

2.5. Machine learning and Geogenic Radon Potential mapping 

ML algorithms enable the solution of highly complex problems. They 
involve the creation of a model by processing a dataset and subsequently 
predicting the values of new input data points by executing the estab-
lished model, typically referred as supervised ML (Rebala et al., 2019). 
In recent literature within the field of environmental science, ML tech-
niques have gained prominence for spatial prediction tasks. These ap-
plications include landslide prediction (Micheletti et al., 2014; Tehrani 
et al., 2022), soil mapping (Hengl et al., 2017), GRP mapping (Peter-
mann et al., 2021), and time series analysis (Janik et al., 2018). ML can 
effectively handle complex, multi-dimensional, non-linear relationships 
and often does not make strong assumptions about the underlying data 
distribution (Fouedjio and Klump, 2019). Moreover, ML-based ap-
proaches have demonstrated superior performance compared to clas-
sical geostatistical models in various prediction tasks involving highly 
complex systems (e.g. Nussbaum et al., 2018; Hengl and MacMillan, 
2019; Li et al., 2019). ML models excel in capturing the influence and 
interplay of numerous factors. In this specific study, we applied a su-
pervised ML method, Random Forest (RF), to model the relationships 
between the SGRC (the response variable) and the seven selected pre-
dictors described in Sections 2.3.2 and 2.3.3 (220Rn, CO2, TGDR, 
permeability, fault density, slope, and aspect). Random Forest (RF) is an 
ensemble classifier algorithm developed by Breiman (2001), commonly 
used for classification and regression problems. It provides an output 
based on Decision Trees. A Decision Tree is a regression model built 
through a series of decisions based on variable values, with splitting 
values chosen to best separate subsets of data along various paths. 
Random Forest mitigates overfitting by combining multiple Decision 
Trees created from bootstrap samples of the full training dataset, using 
subsets of predictors at each split (Rebala et al., 2019). 

In this study, we implemented the Random Forest algorithm by using 
the Scikit-learn module in Python code. 

2.6. Radon risk mapping 

2.6.1. Risk concept 
The risk is commonly defined as the product of three factors: hazard, 

vulnerability and exposure, as expressed Eq. (2): 

E. Benà et al.                                                                                                                                                                                                                                    

http://geokatalog.buergernetz.bz.it/geokatalog/#!


Science of the Total Environment 912 (2024) 169569

6

Risk = Hazard*Vulnerability*Exposure (2) 

Hazard represents a specific property that can potentially cause harm 
or damage to humans. Vulnerability refers to the susceptibility to 
experience harm or damage or harm due to the stress induced by an 
event of a certain intensity. Exposure quantifies the number of elements 
or individuals exposed to the risk (e.g., the number of individuals). 

In this study, we identify the GRP as the hazard factor, while land use 
and population density serve as vulnerability and exposure factors, 
respectively. Notably, we focus on the concept of collective risk, which 
pertains to the risk faced by the general public due to geological factors. 
Applying this risk definition to map CRAs represents an initial and 
straightforward method to assess collective Rn exposure in the study 
area. Initially, the GRP mapping serves as a valuable tool for hazard 
assessment. Furthermore, merging the GRP map with vulnerability and 
exposure factors, is crucial for evaluating the collective risk. 

2.6.2. Construction of Collective Risk Areas (CRAs) map 
Following Eq. (2), we designated the GRP as the hazard factor, while 

location types and the total population of the census tracts within the 
study area served as vulnerability and exposure factors, respectively. 

In the ISTAT dataset, location types are denoted by numbers repre-
senting specific type of building areas, ranging from 1 (residential areas) 
to 4 (sparse houses). To standardise these location types, reclassified 
them to assign the highest weight (4) to the area with the highest ex-
pected mean population density. The reclassification was as follows: (i) 
location type 4 = residential areas; (ii) location type 3 = housing unit; 
(iii) location type 2 = industrial areas; (iv) location type 1 = sparse 
houses. 

Next, we utilised the total population and the location type infor-
mation to compute population density. This involved calculating the 
ratio of the total population living in a specific location type to the total 
area (in km2) of the census tract. Subsequently, we converted the loca-
tion type and population density maps into a 50 × 50 m raster grid and 
normalised them to their respective maximum value. The GRP map was 
also normalised similarly. 

These three factors were then multiplied using the Raster Calculator 
tool in ArcGIS Pro, following Eq. (2). The resulting risk map underwent 
further standardisation. To assign a risk value to each polygon of the 
census tract, we applied the Zonal Statistic tool in Spatial Analyst within 
ArcGIS Pro. We considered the maximum risk value assigned to the 
polygon to visualise the risk map and create risk classes. The final risk 
map is categorised into three risk classes (i.e., low, medium and high) 
using the natural breaks method. It is numerically expressed as a per-
centage of risk. 

3. Results 

3.1. Selected predictors, RF modelling and predictors importance 

The LASSO regression successfully identified 7 predictors out of the 
initial 10 candidates: TGDR, CO2, FD, 220Rn, slope, aspect and soil 
permeability. These selected predictors, along with their coefficients, 
are presented in table S1 in the Supplementary materials. Notably, three 
predictors – DTM, solar radiation and Rn dissolved in groundwater – 
were excluded from the model due to their coefficients equalling 0, 
indicating their non-informative nature. The final set of predictors in-
cludes a geophysical parameter (TGDR), geochemical parameters (220Rn 
and CO2), geological parameters (fault density and soil permeability), 
and geomorphological parameters (slope and aspect). Each of these 
parameters plays a crucial role in understanding the processes under-
lying Rn production, migration, and behaviour in shallow soil, as well as 
interactions at the soil-atmosphere interface. 

To ensure there was no redundancy among the selected predictors, 
we calculated the Variance Inflation Factor (VIF) with all the selected 
predictors showing VIF < 7 (refer to table S2 in the Supplementary 

materials). 
Before executing the RF model, we set the number of decision trees to 

1000. The model performance analysis yielded an R2 value of 0.93 for 
training data and 0.47 for the test data. The Root Mean Square Error 
(RMSE) was found to be 0.30 for the training data and 0.83 for the test 
data. These results are visualised in Fig. S4 in the Supplementary ma-
terials, which displays predicted vs. observed values for training and test 
data. 

To understand the relative influence of individual predictors on 
model performance, we assessed predictor importance using the RF 
model (see Fig. 2). The variable importance shows that TGDR, CO2, fault 
density, 220Rn, slope, aspect and soil permeability have progressively 
decreased influence on the model performance. In particular, TGDR, a 
proxy for the Rn source in rocks and soils, and CO2, the main carrier gas 
in the study area (Benà et al., 2022), have importance exceeding 30 %, 
emerging as the most influential predictors. Fault density (FD), a proxy 
for secondary permeability, showed importance in 10–15 % range. 
220Rn and slope had an importance of <10 %, followed by aspect and 
soil permeability, with <5 % importance. 

Furthermore, we constructed SHAP diagrams (SHapley Additive 
exPlanations) using the “shap” library in Python code to highlight the 
impact of each selected predictor on model predictions (refer to Fig. 3). 
These diagrams revealed that positive values of TGDR, CO2, FD, 220Rn, 
slope, and permeability had the most substantial influence on model 
output, while aspect was the sole variable exerting a negative impact on 
the model output. 

To examine the relationship between each predictor and the model 
output more deeply, we generated Partial Dependent Plots using the 
“pdpbox” library in Python (see Fig. 5Sa–g and related Supplementary 
materials for explanation). PDPs allowed us to visualise the relationship 
between a target feature and the model outcome while holding all other 
features constant, aiding in interpreting how each predictor affected the 
model predictions. The PDPs considered the average effect of other 
predictors in the model when analysing the relationship of each pre-
dictor with the model outcome (Petermann et al., 2021). 

3.2. Geogenic Radon Potential map 

The RF algorithm was employed to create the GRP map of the study 
area, using SGRC as the response variable and the 7 selected predictors 
(i.e., TGDR, CO2, fault density, 220Rn, slope, aspect, soil permeability). 
The resultant GRP map exhibits a range of values, with a minimum of 
7.21 kBq m− 3 and a maximum of 182 kBq m− 3 (as illustrated in Fig. 4). 
In accordance with results presented in Benà et al. (2022), we consider 
high GRP values those exceeding 50 kBq m− 3. This threshold corre-
sponds to the local background level in the study area. 

The high GRP values delineate a zone extending along the east-west 
direction from Falzes/Pfalzen to Terento/Terenten, aligning to the di-
rection of the wide fracture zone associated with the Pusteria fault 
system. Within this area, the high GRP values are attributed to the 
presence of the Tectonically Enhanced Radon (TER) quantity, as eluci-
dated by Benà et al. (2022). 

3.3. The Collective Risk Areas (CRAs) map 

Fig. 5 shows the CRA map of the study area, illustrating the density of 
collective risk obtained by multiplying the GRP map, the location type 
(vulnerability factor), and population density (exposure factor). 

The map has been divided into three risk classes as follow: i) Risk < 5 
% (depicted as low risk, indicated by white areas in Fig. 5); ii) risk be-
tween 5 % and 50 % (designated as medium risk, represented in yellow 
in Fig. 5); iii) risk >50 % (considered as high risk, marked in red in 
Fig. 5). 

The CRA map is correlated with Table 1, which summarises certain 
parameters characterising the three defined risk classes: (i) the average 
GRP value in kBq m− 3; (ii) the average population density expressed as 
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the number of people per km2; (iii) the location type (i.e., 4, 3, 2, 1); (iv) 
the total area covered by the respective risk class. 

Most of the study area (68.51 km2) falls within the low-risk category, 
consistent with the mountainous terrain where the majority of the 
population resides in residential areas of the main municipalities, such 
as Terento/Terenten, Chienes/Kiens and Falzes/Pfalzen. 

In general, the mean GRP values (indicating hazard) exceed the local 
background value of 50 kBq m− 3 in all the three risk classes, with a slight 
increase from low risk (63 kBq m− 3) to high risk (76 kBq m− 3). The 
progressive increase in mean population density (representing expo-
sure) from low- to high-risk areas is closely related to the location type 
(reflecting the vulnerability factor): (i) in the low-risk areas, most of the 

census tracts (33) are described as residential areas (location type = 4) 
and sparse houses (location type = 1, 43 census tracts); (ii) in the 
medium-risk areas, the majority of the census tracts are designated as 
residential areas (location type 4, 22 census tracts); (iii) all census tracts 
falling within high-risk areas are described as residential areas (location 
type = 4) with the highest population density. As a result, the population 
density increases proportionally from low- to high-risk areas. 

Fig. 2. Feature importance based on SHAP value percentage in the RF model. The predictors are ordered by decreasing importance.; X-axis: SHAP percentage; Y-axis 
= selected predictors. TGDR = Terrestrial Gamma Dose Rate; CO2 = carbon dioxide; FD = fault density; 220Rn = thoron; perm = soil permeability. 

Fig. 3. SHAP diagram. The Y-axis of the SHAP diagram reports the 7 selected predictors in descending order of importance in the RF model from TGDR (the most 
influent) to the soil permeability (the less influent). The X-axis of the SHAP diagram represents the SHAP values quantifying the impact of a single feature on the 
model’s output: positive SHAP values indicate that the feature positively contributes to the output, while negative values suggest a negative contribution. Red and 
blue dots represent the contribution of individual features to the prediction compared to a reference value. Red dots represent positive contributions and indicate that 
the feature is increasing the predicted output. Blue dots represent negative contributions and indicate that the feature is decreasing the predicted output. TGDR =
Terrestrial Gamma Dose Rate; CO2 = carbon dioxide; FD = fault density; 220Rn = thoron; perm = soil permeability. 
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4. Discussion 

4.1. Interpretation of predictors in the RF model 

The RF model demonstrates that all of the selected predictors influ-
ence Rn concentrations and movement in the subsoil. This result is 
consistent with the dependence of Rn on the geochemical and structural 

characteristics of the study area, mainly linked to the generation and 
transport of Rn in the geological environment (i.e., from deep sources 
towards the subsoil) (Benà et al., 2022). The variable importance clearly 
shows that GRP is primarily affected by TGDR (35 %, Fig. 2), repre-
senting the BRS contribution, such as the content of 238U and 232Th 
radionuclides, from the main outcropping rocks, including gneiss, 
granite, and phyllite (Tchorz-Trzeciakiewicz and Rysiukiewicz, 2021; 
Giustini et al., 2019, 2022). Since the TGDR surveys were conducted at 
the ground level, its correlation with SGRC is stronger than with at-
mospheric concentrations. In the literature, also Bossew et al. (2017), 
Cinelli et al. (2019), Melintescu et al. (2018), and Sainz Fernández et al. 
(2017) have reported a positive correlation between TGDR and GRP. 

The BRS contribution to the Rn amount in soil gas generates a rela-
tively high spatial variability of Rn concentration in the soil gas, 
reflecting the homogeneous characteristics of the soil or rock environ-
ment at the local scale (BRS). However, Rn spatial variability can in-
crease (in particular at local scale) near fault zones (TER), where Rn 
migration from deeper sources can be enhanced by intense fracturing 
and the presence of carrier gases, which play a dominant role in the 
advective transport and redistribution of trace gases at surface (Wilk-
ening, 1980; Ciotoli et al., 2007, 2014; Prasetio et al., 2023, and refer-
ence therein). This is observable in the study area along the Pusteria 
fault system, where radon concentrations in soil gas have a positive 
correlation with CO2 concentrations (importance of about 30 %, Fig. 2), 

Fig. 4. GRP (kBq m− 3) map in the study area.  

Fig. 5. Map of the CRAs in the study area.  

Table 1 
The table reports the risk class and the correspondent percentage of risk, the mean GRP value, the population density, the location type (denoted by numbers rep-
resenting specific type of building areas) and the extension of the area covered by the considered risk class.  

Collective risk class Risk level (%) GRP mean (kBq m− 3) Population density (people km− 2) Population (people) Location type Area (km2) 

Low <5  63  546  5927 4, 3, 2, 1  68.51 
Medium 5–50  65  6116  3072 4, 3, 2, 1  0.75 
High >50  76  17,549  622 4  0.05  
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suggesting a possible upward advective flow caused by pressure 
gradients. 

The high importance (about 15 %, Fig. 2) of the fault density 
(interpreted as secondary permeability due to the fault zone) in the RF 
model confirms the effect of the Pusteria fault system on Rn migration 
(as well as other gases); this predictor is strictly related to the TER 
component (Benà et al., 2022). Indeed, damage zones related to high 
fracturing zones (fault areas) often exhibit a high permeability 
compared to the surrounding rocks, which may facilitate the advective 
transport of fluids for SGRC, potentially increasing radon release to-
wards the surface, and consequently, Rn availability to enter buildings 
(IRC) (Ciotoli et al., 2007, 2014, 2016; Seminsky et al., 2014; Chen et al., 
2018; Banrion et al., 2022; Zhou et al., 2023). 

Similar importance of the other predictors (i.e., 220Rn, slope, aspect 
and soil permeability) ranging from 4 % to 8 % can be explained by 
processes affecting Rn movement in the soil layer and at the soil- 
atmosphere interface (SRE) (Fig. 2). In the shallow environment, the 
influence of meteorological conditions can be complex, and the litera-
ture results are controversial. The influence of air temperature and 
pressure on soil radon concentration is small in comparison with the 
total seasonal variability of this gas. In any case, the influence of these 
two variables is further reduced by conducting soil gas measurement 
campaigns during periods of stable and good weather conditions (Ciotoli 
et al., 2014; Beaubien et al., 2015). 

The principal drivers governing diurnal and seasonal changes in 
radon concentration in the soil are the water saturation and moisture 
retention in the soil pores (i.e., rainfall) (King and Minissale, 1994). 
These two parameters directly decrease soil permeability thus prevent-
ing radon gas diffusion in the shallow soil layers (Nazaroff, 1992; Alonso 
et al., 2019; Beltrán-Torres et al., 2023). High soil permeability allows 
220Rn to be detected at surface despite its short decay time (56 s). 

In addition, the slope can be used as a proxy for soil moisture and 
meteorological conditions in absence of any other meteorological vari-
ables. High slopes also constitute zones characterised by increased soil 
permeability because they do not promote the retention of water and 
moisture in the soil pores. On the contrary, flat zones are characterised 
by low soil permeability because they favour the accumulation of water 
and moisture in the soil pores. In this regard, the SHAP diagram shows 
that high values of 220Rn, slope and soil permeability are positively 
correlated with high GRP (Fig. 3). Soil permeability may be linked to the 
ability of radon to migrate and escape towards the Earth surface. In fact, 
where permeability is low, radon escapes more easily; this variable is 
also linked to the fault density representing the secondary permeability. 

All these predictors, except for the aspect, have an impact on the GRP 
values prediction for positive values and show an increasing trend up to 
the expected average radon value (see PDPs, in Fig. S5 in the Supple-
mentary materials). On the contrary, low values of the GRP are corre-
lated with high values of the aspect (i.e., inverse correlation). The aspect 
identifies the compass direction that the downhill slope faces for each 
location; therefore, radon accumulation is easier in flat areas. 

The model confirmed the correlations between geology and GRP and 
also provided insight into the utility and significance of other predictors 
that reflect the physical, chemical, and hydraulic properties of soil, as 
well as climatic predictors. 

4.2. Map of the Collective Risk Areas (CRAs) 

The GRP map obtained through RF regression represents radon 
hazard due to geological features in a specific region. It is closely related 
to Rn gas directly measured in the soil and to all geological predictors 
that significantly influence its concentration in the shallow environ-
ment. GRP maps are essential for evaluating Rn risk, as they represent 
the most significant spatial predictor of IRC (Bossew, 2015; Bossew 
et al., 2020). 

As previously mentioned, the European regulations aim to identify 
RPAs and implement mitigation plans to limiting radon exposure, 

thereby reducing the risk of lung cancer for the population. In unde-
veloped and uninhabited areas, high Rn values represent only a high 
hazard (i.e., GRP), but not an immediate risk. This concept is well- 
established and applied in the case of other natural phenomena, such 
as seismic micro zonation studies. 

European legislation seeks to reduce the harm caused by Rn exposure 
(i.e., the number of lung cancer deaths) and, consequently, reduce col-
lective exposure. Fig. 6 illustrates how GRP is a key factor in recognising 
CRAs. 

In this paper, for the first time, we introduce the concept and define 
CRAs by applying the risk definition (Section 2.4). Mapping the GRP is 
undoubtedly the crucial first step in defining the Rn hazard, a specific 
property that cannot be mitigated. For this reason, it is important to map 
it as accurately as possible, considering multiple geological variables 
and employing robust mapping techniques. 

As reported in Benà et al., 2022, Rn values exceeding the lithological 
background (50 kBq m− 3) are considered anomalous and linked to the 
wide fracturing zone of the Pusteria fault system, which represents Rn 
enhanced due to tectonics (TER). However, in Benà et al. (2022), this 
aspect is not discussed in terms of GRP, and it does not consider other 
important geological factors, such as gas permeability and indicators of 
deep circulation (e.g., Rn in groundwater), as well as the shallow effects 
governed by the morphological parameters (e.g., DTM). 

The identification of a specific threshold value of GRP is not signif-
icant for delineating CRAs since the indoor radon risk exists even for 
“very low” concentrations of radon in the soil and, consequently, for 
very low GRP values. In fact, radon measured in the soil (GRP) is 
generally three orders of magnitude higher than indoor radon. It is 
evident that every area can be affected by potential indoor risk, and all 
dwellings are considered vulnerable. 

However, GRP plays a key role in defining CRAs, primarily occurring 
along the Pusteria fault system where Rn degassing is enhanced by 
intense fracturing, resulting in high GRP values. This aligns with the fact 
that all the GRP values contribute to the risk. Therefore, the CRAs map 
highlights areas with low, medium and high collective risk, where IRC 
values may be high for residential areas. 

5. Conclusions 

The mapping and analysis of GRP (e.g., Rn hazard) serve as funda-
mental tools for delineating CRAs according to a new, more geological 
interpretation of RPAs, as compared to that outlined in the BSS directive 
(2013/59/EURATOM). 

We used a risk formula to combine the GRP map, obtained through 
ML approaches, with characteristics of the census tracts as location type 
(the vulnerability factor) and population density (the exposure factor). 

In alignment with a geological-based interpretation of RPAs, we can 
recognise hazard-based RPAs (CRAs) and detriment-based RPAs (IRAs) 
as complementary concepts within territorial planning and remediation 
actions, respectively, rather than alternatives. 

Our findings lead to the following conclusions:  

• The use of the random forest algorithm as a ML model proved to be 
robust and highly effective for generating a GRP map of the study 
area. This GRP map incorporated seven predictors, reflecting 
geological factors (BRS and TER), soil characteristics (groundwater 
circulation, soil permeability), and meteorological conditions (DTM 
derivatives). The variable importance analysis highlighted the 
dominant impact of the Rn source while still showing significant 
contributions from other predictors.  

• Since GRP is considered the most critical spatial predictor of IRC, it is 
evident that an accurate mapping of this hazard factor effectively 
represents the total amount of radon that could potentially enter 
buildings.  

• Given that GRP (e.g., soil gas concentration) values are three orders 
of magnitude higher than IRC, there is no reason to establish a 
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specific GRP threshold. Indoor radon risk can exist even for “very 
low” concentrations of radon in the soil and, consequently, for very 
low GRP values. Qualitative GRP classes can serve as delineation of 
zones, akin to how they are used in seismic micro zonation studies, 
guiding land-use planning strategies, construction types, and reme-
diation actions.  

• The construction of GRP maps is a crucial tool for both Rn hazard and 
risk analysis. It forms the foundation for identifying RPAs, particu-
larly under a new, more geological perspective. This is essential for 
collective risk assessment, including land-use planning and preven-
tion, as well as individual risk assessment, aiding in strategic plan-
ning for indoor surveys, and specific remediation actions.  

• The absence of clear guidelines for defining RPAs necessitates the 
geological-based conceptualization of a complementary approach to 
mapping both CRAs (for prevention), and IRAs (for building reme-
diation actions). 

This study may assist policymakers in implementing preventive 
measures in areas where new buildings are planned and in taking 
remediation actions in RPAs sensu stricto. Future studies could aim to 
define effective individual risk by constructing statistical models that 
also consider IRC measurements and anthropogenic factors. 
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