
UNIVERSITY OF PADOVA

DEPARTMENT OF INFORMATION ENGINEERING

Ph.D. Course in Information Engineering

Intelligent Control Systems
and Machine Learning Approaches

for Particle Accelerators

Supervisor

Prof. Gian Antonio Susto

Ph.D. Student

Davide Marcato

Academic Year 2022/2023

September 2023

2

Abstract

Particle accelerators are used all around the world for fundamental physics research,
medical diagnosis and industrial applications. These can be extremely complex ma-
chines, with control systems composed of thousands of sensors and actuators producing
an enormous amount of data. By exploiting this data, it’s possible to reach new levels
of performance, improve the uptime of the accelerator and reduce the effort required
to setup, control and maintain it. This thesis focuses on the application of Machine
Learning and Deep Learning models to the field of particle accelerator control systems.
Anomaly Detection is applied to the task of fault prediction, both using classical Machine
Learning algorithms and Deep Learning time-series forecasting models. By discovering
anomalies in the trends of the process variables we can predict the insurgence of fault
conditions, or the breakage of a critical component, thus allowing to intervene in time to
avoid it. Reinforcement Learning is applied to the task of beam emittance optimization,
with the aim of training a model which is able to automatically tune the beam transport
parameters online to reach the optimal beam dynamics. These methods are validated on
the particle accelerators at the INFN National Laboratories of Legnaro, Italy, but can
be extended to other facilities with similar challenges. Finally, we explore data-driven
Dynamic Sampling strategies to optimize metrology plans for quality control in industrial
manufacturing processes.

3

4

Contents

Abstract 3

Scientific Publications 9

1 Introduction 13

2 Particle Accelerators 17
2.1 Overview . 17
2.2 Particle Accelerators at Legnaro National Laboratories 19
2.3 ALPI . 20

2.3.1 RF cavities . 22
2.3.2 Control System Architecture . 23
2.3.3 The Archiver . 24
2.3.4 RF control system . 25

2.4 ADIGE . 27
2.4.1 Medium Resolution Mass Separator (MRMS) 29

2.5 Control Systems Challenges . 34
2.5.1 RF Runtime Faults . 34
2.5.2 ADIGE multipole configuration . 35

3 Machine Learning Elements 37
3.1 AI and ML brief introduction . 37
3.2 Anomaly Detection . 41

3.2.1 Outliers . 42
3.2.2 Taxonomy and classes of algorithms 44
3.2.3 Performance Metrics . 46
3.2.4 Machine Learning Methods . 47
3.2.5 Isolation tree based methods . 51

5

3.3 Deep Learning Techniques . 61
3.3.1 Vanilla Neural Networks . 61
3.3.2 Convolutional Neural Networks (CNNs) 64
3.3.3 Autoencoders . 66
3.3.4 Deep Learning Forecasting . 67

3.4 Reinforcement Learning . 72
3.4.1 Value Functions Methods . 75
3.4.2 Policy Gradient Methods . 77

4 Machine Learning for Particle Accelerators 83
4.1 ML in physics laboratories . 83
4.2 Literature Review . 85

4.2.1 Anomaly detection and Fault Prediction 86
4.2.2 Virtual Sensors . 87
4.2.3 Beam Dynamics Optimization and Optimal Control 88
4.2.4 Industrial applications . 89

4.3 Summary and future directions . 90

5 Anomaly Detection and Fault Prediction 91
5.1 Prerequisites . 91

5.1.1 Signals description . 92
5.1.2 Computing setup . 94
5.1.3 Data acquisition and preprocessing 95
5.1.4 Event visualization . 98

5.2 Classical ML approach . 101
5.2.1 Feature Extraction . 101
5.2.2 Model selection . 103
5.2.3 Experimental Results . 107
5.2.4 Permutation importance . 108
5.2.5 Window length optimization . 109

5.3 Deep Learning approach . 110
5.3.1 Dataset preparation . 111
5.3.2 Forecasting Models . 115
5.3.3 Experimental Results . 117

5.4 Conclusions . 119

6 Reinforcement Learning for Beam Emittance Optimization 123

6

6.1 Introduction . 123
6.2 Physics simulation . 124

6.2.1 Traditional optimization methods 126
6.3 Reinforcement Learning approach . 127

6.3.1 Python wrapper . 127
6.3.2 REINFORCE . 128
6.3.3 Proximal Policy Optimization . 132

6.4 Conclusions . 134

7 Dynamic Sampling 137
7.1 Introduction . 137
7.2 Methodologies . 139

7.2.1 Preliminaries . 140
7.2.2 Forward Selection Component Analysis (FSCA) 141
7.2.3 Sequential Dynamic Sampling (SDS) 142
7.2.4 Induced Start Dynamic Sampling (ISDS) 142

7.3 Proposed Methods . 143
7.3.1 Constrained Induced Start Dynamic Sampling (CISDS) 144
7.3.2 Greedy CISDS . 145
7.3.3 Step Up CISDS . 146
7.3.4 Ramp Up CISDS . 147
7.3.5 Double FSCA (DFSCA-Greedy) 150
7.3.6 Ramp Up CISDS with DFSCA (DFSCA-Ramp) 150
7.3.7 Recursive FSCA (RFSCA) . 151
7.3.8 Constrained Clustering SDS (CCSDS) 151

7.4 Results . 152
7.4.1 Case studies and Experimental setup 152
7.4.2 Performance Comparison . 154
7.4.3 Forced sites distribution over the measurement plan 156

7.5 Conclusions . 156

8 Conclusions and Future Perspectives 161

A Source Code 165

B Acronyms 173

Bibliography 191

7

8

Scientific Publications

List of publications on international journals

• G. A. Susto, D. Marcato, M. Maggipinto, M. Donà, and S. McLoone. On temporally
bounded spatial dynamic sampling for metrology optimization. submitted to IEEE
Transactions on Automation Science and Engineering, 2023

List of publications on conference proceedings

• D. Marcato, D. Bortolato, V. Martinelli, G. Savarese, and G. A. Susto. Time-series
deep learning anomaly detection for particle accelerators. In Proceeding of the 22nd
World Congress of the International Federation of Automatic Control (IFAC’23),
2023

• D. Marcato et al. Demonstration of beam emittance optimization using reinforce-
ment learning. In Proc. IPAC’23, number 14 in IPAC’23 - 14th International
Particle Accelerator Conference, pages 2838–2841. JACoW Publishing, Geneva,
Switzerland, 05 2023

• D. Marcato, G. Arena, D. Bortolato, F. Gelain, V. Martinelli, E. Munaron, M. Roetta,
G. Savarese, and G. A. Susto. Machine learning-based anomaly detection for parti-
cle accelerators. In 2021 IEEE Conference on Control Technology and Applications
(CCTA), pages 240–246, 2021

Other publications (books, book chapters, patents)

• T. Barbariol, F. D. Chiara, D. Marcato, and G. A. Susto. A review of tree-based
approaches for anomaly detection. In Control Charts and Machine Learning for
Anomaly Detection in Manufacturing, pages 149–185. Springer, 2022

9

Other publications not included in the PhD thesis

These are publications developed during the PhD program that are not directly related
to the main reaserch activity presented in this thesis or where my contribution was minor.

• D. Marcato et al. Upgrade of the alpi low and medium beta rf control system.
In Proc. IPAC’23, number 14 in IPAC’23 - 14th International Particle Accelerator
Conference, pages 4154–4157. JACoW Publishing, Geneva, Switzerland, 05 2023

• D. Marcato, G. Arena, M. Bellato, D. Bortolato, F. Gelain, G. Lilli, V. Martinelli,
E. Munaron, M. Roetta, and G. Savarese. Pysmlib: A Python Finite State Machine
Library for EPICS. JACoW, ICALEPCS2021:TUBL05, 2022

• G. Savarese et al. First installation of the upgraded vacuum control system for alpi
accelerator. In Proc. IPAC’23, number 14 in IPAC’23 - 14th International Particle
Accelerator Conference, pages 840–843. JACoW Publishing, Geneva, Switzerland,
05 2023

• L. Bellan et al. New techniques for the lnl superconductive linac alpi beam dy-
namics simulations and commissioning. In Proc. IPAC’23, number 14 in IPAC’23
- 14th International Particle Accelerator Conference, pages 1289–1292. JACoW
Publishing, Geneva, Switzerland, 05 2023

• E. Fagotti et al. Upgrade of the heavy ion accelerator complex at infn-lnl. In
Proc. IPAC’23, number 14 in IPAC’23 - 14th International Particle Accelerator
Conference, pages 2169–2172. JACoW Publishing, Geneva, Switzerland, 05 2023

• L. de Ruvo, M. Allegrini, D. Benini, et al. Functional architecture of spes safety
system. In Proc. IPAC’23, number 14 in IPAC’23 - 14th International Particle Ac-
celerator Conference, pages 4682–4684. JACoW Publishing, Geneva, Switzerland,
05 2023

• V. Martinelli, L. Bellan, D. Bortolato, M. Comunian, E. Fagotti, P. Francescon,
A. Galatà, D. Marcato, and G. Savarese. BOLINA, a Suite for High Level Beam
Optimization: First Experimental Results on the Adige Injection Beamline of SPES.
In Proc. IPAC’22, number 13 in International Particle Accelerator Conference,
pages 933–936. JACoW Publishing, Geneva, Switzerland, 07 2022

• G. Savarese, L. Antoniazzi, D. Bortolato, A. Conte, F. Gelain, D. Marcato, and
C. Roncolato. Vacuum Control System Upgrade for ALPI Accelerator. In Proc.
IPAC’22, number 13 in International Particle Accelerator Conference, pages 744–
746. JACoW Publishing, Geneva, Switzerland, 07 2022

• G. Savarese, G. Arena, D. Bortolato, F. Gelain, D. Marcato, V. Martinelli, E. Mu-
naron, and M. Roetta. Design and Development of the New Diagnostics Control
System for the SPES Project at INFN-LNL. In Proc. ICALEPCS’21, number 18 in

10

International Conference on Accelerator and Large Experimental Physics Control
Systems, pages 428–432. JACoW Publishing, Geneva, Switzerland, 03 2022

• A. Galatà et al. First beams from the 1+ source of the adige injector for the spes
project. Journal of Physics: Conference Series, 2244(1):012069, apr 2022

11

12

Chapter 1

Introduction

Particle accelerators host thousands of sensors and actuators with complex interactions
between different subsystems; multiple control loops are required to maintain the correct
operating parameters and to reach optimal ion beam properties.

A single malfunction of a component in the beam transport or in the beam accelera-
tion subsystems is enough to disrupt the beam jeopardizing the experiment and blocking
the whole accelerator. In fact, if a single transport or accelerating element is not working
properly, the beam will deviate from its ideal trajectory and will be lost. This means
that the control system must be able to detect and react to any malfunction in a timely
manner, to avoid the loss of the beam and the consequent downtime of the accelerator.
Given the cost of the beam time, this is a crucial requirement.

Beam time costs are hard to calculate but easily reach important amounts. In fact the
machine is very expensive to build in the first place, being composed of high technology
components and requiring a large number of highly specialized technicians and engineers.
Furthermore, the facility requires constant maintenance and upgrades, in a context of
experimental innovations that are often in the prototyping stage. Finally, the energy
requirements associated with the operation of cryogenic lines or high current magnets
can easily reach MW of power, even for a small scale, low energy accelerator as the ones
in Legnaro. Thus the accelerator must be available as much as possible to maximize the
scientific output.

Beam time cost is not the only reason to have a reliable control system. In fact,
physics experiments often require a certain amount of beam energy, current, or low beam
emittance to perform a certain measure. By increasing the performance of an accelerator
it’s possible to push its limits and to perform more complex experiments.

Another important factor to consider for the efficiency of a particle accelerator is the
setup time. In fact, the accelerator is periodically powered off for maintenance and to
save energy. When the accelerator is powered on again, it must be reconfigured to the
desired operating parameters. This is a complex process which requires the intervention
of many technicians and engineers, and can take days or weeks. The control system can
help in this process by automating the configuration of the machine, thus reducing the

13

setup time and increasing the efficiency of the accelerator. Ideally, a single routine should
be able to configure the machine for any experiment, and the control system should be
able to switch between different configurations in a fast and reliable way.

One of the most tedious tasks is the beam acceleration and transport phase. It
requires to manually tune the beam transport elements one by one, to obtain the desired
beam. For example, the quadrupoles must be tuned to focus the beam, while dipoles
and steerers to center the beam on the optimal trajectory. Since the position, size and
shape of the beam at a certain point depends on the setpoint of the transport elements
preceding it on the beam line, this task is hard to parallelize and must be performed
sequentially. Then again, during the acceleration phase all the cavities must be phased
correctly, one by one.

Physics simulations are used extensively for this kind of tasks but they are not al-
ways accurate enough, especially in older accelerators where the real machine can differ
from the simulation due to uncertainties on the beam line design and capabilities of the
beam transport elements. Even a small error in the positioning of a triplet can have a
large impact on the beam, so that the simulation results are not directly applicable to
the machine. For these reasons, the simulation results are only used as a starting point,
but they are fine tuned on the real machine. This is a very time consuming task, which
could be automated by the control system. In fact, the control system could read the
beam properties from the diagnostic elements and automatically tune the beam trans-
port elements to optimize the beam. Similarly, the control system could read the beam
properties and automatically tune the Radio Frequency (RF) cavities to accelerate the
beam. For this reason, the research community is actively looking for new methods to
automate these processes and reduce the time required to find the optimal configuration.

Unfortunately it’s very hard to build an automatic system which is able to replace
the intuition and knowledge of a trained technician. In fact, what may seem trivial to
a human may become very hard to code. For example, the simple task of recognizing
an increasing or decreasing variable may prove complex, as the signal may be noisy, the
trend may be hidden by oscillations and the result depends on the time span observed
as well as the resolution of the observation. Furthermore, the control system must be
able to account for very different situations, such as different input beams, uncertainties
on the positioning of the elements on the line and different operating conditions, such as
external temperature or vacuum level, to the point that it becomes unfeasible to code all
the possible scenarios.

Machine Learning (ML) and Deep Learning (DL) models have proven to be very
effective in solving this kind of problems, displaying great results in many fields. They can
learn high dimensional non-linear functions directly from the data, and can extrapolate to
unseen situations. Reinforcement Learning (RL) instead, with its ability to learn optimal
control strategies, has shown impressive results in decision-making processes and could
prove very effective to tune the control system parameters based on online feedback.
Furthermore, particle accelerators usually collect and record the trends of many Process
Variables (PVs) from the thousands of sensors and actuators installed, meaning that a

14

large dataset of raw signals is available or can be easily collected during a run of the
accelerator. For this reason this thesis explores the possibility of using ML models to
improve the performance of the control system of particle accelerators.

The thesis is organized as follows: chapter 2 introduces the reader to the world of par-
ticle accelerators, describing the accelerators at the Legnaro National Laboratories (LNL)
in Legnaro, Italy and highlighting possible improvements to the control systems. Then
an overview of the main concepts and algorithms of ML, DL and RL is presented in chap-
ter 3, with a focus on the models used in this thesis. Chapter 4 offers an analysis of the
literature in this field and tries to identify the main research areas and directions. Chap-
ter 5 details two different works on Anomaly Detection (AD) for fault prediction, using
both classical ML algorithms and DL time-series forecasting models. Instead, the work
presented in chapter 6 focuses on the beam dynamics optimization problem and applies
RL to the task of beam emittance minimization. Finally, chapter 7 address a slightly
different topic, where data-driven strategies are employed to optimize the metrology
plans for quality control in industrial manufacturing processes, following on the concept
of augmenting the performance of a facility with ML tools. The thesis is concluded in
chapter 8 with a summary of the results and a discussion on the future developments of
this research.

15

16

Chapter 2

Particle Accelerators

2.1 Overview

Particle Accelerators are used all around the world to produce and accelerate ion beams
for multiple applications. The main goal of a particle accelerator is to deliver a beam
of particles to a target with a precise energy and with the required beam properties.
They are extensively used in medicine both for diagnostics and therapy, in industry for
material analysis and in physics research for nuclear physics experiments. Accelerators
for physics research are usually very large, complex and expensive machines, composed of
multiple subsystems, each one with its hundreds of high technology devices. The control
system of these machines is responsible for the correct operation of all the subsystems,
and thus it is crucial for the success of the experiments.

There are different types of accelerators, depending on the underlying technology
used to accelerate the beam, as shown in figure 2.1. The most common ones are:

a) Electrostatic accelerators: they use static electric fields to accelerate the beam.
They are the simplest and oldest kind of accelerators, but they are limited in
the maximum energy they can deliver, as they require a high voltage terminal to
accelerate the beam. This limits the maximum energy to a few MeV. Historically,
Van de Graaff generators were largely used to produce such high voltage terminal.
Now they are mostly used as injectors for other accelerators or for low energy
experiments. Figure 2.1a shows the CN electrostatic accelerator at LNL [136].

b) Drift Tube: they are composed of a series of cylindrical electrodes with variable
length, with an alternating electric field between them. The beam is accelerated
by the electric field which is synchronized so that a bunched beam always sees an
accelerating field. They are used to reach medium energies, up to a few hundred
MeV. Figure 2.1b shows the drift tubes of the European Spallation Source (ESS)
accelerator [54].

c) Cyclotrons: they are compact machines which use a static magnetic field to bend

17

(a) CN Electrostatic Acceler-
ator.

(b) ESS Drift Tubes.
(c) SPES Cyclotron.

(d) Elettra Synchrotron. (e) ALPI Linac.

(f) PIAVE RFQ.

Figure 2.1: Examples of different types of particle accelerators.

the beam in a spiral path, and then use an RF field to accelerate the beam at
each turn. They are common in the medical field, where they are used to pro-
duce radioactive isotopes for diagnostics and therapy. Figure 2.1c shows the SPES
cyclotron [101].

d) Synchrotrons: they are composed by a ring of magnets which bend the beam in
a circular path. The beam is accelerated by RF cavities located at one location
along the circumference. They are used to reach high energies, and are common
in high energy physics experiments where two beams are usually accelerated in
opposite directions and then collided in a target. Figure 2.1d shows a rendering of
the Elettra synchrotron in Trieste [46].

e) Linear accelerators (Linac): they use RF cavities to accelerate the beam in a
straight beam line. They can reach fairly high energies, depending on the number
of available cavities. To reach high accelerating fields the cavities can be made of

18

superconducting materials working at cryogenic temperatures. Figure 2.1e shows
the Acceleratore Lineare per Ioni (ALPI) linac at LNL [27].

f) Radio Frequency Quadrupoles (RFQs): in this case the beam is confined
between four electrodes with a custom mechanical design, where an alternate
quadrupole electric field is generated. This field is responsible both for the ac-
celeration and the focusing of the beam. They are used as injectors for other
accelerators, to increase the beam energy before the final acceleration. Figure 2.1f
shows the RFQ of the Positive Ion Accelerator for VEry low velocity ions (PIAVE)
injector at LNL [127].

The following sections will describe the particle accelerators available at Legnaro
National Laboratories (LNL) and the control system used to operate them. They are
used as case studies for the methods presented in this thesis, but many of the concepts
presented are common to other accelerators.

2.2 Particle Accelerators at Legnaro National Laboratories

Legnaro National Laboratoriess (LNLs) are international physics laboratories of the
Istituto Nazionale di Fisica Nucleare (INFN) located few kilometers away from the uni-
versity of Padova. Their main focus is nuclear physics research, with multiple particle
accelerators attracting researches from all around the world. A great effort is devoted to
the development and maintenance of the accelerators, with innovative research projects
on accelerator technology.

The main particle accelerators at the complex are:

• Acceleratore Lineare per Ioni (ALPI): a linear accelerator based on super-
conductive RF cavities. This will be presented in detail in the following sections
as the methods proposed in chapter 5 use this accelerator as a case study and rely
on data from its control system for the experimental results.

• Positive Ion Accelerator for VEry low velocity ions (PIAVE): an injector
of ALPI, based on a superconductive RFQ. The complex includes a 250kV plat-
form hosting an ion beam source based on Electron Cyclotron Resonance (ECR)
technology, capable of producing positive ions with high charge.

• TANDEM: an electrostatic accelerator, which can deliver the beam directly to
the target or as an alternative injector to ALPI. The name TANDEM is due to its
peculiarity of accelerating twice the charges with one High Voltage (HV) potential:
a negative ion source delivers a low-energy beam which is first accelerated towards
the +14.5MV terminal. Here the beam passes through a stripper, a thin carbon foil,
which strips multiple electrons from the ions, which now become positive. Thus,
they are now accelerated again by repulsion from the HV terminal. To achieve the
maximum voltage, the whole accelerator is enclosed in a big tank, filled with Sulfur
Hexafluoride (SF6), which has a high dielectric strength.

19

• Selective Production of Exotic Species (SPES): this is the latest accelerator
installed at the laboratories and is still under development. It is composed of a
Cyclotron capable of delivering 700µA of proton beam current and 70MeV particle
energy. A primary target produces exotic species, which are then re-accelerated
and brought to an experimental target to be analyzed. Other beam line are being
developed to produce radionuclei for medical applications. While this accelerator is
not yet ready to run and produce data, it is expected that its future control system
will require advanced techniques like those presented in this thesis to achieve the
design parameters.

• Acceleratore Di Ioni a Grande Carica Esotici (ADIGE) (ADIGE): this
is a beam line designed to receive the 1+ radioactive ion beams, produced in the
SPES Target Ion Source (TIS), in order to allow their post-acceleration with ALPI.
ADIGE is also equipped with a 1+ ion source producing stable beams to charac-
terize the beam line before the radioactive beams are available. This facility is
currently under commissioning and will be described in more detail in the follow-
ing sections, as it is the main target of the work presented in chapter 6.

2.3 ALPI

Here ALPI accelerator is described more in detail. This machine was built entirely at
LNL during the first half of the 90’s. Currently it is undergoing a renovation to be ready
to accelerate the beams from the SPES primary target. Its main subsystems are:

• Beam transport: the beam is guided through the beam pipe with electromagnetic
elements, like dipoles and quadrupoles. The dipoles are responsible for changing
the direction of the beam, to follow the beam pipe layout. The quadrupoles are
used to focus the beam, which is composed of bunches of particles with the same
charge, and thus are subject to a repulsive force. It’s important to keep the beam
focused to minimize the percentage of beam current lost due to the collision with
the beam pipe.

• Beam Diagnostics: a few instruments are dedicated to analysing the fundamen-
tal properties of the beam. There are multiple diagnostic boxes along the beam
line. These are equipped with different instruments: the Faraday Cup (FC) is a
metal target which can measure the charges of the particles colliding, thus giving a
measurement of the beam current. A second instrument is the Beam Profiler which
is composed of 40 small wires positioned horizontally and 40 vertically; when the
beam passes through them, they can measure a small current, giving a measure of
the beam shape, position and size, in both axis.

• Acceleration: the actual beam acceleration is provided by Radio Frequency (RF)
cavities. Historically, the first accelerators used static HV potentials to accelerate
charges. To increase the maximum energy, the RF cavities use an oscillating electric

20

Figure 2.2: ALPI / PIAVE layout and main beam line elements. Source: [25]

field synchronized with the particle bunches. ALPI uses superconductive cavities,
which can reach high gradients with low power consumption, and thus the cavities
are grouped in about 20 cryostats of 4 cavities each. The work presented in this
chapter 5 will focus on RF cavity operation, and thus more details are presented
in the following section.

• Vacuum: the beam pipes are kept under high vacuum (∼ 10−7mBar) to minimize
the interactions of the particles with air and allow to operate RF cavities at high
gradients avoiding discharges.

• Cryogenics: superconductive elements require cryogenics temperatures to oper-
ate, thus a cryogenic circuit is required, using liquid Helium (He) and Nitrogen (N).
The cavities are operated at 4−6K using the He, while the N is used on the cryostats
shields, to increase the temperature insulation.

21

2.3.1 RF cavities

RF cavities in the ALPI accelerator are able to transfer energy to the particles, and
thus to accelerate it. They are made of Copper (Cu) with a superficial Niobium (Nb)
coating. This material has been chosen since it has a critical temperature of 9.2K and
thus becomes a superconductor at cryogenic temperatures. Since in a RF conductor the
charges only flow on the surface of the material, a small layer of Nb is sufficient for
superconductivity.

Figure 2.3: Quarter Wave Resonator. Source: [104]

ALPI uses a special kind of cavities, called Quarter Wave Resonators (QWRs). Their
geometry is similar to a coaxial cable. As can be seen in figure 2.3, the RF power
generates a alternate voltage between the cavity external walls and the inner conductor.
This means that an alternating electric field is generated between the two poles, with its
maximum intensity at the open extremity of the inner cylinder, where there is the beam
line. These kind of cavities are able to accelerate only a bunched beam, meaning it is not
a continuous flow of particles, but they are divided in packets, with a certain frequency
of arrival. If the arrival of a packet of particles is synchronized with the electric field so
that the electric field is directed toward the inner pole, the packet of (positive) charges
is accelerated towards the center of the cavity. While the particles travel towards the
center, the electric field is inverted so that when the particles reach the second half of
the cavity they are subject to a second acceleration towards the exit of the cavity.

It is easy to understand that this implies a strong correlation between particles veloc-
ity, RF frequency and cavity geometry. Given all the constraint, the cavity can resonate
only for the following family of frequencies:

f =
c

λ
=
c(2n+ 1)

4l

where c is the speed of light, and l is the cavity length [104]. Given a certain frequency

22

Figure 2.4: Electric Field along the beam axis. Source: [128]

of operation, the distance d between the centers of the two gaps where the particles are
accelerated is fixed by:

d =
βλ

2
where β =

v

c

where v è is the particles speed [104]. This means that the distance between the gap
centers depends on the beam velocity (energy) and the cavity length depends on the
bunches frequency.

For these reason in ALPI there are two different kind of cavities, first a group de-
signed to work at 80MHz where the beam is less energetic, and then a second group at
160MHz. The mechanical design and the geometry between the two groups is substan-
tially different. This thesis focus on data from the first group, where the beam has a low
β.

The second parameter, the cavity length (l) is not a fixed design parameter, but can
be adjusted by the control system. By physically moving the metal extremity of the
cavity with a motor, the control system can tweak the resonating frequency of the cavity
and thus enable its operation at the desired setpoint. In the following paragraphs this
mechanism is explained in detail.

2.3.2 Control System Architecture

Legnaro Control System is based on Experimental Physics and Industrial Control Sys-
tem (EPICS)[170], a free and open source framework. The architecture of the system
is a distributed client server model, where the servers, also called Input Output Con-
trollers (IOCs) are connected to the hardware and export all the available information
and commands through a common network protocol, the Channel Access (CA). Each
single piece of information exported by the IOC is called PV or record and all the PV on

23

Figure 2.5: EPICS Architecture. Source: [75]

a network form what is called the database, even though it is not a traditional database
software. Many clients then can access the database with standard commands to read
and write the PVs, using the PV name as the only addressing mechanism. One example
of client is the Graphical User Interface (GUI) in the control room, but there are libraries
to access the CA for many programming languages.

2.3.3 The Archiver

This common layer, where all the process variables of all subsystems are available to all
the clients, ease the exchange of information and a centralized logging process. In fact,
one client is the archiver, a software which monitors the value of a set of PVs and save
it to a database backend every time it changes. The archiver is composed of multiple
engines which can be configured to monitor a different set of PVs, and each engine can
be composed of multiple groups to organize the information.

The archiver database is PostgreSQL and figure 2.6 shows its internal schema. The
most important table is the sample one, where all the historic values of all the PVs are
stored, one per row, while other tables contain metadata and the groups and engines
configuration. This service can be accessed through a basic web interface where the
status of engines, groups and PVs is displayed, or directly through SQL queries.

This service has been crucial in the data-collection phase as it has allowed to store the

24

Figure 2.6: Archiver Database schema. Source: internal LNL control group wiki.

temporal evolution of hundreds of process variables in a single well-organized repository,
with standard SQL commands available to retrieve the data.

2.3.4 RF control system

To fully understand the data used in chapter 5, the RF control system is here described
more in detail. The purpose of this system is to achieve the greatest cavity gradient as
possible to accelerate the beam and to do it in a stable way, otherwise beam transport
would be impossible. This means that on each cavity the RF amplitude, frequency and
phase must be controlled to be fixed to the desired setpoint, with minimal oscillations.
This particular operating state is called the locked state of the cavity, while the lost of
this condition is an unlock event. To lock the cavity and to keep it locked a hardware-
based control loop is used, as highlighted by the orange loop in figure 2.7. A sample of
the RF power is read from the cavity, its frequency, phase and amplitude are compared
with the setpoint in a hardware controller and a signal is generated with the correction

25

required to reach the desired setpoint. This signal is then amplified by the RF power
amplifier and injected back into the cavity.

Figure 2.7: RF control system. Source: [104]

This system can apply corrections in a fast and accurate way, but has a limited
operating range. The power required to apply a correction grows exponentially with the
module of the error, and can easily reach the limit of the amplifiers and the cables. For
this reason it’s necessary to keep the natural resonating frequency of the cavity as close
as possible to the setpoint. The cavities are manufactured very precisely to adhere to
this requirement, but still there are some factors which can alter the cavity frequency:

• geometry: superficial deformations or vibrations

• dimension: with cryogenic temperatures the metal shrinks and alter the dimension
of the cavity

• energy: electromagnetic fields inside the cavity create an electromagnetic pressure
which compresses or expands the cavity

• dielectric: the vacuum level can impact the resonating frequency

For these reasons, a second control loop has been implemented in software, called
soft tuner. While the cavity is locked the frequency and phase error should be zero, but
in practice there is always a small residual error. The software can read those residual
errors and decide to activate a stepper motor to move the metal extremity of the cavity,
thus changing its length and its resonating frequency. This has the effect of reducing

26

the correction required by the hardware controller, and thus reducing the RF power to
be used. This is a much slower control loop, since it is done with software and involves
the movement of a motor but the correction can be triggered only when the residual
error is over a certain threshold. Since the hardware controller can work next to its ideal
operating point, with low residual error, the result is that there are much fewer unlock
events, where the feedback loop can’t continue to operate and the field or phase setpoint
are lost. Whenever this happens the beam is also lost because it will arrive out of time
to the subsequent cavities, for this reason it is important to reduce these events because
they represent an accelerator downtime.

2.4 ADIGE

This section describes in detail the ADIGE beam line, which is the main target of the
work presented in chapter 6.

Acceleratore Di Ioni a Grande Carica Esotici (ADIGE) is a beam line under com-
missioning at LNL, located in the middle between SPES and ALPI. It is designed to
receive the 1+ radioactive ion beams, produced in the SPES TIS, with the goal of in-
creasing their charge state thanks to a charge breeder, so that they can be accelerated
more effectively in ALPI. The beam line is also equipped with a 1+ ion source producing
stable beams to characterize the beam line before the radioactive beams are available.
Currently, the beam line has been installed and commissioned up to the third diagnostic
element, while the rest of line is being installed. The first part has been successfully
tested for a prolonged period of time, characterizing the ion source in different operating
conditions [48].

Figure 2.8 shows the synoptic of the beam line, as presented to the machine operators.
The colors are used to highlight different type of devices, with the green ones being the
electrostatic transport elements, the blue ones the magnets and, the orange ones the
diagnostic elements, and the gray the RF elements. In detail the beam path the line is
composed of:

1+ ion source This is the ion source of the beam line. It is composed of high current
power supplies located on a high voltage platform. The power supplies are used
to heat a oven, where the material to be ionized is placed. The oven is heated
to a temperature where the material is evaporated and ionized. The ions are
then extracted from the oven by the electric field of the platform and accelerated
towards the beam line. A set of steerers is used to align the beam with the following
elements. The source can also be used with a gas injection system to produce a
plasma and extract the ions from it.

Electrostatic Triplets (AD.3EQ.xx) These are groups of three electrostatic quadrupoles,
used to focus the beam both in the horizontal and vertical axis.

Diagnostics (AD.BI.xx) These are diagnostic boxes, where the beam can be charac-
terized. They can include a Faraday Cup, a Beam Profiler and a Beam Emittance

27

Figure 2.8: ADIGE beam line synoptic from the control room.

Meter. The Beam Emittance Meter can measure the beam emittance, which is a
measure of the beam quality, which will be introduced in detail later. There exists
different types of emittance meters, with the most basic being the Allison Scanner,
composed of a set of slits which can be moved to select a portion of the beam,
and a set of wires which can measure the beam current. By moving the slits and
measuring the current at each position, the beam emittance can be calculated.

Magnetic Steerers (AD.ST.xx) These are couples of magnetic steerers, used to cor-
rect the beam trajectory.

Magnetic Dipoles (AD.D.xx) These are magnetic dipoles, used to change the beam
direction. They are composed of a set of coils which generate a magnetic field,
which is used to deflect the beam so that it follows the beam line curve. The coils
are powered by a current power supply, which can be used to change the intensity
of the magnetic field and thus the beam deflection.

Electrostatic Dipole (AD.ESD.5) This is an electrostatic dipole which can receive
both the beam from the ADIGE source and from the SPES beam line and direct it
towards the charge breeder. The operators can select the beam source by rotating
the dipole.

Einzel Lens (AD.2EL) This is an electrostatic lens, used to focus the beam after the
electrostatic dipole.

28

Charge Breeder (AD.CB) This is the charge breeder, used to increase the charge
state of the ions. It is composed of a oven where the ions are injected, and a
plasma chamber where the ions are ionized again. The plasma chamber is kept
under vacuum and is heated by a radio frequency field, which ionizes the ions. The
ions are then extracted from the plasma chamber and accelerated towards the beam
line.

Solenoids (AD.SO.xx) These are magnetic solenoids, used to focus the beam after
the charge breeder.

Multipole (AD.EM) This is an electrostatic multipole, used to correct the beam emit-
tance between the two dipole of the Medium Resolution Mass Separator (MRMS).

Magnetic Triplets (AD.3Q.xx) These are groups of three magnetic quadrupoles, used
to focus the beam both in the horizontal and vertical axis.

Bunchers (AD.LEB.xx) The Low Energy Bunchers (LEBs) are RF cavities used to
bunch the beam before the injection in ALPI.

This thesis will focus on the MRMS platform, that is the part of the line with a U
shape, and on its electrostatic multipole. The next section will present them and describe
their purpose and behaviour.

2.4.1 Medium Resolution Mass Separator (MRMS)

Figure 2.9: The MRMS platform [47]

The Medium Resolution Mass Separator (MRMS) [47] is installed on the ADIGE 1+
ion source beam line after a charge breeder, to separate the contaminants introduced by

29

the breeding stage. It has a nominal resolving power of 1/1000 and is composed of a high
voltage platform (see figure 2.9) operating at −150kV with 4 electrostatic quadrupoles
(up to 12kV), 2 bending dipoles and an electrostatic multipole between them. This is a
cylinder composed of 48 high voltage terminals operating at ±2.5kV , so that it can be
used as a high order multipole. Finally, on the beam line after the platform an Allison
Scanner is available to measure the beam emittance.

Mass Separator

From the Lorentz force
F⃗ = qv⃗ × B⃗ (2.1)

we know that a charged particle moving in a magnetic field is subject to a force which is
perpendicular to both the velocity and the magnetic field. This means that the particle
will follow a circular trajectory, with a radius proportional to the particle mass and
inversely proportional to the charge of the particle r = mv

qB . This is the principle behind
the mass separator, which is shown in figure 2.10. Thus, given a magnetic dipole built

Figure 2.10: Mass Separator principle of operation.

with a certain radius and a beam with a specific energy and charge, by adjusting the
magnetic field it is possible to select a specific mass of the ions. This principle is used
twice in the MRMS, which is composed of two dipoles, to select the desired isotope.

30

Beam Emittance

The beam emittance is a measure of the beam transport quality, and is defined as the
area occupied by the beam in a position and momentum phase space. It depends both
on the variance of the particle positions and on the variance of the particle velocities.

To define the emittance first we should define the coordinate system, as shown in
figure 2.11.

Figure 2.11: Coordinate system for the beam dynamics of a particle accelerator.

The coordinate system is centered with respect to the trajectory of a particle moving
through the accelerator on the ideal trajectory s, with the nominal speed. This trajectory
defines the longitudinal axis z, while the horizontal x and vertical y axis are called
transverse axes.

Given this coordinate system, the beam emittance can be defined for each axis. Since
in the MRMS the beam is spread along the x axis, we are interested in the x, x′ beam
emittance, which can be defined as:

εRMS,x =

√︂⟨︁
x2
⟩︁⟨︁
x′2
⟩︁
−
⟨︁
xx′
⟩︁2 (2.2)

where
⟨︁
x2
⟩︁

is the variance of the particle positions,
⟨︁
x′2
⟩︁

is the variance of the particle
velocities and

⟨︁
xx′
⟩︁

is the covariance between the two. x′ = dx
dz can also be interpreted

as the angle that a particle makes with respect to the z axis. The beam emittance is
usually expressed in mm mrad.

The beam is composed of particles with the same charge, and thus they repel each
other. This means that the beam is not perfectly focused, the particles will drift apart
and the beam will be lost. A low emittance value means that the beam is well focused
and the particles are all travelling with similar velocities. This is important for the beam
transport, since the closer the beam is to the ideal one, the more particles will reach the
target and the more intense the beam will be.

In the x, x′ plane the emittance is the area of the ellipses formed by the particle
distribution, as shown in figure 2.12. Intuitively, the shape and orientation of the ellipses

31

Figure 2.12: Beam emittance graph.

can be used to understand the beam quality. As shown in figure 2.13, when the beam
is converging towards the focus point, the ellipse lies on the second and forth quadrant,
because angle x′ of the particles is negative. When the beam is diverging, the ellipse lies
on the first and third quadrant, because the particles are moving away from the focus
point, and thus the angle x′ is positive. Finally, when the beam is not converging nor
diverging, the ellipse is vertical, because the particles are moving parallel to the z axis,
and thus the angle x′ is around zero.

Figure 2.13: Beam emittance ellipses corresponding to the beam converging or not.

During the beam transport the beam emittance value changes whenever the beam

32

is accelerated or decelerated. For this reason it is important to define a normalized
emittance, which is invariant under acceleration. This is a constant value for a given
beam, and thus it is a good measure to compare the beam quality at different energies.

εn =

√︂⟨︁
x2
⟩︁⟨︁
(γβx)2

⟩︁
−
⟨︁
x · γβx

⟩︁2 (2.3)

Here the angle x′ has been replaced by the normalized transverse momentum γβx
where γ is the Lorentz factor and βx = vx

c is the normalized transverse velocity.
At the entrance of the MRMS platform the beam is defocused on the horizontal axis

before the dipoles to maximize their resolving power. This means that the beam is spread
on the x axis and when it enters the bending dipoles many particles follow a trajectory
far from the ideal one. Here the magnetic field is not guaranteed to be uniform as in
the center of the magnet. Furthermore, by passing far from the optimal ion path, the
particles would require a different magnetic field to follow the ideal trajectory. Thus
the magnetic field introduces non-linear effects to the beam, and the beam emittance
increases.

Electrostatic Multipole

The electrostatic multipole of the ADIGE MRMS platform is placed between the two
bending dipole. It is designed to compensate the non-linear effects on the beam intro-
duced by the magnetic field of the dipole. Figure 2.14a shows a photo of the multipole
installed in its final position, where it’s also visible one of the bending dipoles in blu. The
high voltage terminals are present on both sides of the multipole for a total of 48 termi-
nals. Currently, the terminals are not yet connected to the power supply. Figure 2.14b
instead shows the design schema of the multipole, where it’s possible to see the metal
bars connected to the terminals which bring the high voltage along the multipole length.
The resulting electrical field is simulated to verify the design.

(a) Current status of the multipole. (b) Design schema of the multipole.

Figure 2.14: ADIGE Electrostatic Multipole.

33

By having a large number of high voltage terminal the multipole can be easily re-
configured to act as a quadrupole, esapole, etc. or with a generic configuration up to 48
poles. Thus it is able to compensate higher order aberrations of the beam. In practice,
the symmetry along the y axis is enforced by the planned cabling. In fact a 24 channel
power supply will be used, and the terminals will be connected in pairs to the same chan-
nel, following the symmetry over y. This means that the electric field will be symmetric
and will not have effects on the y axis. This is not a problem, since the multipole is only
required to correct the aberrations on the x axis.

2.5 Control Systems Challenges

While many different application of ML to particle accelerators have been proposed in
literature and can be further investigated, we decided to focus on two main problems
which are of great importance for the accelerator complex at Legnaro: the detection
of faults in the RF control system and the optimization of the beam emittance in the
MRMS platform. The next two section will present these two problems in detail. These
are not to be intended as final goals, but rather as a proof of concept of the effectiveness
of ML in the accelerator control system. In fact, the same approach can be used to solve
many other problems, and the results presented in this thesis can be used as a starting
point for further development. The experience gained solving these tasks can help to
highlight a path towards the development of intelligent control systems, able to perform
many tasks automatically, and to optimize the accelerator performance. In particular
the beam emittance optimization task can be seen as a first step towards an automatic
beam transport system, capable of tuning all the beam transport elements on a beam
line without human intervention. While the dimensionality of this problem may render
it unfeasible for large beam lines today, it clearly shows the potential of ML in this
field. With the advent of even more advanced techniques, such as new more efficient RL
models, and improved computing power, this kind of systems may become a reality in
the near future.

2.5.1 RF Runtime Faults

The RF control system presented in 2.3.4 is composed of two different control loops with
the goal of keeping each cavity locked to the desired amplitude and phase setpoint. When
all the cavities are locked, the beam is accelerated and transported to the target.

While the two feedback loops work most of the times, there are still situations where
they can fail and the operation is interrupted. This can happen for different reasons like:

• Instabilities in the cryogenic lines, different pressure levels can alter the working
conditions;

• Mechanical limitations of the motors and related gears can limit the effectiveness
of the control loop;

34

• External temperature changes and slow drifts in the working conditions;

• HV discharges.

During one month of ALPI operation in 2020 we registered 169 lock failed events on
24 cavities in the first 6 cryostats working at 80MHz. In all these cases the beam was
lost and could not reach the target anymore, thus pausing the physics experiment. The
number of faults is high enough to justify further development to improve the perfor-
mance, but it’s difficult to manually identify the problem. Hence the idea to analyze the
historical data of the system and try to refine it further by using ML techniques.

This thesis will present a work in chapter 5 where the historical data of the RF control
system is analyzed to detect faults in the system. The goal is to build a model which is
able to predict if a fault is going to happen in the next few seconds. This can be used
to improve the performance of the control system, by acting early to prevent the fault,
with the final goal of improving the accelerator uptime.

2.5.2 ADIGE multipole configuration

The MRMS electrostatic multipole, presented in section 2.4.1, is used to correct the beam
emittance between the two bending dipoles. It is composed of 48 high voltage terminals,
which can be configured to act as a multipole of different order. In practice the multipole
is cabled symmetrically over the y axis, so that only 24 independent voltages can be set.

Even so this is large number of parameters. If the operator had to tune them manually
it would be lucky to find any good configuration, let alone the optimal one. In most of
the cases the beam would degrade and it would be hard to find an error minimization
direction to follow over 24 parameters. Furthermore, the only feedback available would
be the beam emittance measured after the MRMS platform, which is slow to measure,
requiring a scan of the Allison Scanner slits. This means that the operator would have
to wait for the scan to finish before being able to evaluate the effect of the changes, thus
slowing down the tuning process.

Another option would be to use a simulation to find the optimal configuration. In fact,
the beam transport can be simulated with high precision, and the beam emittance can
be calculated at the end of the line. This would allow to find the optimal configuration
offline and apply it directly. Unfortunately, the simulation results are not always accurate
enough to be used directly on the real machine. Moreover, the multipole is designed
to correct high order aberrations introduced by the dipole, but those effects are hard
to simulate. In fact, they are highly dependent on the actual position of the beam
particles on the dipole and the non-uniformity of the magnetic field, which is hard to
know with high precision. Thus, while simulation could be used as a starting point, the
final configuration should be fine-tuned on the real machine. This could still require
many trial and errors and may not result in the optimal configuration.

In chapter 6 of this thesis we propose a different approach, where the multipole con-
figuration is optimized directly on the real machine with Reinforcement Learning. We

35

develop a deep learning model which is able to iteratively update the multipole configu-
ration converging towards the minimal beam emittance. The model exploits simulations
for training and can be fine-tuned on the real machine, but should not learn a single op-
timal configuration. Instead, it should understand how to minimize the beam emittance
even in new conditions, where the optimal configuration may change. In fact, such a
model could be able to find the optimal solution with few iterations, thus reducing the
time required to tune the multipole and improving the accelerator efficiency. As such this
model can be seen as a first step towards an automatic beam transport system, which is
able to find the optimal transport configuration of a complete beam line.

36

Chapter 3

Machine Learning Elements

3.1 AI and ML brief introduction

The emergence of intelligent systems capable of learning from data and making informed
decisions has had a profound impact on many fields of our society [56, 161]. At the
heart of this transformative process lies the domains of Machine Learning (ML) and
Deep Learning (DL), part of the broader field of Artificial Intelligence (AI). These dis-
ciplines have gained unprecedented traction in the last decade, thanks to improvements
both on the algorithmic and hardware fronts. The advent of Big Data has fostered the
development of novel ML methodologies, while the availability of Graphical Processing
Units (GPUs) has enabled the training of complex models on massive datasets. These
advancements have brought impressive results on a large number of applications, rang-
ing from image classification to natural language processing [81, 77], further fueling the
research and applications interest.

The general goal of Machine Learning is to develop models with the ability to learn au-
tonomously from data without explicit programming. These model are able to scrutinize
large datasets to discern patterns, extract meaningful insights, and generalize knowledge
for predictions and decisions. For this purpose ML builds upon the fields of probability
theory, linear algebra, optimization, and algorithm design.

A first approach to this problem is the supervised learning scenario, where algorithms
are trained on labeled datasets, learning mapping functions that correlate input and
output variables. This was first applied to the problems of classification and regression
tasks, with applications encompassing email filtering, medical diagnosis, and financial
forecasting. Conversely, unsupervised learning unveils latent structures within unlabeled
data. Examples are the problems of clustering and dimensionality reduction techniques,
used for customer segmentation, anomaly detection, and exploratory data analysis.

While this field has been around for decades, the recent advancements in Machine
Learning can be related to the introduction of Deep Learning. Deep Learning is a subfield
of ML that leverages the power of artificial Neural Networks to learn complex represen-
tations from raw data. These models, which will be presented in detail in section 3.3,

37

are characterized by complex architectures with many layers and a large number of pa-
rameters, thus being able to automatically learn salient features and abstractions. On
the contrary classical ML models are typically shallow, with a limited number and pa-
rameters, and require hand-crafted features to be extracted from the data. This makes
DL models more flexible and powerful, but also more computationally expensive and
data-hungry. In real-world applications, however, the architecture of a deep learning
model is typically tailored to the problem at hand, thus mitigating the computational
and data requirements. For example, Convolutional Neural Networks (CNNs) manifest
unparalleled efficacy in image analysis by using convolutional filter which reduce the
number of training parameters and allow to hierarchically detect features such as edges,
textures, and shapes. Recurrent Neural Networks (RNNs) instead focus on sequential
data, thus making them potent tools in natural language processing, speech recognition,
and time-series forecasting.

In the supervised setting such models are trained by optimizing the parameters (called
weights) with the aim of minimizing a certain loss function. Different loss functions are
used depending on the task at hand. For example, in the case of classification tasks,
the cross-entropy loss is typically used, while in the case of regression tasks the mean
squared error is often employed. The optimization of the loss function is performed using
gradient-based methods, such as Stochastic Gradient Descent (SGD) and its variants.
Each input is fed to the model, which produces an output which is in turn compared
with the expected result to calculate the loss. The weights of the model are then updated
using the gradient of the loss function with respect to the weights. In practice, however,
data points are not fed to the model one at a time, but in batches. This means that the
loss is calculated on the average of the losses of the points in the batch, and the weights
are updated using the average of the gradients of the points in the batch. When all the
points in the dataset have been used, an epoch is completed and the dataset is shuffled
and used again. The whole process is repeated for a number of epochs, until the model
converges to a stable solution. In the unsupervised setting, instead, the model is trained
to learn the underlying structure of the data, without the use of labels. For example, in
the case of clustering tasks, the model is trained to group similar data points together,
while in the case of dimensionality reduction tasks, the model is trained to reduce the
dimensionality of the data while preserving the most relevant information. In both cases,
the model is trained to minimize a certain loss function, which is typically related to the
reconstruction error of the data.

Once the model is trained, it can be used to make predictions on new data. In
this phase, the model is typically evaluated on a test set, which is different from the
training set and is used to assess the generalization capabilities of the model. This is a
crucial step in the development of a ML model, since a model that is able to achieve high
accuracy on the training set but performs poorly on the test set is likely to be overfitting
the training data. This means that the model is learning the training data too well,
thus failing to generalize to unseen data. Underfitting instead occurs when the model
is not able to learn the training data, thus resulting in poor performance on both the
training and test sets. Figure 3.1 shows an example of overfitting and underfitting on a

38

classification and regression problem. While underfitting is simple to address by using
a more complex model or increasing the training epochs, overfitting can be a tougher
problem to solve. It can be tackled by using regularization techniques which aim to
reduce the model complexity, which may reduce the overall performance, or by using
more data, which may not be available. In the case of deep learning models, overfitting
can also be mitigated by using early stopping, which consists in stopping the training
when the generalization error starts to increase.

Figure 3.1: Examples of overfitting and underfitting in the Classification and Regression
problems.

The ML developer thus has to choose the correct model and its best configuration,
depending on the problem and the available dataset. These choices are called hyper-
parameters, not to be confused with the weights of the model, as they are not learned
during the training phase. This is typically done by using a validation set, which is
different from both the training and test sets. The model is trained on the training set
with different sets of hyperparameters and evaluated on the validation set. Finally, the
most promising hyperparameters are used to train the model on the whole training set
and evaluated on the test set. This process is called hyperparameter tuning and it is
crucial to obtain a model that is able to generalize well to unseen data. One problem
that may arise is that the results are dependent on the split between training, validation
and test sets. To overcome this problem, the cross-validation technique can be used.
As shown in figure 3.2 in this case, the dataset is divided into k folds, and the model
is trained k times, each time using a different fold as validation set and the remaining
folds as training set. The final results are then obtained by averaging the results of the
k models. This technique is particularly useful when the dataset is small, as it allows
exploiting better the available data.

After a model shows good results on the test set, it’s important to evaluate it on

39

Figure 3.2: Example of 5-fold cross-validation.

external factors, which may not be completely captured by the loss function, such as
explainability and fairness. In fact, while classical ML models are often based on simple
mathematical functions, which are easy to interpret, deep learning models are based on
complex architectures with millions of parameters, which are difficult to interpret. This
is a problem, especially in critical applications, where it is important to understand why a
certain decision has been taken. For this reason, in recent years, the field of explainable
AI and the research on fairness of ML models has gained a lot of traction. This is
particularly important in the medical field, where one wants to understand why a certain
diagnosis has been given and avoid discriminations. In fact, it has been shown that ML
models can be biased, for example, against people of color [121]. This is a problem that
is often overlooked, but it is important to keep it in mind before using such models on
real world applications.

Another important field of ML is Reinforcement Learning (RL). In this case, the
model is not trained on a dataset, but it learns by interacting with the environment.
The model is called agent and it is trained to maximize a reward function, which is a
function of the state of the environment. The agent interacts with the environment by
performing actions, which change the state of the environment, and receives a reward
based on the new state. The goal of the agent is to learn a policy, which is a function
that maps the state of the environment to an action, in order to maximize the reward.
Thus, RL has proven very effective at solving complex games, such as Atari games [117]
and Go [152]. RL has also been used in many other fields, such as robotics [87], finance
[120], and healthcare [133].

While a complete dissemination on the vast fields of Machine Learning and Artificial
Intelligence is out of scope for s, the rest of the chapter will focus on methods for Anomaly
Detection and on the Reinforcement Learning framework. In fact, the main research

40

activities carried out during the PhD are based on these methods. In particular, chapter 5
will present two different approaches for Anomaly Detection and Fault Prediction in the
ALPI RF control system, while chapter 6 will show an application of Reinforcement
Learning to optimize the beam transport in the ADIGE beam line.

3.2 Anomaly Detection

The problem of finding novel or anomalous behaviours, often referred as Anomaly or
outlier Detection (AD), is common to many contexts: anomalies may be very critical in
many circumstances that affect our everyday life, in contexts like cybersecurity, fraud
detection and fake news [74, 96]. In science Anomaly Detection tasks can be found in
many areas, from astronomy [103] to health care [115]; moreover, Anomaly Detection
approaches have been even applied to knowledge discovery [29] and environmental sensor
networks [60].

One of the areas that mostly benefits from the employment of AD modules is the
industrial sector, where quality is a key driver of performance and success of productions
and products. With the advent of the Industry 4.0 paradigm, factories and industrial
equipment are generating more and more data that are hard to be fully monitored with
traditional approaches; on the other hand, such availability of data can be exploited for
enhanced quality assessment and monitoring [94, 155]. Moreover, products and devices,
thanks to advancements in electronics and the advent of the Internet of Things, are
increasingly equipped with sensors and systems that give them new capabilities, like for
example the ability to check their health status thanks to embedded/cloud Anomaly
Detection modules [4, 79, 168].

Despite the heterogeneous systems that may benefit from AD modules/capabilities,
there are several desiderata that are typically requested for an AD module, since ob-
viously looking for high detection accuracy is not the only important requisite. For
example, in many contexts the delay between the occurred anomaly and its detection
might be critical and the low latency of the model becomes a stringent requirement. One
way to mitigate the detection delay problem is typically to embed the AD model in the
equipment/device: this implementation scenario directly affects both the choice of the
detection model and, in some cases, the hardware. As a consequence practitioners will
typically have to find a compromise between detection accuracy and computational com-
plexity of the model: while this is true for any Machine Learning module, it is typically
more critical when dealing with AD tasks. Moreover, in presence of complex processes
or products equipped with different sensors, data will exhibit high dimensionality and
therefore practitioners will tend to prefer models that are able to efficiently handle multi-
ple inputs. Summarizing, a good real-world AD solution: i) has to provide high detection
performances; ii) has to guarantee low latency; iii) requires low computational resources;
iv) should be able to efficiently handle high dimensional data.

The former list of desiderata for AD solutions is not exhaustive, and other charac-
teristics can increase the model appeal in front of practitioners. In recent years, model

41

interpretability is an increasingly appreciated property. Detecting an anomaly is becom-
ing no longer enough and providing a reason why a point has been labelled as anomalous
is getting more and more importance. This is particularly true in manufacturing pro-
cesses where the capability of quickly finding the root cause of an anomalous behaviour
can lead to important savings both in terms of time and costs. In addition, interpretabil-
ity enhances the trust of users in the model, leading to widespread adoption of the AD
solution.

Another attractive property is the ability of the model to handle data coming from
non-stationary environments. Especially in early stages of AD adoption, available data
are few and restricted to a small subset of possible system configurations; a model trained
on such data risks to label as anomalous all the states not covered in the training domain,
even if they are perfectly normal. In order to overcome this issue, the model should detect
the changes in the underling distribution and continuously learn new normal data. In
this process, however, the AD model should not lose its ability to detect anomalies.

Chapter 5 is dedicated to the application of AD techniques to the problem of fault
prediction in particle accelerators. In this context, AD models are used to detect anoma-
lies in the data stream produced by the sensors of the accelerator. For this reason, given
the importance and diffusion of AD approaches, we deemed relevant to review the liter-
ature and to provide a comprehensive overview of the state of the art. After a formal
definition of the AD problem, the following sections report the results of a systematic
review of the literature on tree-based approaches to AD that we published in [10]. Fur-
thermore, we include a general overview of ML and DL models for Anomaly Detection,
with a specific focus on applications to time-series.

3.2.1 Outliers

The concept of outlier, or anomaly, can be easily perceived by intuition but it’s difficult
to give a formal definition. In fact, there is no single accepted definition, as it depends on
the specific kind of data, field of application or interest in a certain feature. Consequently
the methods and their results depend on the type of anomaly that is being searched and
the ground truth is not always clear.

A first attempt to give a general definition comes from Grubbs [55]:

An outlying observation, or "outlier," is one that appears to deviate markedly
from other members of the sample in which it occurs.

Another widely accepted definition was given by Hawkins [58]:

An outlier is an observation which deviates so much from the other observa-
tions as to arouse suspicions that it was generated by a different mechanism.

These definitions highlights two characteristics of anomalies: they are pattern in the
data which are not common and that are probably generated by some unusual process. In

42

the case of a particle accelerator, this unusual process can then lead to a fault condition,
and thus to the stop of the machine. Identifying anomalies means identifying early the
processes which can lead to a fault. For the purpose of the works presented in chapter 5,
a more detailed definition of outlier can be given:

An outlier is an observation which does not appear during the normal oper-
ation of the accelerator and that is strongly correlated with a fault event few
moments later.

As we will see, this definition will be crucial to evaluate the performance of the various
methods.

The problem of detecting outliers is a well-known problem, with vast fields of appli-
cations. For example, it can be useful to detect damages in industrial plants, network
intrusion attacks or financial frauds. In all these cases the base idea is to detect data
points that do not conform with the general distribution of the dataset. A certain mea-
sure of non-conformity is used to register the likelihood of a certain point of being an
outlier. This measure is called anomaly score or outlier score. Thus, as detailed by [14],
the anomaly detection procedure can be modeled as a function ϕ:

ϕ : Rn −→ R

ϕ(x) −→ γ

where γ is the outlier score, x ∈ X ⊆ Rn, and X is the dataset. Given a continuous
outlier score, to decide if a certain point is an outlier or not, a threshold δ is used:

ϕbinary : Rn −→ {outlier, normal}

ϕbinary(x) ↪→

{︄
outlier, if ϕ(x) > δ.

normal, otherwise.

Given this general approach, the whole research carried out in this work, and similar
ones, focuses on the best method to calculate the outlier score and to decide the level
of the threshold. This is a non-trivial task: for example if one tries to use a general
binary classification method on a unbalanced dataset, where 99.9% of the point are not
anomalous, the classifier could achieve 99.9% accuracy by just reporting every point as
normal. This is obviously not wanted, as this classifier did not learn anything from the
data and is completely useless.

Even when the model is actually learning from the data, it is not easy to decide
where to set the threshold. For example, in medical applications, where not detecting
an outlier could mean not diagnosing a serious disease, it may be better to have a low
threshold to reduce the number of outliers not being detected. This will lead to a greater
number of false anomalies, which can be investigated further, thus reducing the overall
risk. In other cases, it may be better to reduce the number of normal points classified
as outliers, while it may be acceptable not to detect some points. This means that there
is no single best method or parameter value which works on all the cases, but the best
solution depends on the application.

43

3.2.2 Taxonomy and classes of algorithms

Depending on the interpretation that each author gives to the definition in section 3.2.1,
there exists different ways to measure anomaly. The only thing that brings together
all the approaches is the use of an Anomaly Score (AS) assigned to each point. This
score should serve as a proxy of the probability to be an outlier. Obviously, each method
assigns a different anomaly score to the same point since it is based on different detection
strategies.

A first classification of AD methods divides such methods into two categories:

• Model-based - It is the most traditional Anomaly Detection category and employs
a predefined model that describes the normal or all the possible anomalous oper-
ating conditions. These approaches usually rely on physics or domain-knowledge
heuristics; unfortunately they are often unfeasible and costly to be developed since
they require extended knowledge of the system under exam.

• Data-driven - The approaches examined in this thesis rely instead on data avail-
ability. More precisely, such approaches make use of two ingredients: data sampled
from the analyzed system and algorithms able to automatically learn the abnormal-
ity level of those data. Such category of approaches is often referred as data-driven
anomaly detection and its advantages are the great flexibility and absence of strong
assumptions that limit the model applicability.

Additionally, when looking at anomalous behaviours, two problem settings can be
defined: the supervised and the unsupervised one. The former consists in classifying
data, based on previously tagged anomalies. It is called supervised since training data
are collected from sensor measurements and have an associated label that identifies them
as anomalous or not; in industrial context, the supervised scenario is typically named
Fault Detection. Unfortunately, supervised settings are seldom available in reality [18]:
labelling procedures are very time consuming and typically require domain experts to be
involved.

On the contrary, the unsupervised scenario is the most common in real world ap-
plications. In this case, data are not equipped with labels and therefore the learning
algorithm lacks a ground truth of what is anomalous and what is not. Given that, the
goal of the algorithm is to highlight the most abnormal data, assigning to each one an
Anomaly Score (AS). In this chapter the focus will be on the unsupervised setting since
it is the most applicable in real-world scenarios. To be more precise, the unsupervised
setting can be further divided into two sub-categories, based on the nature of the avail-
able data. The fully unsupervised one relies on training set composed of both anomalies
and normal data. However, in some applications obtaining training data with anomalies
is quite complex, therefore in such cases data are composed only of normal instances:
in this scenario semi-supervised approaches, sometimes named one-class setting, are the
most natural ones to be adopted.

To achieve good results it’s important to develop techniques which take into account

44

the fact that labels are unbalanced and, in general, exploit all the known proprieties of
the data. The anomaly detection problem is defined

• static if the analysis is performed on time-independent data (static datasets, where
the order of the observations do not matter).

• dynamic if it is performed on time-dependent data (time-series data or dynamic
datasets).

Working on time-series requires keeping into account the time correlation of the
points. For example, an outlier on spacial data (such as an image) can be detected
just by looking at low density regions or its distance to the other points, but this ap-
proach cannot be applied directly to the points in a time series because it does not
keep into account the sequentiality of data. Having multiple streams of data recorded
concurrently and derived from correlated signals in the real-world means that different
PVs could be affected by the same underlying process. It’s important thus to keep into
account the correlation between different signals, in order to fully exploit their informa-
tion. Furthermore, the sampling method, its frequency and precision, can influence the
pre-processing phase of the analysis as well as the precision of the results. For example
a noisy source could hide important information. Finally, in the context of anomaly de-
tection it’s usually difficult to obtain a labelled dataset due to the high amount of effort
required to produce one, and so it’s necessary to use unsupervised methods, able to learn
the overall distribution of the normal points and to highlight the ones not conforming to
it.

One of the most common approaches to deal with time correlation in time-series is
to use sliding time windows. Instead of treating each point as independent, groups of
subsequent points are grouped together and some properties, or features, are calculated on
the points belonging to the group. These features now include the information about the
time correlation, as they were calculated on subsequent point, and can be seen as a new
dataset. The new points belonging to this dataset are independent between one another
and it is possible to use generic outlier detection methods on them to find anomalous
time windows. When this approach is used the width of the sliding windows, the number
of point to include in each window, is an important design parameter which must be
chosen carefully.

Another very basic discrimination is between univariate or multivariate anomaly de-
tection, meaning that the analysis is performed on a single variable or on multiple vari-
ables at the same time. A more subtle distinction concerns the way in which the algorithm
training is performed. The most traditional one is the batch training where the model is
trained only once, using all the available training data. This approach might be unprac-
tical when the dataset is too large to fit into the memory, or when sampled data do not
cover sufficiently well the normal operating domain: in this case the model needs to be
continuously updated as new data are collected; this is even more important in situations
where the normal data distribution undergoes a drift, and samples that were used in the
first part of the training now become anomalous. Therefore, in such case, the model has

45

to adapt by learning the new configuration and by forgetting the outdated distribution.
Given these different formulations and requirements for the anomaly detection prob-

lem, many data-drive approaches have been proposed in literature over the years. These
are usually divided into two categories: classical Machine Learning (ML) and Deep
Learning (DL) models. The first ones are based on the use of classical machine learning
algorithms, such as Support Vector Machine (SVM) or K-Nearest Neighbour (KNN),
while the second ones are based on the use of Neural Networks (NNs). In fact, in the
last decade DL methods and NNs have become popular in many fields and have spurred
a variety of different models and architectures, which have been applied also to the AD
problem.

Classical ML approaches can be further categorized into 5 classes. The distinction
between classes is not strongly fixed, and some methods could be categorized at the same
time in different classes. The most intuitive class of algorithms is the distance-based one.
It is based on the assumption that outliers are spatially far from the rest of the points
[3]. Also the density-based class is quite intuitive since assumes outliers living in rarefied
areas [51]. The statistics-based ones are conceptually simple, but often make use of
heavy assumptions on the distribution that generated training data [68]. Clustering-
based employ clustering techniques in order to find clustered data, moreover, they are
strongly susceptible to hyperparameters and often rely on density or distance measures
[72]. Unfortunately, these approaches are expensive to compute or rely on too strong
assumptions. Density and distance-based methods are hard to compute especially in
high dimensional settings and when many data are available; such approaches are hardly
applicable in scenarios where detection has to be performed online and on fast evolving
data streams. Moreover, statistical methods are often restricted to ideal processes, rarely
observed in practice.

Quite recently a new class of methods emerged: the isolation-based. This class is very
different from the previous ones: it assumes that outliers are few, different and, above all,
easier to be separated from the rest of data. This draws the attention from normal data
to anomalies and allows to obtain much more efficient anomaly detectors. The primary
goal of these methods is to quickly model the anomalies by isolating them, rather than
spending resources on the modeling of the normal distribution. The seminal, and most
popular, approach in this class is the Isolation Forest algorithm [91].

The following sections will present some of the most popular algorithms both from
the machine learning and deep learning approaches. A complete section (section 3.2.5)
is dedicated to the Isolation Forest algorithm and its extensions, as it is the focus of a
review of the literature carried out during the PhD [10].

3.2.3 Performance Metrics

To evaluate and compare the performances of different design choices, it is necessary to
establish common metrics. In the field of classification, the metrics are often based on 4
parameters:

46

1. True Positive (TP): number of points correctly classified as positives. In this case
positive means outlier, negative means normal.

2. True Negative (TN): number of points correctly classified as negatives.

3. False Positive (FP): Number of negative points incorrectly classified as positives.

4. False Negative (FN): Number of positive points incorrectly classified as negatives.

In the case of unbalanced datasets, it would be useless to count the number of True
Negatives as they would be some order or magnitude bigger than the other metrics, thus
being incomparable. For this reason the precision and recall metrics are used:

precision =
TP

TP + FP

recall =
TP

TP + FN

Given a classification, the precision is a measure of how many points labeled as
positives are well-classified. The recall instead indicates the proportion of real positives
that have been detected. These are strictly correlated: when maximizing one of the two,
the other is usually affected. Since it is advisable to maximize both of them, seeking the
best trade-off for the application, a more compact metric can be used, the F-score:

Fβ = (1 + β2) · precision · recall
β2 · precision+ recall

=
(1 + β2) · TP

(1 + β2) · TP + β2 · FN + FP

The β parameter is used to express the importance given to the recall respect to the
precision, so it can be used to optimize the trade-off for the application. Usual values for
β are 2, when recall is more important than the precision, and 0.5 when the precision is
considered more important.

3.2.4 Machine Learning Methods

This section groups all those approaches based on classical machine learning methods
which usually were originally developed for different purposes. With some adaptations
they have proven successful for the task of anomaly detection.

K-Means Clustering

K-means [100] is a well know unsupervised clustering method, where data is grouped
into k clusters, with the aim of minimizing the sum of the squared distances between
each point and its closed center, also called centroid. Initially the centroids are chosen
randomly, then each point is assigned to the cluster of the closest centroid and finally

47

the centroids are computed again as the mean of the cluster. This repeated iteratively
until convergence is reached.

This method has been adapted to work for anomaly detection in time-series by using a
sliding windows approach. Given the time-series of N points (x1, x2, ..., xN), the windows
length w and the sliding parameter γ, it is possible to extract the subsequences relative
to each position of the sliding window:

S = (x0, ..., xw)
T , (x0+γ , ..., xw+γ)

T , ..., (xN−w, ..., xN)T

Given the design parameter k, the number of clusters, it is now possible to run the k-
means algorithm on the set S. For each subsequence the final distance from the center of
the cluster can be used as the outlier score. This method is also called Subsequence time-
series Clustering (STSC) [67]. It requires to accurately set the k, w and γ parameters,
as well as the distance function to use (usually the euclidean distance).

Local Outlier Factor (LOF)

Local Outlier Factor (LOF)[16] is an algorithm designed to detect anomalies on spatial
data. The basic idea is to approximate the local density of each point based on the
distance of its k nearest neighbours and to identify the outliers by finding the points
whose local density is much lower than their neighbours. Figure 3.3 shows that anomalous
(isolated) data points have higher LOF scores.

Formally, let’s define the k − distance(x) as the distance of the point x to its k-th
nearest neighbour. Then the set:

Nk(x) = {y|d(x, y) ≤ k − distance(x)}

contains all points in the k-distance neighbourhood. We can now define the reacha-
bility distance RD:

RDk(x, y) = max{k − distance(y), d(x, y)}

which is the true distance of the two points, but at least k-distance of y. This means
that all points belonging to the k-nearest neighbourhood of y Nk(y) are considered to be
equally distant. Then, it is possible to compute the Local Reachability Density (LRD) of
x as:

LRDk(x) = 1/

(︄∑︁
y∈Nk(x)

RDk(x, y)

|Nk(x)|

)︄

which is the inverse of the average reach ability distance RD from its neighbours.
This is then compared with the LRD of the neighbours with the following LOF metric:

48

Figure 3.3: LOF score is higher on isolated data points. Source: [84]

LOF (x) =

∑︁
y∈Nk(x)

LRDk(y)

LRDk(x)

Nk(x)

which is the average local reachability density of the neighbours over the point own
local reachability density. Three cases are then possible:

• LOF ∼ 1: similar density as neighbours

• LOF << 1: higher density

• LOF >> 1: lower density (outlier)

This methods has been adapted to work for time series by Oehmcke et al. [122]. They
proposed using a sliding windows approach, with the original time-series XT divided into
a training set A and a test set B. The training set is split into a set of subsequences as
follows:

A(w, t) ⊆ P ({XT }) = {(xi, ..., xi+w)|i ∈ {1, ..., t− w}, t ≤ |{XT }|}

while B(w, t) is the sequence to be analyzed:

49

B(w, t) ⊆ {XT } = {xt−w
2
, ..., xt+w

2
}

It is not possible to compute the LOF value of {{B(w, t)} ∪ A(w, t)} which is a
measure of how different B(w, t) is from sets in A(w, t). This can thus be used as an
outlier score.

The main challenges with this method are related to the choiche of the different
parameters, in particular the k parameter indicating the number of neighbours to consider
and the distance function. Another important aspect is the execution time, which could
become a stringent factor with large datasets. This algorithm has complexity O(n2),
which is not always ideal.

Cluster Based Local Outlier Factor (CBLOF)

Cluster Based Local Outlier Factor (CBLOF) [59] model borrows ideas from both the
clustering and LOF methods. It run a clustering algorithm and classifies the resulting
clusters into small and large clusters. The outlier score is then calculated based on the
size of the cluster the point belongs to as well as the distance to the nearest large cluster.

A formal definition of large and small clusters is required. Given a set of clusters
C = {C1, C2, ..., Ck} ordered by non-increasing element count so that |Ci| ≥ |Ci+1|, 1 ≤
i < k, and two parameters α and β the boundary b between large and small clusters
must follow:

(|C1|+ |C2|+ ...+ |Cb|) ≥ N · α
|Cb|
|Cb+1|

≥ β

where N is the total number of points. Then the large clusters are the one with index
lower than b, while the others are considered to be small. The first formula ensures that
the large clusters include together at least a fraction α of the total number of points,
while the second requires that the small clusters are at least β times smaller than the
large ones.

It is now possible to define the CBLOF metric for a certain point x:

CBLOF (x) =

{︄
|Ci| ·min(d(x,Cj)), x ∈ Ci, Ci small, Cj large.

|Ci| ·min(d(x,Ci)), x ∈ Ci, Ci large.

This value depends both on the dimension of the cluster of the point and on its
distance from the nearest large cluster, or the center of the cluster it belongs to if it is
large. This value can then distinguish between points inside large clusters and the one
belonging to small remote clusters, which are to be considered outliers.

To adapt this method to work on time series it is possible to adopt similar techniques
as the previous models, such as sliding windows.

50

3.2.5 Isolation tree based methods

Tree-based methods, as suggested by the class name, rely on tree structures where the
domain of the available data is recursively split in a hierarchical way, in non-overlapping
intervals named leaves. In the Anomaly Detection context, these models are seen as a
tool rather than a separate detection approach. As a matter of fact, they are employed
in both density-based and isolation-based approaches. The former approach is perhaps
the most intuitive since at high densities one expects normal data clusters, vice-versa
in low density regions. However this approach is in contrast with the simple principle
of never solving a more difficult process than is needed [126]. Density estimation is
a computationally expensive task since it focuses on normal data points, that are the
majority. However, the ultimate goal of anomaly detection problem is to find anomalies,
not to model normal data. Outliers are inferenced only at a second step. On the contrary,
the isolation approach is less simple to formulate but also less computationally expensive.
It directly addresses the detection of anomalies since points that are quickly isolated are
more likely to be outliers.

The literature concerning anomaly detection using tree-based methods is quite vast,
but we decided to focus on methods that naturally apply to the unsupervised setting, due
to its relevance in industry. Not only we decided to exclude the supervised approaches,
but also we excluded the ones that artificially create a second class of outliers like in [32].
These approaches often try to fit supervised models into unsupervised settings at cost of
inefficient computations, especially at high dimensionality.

Figure 3.4: Combined citations of IF original paper [91] and its extended version [93] by
the same authors. Source: Scopus. Retrieved on the 30th of March 2021.

Isolation forest (IF) is the seminal algorithm in the field of isolation tree-based ap-
proaches and it was firstly described in [91]: in recent years IF has received an increasing
attention from researchers and practitioners as it can be noted in figure 3.4, where the
evolution of citations of the algorithm in scientific papers has increased exponentially
over the years.

51

Isolation Forest

As the name suggests, IF is an ensemble algorithm that resembles in some aspects the
popular Random Forest algorithm revised in the unsupervised anomaly detection set-
tings. Indeed, IF is a collection of binary trees: while in the popular work of Breiman
[15] we are dealing with decision trees, here the ensemble model is composed by isolation
trees, that aim at isolating a region of the space where only a data point lies. IF is based
on the idea that, since anomalies are by definition few in numbers, an isolation procedure
will be faster in separating an outlier from the rest of the data than when dealing with
inliers.

Figure 3.5: Isolation Forest recursive splitting. Source: [171]

More in details, the algorithm consists in two steps: training and testing. In the
training phase, each isolation tree recursively splits data into random partitions of the
domain. As said, the core idea is that anomalies on average require less partitions to be
isolated, as can be seen in figure 3.5. Therefore inliers live in a leaf in the deepest part
of the tree, while outliers in a leaf close to the root. More formally, the anomaly score
is proportional to the average depth of the leaf where each datum lies. For the sake of
clarity, we report the training and testing pseudo-codes (Algorithm 1, 2 and 3 - adapted
from [91]).

52

Algorithm 1: IsolationForest(X, n, ψ)

Input: X – data in Rd, n – number of trees, ψ – sample size
Output: list of Isolation Trees
forest ← empty list of size n;
hmax ← ⌈log2 |X|⌉;
for i = 1 to n do

X̂ ← sample(X, ψ);
forest[i]← IsolationTree(X̂, 0, hmax);

end
return forest

Algorithm 2: IsolationTree(X, h, hmax)

Input: X – data in Rd, h – current depth of the tree, hmax – depth limit
Output: Isolation Tree (root node)
if h ≥ hmax or |X| ≥ 1 then

return Leaf {
size ← |X|

};
else

q ← randomly select a dimension from {1, 2, . . . , d};
p← randomly select a threshold from [minX(q), maxX(q)];
XL ← filter(X, X(q) ≥ p);
XR ← filter(X, X(q) < p);
return Node {

left ← IsolationTree(XL, h+ 1, hmax),
right ← IsolationTree(XR, h+ 1, hmax),
split_dim ← q,
split_thresh ← p

};
end

The training phase starts subsampling the dataset composed of n data points, in t
randomly drawn subsets of ψ samples. Then, for each subset a random tree is built. At
each node of the random tree a feature is uniformly drawn. The split point is uniformly
sampled between the minimum and maximum value of the data along the selected feature,
while the split criterion is simply the inequality w.r.t the feature split point. The splitting
procedure is recursively performed until a specific number of points are isolated or when
a specific tree depth is reached. In principle, the full isolation tree should grow until
all points are separated, unfortunately risking to grow trees with depth close to n − 1.
However data that lie deep in the tree are the normal ones, not the target of the detector.
For efficiency reasons, this is not practical and since anomalies are easy to be isolated,

53

the tree only needs to reach its average depth ⌈log2 n⌉.

Algorithm 3: PathLength(x, T, h)

Input: x – instance in Rd, T – node of IsolationTree, l – current length (to be
initialized to 0 when first called on the root node)

Output: path length of x
if T is a leaf node then

return h+ c(T.size);
end
q ← T.split_dim;
if x(q) < T.split_tresh then

return PathLength(x, T.left, l + 1);
else

return PathLength(x, T.right, l + 1);
end

The testing phase is different and consists in checking the depth h(·) reached by the
data point x in all the isolation trees, and taking the average.

The anomaly score s(x, n) is defined as:

s(x, n) = 2
−E(h(x))

c(n)

where c(n) is a normalizing factor and E(h(x)) is the average of the tree depths. Note that
when x is an anomaly, E(h(x)) −→ 0 and therefore s(x) −→ 1, while when E(h(x)) −→ n−1,
s(x) −→ 0. When E(h(x)) −→ c(n), s(x) −→ 0.5.

The computational complexity of IF is O(tψ logψ) in training while O(ntψ logψ) in
testing, where we recall that ψ is the subsampling size of the dataset. It is interesting
to note that in order to have better detection results, ψ needs to be small and constant
across different datasets.

Isolation forest has many advantages compared to the methods belonging to other
classes. Firstly it is very intuitive and requires a small amount of computations. For this
reason it is particularly suited for big datasets and for applications where low latency is a
strict requirement. The use of random feature selection and bagging allows to efficiently
handle high dimensional datasets. In addition, the use of tree collections makes the
method highly parallelisable. Unfortunately the algorithm has some issues. The most
severe is the masking effect created by the axis parallel partitions and anomalous clusters,
that perturbs the anomaly score of some points. A closely related issue is the algorithm
difficulty to detect the local anomalies.

Trying to make a summary: the standard isolation forest defines anomalies as few
and different, and approaches their detection not modelling normal data but trying to
separate them as fast as possible with the aid of bagged trees. The split criterion is
based on randomly selected feature and split point, that create axis-parallel partitions.
These characteristics will be challenged by the following methods but the structure of

54

the algorithms will remain quite the same.
In the following subsections the focus will be on static approaches (Section 3.2.5),

dynamic (Section 3.2.5), distributed (Section 3.2.5) and finally interpretable and feature
selection methods (Section 3.2.5).

Static Learning

Static learning methods can be generally divided into two sub-categories, using two
approaches. The first one groups i) methods that directly originate from the seminal
work [91] slightly modifying the Isolation Forest, and ii) methods that start from a
different but similar algorithms like the Half-Space (HS) trees or Random Forests (RF).
The former group focuses on the importance of fast isolation, while the latter on the
density approximation. The second grouping approach subdivides the static methods
based on how is computed the anomaly score. The majority relies on the mean leaf
depth but a growing number of algorithms employs some variation of the leaf mass.

SCiForest SCiForest [92] takes the assumptions of IF and tries to improve it, with
special attention to clustered anomalies. Indeed Isolation Forest performs quite
poorly on them. The two most important novelties that this method introduces
are: i) the use of oblique hyper-planes, instead of axis-aligned, and ii) the use of
a split criterion that replaces the random split. At each partition multiple hyper-
planes are generated, but only the one that maximises a certain criterion is selected.

The intuition behind this criterion is that clustered anomalies have their own dis-
tribution and the optimal split separates normal and anomalous distributions min-
imizing the dispersion. Therefore the split criterion is formalized as:

Sdgain =
std(X)− average

(︁
std(X left), std(Xright)

)︁
std(X)

where std(·) computes the standard deviation.

Due to the new computations, the complexity of the SCiForest increases reaching
O(tτψ(qψ+logψ+ψ)) in the training stage, and O(qntψ) in the evaluation stage,
where t is the number of trees in the forest, τ the number of hyper-plane trials and
q the number of features composing each hyper-plane dimensions.

ReMass Isolation Forest ReMass IF [8] starts from quite similar premises to the SCi-
Forest’s, but focuses on the poor performances of IF on local anomalies. Unlike
SCiForest, it does not suggest to modify the training algorithms but the anomaly
score: it proposes to substitute the tree depth with a new function, the relative
mass.

The mass of a leaf m(·) is defined as the number of data points inside the leaf while
the relative mass of the leaf is the ratio between the mass of the parent and the

55

mass of the leaf. More precisely, the anomaly score for each tree is defined in this
way:

si(x) =
1

ψ

m(Xparent)

m(Xleaf)

Note the authors suggest to modify only the anomaly score formula, keeping the
rest of the algorithm untouched. This helps improving the anomaly score, while
preserving the low computational complexity.

The time and space complexities are the same as IF.

Extended Isolation Forest (EIF) In the paper [57] the authors observe the masking
effect created in the IF algorithm by the axis-aligned partitions. The intersection
of multiple masks can even create some fake normal areas of the domain, leading to
completely wrong anomaly detection. In order to overcome the described issue, the
authors suggest a very simple but effective strategy already employed in SCiForest:
the use of oblique partitions. However in this case the authors do not use a repeated
split criterion, loosing its benefits but also the additional computational overload.

The time complexity is similar to the SCiForest, except for the saving of the τ
repetitions.

LSHiForest The algorithm presented in [178] combines the isolation tree approach with
the Locality Sensitive Hashing (LSH) forest, where given a certain distance function
d, neighbours samples produce the same hash with high probability while samples
far from each other produce the same hash with low probability. The probabilities
can be tuned by concatenating different hash functions, so that an isolation tree
can be constructed by concatenating a new function at each internal node. The
path from the root to a leaf node is the combined key of the corresponding data
instance. Since d is generic, this extension allows to incorporate any similarity mea-
sure in any data space. Moreover, the authors show that their framework easily
accommodates IF and SCiForest when particular hash functions are selected. They
adapted the method in this way: i) the sampling size is not fixed but variable, ii)
the trees are built using the LSH functions, iii) the height limit and the normali-
sation factor are changed consequently and iv) the individual scores are combined
after the exponential rescaling. The average-case time complexity in the training
stage is Θ(ψ logψ), while in the evaluation phase it is Θ(logψ).

usfAD The work presented in [7] addresses the issue of different units/scales in data,
starting by showing some examples where different non-linear scales lead to com-
pletely different anomalies. To solve this issue the authors propose usfAD, a method
that combines Unsupervised Stochastic Forest (USF) with IF, and naturally born
for the semi-supervised task. This hybrid model recursively splits the subsample
until all the samples are isolated. However it is different from the IF since it grows

56

balanced trees with leaf of the same depth. This is accomplished using a splitting
rule that uses the median value as split point. The core idea is that the median,
since relies on ordering, is more robust to changes in scale or units. After the tree
growth, normal and anomalous regions are associated to each node: the former
consists in the hyper-rectangle containing the training points, while the latter is
the complementary region. All these modifications lead to a quite different testing
phase. The anomaly score of a test point is the depth of the first node where it
falls outside the normal region.

The time complexity is slightly higher than IF: the training is O(nth+ t2hd) while
the testing O(t(h+ d)). Moreover, it needs O(t2hd) memory space.

PIDForest Classical IF relies on the concept of isolation susceptibility, which intuitively
can be outlined as the average number of random slices that are needed to fully
isolate the target data. This definition of anomaly has some great advantages, but
also some pitfalls. In particular, in high dimensional data, many attributes are
likely to be irrelevant and isolation may be sometimes very demanding.

PIDForest [52] is based on an alternative definition of anomaly. The authors assert
that an anomalous instance requires less descriptive information to be uniquely
determined from the other data. Then, they define their partial identification score
(PIDScore) in a continuous setting as a function of the maximum sparsity over all
the possible cubical subregions containing the evaluated data point x. Say X full
data, and C a subcube of the product space and ρ a sparsity measure, PIDScore
can be formalized as

PIDScore = max
C∋x

ρ(X,C) = max
C∋x

vol(C)
|C ∩X|

PIDForest builds a heuristic that approximates the PIDscore. The strategy is
to recursively choose an attribute to be splitted in k intervals, similarly to k-ary
variants of IF (authors suggest default hyperparameter k < 5). Intuitively, we
would like to partition the space into some sparse and some dense regions. For this
purpose, a possible objective is to maximize the variance over the partitions in terms
of sparsity, that can be treated as a well-studied computational problem related
to histograms and admits efficient algorithms for its solution. For each attribute
the optimal splits are computed and the best attribute is chosen as coordinate for
partitioning. Then, the iteration is repeated on each partition, until a data point is
fully isolated or a maximum depth parameter is exceeded. Now the resulting leaf
is labelled with the sparsity of the related subregion. In the testing phase, a data
point can be evaluated on each tree of the PIDForest and the maximum score (or
a robust analog, like 75% percentile) gives an estimate of the PIDScore.

In the words of its authors, the fundamental difference between IF and PIDForest
is that the latter zooms in on coordinates with higher signal, being less suscepti-
ble to irrelevant attributes at the cost of more expensive computation time. Each

57

PIDTree takes O(khdψ logψ) as training time, while testing is pretty much equiv-
alent to IF.

Dynamic Datasets

Dynamic datasets are made up of infinite data streams [162]. This poses new challenges
that previously described methods cannot tackle. The most simple challenge is the
continuous training: since the stream is infinite, the training data may be insufficient
to fully describe it. In order to do that, the model should continuously learn from the
incoming data stream, and at the same moment detect anomalous points. The most
complex setting is represented by the distributional drift. In this case, the stream is not
stationary and its distribution experiences time-dependent variations. Here, the model
must adapt to the evolving data stream, but at the same time discern anomalies from
new normal data points.

The weak point of these methods is the assumption about the rarity of anomalies. If
they are too numerous, they can be confused with a change in the normal distribution
of data points, leading to an erroneous adaptation of the model. Doing this the model
will consider them as normal and it will not raise the necessary alarm.

iForestASD The method proposed in [36] is an adaptation of the original algorithm
to the streaming settings. It is very simple: it splits the stream in windows, and
checks each window to detect anomalies. If the ratio between normal data and
anomalies is too high (exceeds the expected anomaly ratio), it assumes a concept
drift is happening. In this case the model is re-trained on the new window. Obvi-
ously, the threshold on the anomaly ratio and the width of the window are delicate
hyper-parameters that highly depend on the specific application.

Streaming HS In the paper [162] an adaptation of [163] to data streams is presented.
Unlike other tree based approaches, it is not built starting from training data but
its structure is induced only by the feature space dimension. It doesn’t need split
point evaluation, and therefore it is fast and able to continuously learn from new
data. Contrary to the basic Isolation Forest, this method employs the concept of
mass to determine the anomaly score. In practice, this method works segmenting
the stream in windows, and working with two of them: reference and the latest
windows (despite their name, they are immediately consecutive). The reference
window is used to record the mass profile, while the latest one is used for test-
ing. When this is done, the latest becomes the reference and a new mass profile is
recorded. The authors show a time complexity of O(t(h+ ψ)) in the worst case.

Streaming LSHiForest The model presented in [157] extends the LSHiForest algo-
rithm for streaming data exploiting a dynamic isolation forest. The procedure can

58

be split into three main phases: i) a dataset of historical data points is used to
build a LSHiForest data structure, as presented in the original paper, then ii) the
data points collected from multiple data streams are preprocessed to find "suspi-
cious" samples, which are outlier candidates. Finally, iii) the suspicious data are
updated into the LSHiForest structure and the anomaly scores of the updated data
points are recalculated. To effectively extract suspicious points from the stream-
ing data, Principal Component Analysis (PCA) and the weighted Page-Hinckley
Test (PHT) are applied to a sliding window, to cope with the challenges of high
dimensionality and concept drift. An update mechanism is proposed to iteratively
update the LSHiForest by replacing the previous data points observed on a stream
with suspicious ones.

Distribuited Approaches

Wireless Senor Networks (WSNs) pose new and more challenging constraints to Anomaly
detection. Indeed sensor nodes are usually quite cheap but have multiple constrains on
energy consumption, communication bandwidth, memory and computational resources.
Moreover they are often deployed in harsh environments that can corrupt sensor measure-
ments and communication [37]. Despite the distributed nature of the network, Anomaly
Detection on such applications should minimize the communication burden as much as
possible, since data transmission is the most energy intensive process.

Distributed Isolation for WSN The authors of [37] suggest the adaptation of IF to
this distributed problem, considering the spatial correlation between neighbor sen-
sor nodes in a local and global manner. They chose this base algorithm due to its
already mentioned properties, that fits perfectly in this settings. However in the
WSN context, data can be anomalous w.r.t. the single sensor node or w.r.t. the
whole network. The local detector consists in a collection of isolation trees trained
on a group of neighbouring nodes while the global one is made up of local detectors.
When an anomaly is locally detected, it is marked as an error if is not detected by
neighbor sensors, otherwise it is considered an event.

The space and time complexity is O(km), where k is the number of trees on a local
node, and m the number of leaves.

Optimal Weighted One-Class Random Forests (OW-OCRF) A similar approach
has been exploited in [165], where a one-class random forest has been chosen as base
detector. Here each sensor node builds his own model, but it is also augmented with
the models belonging to neighbouring devices. In addition, a strategy to weight the
most effective neighbor models has been implemented, based on the minimization
of the model uncertainty. Uniform voting is reasonable in circumstances where all
the learners arise from the same distribution, but when models come from het-
erogeneous data distributions this strategy shows its weaknesses. Larger weights

59

are assigned to trees that are in accordance with the majority, while trees that
increase the overall uncertainty are penalized. The optimization of these weights is
performed in a fully unsupervised fashion. In presence of distributional drifts, the
overall model can be easily adapted to the new conditions, optimising new weights
or substituting the trees with lower weight importance. The communication be-
tween the node is employed just at early stages for the sharing of the detecting
models, not for the sampled data sharing.

The time and space complexity of this approach are O(th) and O(t2h+1) respec-
tively.

Interpretability and Feature Selection

The detection of anomalies is an important activity in manufacturing processes but it
is useless if a corresponding action does not take place. That action is expected to be
proportional to the gravity of the anomaly (encoded by the anomaly score), and to the
cause that generated it. For doing that a tool to interpret that anomaly is needed. It is
easy to understand that if unsupervised anomaly detection is challenging, interpretable
models face even more complex issues. In real word scenarios anomalies are unlabelled
and lack of proper interpretations.

Moreover [20] observes that interpretable models enhance the trust of the user in the
anomaly detection algorithms, leading to a more systematic use of these tools.

Depth-based Feature Importance for the Isolation Forest (DIFFI) IF is a highly
randomised algorithm and therefore the logic behind the model predictions is very
hard to grasp. In the paper [20], a model specifically designed for the interpretabil-
ity of IF outcomes is presented. In particular the authors developed two variants: i)
a global interpretability method able to describe the general behaviour of the IF on
the training set, and ii) a local version able to explain the individual IF predictions
made on test points. The central idea of this method, named DIFFI, relies on the
following two intuitions: the split of an important feature should a) induce faster
isolation at low levels (close to the root) and b) produce higher unbalance w.r.t
splits of less important features. This is encoded in a new index named cumulative
feature importance. With this in mind, the authors formulate the global feature
importance as the weighted ratio between the cumulative feature importance com-
puted for outliers and inliers. The local interpretation of single detected anomalies
is sightly different but relies on the same intuitions. DIFFI can also be exploited
for unsupervised feature selection in the context of anomaly detection.

Anomaly explanation with random forests Authors in [80] developed an algorithm
able to explain the outcome of a generic anomaly detector by using sets of human
understandable rules. More specifically, the proposed model consists in a special

60

random forest trained to separate the single anomaly from the rest of the dataset.
This algorithm provides two kinds of explanations: the minimal and the maximal.
The first is performed isolating the anomaly using the minimal number of necessary
features. On the contrary the maximal explanation looks for all the features in
which the anomaly is different, employing a recursive feature reduction. Once the
forest are trained and the explanations are obtained, the decision rules are extracted
in a human readable manner.

The time complexity of the algorithm is O(ntTselTtrain) where Tsel is linear with
the number of normal samples in the data. For the minimal explanation nt is the
number of trees trained for each anomaly and Ttrain = O(d|T |2), where d is the
number of features and T is the size of the training set. For the maximal explana-
tion nt = O(d− 1) while Ttrain = O(d2|T |2).

3.3 Deep Learning Techniques

Deep learning techniques are the natural evolution of machine learning models. The
distinct feature is the use of Neural Networks (NNs) with multiple hidden layers.

Neural Networks have long been proposed in literature, with seminal works dating
back to 1943 [113]. In 1957 Frank Rosenblatt introduced the perceptron, a single layer
neural network that was able to learn simple patterns [139]. However, the perceptron was
not able to learn the XOR function, a simple non-linear function. This lead to a decline
in the interest in neural networks, until 1980s when the backpropagation algorithm was
introduced [169, 140]. This algorithm allowed to train multi-layer neural networks, and
the interest in this field started to grow again. Between 1989 and 1998, Yann LeCun
proposed the CNN architecture [85, 86], which was able to achieve state-of-the-art results
in image classification tasks. This lead to a new wave of interest in neural networks, and
in 2006 Geoffrey Hinton proposed the Deep Belief Nets (DBN) [61], a multi-layer neural
network with a special architecture that allowed to train it layer by layer, making the
training process much faster. In 2012, Alex Krizhevsky won the ImageNet competition
[81] using a CNN architecture, and this was the starting point of the deep learning
revolution. Since then, deep learning techniques have been applied to many different
fields, achieving state-of-the-art results in many of them.

3.3.1 Vanilla Neural Networks

The building block of a NN is called neuron. A neuron is a mathematical function that
takes as input a vector of values and produces a single value as output. The output is
computed as the weighted sum of the inputs, plus a bias term. The exact formula is:

ŷ = σ(

n∑︂
i=1

wixi + b) (3.1)

61

Figure 3.6: The most common activation functions.

where x is the vector of inputs and y is the output, x ∈ Rn, ŷ ∈ R. The vector of weights
w ∈ Rn and the bias b ∈ R are the parameters of the neuron, and they are learnt during
the training process. The output of the neuron is then passed through an activation
function, which is a non-linear function that introduces non-linearity in the network.
This is required to be able to learn non-linear functions. The most common activation
function is the sigmoid function, but other functions like the hyperbolic tangent or the
ReLU function are also used. Figure 3.6 shows the most common activation functions
and their formulas.

A single neuron is not very powerful and can learn to approximate only trivial func-
tions, but by combining multiple neurons together it is possible to create a more powerful
model. The simplest architecture is the single layer feedforward NN, where multiple neu-
rons are connected together. The output of each neuron is connected to the input of all
the neurons in the next layer. The first layer is called input layer, and it receives the x
vector. The last layer is called output layer, and it produces one or more ŷ values. The
layer in between is called hidden layer. Figure 3.7 shows an example of a single layer
NN.

While such an architecture may seem arbitrary, its power comes from the universal
approximation theorem [64]. This theorem states that a single layer NN with a finite
number of neurons can approximate any continuous function on a compact subset of
Rn. This means that this model can learn to approximate any function and thus can be
used to solve a large number of problems. However, the theorem does not say anything
about the number of neurons required to approximate a function. In fact, the number of
required neurons may grow exponentially, and this is one of the reasons why single layer
NNs are not used in practice. For this reason, multi layer NNs have been introduced.

62

Figure 3.7: A single layer feedforward Neural Network.

A multi layer NN is a NN with multiple hidden layers, where the output of each layer
is connected to the input of all the neurons in the next layer, as shown in figure 3.8.
The number of hidden layers is called the depth of the network. While this architecture
is more compact and is able to approximate complex functions, it’s important to avoid
very deep networks to avoid problems like the vanishing gradient problem [125].

To calculate the outputs of the last layer, the equation (3.1) is repeated for each
neuron until the output is reached. Real world implementations rely on the matrix
representation of such formula and are able to execute thousands of such operations in
parallel exploiting the parallel architecture of GPUs. This process is called inference, or
forward pass.

Usually, NN models belong to the supervised or semi-supervised learning categories,
meaning that labeled data is expected to be available, in the case of supervised learning,
or unlabeled data consisting only of normal points in the case of semi-supervised anomaly
detection. The labels represent the ground truth that we want to learn ((y)), such as the
real outlier score or the regression value to be predicted. The output of the last layer (ŷ)
is then compared with the ground truth using a loss function. For example, in the case
of a regression problem, the Mean Squared Error (MSE) is often used:

MSE =
1

n

n∑︂
i=1

(yi − ŷi)2 (3.2)

Observing this formula, one can notice that all elements are known, a part from the
weights w and b parameters that are used to calculate the output ŷ = NNw,b(x). The
goal of the training process is to find the values of these parameters that minimize the
loss function. This is done using the backpropagation algorithm, which is an algorithm
that computes the gradient of the loss function with respect to the parameters of the
network. The gradient is then used to update the parameters of the network using an

63

Figure 3.8: A fully connected Neural Network example. Source: [112]

optimization algorithm like Stochastic Gradient Descent (SGD) or its variations.
Probably the most important task in designing this kind of models is the choice of

the neural network architecture. This means choosing all the parameters of the networks,
like the number of hidden layers, the activation function and the type of layers. There
is no single best choice but the results depend heavily on the problem, the data and
computing resources available. In fact, developing a network too complex with a small
training dataset can result in overfitting, where the networks is very good at predicting
training data but fails to generalize for new data. The basic approach is to use dense lay-
ers of fully connected neurons as shown in figure 3.8, but in literature many designs have
been proposed to improve the performances while reducing the computational cost. For
example, CNNs, first used in image classification, include convolutional layers which take
into account the spatial correlation between pixels in the images by grouping together
close pixels. Other techniques have been proposed to work on data with time correla-
tion like Recurrent Neural Networks (RNNs) and Long Short Term Memory (LSTM)
networks. Another approach is the Autoencoder model, where the network architecture
projects data into a lower dimensional space. The following sections will describe these
architectures in more detail.

3.3.2 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) have been proposed to solve computer vision
tasks like object classification, object detection and image segmentation. The main idea

64

is to exploit the spatial correlation between pixels in images, by grouping together close
pixels. This is done using convolutional layers, which are layers that apply a convolution
operation to the input. The convolution operation is a mathematical operation that can
be seen as a sliding window that moves across the input and produces a new output. The
size of the window is called kernel size, and it is a hyperparameter of the network. The
output of the convolution operation is called feature map, and it is a matrix of values.
The convolution operation is defined as:

S(i, j) = (I ∗K)(i, j) =
∑︂
m

∑︂
n

I(i+m, j + n)K(m,n) (3.3)

where I is the input matrix, K is the kernel matrix and S is the feature map. The
convolution operation is repeated for each position of the kernel in the input matrix. The
kernel matrix is a matrix of weights, and it is a parameter of the network that is learnt
during the training process. The convolution operation is illustrated in figure 3.9.

Figure 3.9: The convolution operation.

Since the kernel matrix does not change during the convolution operation, the weights
are the same for each position of the kernel. This means that the number of parameters
of the convolutional layer is much smaller than the number of parameters of a fully
connected layer. This is one of the reasons why CNNs are so popular: they are able
to achieve good results with a much smaller number of parameters, and thus they are
faster to train and require less memory. Unfortunately this reduces the flexibility of
the model, since a single matrix of weights may be insufficient to extract useful features
from the input layer. To overcome this issue, multiple kernels can be used in the same
convolutional layer, and the output of each kernel is a different feature map. By doing this
the network moves from a layer with a single channel to a layer with multiple channels,
each with reduced dimensions due to the convolution operation. The convolutional layer
is then followed by a pooling layer, which is a layer that reduces the dimensionality
of the input by applying a pooling operation. The pooling operation is similar to the
convolution operation, but instead of a weighted sum it uses a function to reduce the
values in the kernel to a single value. The most common pooling operation is the max
pooling, which takes the maximum value in the kernel. By stacking convolutional and
max pooling layers together, the input is progressively reduced in size and the number

65

of channels is increased. The convolutional layers are used to extract features from the
input, while the pooling layers are used to reduce the dimensionality of the features. The
last layer of the network is a fully connected layer, which is used to produce the final
output. Figure 3.10 shows an example of a complete CNN architecture.

Figure 3.10: The AlexNet CNN architecture.

The final dense layers depend on the specific application: the number of outputs
and the activation function will be designed according to the objective of the network.
For example, for a classification task, the CNN will have a number of neurons on the
output layer equal to the number of classes, and the activation function will be the
softmax function. For a regression task, the output layer will have a single neuron and
the activation function will be the identity function.

3.3.3 Autoencoders

In the context of unsupervised learning, one of the most interesting NN architectures is
the Autoencoder. An Autoencoder is a NN that is trained to reproduce its input at the
output layer. While this may seem a trivial task, the real objective of the network is to
learn a compressed representation of the input, called latent space and re-generate the
output from it. This is done by using a bottleneck layer, which is a layer with a smaller
number of neurons than the input layer. The network is then trained to reconstruct the
input from the bottleneck layer, and the reconstruction error is used as loss function.

Figure 3.11 highlights the main components of the Autoencoder architecture. The
first part is called encoder and is composed of a few layers which reduce the dimensionality
of the input. Depending on the input data type these can be dense of convolutional and
max pooling layers, or even more advanced types. The second part is called decoder and
is composed of a few layers which increase the dimensionality of the input. The last
layer of the decoder is a dense layer with the same number of neurons as the input layer,
and the activation function is the identity function. The bottleneck layer is the layer in
between the encoder and the decoder, and it has a smaller number of neurons than the
input layer. The number of neurons in the bottleneck layer is a hyperparameter of the

66

network, and it determines the dimensionality of the latent space.

Figure 3.11: The Autoencoder NN architecture. Source: [14]

Once an Autoencoder is trained, the encoder and decoder can be used separately to
encode and decode new data. This is useful to reduce the dimensionality of the input data,
and it can be used as a preprocessing step for other machine learning models. However,
the most interesting feature of Autoencoders is the ability to reconstruct the input from
the latent space. Since the compressed representation will lose some information, only
the main properties of the input will be preserved. Thus, an autoencoder will be able to
reconstruct the input only if it does not deviate too much from training data, while it
will fail to reconstruct anomalous data. For this reason Autoencoders are often used for
Anomaly Detection, where the reconstruction error is treated as an anomaly score. The
higher the reconstruction error, the more anomalous the input is.

Another approach to AD with deep learning models is the use of time series forecasting
models. In this case, the NN is trained to forecast the next value in the time series, and
the forecast error is used as anomaly score. This approach is similar to the one used with
Autoencoders, but exploits the time correlation often found in time series data. The
following sections will describe some of the most common forecasting models.

3.3.4 Deep Learning Forecasting

Given the time series X = {x1, x2, . . . , xn}, the goal of a basic forecasting model is to
predict the next value xn+1. Such problem has many applications in different fields, such
as finance, weather forecasting, energy consumption and many more. In all these cases
an accurate prediction of the future values can be very useful to make optimal decisions.
Furthermore, a good forecasting model can be used to detect anomalies in the data, by
comparing the predicted value with the real value. When dealing with future predictions

67

it’s important to keep in mind that a model can only be as good as the data it is trained
on. Thus, if the data is not representative of the real world, the model will not be able
to make accurate predictions. The model learns trends and historical behaviors from
the available dataset and predicts the most probable outcome given the current state.
In some cases, where the process is completely random, there may be no good model
to predict the future. Also, the velocity of the underlying process and the volatility of
the data must be taken into account. In fact, when predicting the future value of a
slow-changing variable like the temperature, a model will be make accurate predictions
for short time frames just by assuming that the value will not change at all. While the
numerical results may look good, such a prediction is often useless.

While many statistical techniques have been developed during the years, deep learning
methods have emerged as good candidates to address the time series forecasting problem
given their ability to learn complex non-linear functions. In fact, even a vanilla NN can
be used to forecast time series data just by expressing the problem as a regression task,
where the label is the future value. While this may work for simple problems, it does
not take into account the sequentiality of the input, which is treated as a simple vector,
and thus the learning process is not optimal. More advanced DL architectures have been
proposed tailored for time series data which were often able to achieve state-of-the-art
results.

Another advantage of DL models is the ability to forecast multiple steps ahead.
This is done by training the model to predict multiple values in the future, instead of
just one. This is useful in many applications, for example in the stock market, where
predicting the next value is not very useful, but predicting the next 10 values can be
very useful to make investment decisions. The flexibility of DL models allows also to
forecast multivariate time series, maximizing the information that can be extracted from
the data. Furthermore, the software ecosystem around DL models is very mature and
allows to efficiently work with large datasets, exploiting hardware accelerators like GPUs.
Thus, it’s easy to work even with very long or high frequency time series, which are often
found in real world applications.

Recurrent Neural Network (RNN)

Recurrent Neural Networks (RNNs) are a class of NN architectures designed to work with
sequential data. This is done by introducing a feedback loop in the network, which allows
to store information about previous inputs. This is useful to learn time correlations in
the data, and it’s the main reason why RNNs are so popular in time series forecasting.

To compute Ot (the output at time t), RNNs take into account both the current
input Xt and previous inputs X0:t−1. Following the notation in [147] and visualized in
figure 3.12, we denote the inner layer state at time t as Ht ∈ Rn×h, where n is the number
of samples and h is the number of hidden units. Note that while a single hidden layer is
shown in figure 3.12, the formulation can be easily extended to multiple hidden layers.
Furthermore, we denote the input at time t as Xt ∈ Rn×d, where d is the number of
inputs of each sample. Two weight matrices are used to compute the inner layer state:

68

Figure 3.12: High level architecture of a feedforward NN compared with the RNN archi-
tecture. Source: [147]

the input matrix Wx ∈ Rd×h and the hidden matrix Wh ∈ Rh×h. The inner layer state is
then passed through an activation function σ to produce the output. Finally, the hidden
state and the output are calculated as:

Ht = σ(XtWx +Ht−1Wh + bh) (3.4)

Ot = σ(HtWo + bo) (3.5)

As can be seen in equation (3.4), Ht depends recursively on Ht−1, so that the output
eventually depends on all the previous hidden states, and thus on all the previous in-
puts. This is the main difference between RNNs and feedforward NNs, where the output
depends only on the current input. This allows RNNs to learn time correlations in the
data, and thus they are very useful for time series forecasting.

However, RNNs have some limitations. In fact, to train the network the gradient of
the loss function with respect to the output of the network must be computed. This is
done using a slightly modified version of the backpropagation algorithm, called Backprop-
agation Through Time (BPTT), which unfolds the network and calculates the gradient of
the loss function with respect to the output of each layer. This means that the gradient
must follow a potentially long path through the network, due to the unfolding of the loop
introduced by the RNN architecture. This can lead to the vanishing gradient problem
[125], which occurs when the gradient of the loss function with respect to the parameters
of the network becomes smaller and smaller with each layer. Thus the training process
becomes very slow, the weights for past layers are barely updated and the network is not
able to learn long term dependencies in the data. This problem is particularly evident
when training RNNs on long sequences, and it can be mitigated using other architectures
like LSTMs.

69

Long Short Term Memory (LSTM)

Long Short Term Memorys (LSTMs) were presented in 1997 [62] to overcome the vanish-
ing gradient problem of RNNs. This is done by introducing a gated memory cell in the
network, which is a special unit that is able to store information for long periods of time.
The memory cell is then used to compute the hidden state, instead of using the previous
hidden state as in RNNs. This allows the network to learn long term dependencies in
the data, and thus they are very useful for time series forecasting.

Figure 3.13: The LSTM cell. Source: [147]

First we define the output gate Ot, the input gate It and the forget gate Ft as:

Ot = σ(XtWxo +Ht−1Who + bo) (3.6)

It = σ(XtWxi +Ht−1Whi + bi) (3.7)

Ft = σ(XtWxf +Ht−1Whf + bf) (3.8)

with Wxo, Wxi, Wxf ∈ Rd×h and Who, Whi, Whf ∈ Rh×h being the weight matri-
ces, and bo, bi, bf ∈ Rh being the bias vectors. In this case the activation function σ
is the sigmoid function. These gates are used to control the flow of information in the
memory cell. The candidate cell state C̃t is then computed as:

C̃t = tanh(XtWxc +Ht−1Whc + bc) (3.9)

70

As show in figure 3.13, the cell receives as inputs the previous cell state Ct−1, the
previous hidden state Ht−1 and the current input Xt. In output it produces the current
cell state Ct ∈ Rn× h and hidden state Ht. The cell state is computed as:

Ct = Ft ⊙Ct−1 + It ⊙ C̃t (3.10)

where ⊙ is the element-wise multiplication. Finally, the hidden state is computed as:

Ht = Ot ⊙ tanh(Ct) (3.11)

The tanh activation function is used to force the output between (-1, 1). Figure 3.13
summarizes the LSTM cell architecture described by equations (3.6) to (3.11).

The cell state is then passed to the next cell, and the process is repeated for each
time step. The hidden state is then used to compute the output of the network as in
equation (3.5). The main difference between LSTMs and RNNs is that the hidden state
is computed using the cell state instead of the previous hidden state. This allows the
network to learn long term dependencies in the data, and thus they usually achieve better
performance.

Temporal Convolutional Network (TCN)

Temporal Convolutional Networks (TCNs) have been introduced more recently [83] for
action segmentation in videos. They can be used for time series forecasting thanks to
dilated 1-D convolutions, which are a special type of convolutional layers that allow to
increase the receptive field of the network without increasing the number of parameters.

Figure 3.14: The TCN layer architecture.

While RNNs introduce a loop into the network, TCNs architecture is similar to
feedforward NN. As stated earlier, a simple feedforward NN can be used to time series
forecasting by designing the problem as a regression task on the future value. This has
the disadvantage of not keeping into account the sequentiality of the data and, if the

71

input is not chosen correctly, risks using data in the future make the prediction, which
is not reasonable.

TCN solves these problems by using dilated causal convolution layers. The term
causal means that the output at time t depends only on the inputs at time t and before,
thus guaranteeing that the network does not use future data to make predictions. Diluted
convolutions instead are convolutions where the kernel is applied to the input with a
certain step, called dilation rate. Such kernel is calculated on input data which may
not be adjacent, thus linking a node on a layer with nodes in the previous one far in
the past without increasing the number of parameters. The final result is an increase
of the receptive field of the network, that is the number of inputs that influence the
output. Figure 3.14 shows the architecture of a TCN layer when applying a dilated 1-D
convolution with filter size 2 and dilation factors 1, 2, 4 and 8. As can be observed, the
receptive field of the network increases at each layer thanks to the dilation factors, so
that the final output depends both on the last few inputs and also on the ones long in
the past.

A d-dilated layer with a kernel size k has a receptive field of 1+d ·(k−1). If d is fixed,
the number of layers required to cover a certain input length increases linearly with the
input length. For long input vectors, this results in a very deep NN, which suffers from
the vanishing gradient problem. Thus TCNs are often used with exponentially increasing
d values. If we choose a dilation base b, d can be expressed as a function of the hidden
layer index i: d = bi. In this case the receptive field can be expressed as:

r = 1 +
n−1∑︂
i=0

(k − 1) · bi = 1 + (k − 1) · b
n − 1

b− 1
(3.12)

The example in figure 3.14 follows this convention. Now the number of layers required
to cover a certain input length increases logarithmically with the input length, thus
avoiding very deep networks and reducing the vanishing gradient problem. TCNs further
mitigate this problem by using residual connections, which are connections that skip one
or more layers. This allows to train very deep networks, and it’s one of the reasons why
TCNs are so popular in time series forecasting.

Many more models and architectures have been proposed in literature for time series
forecasting, but they are out of the scope of this thesis. The interested reader can find
more information in [164].

3.4 Reinforcement Learning

Reinforcement Learning (RL) is a machine learning approach where the model does not
learn from a dataset, as in supervised learning, but by interacting with an environment. A
complete mathematical framework has been developed to enable such experience-driven
autonomous learning. Then, with the advent of deep learning and thus the ability to
approximate complex functions, RL has been able to scale to decision-making problems

72

that were previously intractable, with large state and action spaces, often beating com-
peting strategies or human experts. For example, in [118] the authors presented an
algorithm that was able to learn to play a range of Atari 2600 games by just observing
the screen pixels, achieving super-human performance. This was a major breakthrough
in the field, and it opened the door to many new applications. After that, another deep
reinforcement learning model, AlphaGo, was able to defeat the world champion in the
game of Go [153]. This was a notable achievement, since Go is a very complex game with
a huge state space, and it was thought that a computer would never be able to beat a
human player. Thus RL has emerged as a promising technique to solve control problems
in many different fields like robotics, autonomous driving, finance and many more.

The main idea behind RL is to make an agent learn through interaction with an
external environment. By observing the consequences of its actions, the agent learns to
choose the best action in each situation. This is done by adapting its behaviour based
on the received reward. This is similar to how humans learn, and it’s one of the reasons
why RL is so powerful. Figure 3.15 shows the RL loop.

Figure 3.15: The RL loop.

In the RL terminology an autonomous agent, which can be implemented with a NN
model, observes a state st from the environment and chooses an action at to perform
based on such observation. At this point the environment and the agent transition to the
state st+1, which depends on the chosen action. The state contains all the information
about the environment at a given time step, and it can be as simple as a single number or
more complex, like as a set of images. Upon the state transition, the agent receives also
a reward rt+1 from the environment, which represents the quality of the action. The goal
of the agent is to maximize the cumulative reward over time, and this is done by learning
a policy π, which is a function that maps the current state to an action. The policy is
learnt by trial and error, since the state transition dynamics model is not available. The
agent observes the current state of the environment, chooses an action according to the
policy, and receives a reward from the environment. The reward is then used to update
the policy, so that the agent will choose better actions in the future. This process is
repeated until the agent learns the optimal policy, maximizing the cumulative reward
over time.

73

The RL framework can be described as a Markov Decision Process (MDP), which
is a mathematical framework that describes the interaction between the agent and the
environment. A MDP is defined as a tuple ⟨S,A, P,R, γ⟩, where:

S is the set of states and p(s0) is the initial state distribution.

A is the set of possible actions.

P is the state transition probability function, which is defined as P (st+1|st, at) and
represents the probability of transitioning to state st+1 given the current state-
action st, at.

R is the reward function, which is defined as R(st, at, st+1) and represents the reward
received by the agent when transitioning from state st to state st+1 after performing
action at.

γ is the discount factor, which is a value between 0 and 1 that represents the importance
of future rewards. A discount factor of 0 means that only immediate rewards are
considered, while a discount factor of 1 means that future rewards are as important
as immediate rewards.

The policy π is a function that maps states to a probability distribution over actions.
π : S → p(A = a|S). In episodic MDPs the agent interacts with the environment for a
finite number of steps, and the episode ends when a terminal state is reached, or when
the maximum number of iterations T is reached. In this case the sequence of states,
actions and rewards is called a trajectory or a rollout of the policy. During the trajectory
the agent accumulates the rewards from the environment, and at the end calculates the
return:

R =
T∑︂
i=0

γtrt+1 (3.13)

The goal of the agent is learn the optimal policy π∗, which is the policy that maximizes
the expected return:

π∗ = argmax
π

E[R|π] (3.14)

If we consider instead nonepisodic MDPs, the discount factor γ can be used to avoid
an infinite sum of rewards by setting γ < 1. In this case methods that rely on complete
trajectories are not applicable, since the agent will never reach a terminal state, whereas
those that rely on a finite set of transitions must be used.

The MDP framework assumes that the environment satisfies the Markov property,
which assumes that the current state contains all the information about the past. It
means that only the current state affects the next state, and the future depends only

74

on the current state. This is a reasonable assumption in many real world applications,
and it allows to simplify the problem by not considering the history of the states. Any
decision can be taken considering only the current state, and the history of the states can
be discarded. This is very useful to reduce the computational complexity of the problem,
since the state space can be very large. For example, in the case of a chess game, the
state space is the set of all possible configurations of the board. If the Markov property is
not satisfied, the state space would be the set of all possible configurations of the board
and the history of the moves. This would make the problem much more complex and
computationally expensive. Still, this assumption requires the current state to be fully
observable, which may not be the case in many real world applications. In these cases
a generalization of the MDP framework called Partially Observable Markov Decision
Process (POMDP) is used, where the agent receives an observation ot ∈ Ω which is a
partial representation of the state st. The probability distribution of such observation
p(ot+1|st+1, at) depends on the current state and the previous action.

While RL models have achieved great results they come with some challenges. First,
the agent must explore the environment to learn the optimal policy. This is done by
taking random actions, which is called exploration. However, if the agent takes random
actions it will receive low rewards, and thus it will not learn anything. If instead it focuses
too much on actions which produce good rewards, may end up never trying actions which
may result in even better rewards.This is called the exploration-exploitation dilemma, and
it’s one of the main challenges in RL. The agent must find a balance between exploration
and exploitation, so that it can learn the optimal policy without wasting too much time
exploring the environment. Another challenge is the sample efficiency: the agent must
learn the optimal policy with as few samples as possible. This is particularly important
in real world applications, where the agent must learn from experience, and thus it must
interact with the an environment where each interaction may be expensive or dangerous.
For example, in the case of a robot learning to walk, each interaction may result in a
fall, which may damage the robot. Thus, the agent must learn the optimal policy with
as few falls as possible. Finally, it’s not trivial to correlate a positive reward with the
action which caused it, since the agent may have taken many actions before receiving the
reward. This is called the credit assignment problem, and it’s one of the main challenges
in RL.

RL methods can be classified into two main categories: approaches based on value
functions and approaches based on policy search. The following sections will describe the
two categories and present selected algorithms from each one.

3.4.1 Value Functions Methods

Value functions method are based on the idea of estimating the expected return of being
in a certain state. We can define the state-value function V π(s) as the expected return
when starting in state s and following the policy π:

V π(s) = Eπ[R|s, π] (3.15)

75

The optimal policy then corresponds to an optimal state-value function V ∗(s), which is
defined as:

V ∗(s) = max
π

V π(s), ∀s ∈ S (3.16)

This means that if one knows the optimal state-value function, the optimal policy can
be computed simply choosing the action a (among the available ones) that maximizes
Est+1∼P(st+1|st,a)[V

∗(st+1)]. Since the transition probability function is not known, the
state-action value or quality function Qπ(s, a) is used instead. This function is defined
as the expected return when starting in state s, performing action a and following the
policy π. It differs from V π(s) in that the action a is known, and the policy π taken in
state s.

Qπ(s, a) = Eπ[R|s, a, π] (3.17)

Once Qπ(s, a) is known, the optimal policy can be choosen with a greedy approach by
selecting the action a that maximizes Qπ(s, a) at each state, while the corresponding
value function is V ∗(s) = maxaQ

π(s, a).
To estimate the quality function Qπ(s, a), we exploit the Markov property and the

Bellman equation. In fact, we can define the function as a Bellman equation, that is a
recursive equation that expresses the value of a state in terms of the value of its successor
states.

Qπ(s, a) = Est+1 [rt+1 + γQπ(st+1, π(st+1))] (3.18)

This formulation shows that we can use the current estimation of Qπ to update the
estimation ofQπ at the next state. This is the main idea behind the Q-learning algorithm,
which is one of the most popular RL approaches.

The policy π used to estimate the quality function Qπ(s, a) can be the same policy
used to choose the actions, or it can be a different policy. In the first case we talk about
on-policy methods, while in the second case we talk about off-policy methods. In the
case of on-policy methods, the policy used to estimate the quality function Qπ(s, a) is
the same policy used to choose the actions, and thus the agent learns the optimal policy
π∗ directly. In the case of off-policy methods, the policy is learned from actions collected
following a different policy, or even with random actions. For example, q-learning learns
the optimal policy with the help of a greedy policy, and thus it’s an off-policy method.

While the quality function can be used directly, it’s often more convenient to use
the advantage function Aπ(s, a), which is defined as the difference between the quality
function and the value function:

Aπ(s, a) = Qπ(s, a)− V π(s) (3.19)

It represents the advantage of taking action a in state s over the average action. Intu-
itively, the absolute value of the reward of an action is less interesting than how well it
compares with other actions to choose the best one. Furthermore, it’s easier to learn that
an action will have better consequences than another, than learning the exact return of
each action. From the point of view of the NN model, this operation is equivalent to
removing a baseline from the input data, which is always a good practice on NN models.
Thus, this idea has been implemented in many RL algorithms.

76

DQN

DQN [117] is an off-policy RL algorithm based on the idea of approximating the quality
function Qπ(s, a) with a NN model. Unfortunately, in contrast with standard supervised
learning, in RL the distribution of the input data constantly changes during the explo-
ration phase, as well as the target value of Q. This introduces a lot of instability in the
learning process, and thus it’s hard to successfully train the network. DQN introduces
two main ideas to solve this problem: experience replay and the target network.

Experience replay is a technique that allows to store the transitions (st, at, rt+1, st+1)
in a replay buffer, and then sample a batch of transitions from the buffer to train the
network. This means that the training process can be done offline, reducing the number
of interactions with the environment and thus increasing the sample efficiency. Using
batches of transitions also reduces the variance of the gradient and breaks the correla-
tion between consecutive samples, and thus it makes the learning process more stable.
Training is also easily parallelizable, since the samples are independent from each other,
increasing the computational efficiency. Furthermore, the replay buffer can be used to
store the best network parameters found so far, and thus it can be used to restore the
network in case of catastrophic forgetting.

The second idea is the target network, which is a copy of the main network which is
not updated for a certain number of iterations. Instead of calculating the loss function
with respect to a higly unstable estimate of Q as produced by the main network, the
target network is used to compute the target value of Q. This is done to stabilize the
learning process, since it’s important that the target value does not change too much
during the training process.

The final loss function can be expressed as:

L(θ) = Es,a,r,s′∼D[(r + γmax
a′

Q(s′, a′; θ−)−Q(s, a; θ))2] (3.20)

where D is the replay buffer, θ are the weights of the main network, θ− are the weights
of the target network, and Q(s, a; θ) is the quality function approximated by the main
network.

3.4.2 Policy Gradient Methods

Policy gradient methods are based on the idea of directly searching for the optimal
policy π∗ instead of learning the value function V π(s) or the quality function Qπ(s, a).
This is done by parameterizing the policy πθ(a|s) with a set of parameters θ, and then
learning the optimal parameters θ∗ that maximize the expected return E[R|θ]. These
can be obtained by computing the gradient of the expected return with respect to the
parameters θ, and then updating the parameters in the direction of the gradient.

Usually, the policy is parameterized as a NN model, and the parameters θ are the
weights of the network, which is trained with SGD. The network takes as input the
state s and outputs a probability distribution over the actions. For example, for an

77

action which is represented by a single value, this could be the mean and standard
deviation of a Gaussian distribution from which the action can be sampled. Instead, for
a discrete action space, this could be a softmax layer with a number of neurons equal to
the number of actions, where each value represents the probability of the corresponding
action. The advantage of a stochastic policy is that is allows more exploration, since
the agent can take different actions in the same state. Furthermore, we need to average
over the trajectories induced by a certain policy parameterization, since the return is a
random variable. This is done by sampling a batch of trajectories, and then computing
the gradient of the expected return with respect to the parameters θ.

REINFORCE

We already introduced the concept of trajectory τ as:

τ = (s0, a0, r1, s1, a1, r2, . . . , sT−1, aT−1, rT , sT) (3.21)

and we want to define a function which measures how good a certain policy πθ is. This can
be expressed as the expected return of a trajectory τ induced by a policy πθ parameterized
by θ:

J(θ) = Eτ∼πθ
[R(τ)] =

∑︂
τ

P (τ ; θ)R(τ) (3.22)

where P (τ ; θ) is the probability of the trajectory τ induced by the policy πθ. This can
be expressed as the product of the probability of each state-action pair in the trajectory:

P (τ ; θ) = P (s0)
T−1∏︂
t=0

πθ(at|st)P (st+1|st, at) (3.23)

Then we can compute the optimal parameters θ∗ as:

θ∗ = argmax
θ
J(θ) (3.24)

To find the maximum of the objective function, we can calculate its gradient with respect
to the parameters θ:

∇θJ(θ) =
∑︂
τ

∇θP (τ ; θ)R(τ) (3.25)

and then iteratively update the parameters using gradient ascent:

θt+1 = θt + α∇θJ(θ) (3.26)

where α is a tunable learning rate.
Unfortunately the gradient of the objective function is intractable, since it depends

on the probability of all possible trajectories, which is hard to compute. Furthermore,
the transition probabilities P (st+1|st, at) are not known, and thus we cannot compute

78

the gradient. To solve this problem, we can use the policy gradient theorem, which states
that:

∇θJ(θ) = Eτ∼πθ
[R(τ)∇θ log πθ(at|st)] (3.27)

This new formulation is differentiable and does not require the differentiation of the state
distribution.

REINFORCE [173], also known as Monte Carlo Policy Gradient, estimates the gra-
dient of the objective function using Monte Carlo sampling, which is a technique that
allows to approximate the expected value of a random variable by taking the average
of a finite number of samples. In this case, we can approximate the gradient using an
estimated return from an entire episode:

∇θJ(θ) ≈
T∑︂
t=0

∇θ log πθ(at|st)R(τ) (3.28)

A widely used variant of REINFORCE improves the algorithm by subtracting a
baseline from R(τ). This is done to reduce the variance of the gradient, and thus to
make the learning process more stable. For example, the baseline can be the average
return of the trajectories in the batch, or more complex advantage functions, as will the
described in the next method.

Advantage Actor-Critic (A2C)

The previous algorithm uses the return R(τ) to increase or decrease the probability of a
certain action. If the return is high, the probability of the action in the given state is in-
creased, and vice versa. Since the environment and the policy are stochastic, trajectories
can lead to highly different returns even when starting from the same state. This implies
a high variance on the gradient, which makes the learning process unstable. To mitigate
this problem one can calculate the average return over a number of trajectories, but this
reduces the sample efficiency of the algorithm. As stated before, another solution is to
use a baseline. The actor-critic methods combine the policy gradient approach with the
estimation of a value function, which is used as a baseline.

The idea is to learn to function approximations:

• The actor, which is the policy πθ(a|s), parameterized by θ.

• The critic, which can a value function Vw(s) or and action-value function Qw(a|s),
parameterized by w.

The two can optionally share some parameters. The actor learns the policy, while the
critic learns to evaluate the actions taken by the actor. This can then be used to update
the policy, so that the actor will take better actions in the future. The training process
then consists of the following steps:

1. The actor takes an action at in state st according to the policy πθ(at|st).

79

2. The environment transitions to state st+1 and returns a reward rt+1.

3. The critic evaluates the action at taken by the actor in state st and returns the
estimated Qw(st, at) value.

4. The actor updates the policy πθ(a|s) by updating its parameters θ in the direction
of the gradient: θt+1 = θt + αθ∇θ log πθ(at|st)Qw(st, at).

5. The Temporal Difference error (TD error) is calculated as δt = rt+1+γQw(st+1, at+1)−
Qw(st, at). This is then used to update the parameters w of the action value func-
tion wt+1 = wt + αwδt∇wQw(st, at).

The TD error is an alternative of the monte carlo approach to update the estimate of the
value function or the policy. Monte carlo waits until the end of the episode, calculates
the return and uses it as a target of the update. Instead, TD error estimates the return
by summing the reward of an action to the discounted value function of the next state,
and thus it can be used to update the value function at each time step.

To further stabilize the learning process, the advantage function A(s, a) can be used
as the critic model. We recall that an advantage function measures how much better an
action is compared to other choices, as opposed to measuring the absolute value of the
action. The problem is that the advantage function depends on both the value function
and the quality function:

A(s, a) = Q(s, a)− V (s) (3.29)

Thus, it’s not trivial to estimate it. However, we can use the TD error to estimate the
advantage function as:

A(s, a) = rt+1 + γV (st+1)− V (st) (3.30)

This approach is called Advantage Actor-Critic (A2C) [116], and it’s one of the most
popular actor-critic methods.

PPO

As we have seen in the previous methods, controlling the training stability is crucial to
obtain a good RL model. In fact, when updating the policy one must choose carefully
the learning rate:

• If the learning rate is too high, the policy will change too much at each iteration,
and thus the training will be unstable and it becomes hard to learn the optimal
policy.

• If the learning rate is too low, the policy will change too little at each iteration,
and thus the training will be very slow.

80

Proximal Policy Optimization (PPO) [148] constrains the policy update to avoid large
changes at each iteration, thus making the training more stable. This is done by clipping
the probability ratio between the new and the old policy, so that the policy can change
only by a certain amount at each iteration. The final loss function can be expressed as:

JCLIP (θ) = Et[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)] (3.31)

where the probability ratio rt(θ) is defined as:

rt(θ) =
πθ(at|st)
πθold(at|st)

(3.32)

This is the ratio between the probability of taking action at in state st according to the
new policy πθ and the probability of taking the same action according to the old policy
πθold , that is the policy before the update. If the ratio is greater than 1, the new policy
is more likely to take action at in state st than the old policy, while if the ratio is less
than 1, the action is less likely in the new policy. It basically represents how much the
two policies differ between them.

Equation (3.31) chooses the minimum between two terms:

• The first term is the probability ratio multiplied by the advantage function Ât.

• The second term is the clipped probability ratio multiplied by the advantage func-
tion Ât.

In the second term the clipped ratio is forced to be between 1− ϵ and 1+ ϵ, thus limiting
the change of the policy. ϵ is a hyperparameter, usually set to 0.2. Finally, the minimum
between the two terms is chosen, so that we choose either one based on the clipping and
relative advantage, but we guarantee that the policy will not change too much at each
iteration.

PPO has gained a lot of popularity since it’s extremely versatile, and it has been used
in many applications with great results. It’s also very easy to apply to different problems,
since it doesn’t require to tune many hyperparameters, like the learning rate, which is
automatically tuned by the clipping. Even so, it shows poor performance on discrete
action spaces with sparse high rewards, where it often gets stuck on local optima.

81

82

Chapter 4

Machine Learning for Particle
Accelerators

4.1 ML in physics laboratories

The advent of innovative data-driven approaches based on Machine Learning (ML) and
Deep Learning (DL) has opened new possibilities in many fields. In the case of physics
laboratories around the world, the main applications of these techniques can be grouped
under the following macro categories:

• Data analysis and physics simulations: the large amount of data generated by
the physics experiments are traditionally stored and analyzed offline by physicists.
The application of ML and DL techniques to this field has led to the develop-
ment of new methods for data analysis and pattern recognition, which are able to
extract useful information from the data and to perform complex tasks such as par-
ticle identification and event classification [9]. Furthermore, the simulation of the
physics processes involved in the experiments is a very computationally intensive
task, which can be sped up by the usage of ML and DL models. In particular, the
simulation of particle collisions and their interaction with the detector are essential
to compare the experimental results with the theoretical predictions. This is a very
complex task, which is usually performed by Monte Carlo (MC) methods. The
usage of ML and DL models for this task has been extensively studied in the litera-
ture, for example in [123], where a generative adversarial network (GAN) is used to
generate simulated particle showers in a calorimeter, and in [31], where generative
neural networks are used to simulate clusters produced by particles in the ALICE
experiment at CERN. Finally, the speedup provided by these new technologies
opened the possibility to run complex analysis online in real time, during the data
acquisition phase, which enhances the quality of the data acquisition system [53].

• Computing and data storage: Physics experiments generate a huge amount of
data, which requires extensive computing facilities to store and analyze, along with

83

fast network connectivity. Consequently, interconnected computing facilities have
been developed all around the world, such as the Worldwide LHC Computing Grid
(WLCG) [12], which is used by the experiments at CERN. ML models have been
used to optimize the usage of these computing facilities, for example in [24] the
authors use ML models to analyze file transfer errors in the WLCG. [34] instead
presents a more general overview of smart automation systems for the computing
infrastructure.

• Control systems: The control system of a particle accelerator can record the
trend of all its variables. ML models can thus be trained on such data to perform
high-level control system tasks like advanced automations, smart alarm systems or
virtual sensors. This is the field of research which is most relevant to this thesis
and it will be discussed in more detail in the next section.

The first category represents a vast field of research, which builds directly upon
traditional data analysis and simulation techniques and concerns directly the physicists
working on the experiments. The ML models here are used directly for physics research,
with the goal of improving the quality of the data analysis and the accuracy of the
simulations, or to speed up the computation. The ground truth is usually known and
the models can be compared with the traditional methods to ensure their correctness.
Moreover, their application is usually specific to the particle physics community or even
to a certain experiment.

The second category is related to the computing infrastructure of the experiments
and it is usually studied by computer scientists and engineers. This is narrower field of
research, with fewer applications and a more limited impact. Nevertheless, it is relevant
not only to the particle physics community, but to all the scientific community and, in
general, to all the fields which require large computing facilities.

Finally, the third category deals with ML for the control system of particle accelera-
tors. This is a nascent field of research, which aims to improve the reliability, efficiency
and performance of the accelerators to enhance their scientific output. From an engi-
neering perspective, particle accelerators are similar to industrial plants, since they are
composed of complex equipment which needs to work together to produce the final prod-
uct. The main difference is that particle accelerators are usually less standardized, with
many experimental or prototype components, and they undergo continuous research and
development. For these reasons the control systems of particle accelerators must usu-
ally be more flexible and must be able to adapt to compensate the low reliability of the
underlying equipment. Still, the research on ML models in this field can easily benefit
the industrial sector, since many of the problems faced by the control systems of particle
accelerators are similar to the ones faced by industrial plants. At the same time the
industrial sector can provide useful insights and solutions to the problems faced by the
control systems of particle accelerators.

The main goal of ML models in the control systems of particle accelerators is to
improve the performance, reliability and efficiency of the accelerators. One way to achieve

84

these general goals is to have smart automation systems, which are able to perform
complex tasks autonomously. For example, the best way to recover from a fault in the
accelerator depends on the type of fault and on the current state of the accelerator.
A smart automation system would be able to predict or detect the fault, to classify it
and to perform the best recovery action autonomously, imitating the behaviour of an
expert operator. This chain of actions involves common ML tasks, such as anomaly
detection, fault prediction and classification, root cause analysis and optimal decision-
making. Another example is the optimization of the beam transport, which is a complex
task that requires the knowledge of the accelerator state and of the beam dynamics
physics. A DL model can be trained to evaluate the state of the accelerator without
coding all the implicit and explicit relationships between the different variables and the
diagnostic elements, and may be able to have an insight on the actual state even better
than a human looking at a single beam profiler. Then another model may be able to use
such information to optimize the setpoint of the different components to maximize the
performance of the accelerator.

Another approach is the introduction of models with the aim of helping the human
operators in their tasks. For example, a model could infer the value of a variable which
is not measured directly, but which is related to other measured variables. For example,
the number of beam diagnostics on a beam line is limited, but if it was possible to know
the beam current or the beam profile on any given position along the beam line, that
would greatly benefit the experts to optimize the beam transport. Virtual sensors could
also be used to summarize the state of a complex machine, highlighting the information
that matter the most for the operators. For example, often it’s not really interesting to
know the exact value of a variable, but it’s more important to know if it’s increasing or
decreasing, or just to be alerted when it’s not behaving as expected. By reducing the
number of variables to monitor, the operators can focus on the most important ones and
can react faster to unexpected events.

As we can see, the application of ML models to the control systems of particle ac-
celerators is a very promising field of research, with many exciting paths to explore and
large potential benefits for the scientific community. Already in 2018 [40] highlighted the
potential of ML models in the field of particle accelerators. In the next section we will
present a brief overview of the literature in this field.

4.2 Literature Review

In this thesis and during the Ph.D. we focused on the application of ML models to the
control systems of particle accelerators. Here we will present a brief overview of the
literature in this field. We will distinguish between four main categories of applications:
anomaly detection and fault prediction, virtual diagnostics, beam dynamics optimization
and industrial applications.

85

4.2.1 Anomaly detection and Fault Prediction

We already introduced the importance of anomaly detection and fault prediction in the
context of particle accelerators. In the literature we can find many examples of ML
models applied to this field.

In [33] the authors propose a complete pipeline for anomaly detection and evaluation
of the fault causes in beam transfer equipment at CERN. They deal with real data
from different asynchronous source, and they use Gaussian Mixture Models and Isolation
Forests as unsupervised detectors. The results are evaluated by comparing with the
logbook entries. [154] instead focuses on fault classification on the RF cavities at CEBAF
(Jefferson Lab). Several classical ML models as well as a LSTM network are compared
on the task of identifying the cause of the fault as well as the initial fault in a cascade of
faults. Random Forest and Decision Tree were the best performing models. [38] instead
presents an AD approach based on single time-series. In this work, which is validated on
data from the CERN LINAC4 RF plasma generators, the authors use an statistical and
machine learning methodologies to detect and analyze jitter and long time drifts in the
data which leads to reduced beam quality, as opposed to fault detection.

One of the most straightforward approaches to anomaly detection is the usage of the
residual prediction error of a forecasting or regression model. With the advent of DL
and especially recurrent neural networks, time series forecasting models have become very
powerful and could be applied directly to particle accelerators data. Different approaches
have been proposed in this field: [90] presented a classification model to predict safety
interlocks based on Recurrence Plots and Convolutional Neural Networks (CNN). An
anomaly detection method based on Recurrent Neural Networks is used by [156] to predict
faults on the RF system. In this case the facility accelerates a photon beam and the faults
are due to quenches, when a cavity loses its superconductive status. [89] offer a review
of time series forecasting methods in the field of particle accelerator, highlighting both
linear and non-linear models and their importance in different applications in particle
accelerators. An application on RF cavity faults based on a CNN classifier is presented,
while methods based on recurrent neural networks are only theorized and left for future
works.

More recently, [98] presented a method based on a LSTM network to predict faults
on the power supplies of a storage ring. The model predicts the temperature of various
components of the power supply based on its power output and room and cooling water
temperatures, and when the observed temperature deviates from the predicted one, a
fault is detected. [50] instead shows that anomaly detection techniques can have an
impact on accelerator performance even when applied to ancillary systems such as the
air cooling system. In this case an autoencoder architecture is used to detect precursors of
trips in the cooling system of the Collider Accelerator Complex at Brookhaven National
Lab. An autoencoder is implemented also in [65] to detect malfunctionings on the CERN
SPS Beam Dump System. In this case the model works on real time images and is trained
both on real data and on simulations.

Another way to prevent faults is predictive maintenance. Whenever a fault is due

86

to the degradation or aging of a component, it’s often much cheaper to replace the
component before it fails, rather than waiting for the fault to happen and then repairing
it. In [21] the authors propose a predictive maintenance model with the aim of reducing
the downtime of a proton therapy accelerator at PSI. They use a regression model to
predict the remaining useful lifetime of a component. Obviously this approach is only
possible if the assumption that the fault depends on aging of a component holds true,
and it’s possible to measure the degradation level. Faults due to other causes, such as
misconfigurations or unexpected events, cannot be predicted with this approach.

When dealing with anomaly detection, it’s often interesting to know the underlying
cause that generated a fault, or at least the variable that is most correlated with it. In
fact, this can be used by experts and engineers to understand the system behavior and
design a fix. For example, in [45] a supervised approach based on explainable machine
learning fault classification has been presented; in such work, several convolutional neural
networks are used and compared for binary classification of faults and then the Layer-wise
Relevance Propagation (LRP) method is used to identify the causes of the faults. The
work exploits multiple time-series coming from the Proton Synchrotron Booster (PSB)
at CERN.

4.2.2 Virtual Sensors

Virtual sensors are a very interesting application of ML models to particle accelerators.
The idea is to use a model to predict in real time the value of process variables which are
not measured. These variables are usually related to the measured ones, and the model
can be trained on historical data or on simulations to learn the relationship between
the variables. This approach can be used to augment the information available to the
operators, to replace faulty sensors or to display the information in a more intuitive way.

An interesting application of this approach is presented in [176]. In ultrafast electron
diffraction and microscopy a bunched electron beam is used, and the exact properties of
each bunch are required, such as the energy and energy spread. While it’s unfeasible to
measure such properties for each bunch in real time, ML models are used to infer the
properties of the unmeasured bunches based on the measured ones. A similar approach
is used in [43] to provide an estimate of photon pulse characteristics related to beam
positioning in a free electron laser. This can be used when real diagnostics are unavailable
or destructive. In this context ML models can provide the same results of a physics
simulator in a fraction of the time. [99] shows how a ML model can replace a destructive
diagnostic with a virtual one to measure the longitudinal phase space of a beam.

In [1] instead the authors use ML to model the rise in temperature on a target at J-
PARC when irradiated by a high power proton beam. The model is trained on historical
data and then can be used to know in advance the temperature of the target and detect
anomalous values.

87

4.2.3 Beam Dynamics Optimization and Optimal Control

Controlling the beam dynamics is a challenging task in many accelerators. Given the
large number of variables involved, it’s often difficult to find the optimal setpoint of each
beam transport element. Physics simulations are used extensively but they are very
computationally intensive and they are not always accurate. The field of research to
tackle these challenges with ML models is very active and many different applications
can be found in literature. Depending on the type of accelerator the optimization task is
defined on different metrics, but the general goal is to achieve a beam dynamics as close
as possible to the ideal one, which is usually defined by the accelerator design.

One noteworthy researcher in this field is A. L. Edelen, currently head of the Machine
Learning Department for the Accelerator Research Division at SLAC National Acceler-
ator Laboratory in California. In her Ph.D. thesis [41] she explored the use of ML and
especially neural networks for several applications in particle accelerators. For example,
she applied NNs to speed up physics simulations so that they could be used in real time
for optimal control and she studied transfer learning techniques to train a model with
simulations and then use it on real machines. She worked also on control for temper-
ature and resonant frequency of RF cavities. In [40] she presented an overview of the
opportunities for ML in particle accelerators, highlighting the potential of ML models in
this field. Later works from her and her research group focus on automatic evaluation
of image-based diagnostics with CNNs to be incorporated in feedback controls [39] or
Bayesian optimization aided by neural networks for optimal tuning of injectors [175]. In
fact, when dealing with direct optimization of control system parameters they focus on
methods based on Bayesian optimization, but use NNs surrogate models as a prior mean
for Gaussian processes.

A broad investigation on the use of ML models for optimal control of particles accel-
erators was presented also in [145]. The authors present the case study of an accelerator
which is designed to operate over a wide range of complex beam phase space distribu-
tions, where it’s impossible to switch between configurations just with a lookup table of
all the parameter settings. In fact, limited diagnostics, time-varying performance and
complex interactions between the different components make it difficult to guess the opti-
mal setpoint in all the possible scenarios. The authors propose a hybrid approach mixing
ML models and feedback-based model-independent methods. The former are used to get
between a neighborhood of the required machine settings for a given set of desired beam
properties and the latter are used to get to the exact setpoint and to track it continuously.

More recently, [149] shows the use of deep neural networks as predictive components
in a control loop, with the aim of controlling the linac output energy and its phase
oscillation. [42] instead used NNs to build a surrogate model of a synchrotron for orbit
correction, which maps orbit distortions into correction settings. In fact, in a synchrotron
the beam travels in a closed circular loop and even a small deviation from the ideal
trajectory can lead to a large error after many turns, and thus it’s important to correct
the orbit continuously. Similarly, [141] uses a neural network to calculate the orbit
correction in real time. [174] shows the usage of Reinforcement Learning to control the

88

beam trajectory, with a focus on how to transfer a model trained on a specific line to
similar beam lines. At CERN machine learning has been considered for a variety of
beam dynamics applications for the Large Hadron Collider (LHC) [6]. This includes an
autoencoder-based model to improve the quality of betatron-phase measurements, which
is fundamental to compute the optics correction, and a model to predict the beam lifetime
based on the control system configuration. This creates a data-driven surrogate model
of the accelerator, which can be used to find the optimal control system parameters
by using a standard optimization algorithm. A similar approach is presented also in
[70], where a beam dynamics model of a storage ring is built with a physics informed
neural network, so that the training becomes easier and more accurate. Reinforcement
Learning has been used to optimize trajectory steering at the AWAKE and LINAC4
beam lines at CERN [76], and free energy-based reinforcement learning (FERL) model
with clamped quantum Boltzmann machines (QBM) and multidimensional continuous
state-action space environments has been proposed as an upgrade [146].

4.2.4 Industrial applications

Many of the challenges in control systems of particle accelerators are similar to the
ones faced by industrial plants. For this reason, the research on ML models for particle
accelerators can benefit from the research on industrial applications and vice versa. For
example, Anomaly Detection is a very active field of research in the industrial sector,
where it’s used to improve the reliability of a plant or for quality assessment on the final
product. While a comprehensive overview of the literature on industrial applications of
ML is out of the scope of this thesis, we will cite here just a few examples of relevant
applications as an example of potential cross benefits between the two fields.

In this respect AD is surely one of the tasks where the industry has built a lot of
expertise, which could be brought to the particle accelerator community. For example
[102] presents a anomaly detection pipeline on industrial data from the semiconductor
manufacturing. An autoencoder model is deployed to detect defects on the final product,
in order to minimize the number of broken chips delivered to customers. The concept of
residual prediction error on time series forecasting in exploited in [95], where a Generative
Adversarial Network (GAN) is used to reconstruct the original data. A similar approach
is presented by [180], using a Variational LSTM model to learn a latent representation
of the data and then reconstruct it. A number of surveys of this field is available, like
[26] which focuses on unsupervised AD for industrial images and [134] which deals with
AD in wireless sensor networks.

Another area where the industry research is especially active is predictive mainte-
nance. In fact this is a crucial task to achieve resilient productive processes whenever
there are tool subject to wear, which is very common in industrial settings. For ex-
ample, [160] presents a multiple classifier ML method for predictive maintenance and
demonstrates its effectiveness on a semiconductor manufacturing maintenance problem.
A literature review on this topic is published in [182].

Other areas of interest for industrial applications which can have an impact on particle

89

accelerators are root cause analysis, explainability and interpretability of ML models,
which can contribute to understand the origin of faults in the machine. [19] offers an
example of research in this field in the context of industrial plants. Furthermore, methods
for design of experiments [5], transfer learning [111], and continual learning [28] can have
several applications in particle accelerators.

4.3 Summary and future directions

Throughout this chapter we have conducted a non-exhaustive review of the literature on
ML and DL research in the field of particle accelerators. We have seen how ML models are
being to improve the performance, reliability and efficiency of particle accelerators, and
how they can be applied to different aspects of the control system. We also highlighted
the close relationship between the industrial and the particle accelerator fields, and how
the research in one field can benefit the other.

In general, a growing number of researchers is exploring ML techniques for an in-
creasing number of applications, with different levels of success. This demonstrates the
interest and potential of this field of research. Nevertheless, many works appear to fo-
cus on very narrow problems, with a limited impact on the overall performance of the
accelerator. Applications to more challenging tasks, such as the automatic optimization
of the beam dynamics on a complete beam line are still sparse and hardly generalizable.
Reinforcement learning techniques are still rarely used, despite their potential to solve
complex online optimization tasks. Furthermore, many researchers are working on sim-
ilar problems from different point of views, but we lack a clear comparison between the
different results. The community is still fragmented, and often each research group starts
from scratch, without building upon previous works.

In this context, two initiatives have the potential to focus the efforts of the community:
RL4AA is a new collaboration which aims to bring together researchers from different
laboratories to share their knowledge and to work together on Reinforcement Learning for
autonomous control of accelerators [138]. The ICFA Beam Dynamics Mini-Workshop on
Machine Learning Applications for Particle Accelerators [17] instead is an event which
focuses on applications of ML to beam dynamics. Initiatives like these can help the
community to grow and to focus on the most promising research directions, while also
providing a common ground for comparison between different approaches. For example,
it would be interesting to develop a common benchmark for Reinforcement Learning
applications in particle accelerators, or common datasets which could be used to compare
different approaches and to evaluate the performance of new models.

90

Chapter 5

Anomaly Detection and Fault
Prediction

This chapter will describe in details the work performed to predict fault conditions on the
ALPI RF control system, introduced in section 2.3.4. Two approaches will be presented,
one based on classical ML section 5.2 and one based on DL in section 5.3. The ML
theoretical foundations presented in chapter 3 are here used in practice to achieve the
best results.

Accelerator fault conditions can be seen as anomalies in the stream of data produced
by the sensors. For this reason, the data analysis here presented focuses on Anomaly
Detection, with the purpose of identifying as early as possible trends or points which
significantly differ from the normal conditions. These can be early indicators of possible
fault conditions, with the ability both to predict a fault and potentially to indicate its root
cause. We choose a semi-supervised approach, where artificial labels are automatically
generated from the data and are used only to optimize the final threshold on the model
output. While the resulting models have been tailored to a specific use case, the methods
can be generalized to work on different subsystems of a particle accelerator and in general
can be useful where there are complex control systems with multiple interconnected
systems, even in industries.

Before explaining the two approaches, we will first describe the dataset and the
computing setup and present the data acquisition and preprocessing phase.

5.1 Prerequisites

In this work, since the data is generated continuously by multiple sensors during the
operation of the machine, each data point has a signal name, a value and a timestamp.
Thus, the objects of analysis are time-series, with the following properties:

dynamic : in time-series, each point is not an independent choice from a random dis-
tribution, but its values is influenced by the previous values, or the overall trend.

91

discrete : the measurement is not continuous but, as all digital systems, is sampled at
specific timestamps.

multivariate : this term indicates the dimension of the series, or the number of different
sensors concurrently acquiring different signals. This means that the data does not
represent a single stream of a certain PV but multiple PVs during the same period
of time.

non-aligned : all the PV values are stored in the database by the archiver when they
change value, to reduce the space requirements. This means that the data is not
aligned, with all the values of all the PVs sampled periodically, but each point can
occur at any given time.

unsupervised : a dataset with ground-truth labels is not available.

Each of these point influences the choices on the methods to utilize and the prepro-
cessing phase, as will be discussed in the following sections.

5.1.1 Signals description

Here the main Process Variables involving the RF control system of ALPI will be pre-
sented, as they will be used as they represent the dataset of our ML analysis.

First, the controlled variables:

• Frequency Error: It’s the difference between the cavity frequency setpoint (80MHz)
and the actual frequency. The hardware controller is only able to measure it ab-
solute value, and thus cannot be used by the soft tuner procedure to decide the
direction of the motor movement for the frequency correction.

• Phase Error: It’s the difference between the cavity phase setpoint, as set by the
operator, and the actual phase. Since the phase is the derivative of the frequency,
it is used as the controlled variable in the soft tuner PID. The control loop is active
only when this goes over a certain threshold, to avoid moving continuously the
motors.

The cavity is a non-perfectly coupled RF load, and thus the power injected into the
cavity is partially reflected back to the amplifier. So the RF power is measured as:

• Forward Power: It’s the power injected into the cavity by the amplifier. Usually
in the range of 7− 30W during normal operation.

• Reflected Power: It’s the power reflected back from the cavity to the amplifier.
This may vary from a small percentage of the forward power to 100% depending
on the operating conditions.

92

• Net Power or Cavity Power: It’s the difference between the forward and reflected
power, and measure the power stored in the cavity.

The power is interesting to measure since it gives an indication of how well the control
loop inside the RF controller is working: if there is a surge in power this usually means
that the controller sees a big discrepancy with the setpoint.

Other useful process variables to monitor are the one referring to the cryogenic and
vacuum subsystems. While previous variables where relative to a single cavity, these last
variables are relative to a whole cryostat, so they affect 4 cavities.

• He tank level: It’s the filling percentage of the liquid Helium tank.

• He tank pressure: It’s the pressure of the liquid Helium. Fast surges or decrease
of this variable are often associate with lock failed events.

• Cryostat vacuum level: It’s the vacuum level inside the cryostat, usually around
10−8mBar.

Other less related PVs include the gradient setpoint, the field error, and the whole
setpoint and status of the cavity.

Figure 5.1: Soft Tuner GUI with one minute trend of the phase error and related PVs.
Source: Control Room GUI.

93

An example of these variables can be seen in Figure 5.1. It shows two graphs from
the GUI as shown to the machine operator, displaying one minute trend of the Process
Variables involving the soft tuner. The upper trend presents the cryogenic variables of
He level and pressure, while the lower one shows the phase error variation over time, and
the PID thresholds. The black line shows the tuner motor position in percentage and
the vertical lines indicates the motor moving to correct the phase error. It’s easy to see
that, thanks to the soft tuner control loop, when the phase error exits its deadband the
motors are activated to bring it back between the thresholds. Even so, some unexpected
events can bring the phase error quite distant from its setpoint, as can be seen in the
middle of the graph. This is how the lock failed events introduced in section 2.5.1 can
originate.

5.1.2 Computing setup

The code developed for this methods has been written in python, as it is the de-facto
standard programming language for ML and it provides multiple useful libraries. The
main ones used throughout this work are:

• Pandas [135], a data analysis and manipulation library which handles natively time-
series data. Its main data structure is called DataFrame which represent a table
with multiple columns and an index. Many methods are available to load data into
dataframes, and then to filter, merge, resample, slice them, among many others. As
a backend the popular scientific library Numpy is used, since it offers many performant
primitives to work on arrays. The index can store the timestamps or time deltas
associated with the values on the same row, which is very convenient.

• TensorFlow with Keras [22] Keras is a popular library to implement DL algorithms.
It provides a high-level interface to define neural networks and train them on a
variety of hardware, including GPUs. It is built on top of TensorFlow, a low-level
library which provides primitives to define and train neural networks. The Keras
library is used to implement the DL approach presented in section 5.3.

• Pyod [179] is a Python toolkit for detecting outlying objects in multivariate data.
It implements a wide range of algorithms, both belonging to the classical machine
learning and deep learning categories. The algorithms offer a standard interface to
the user and work on data with multiple features, even though they are not specific
for time-series, and thus cannot be applied directly to this use case. The Pyod
library is used to implement the classical ML approach presented in section 5.2.

• Matplotlib [66], used to create graphs and visualizations.

• Psycopg2 [130], a popular library to access a PostgreSQL database.

• Joblib [73], used to run python code in parallel on multi-core CPUs.

94

The development and prototyping of the code was carried out using JupyterLab, a
web-based environment to write and run pieces of code. This is a widely used tool in
the Machine Learning community as it allows to display together the code, its output
including graphs, and rich text to explain it. Initially the web server was run locally
on a desktop computer, but then a JupyterHub server has been installed on the Cloud-
Veneto [2], a cloud-based computing infrastructure hosted between Padova and Legnaro
supporting the research activities of the University of Padova and INFN. This allowed to
reach the development environment from any client, and to access much more powerful
computing capabilities. A virtual machine with 8 high performance CPU cores and 90GB
of main memory was allocated. This allowed to run some algorithms in parallel, fully
exploiting the CPU power without worrying about memory limitations. An NVIDIA
Tesla T4 GPU instead was used to run the DL training and inference. This GPU has
16GB of memory, which means that very large dataset could not fit in memory. Even on
this cloud infrastructure, often times computing time has been a limiting factor. Here
the data covered only one month of accelerator runtime, but when dealing with bigger
time slots a more powerful computing facility is suggested.

5.1.3 Data acquisition and preprocessing

The first step of this work consists of the data acquisition phase. Following the schema
of the EPICS architecture presented in chapter 2.3.2, the Process Variables (PVs) read
by the field sensors are exported to a common interface, the Channel Access (CA). The
Archiver is then setup to listen to this interface and store the values of the PVs to the
database. The Archiver keeps its configuration into an XML file which specifies a list
of PVs and their group. For each PV it’s possible to choose the sampling mechanism
between polling, where the value is stored periodically, and monitoring, where the value
is written to the database only upon changes. This second option has been chosen to
reduce the wasted storage space.

Figure 5.2 shows how the values of each PV is stored in the sample table of the
database. Each row of the table contains one point of the time-series of this particular
PV. The columns instead contain the channel_id which is an internal ID for the database,
the smpl_time and nanosecs which represent the timestamp with nanosecond precision,
the severity_id and status_id which is the status and alarm level of the PV, and three
columns for the actual PV value. In fact, the value can be both an integer, a floating
point or a string value. The three columns num_val, float_val and str_val contain the
value depending on its type, or null. Since python is able to handle different data type
dynamically, we want to import them as a single column.

For this purpose we can use the COALESCE SQL function, which chooses the non-null
value between float_val and num_val and returns it as a new column called val. Moreover,
we added a check that at least one of those is not null, to remove anomalous data
from the dataset. To run the query from python, the psycopg2 library is used. First a
connection to the database is created, and then multiple cursors can be opened on this
connection to execute queries and retrieve results. We decided to use a special copy

95

Figure 5.2: Example result of a basic query to the Archiver database.

query of PostrgreSQL, where the output is returned in the form of Comma Separated
Values (CSV). The copy_expert method of the cursor allows to copy the result directly
to a file handler, which is then compressed with gzip and written to disk. This allows
to execute a query which returns a lot of rows without loading them into memory all
together, which in this case required multiple gigabytes per cavity. Having the data
locally also has the advantage of not requiring to connect to the database each time and
to speed up execution. Finally, we saved a different file for each cavity and cryostat,
reducing the load times and memory requirements compared to a single large file. CSV
writes data in plain text, so it is not optimized for disk usage, but has the advantage of
being easily readable by a human.

Executing all the queries took about 8 hours, probably due to some missing indexes
on the database. The data is composed of about 670 million points totaling about 20GB
of CSV files, reduced to 7GB when compressed.

Once all the data is available in local, it is possible to load and start inspecting it.
One of the problems is the missing PV name column. In fact, the database does not store
the full name in the sample table, but just a reference ID, and then stores all the names
just once in the channel table. Since it is easier to reference each PV by its name, the two
tables must be merged. One option would be to join the tables during the SQL query,
but this would have slowed down the query even further. For this reason, an external
CSV file called db_ids.csv has been produced with pgAdmin where for each PV there is
information about its name, IDs, group and engine. In figure 5.3 some example values
from this file are shown.

Now this file can be used to add the PV names to the dataset. To do so, both the
file and the data are first loaded into Pandas dataframes, which can easily be joined
together. While loading the db_ids.csv file, a filter is applied on the PV names, to load
only the PVs relative to the RF control system which are needed for the analysis.

The merge operation to create the final dataframe requires the following steps:

96

Figure 5.3: Some values of the database internal references between PV names and IDs.

1. First the data object, which is the dataframe with the PV values, is merged to
event_pvs, which contains the PV names. This means that a column is added to
data with the PV name corresponding to the database ID.

2. The rows are sorted in chronological order.

3. A pivot operation is applied. This means that a new table is created, with one
column for each PV name from the channel_name column, the timestamps as row
indexes and the PV values from the original dataset in the intersection of the
corresponding PV name and timestamp. All the other values are set to NaN. Figure
5.4 shows an example of a pivot operation.

4. The column names are changed to keep only the suffix of the name. Since these
operations are applied for each cavity distinctly, there are no overlapping suffixes.

5. Finally, a new column with the net cavity power is added by subtracting the values
in the column of the reflected power from the ones of the forward power. This is
an interesting value often calculated by domain experts that will be part of the
following analysis.

6. With the ffill() method all the NaN values are replaced with the preceding value
in their column. This way, for each timestamp, the table contains the full set of
PV values at that moment in time.

We also compute an external list fail_ts containing all the timestamps where the
column Lkdf has becomes 1. This is the case when an "unlock" event is happening at
the corresponding timestamp, so we want to save this list to be used afterwards. A second
list is saved with the timestamps where the "lock" events are happening. The cavity is in
locked state, its normal operating mode, between a "lock" event and an "unlock" event.

97

Figure 5.4: An example of a pivot operation using Pandas.

The result of all the previous operations is a single dataframe for each cavity, con-
taining all the data about it, with timestamps as index, column names which indicate
the signal name, and the rows containing the most recent value of each signal. This is a
compact form, which is convenient for the analysis and easy to understand, as it mimics
multiple time-series flowing in parallel. Figure 5.5 shows some rows from the data of the
first cavity of the third cryostat.

Figure 5.5: The data from CR03-01 after the merge operations.

5.1.4 Event visualization

To better understand the data available, a useful first step of the analysis is data visual-
ization. In fact, just by plotting the time-series it is possible to visually inspect them and
start to evaluate possible ideas on how to proceed. For example, one may notice that a
certain variable is fixed at a certain value for the whole time, and thus it is probably not
very informative in regard to the advent of a fault.

98

Figure 5.6: The timestamps of the lock and unlock events are used to split the data into
Events.

The most interesting parts of the data are the last few minutes before a fault event
happens, where it is probably possible to notice unusual patterns. Conversely, all the
data collected while the cavity was not in the "locked" state, its normal operating mode,
must be discarded as it represent a completely different setup. For this reason the dataset
is now split into subsequences, called Events, beginning at the moment of a lock event and
ending with an unlock event, as shown in figure 5.6. This way, each section represents a
single unlock event and the temporal evolution of all the PVs before it. Obviously, since
each cavity is mostly independent from the others, only the PVs of the same cavity and
its cryostat are included.

To split the data into subsequences, or "events" as each subsequence represents the
data leading to an event, the two lists containing the timestamps of the lock and unlock
events are used. For each timestamps of an unlock events, the preceding timestamp of a
lock event is searched. We also decided to filter out events where the cavity remained in
the locked state for less than 2 minutes. In fact, in those cases the cavity was probably
not properly setup and thus it was never able to work in normal conditions. We are
interested in predicting patterns which bring a cavity from normal operating conditions
to an unlock event, so these events are not interesting. After this filter, the data for the
one-month accelerator run contains 169 lock failed events. With these events, an Event
object is instantiated and saved to a list. The Event class is a custom class which keeps
track of all the info about a single event, such as its preceding data and timestamps and
can be used to implement algorithms on this data as methods of the class.

The first method of the class which is here presented is a method to plot a synthetic
representation of the event. This is implemented using the subplotsmethod of matplotlib,
which enables to create multiple subplots on the same graph, sharing the x axis, which
represents the time. The result for one specific event on CR03-01 is shown in figure 5.7.

This plot covers the last 5 minutes before the unlock event. The moment of the event
can be noted thanks to the purple line on the second subplot, representing the locked
status, going to zero. Furthermore, the yellow area indicates the lock failed status. On
the first graph the cryogenics Process Variables are shown, that is the He tank level and
pressure. In the second graph, the red line represent the forward power level, the orange
one is the reflected power and the pink line is the net power, that is the difference between
forward and reflected. The area highlighted in green show the time when the tuner motor

99

Figure 5.7: A compact graph representing an unlock event, with the trend of the main
PVs on the last 5 minutes before the event.

was moving, to correct the phase error. On the third graph the tuner motor direction a
position are shown. It is important to show the direction as a lot of instabilities happen
when the motor inverts direction, due to its mechanical backlash. Finally, the last graph
shows the cryostat vacuum level and the coupler temperature.

As can be seen, the coupler temperature is fixed at 0K which indicates a broken
sensor, so this variable can’t be used. The vacuum level shows some oscillations, but
does not appear to be correlated with the cavity instabilities, or the probe is not accurate
enough to show them. The instabilities can easily be seen on the RF power. At the
beginning of the time period the forward and reflected power are almost constant, then
there is a period with some turbulence where the power is unstable and the motor has
to move to correct the error and at last there is a pick of power linked to the fault
event. Looking at the cryogenic values, the Helium level seems pretty random, while
the pressure shows a certain grade of correlation with the instabilities. In fact, when its
derivative increases, so does the RF power.

100

5.2 Classical ML approach

This chapter will describe an Anomaly Detection method for fault prediction based on
classical ML algorithms. Furthermore, we present an approach that exploits feature
importance to guide the definition of an optimal sliding window and feature extraction
on time-series.

Figure 5.8: The main steps of the proposed approach presented as a flowchart.

Figure 5.8 shows a flowchart which summarizes the main steps of the proposed fault
prediction pipeline. We start from the historical data divided into Events, as described
in the previous section. Then, a preprocessing phase is used resample the time series to a
constant sample frequency, to apply a sliding window and to calculate the feature which
will form the final training dataset. These features are then passed to an unsupervised
AD algorithm which will learn the normal behaviour of the system and will be able to
output and anomaly score for each sample. A high outlier score is used as an indicator
of an upcoming fault, since we expect to observe anomalous behaviours in the process
variables before a fault. So, by applying a threshold on the prediction loss it’s possible
to obtain a binary classification which distinguish normal trends from upcoming faults.
Finally, feature Importance is used to select the most important features and the best
sliding window length. All these steps will be described in detail in the following sections.

5.2.1 Feature Extraction

The basic idea is to use Pyod models, which are designed to work with multivariate data,
adapted to accept time series. To do so, the sliding window approach will be used, as it
usually the solution used in literature. Given a certain window, data is not fed directly to
the model but a number of features is calculated on the data, such as the average value
of a certain PV to reduce the dimensionality to a single array, without losing important
information.

The functions to apply to the window to extract the features can be of any kind, and
thus it is possible to come up with different ideas. Following the considerations about
the graph expressed above, the following features are calculated:

• Average value of the forward, reflected and net power, as well as the helium

101

pressure.

• Standard deviation of the same variables.

• Delta, the Difference between the last value and the first for each of the four
variables above. This is to capture the increasing, decreasing or flat trend of the
PVs.

• Motor moving time: the amount of time with the motor moving out of the whole
time window.

• Motor direction inversions: the number of times the motor has inverted direc-
tion during the time window.

To calculate these features a dedicated method can be implemented on the Event class.
Initially a window length of 15 seconds and a step increase of 1 seconds are chosen. This
means that the ending result has a point each second, calculated using the data from the
15 seconds earlier. It is important to use only data from earlier timestamps as in a real
world scenario using this software in real time during the accelerator runtime, the future
data is not available, obviously.

Usually in these cases the data is aligned to a certain time period, for example one
point each second, but in this case the events are recorded as they happen, so there
could be seconds with multiple points recorded and other where no event has happened.
This makes the calculations of the features not so trivial. For example, to calculate the
exact average value of a time series in a certain time window, one can use the following
formula:

avg =
(x0 · (tx1 − tinit)) + (x1 · (tx2 − tx1)) + ...+ (xn · (tend − tn))

T

where T is the window time period, 15 seconds, x0 is the last value in the time-series
before the begin of the window, tinit and tend are the timestamps corresponding to the
beginning and ending of the window. This is basically a weighted average, the weight is
the amount of time a value remains the same. If we avoid to adjust for time, fast spikes
with values much greater than the average could completely distort the measurement.
This formula is not easy to calculate since it requires one value outside of the time
window, x0, to calculate the time deltas, and to perform an inner product between two
non-aligned arrays.

Considering that this is an operation to be performed quite often during the analysis,
for example to test different parameters, it is important to implement the operation to
be as fast as possible. Source code A.1 shows one possible implementation. First we
define a feature dictionary, which is a data structure to represent a feature and all the
required information to calculate it. The dictionary keys represent the function to apply
to the columns in the second value of the tuple to obtain new columns with names in the
first part of the tuple. The feature names uses the same prefixes as the data. A suffix is

102

added according to their type, such as Av for average, Std for standard deviation or Dt for
delta. Then the resample method of Pandas is used to substitute all the rows belonging
to the same second with a single value which is the mean of the original values. After
this step the data has a fixed period and is aligned, with one observation each second.
This introduces a certain approximation with respect to the previous approach since the
values are not time weighted, but since the time deltas in the data are small and have
small variance, this is an acceptable approximation.

After that, a column is added to the output dataframe for each feature. The values
are calculated using only pandas native methods, like sum(), diff(), bfill(), which are
really fast. One noteworthy method is rolling() which provides an easy way to implement
rolling window calculations. For example to calculate an array where each value is the
sum of the values inside the sliding window for one of its positions, it is sufficient to write
df.rolling(window).sum().

Figure 5.9: The dataframe with the feature values. Each column has the name of the
feature, as presented in the code snippet A.1.

The execution time of the feature calculation with this function is just 3 seconds, as
compared to about 3 minutes when using the trivial python loops, which means that it
is 60× faster. The function is fast enough that it is possible to run it multiple times
with minimal slowdowns. The resulting dataframe, with all the values of the features is
shown in figure 5.9.

5.2.2 Model selection

Once all the features have been computed, Pyod models can be used to calculate the
outlier score. The models have a fit() method which uses the training data to set the
internal parameters. It is then possible to use this fitted model to get the outlier score
of new data. Finally, the output is re-scaled linearly to be in the [0− 1] range.

Initially three models have been selected among the available ones: Isolation Forest,

103

LOF and KNN. The first two have already been presented in chapter 3, while KNN is
a model which uses the distance from the Kth nearest neighbor as an anomaly score,
because it can be viewed as a density measure. In figure 5.10 the outlier score of the
event in event of figure 5.7 is shown.

Figure 5.10: The outlier score of the event CR03-01 N03 with three different outlier
detection models.

In this graph, the fault event happens on the far right of the plot, and the outlier
score of the last 5 minutes is shown. The outlier score is clearly increasing towards the
fault event, but the results vary a lot depending on the model and the particular event.

To check if there is a clear trend, the outlier score of all 169 events from all the cavities
has been calculated and the following representation (figure 5.11) has been produced. In
these graphs, the x axis represent the relative time remaining before each event. This
means that the fault event is always aligned to the far left of the chart, and the time
flows from the right to the left. On the right the time is 5 minutes before the event, while
going towards the left the time goes toward zero seconds before the event. The black
lines show the mean outlier score for each model, while the red one is the median. On
the background each individual score is plotted.

This graph is interesting as it shows that actually, there is a correlation between the
time remaining to the next event and the mean outlier score value. In fact, the mean
and median values are much higher next to the zero, than in the rest of the graph. This
gives hope to find a model able to calculate a score good enough to predict most faults,
while minimizing the false positives.

To complete the classification process, the following step is to use the outlier score to
classify each point either as an outlier or not. To do this, the standard technique based
on a threshold can been used, as presented in chapter 3.2.1. When the outlier score is
above a certain threshold the point will be classified as an anomaly. The value of the
threshold must be chosen to maximize the number of correctly detected anomalies while
minimizing the false positives. The F-score defined in section 3.2.3 represents both these
goals and can be used as a single benchmark to maximize.

This procedure requires to know the real correct label of each point, to be compared
to the one predicted by the model, to calculate the F-score. In this case the real label
is not available, but a good way to estimate the true label can be deducted from the

104

Figure 5.11: The mean (black) and median (red) outlier score for all the events, plotted
against the time remaining to the next event.

definition of outlier that we introduced in chapter 3.2.1. In fact, since we are interested
in anomalous points that precede a fault event, we can classify the points in the last few
seconds before an event as outliers. All the other points, occurring during the normal
operation of the machine will be classified as non-anomalous. The number of seconds
where the points are considered outliers can be chosen with some experiments, and in
this case it is set to 8.

Differently from other classification problems, here the data has time correlation.
The final goal is to detect a fault event, and not to correctly classify each point. This
means that it is sufficient to detect one point preceding an event as an outlier to reach
the optimal result. For this reason the calculation of the F-score must treat each event
as a single point. To check if any of the preceding points has been detected, the labels
are not binary values but are constructed to carry the number of the event, while the
normal points are set to −1.

Yi =

{︄
−1 ti < tevent − 8s

event.ID tevent − 8s ≤ ti ≤ tevent
(5.1)

The F-score can then be calculated with the source code A.2. In this piece of code,
the available_events are all the events that are present in the labels, meaning all the

105

labels with a non-negative value without repetitions. The TPs are calculated as the
intersection of the available events and the points predicted as outliers. The FPs are
the points predicted as ouliers whose real label has a negative value, since it is a normal
point. In this case the consecutive duplicates are removed as they refer to the same
underlying anomaly. FNs is the number of events present in the labels minus the number
of detected events. With these component it is possible to calculate the precision and
recall, and finally the F-score. Here the beta value is set to 0.75 as it produces a good
trade-off between FPs and FNs.

The F-score is now used to set the threshold to its optimal value. Since it is advisable
to run this procedure each time the model is fit, a new class called DeepicsModel (see source
code A.3) has been developed which wraps a pyod model and extends the fit() method
to search for the best value of the threshold. While pyod models are unsupervised models,
this new class represent a supervised machine learning model, since the labels are used to
set one of its internal parameters. As can be seen in the fit() method, the value of the
threshold is decided simply trying all possible values in a certain range and choosing the
one which gives the best F-score. The range depends on the average value of the outlier
score on the last few seconds before the fault, to accommodate for different models which
gives vastly different outlier scores.

With these methods it is now possible to compare the performance of different models.
The code above is run with different models from pyod and the training scores at different
threshold levels are recorded. The training data consists of all the events of a single
cavity, CR06− 01, as this single cavity accounts for 70 events out of 169. The graph in
figure 5.12 shows the resulting trend for the precision and recall scores.

In this graph it is easy to notice that when the precision is maximized, the recall is
reduced, and vice versa. The goal is to obtain a value as close as possible to the upper
right corner. The CBLOF model stands out as a clear winner. The pyod implementation
of this algorithm follows its theoretical design, as presented in chapter 3.2.4, but the score
only depends on the closest large cluster center. Looking at the numbers in table 5.1, the
best F-score on the training data is 0.95 corresponding to a threshold of 1.66× 0.477 =
0.796. 66 out of 70 events are correctly detected and just 3 false events are found.

Table 5.1: Results of the model selection.

Model TP FN FP Precision Recall F-score Time [s]
CBLOF 66 4 3 0.95 0.94 0.95 77.2

KNN 64 6 7 0.90 0.91 0.90 2.0
FeatBag 57 13 7 0.89 0.81 0.86 29.8

LOF 55 15 7 0.88 0.78 0.84 2.7
LODA 61 9 23 0.72 0.87 0.77 0.6
iForest 46 24 25 0.64 0.65 0.65 5.9

Another important parameter is the fit time, that is the number of seconds required
to fit the model. Usually more complex models perform better but require a lot of

106

Figure 5.12: Precision Recall plot comparing different models on the training score.

computing power. In this case, the CBLOF model is slower than the other models in
the list, but still requires a small amount of time. Other models are not included in the
comparison since they are far too slow to be used in a reasonable amount of time on
the given hardware. When the dataset grows, it may be reasonable to choose the KNN
model as its performance are still good, but the fit time is much faster. For the following
steps of this analysis, the CBLOF model will be used.

5.2.3 Experimental Results

In the previous section the models are compared based on the training score. This
represent the ability to predict data which is already known to the model. To assess the
real performances of the model it is necessary to test it with new data, and calculate
F-score of predicted values.

The first step is to split the data in two parts: the training and test dataset. The
first one is used to fit the model, while the second one to calculate its F-score. Since the
data is already split into events, these are further split into the two datasets randomly.
The 70 event from the cavity CR06-01 are here used, with 49 events in the train dataset
and 21 in the test one. The resulting training F-score is 0.84, lower than the previous
one since less data is now available. When predicting the test set, the resulting F-score

107

is 0.89, as shown in table 5.2.

Table 5.2: Results when predicting the test dataset.

F-score 0.899
Precision 1.000
Recall 0.762
TP 16
FP 0
FN 5

In the previous case the score is quite good, as it is not lower than the training score,
but it depends heavily on the random split of the dataset. There are some events that are
easier to model and other which are more complex, thus they can make a big difference
when they are assigned to the test or training set.

To avoid this kind of problems, cross validation can be used. This is a procedure
where the data is split into k parts: k − 1 parts are used as training set while the
remaining as test set. This is repeated k times, using each time a different part as test
set. The average F-score is then returned as a good approximation of the performance of
the model on new data. The joblib library is here used to execute the run function on all
the k split configurations in parallel. With this procedure the average F-score obtained
with 5-fold cross validation is 0.83± 0.24.

5.2.4 Permutation importance

To try and improve the previous result, one idea is to select the best set of features
to use. In fact, the features to calculate were chosen based on the knowledge of the
underlying physical processes, but they may not be optimal. If a feature does not bring
any useful information about the upcoming faults, it is better to remove it to reduce the
dimensionality of the input and the complexity of the model.

For this reason, the permutation feature importance procedure is used. In this tech-
nique the values of one single feature are randomly shuffled and the decrease of the F-score
is calculated. By executing it for each feature, it is possible to detect the features that
have most impact on the final F-score. By running this procedure, the results in figure
5.13 are obtained.

These results show that only one single feature is significative, the forward power
increase during the time window, with the other mostly useless. This is not a good
result, as it means that the model is not good enough to extract information from the
other features available. It is thus necessary to understand why this is happening and
how to fix this situation.

The first idea is to test a reduced set of features. In fact, many of the features are
highly correlated, and this could mean that shuffling one single feature is not enough to
affect the F-score. Unfortunately, this is not the case, as can be seen in figure 5.14

108

Figure 5.13: Feature importance.

Figure 5.14: Feature importance on a reduced set of features.

The F-score is still affected only by one feature, by a big margin. The overall F-score
calculated with cross validation is basically unchanged, with a value of 0.81± 0.30.

5.2.5 Window length optimization

The window length was set to 15 seconds, as it was deemed a reasonable value by looking
at the graphs, but there is no evidence that this is the optimal value. In fact, different
features may be more meaningful on shorter windows. To test this hypothesis, the
permutation importance procedure is run multiple times, with different window length
ranging from 2 seconds to 15. The resulting graphs is shown in figure 5.15.

This graph is quite interesting as it shows how each feature importance varies at
different window lengths. It is easy to notice that at 15 seconds only one feature is
important, coherently with previous observations, but with shorter windows other fea-
tures gain some relevance. The forward power delta feature gains importance when using
longer windows, probably because the delta value becomes bigger. Many other features

109

Figure 5.15: Feature importance with different window lengths. On the x axis there are
the different window lengths, while on the y the corresponding feature importance.

instead seem to be most significant below the 6 seconds length, probably because the
anomalous data is not appreciable much before the event, as can be seen in the graphs
of the outlier score (figure 5.11).

From this graph it is then possible to choose the best window length to use. In this
case 5 seconds is chosen because at this length at least 4 features have an importance
above 0.1. In figure 5.16 it is possible to see how the window length has changed the bar
plot of the feature importance compared to figure 5.13. By using this new window length
and the reduced set of features with an importance of 0.1 or more, the cross validation
F-score increases to 0.87± 0.19. This is small but clear improvement.

5.3 Deep Learning approach

This section presents a work on the same anomaly detection and fault prediction task
addressed in the previous section, but using a different approach. The goal is to detect
anomalies in the RF control system data and use them to predict unlock events. Instead
of using classical ML models which require manually extracted features, a deep learning
approach is used. This approach is more flexible since it can be more easily applied to
different systems with different process variables. Furthermore, deep learning models
have shown the ability to learn complex patterns in the data, which may result in more
accurate predictions. The flowchart in figure 5.17 summarizes the main steps of the

110

Figure 5.16: Feature importance with the optimized window length of 5s.

proposed approach. This pipeline builds upon the work presented in section 5.2; with

Figure 5.17: The anomaly detection pipeline with time-series forecasting.

respect to the original work, the main differences are highlighted in blue: previously
an anomaly detection model was run on a set of manually extracted features to obtain
the outlier score, now the score is calculated from the prediction loss of a time series
forecasting model fit on the original data. The main idea is that a good prediction model
should be able to forecast the future value with a small error during normal operation,
when all the variable behave as expected, while the prediction error could be much bigger
for anomalous values. Thus, by comparing the prediction with the next value, as soon as
it is available, it’s possible to compute the prediction loss and use it as an outlier score.
The following paragraphs explain the details of this approach.

5.3.1 Dataset preparation

The dataset used in this work is the same as the one used in the previous section. It
is composed of the evolution over time of multiple process variables recorded by the RF
control system, and thus it is structured as multiple concurrent time series. Each data

111

point includes the PV name, the acquisition time and the value. In this case we decided
to work with the following PVs:

• Lock and Lock Failed statuses;

• Forward RF power;

• Tuning motor direction and moving flag;

• Cryostat liquid helium tank pressure.

0

25

50

75

100

RF
 p

ow
er

 [W
]

30 07:50
30 07:55

30 08:00
30 08:05

30 08:10

Sample time

195.0

195.5

196.0

196.5

He
 P

re
ss

ur
e

[m
Ba

r]

Figure 5.18: The trend of the RF power and He Pressure before an unlock event.

After splitting the data into events, the classical ML methods required to calculate
the custom features on a sliding window. In this case, we have to prepare the data to be
fed into a neural network, and thus three transformations are required.

As can be seen in Figure 5.18, different PVs have different engineering units and
different scales, which is not ideal to be used as input to a neural network because it may
result in a slow or unstable learning process. For this reason, the data is first normalized
using the Standard Scaler, which imposed the data to be centered in zero, with unit
variance. As shown in equation (5.2), this is done by subtracting the mean value and
dividing by the standard deviation. The standard scaler is used in this case as the data

112

do not have an obvious maximum value and thus it’s not trivial to normalize it based
with respect to the maximum value.

z =
x− µ
σ

(5.2)

The second transformation is the resampling operation. In fact, time series models
expect to have an input with a constant and aligned sampling rate. Instead, the data
was recorded during the operation in an event driven way, meaning that each value is
written to the database as soon as it changes. This is useful not to lose any value and to
save storage space for slow-changing PVs, but is not very convenient during the analysis
of the data. Thus, all the data was resampled to the same sampling rate, simply using
the mean value in the sampling period as the new value. When no data was recorded
in the sampling period, the last valid value was propagated. The resampling operation
is performed with Pandas for performance reasons as explained in section 5.2.1. The
resampling period is an important parameter to choose: choosing a very fast sampling
rate the dataset size and the execution time increases exponentially, without adding any
meaning information, but a very long sampling period means losing a lot of information
due to the averaging.

Figure 5.19: A sliding window on time series example.

The final step is the creation of the actual dataset for forecasting using a sliding
window approach. This is a crucial part of the process to build the model, as it can have
a direct impact on the training of the neural network and the final result. An example

113

of sliding window application with a single feature is shown in Figure 5.19. From the
initial sequence of values of the time-series we want to create a set X where each sample
is a subsequent portion of the original data (with the correct time order), and a set Y
with the future value of each window. Given an element from the X set, our model will
be trained to predict the corresponding value in Y . There are many parameters that can
be adjusted:

• input PVs: this indicates which PV to include in the X samples;

• output PVs: which PV to include in the Y samples;

• lookback window: the length of the window;

• shift samples: how far in the future to predict in number of samples;

• batch size: the number of samples in a training batch;

• step size: how many samples to slide between one window and the next;

• window sampling rate: optionally subsample the values in the window to reduce
its size while keeping old values;

These parameters determine the forecasting horizon, which is selected aiming both
at proving accurate predictions in useful time and at considering typical dynamics of
a failure (ie. the amount of time on which anomalous behaviour start to verify before
the unlock event). Furthermore, the length of the window is adjusted to be able to
capture trends far in the past, while subsampling is then applied to limit the number
of points in the window. This enables the use of smaller models, which have a limited
number of nodes in the input layer. By applying the subsampling after the windowing,
the number of samples in (X,Y) is not artificially reduced. Finally, the obtained dataset
correlates one observation window with a future value, and thus can be shuffled without
any problem in order to obtain a more robust result.

A side effect of the sliding window operation is the explosion of the size of the data,
since each original point is repeated many times in the observation windows. For real
world use case, like the one presented in this paper, this can become a problem as it’s
easy to incur into memory limitation issues, even when using modern hardware. In fact,
with the naive approach the dataset is fully loaded on the device memory and can ex-
ceed its size, in this case the 16GB of memory of the available GPU. For this reason
the implementation of the dataset should use streaming data type which loads the data
in memory in chunks to avoid hitting the memory limit. In this case a custom rolling
window function with all the aforementioned parameters was developed, exploiting the
TensorFlow Dataset data type. This guarantees that data is streamed to the GPU in
chunks, instead of being loaded all at once. Furthermore, having a single function with
all the parameters allows to easily change the dataset parameters and test different con-
figurations. The figure 5.20 shows the implementation of the function, which shows the
complexity of dealing with the flexibility introduced by all the rolling window parameters.

114

Figure 5.20: The custom rolling window function.

5.3.2 Forecasting Models

Given the dataset described in the previous paragraph, three Neural Networks were tested
as forecasting models. The first one is based on Long Short Term Memory (LSTM)
layers ([63]). This architecture, introduced in section 3.3.4, can propagate a "state"
between inputs so that the output depends both on the input and on the state, effectively
exploiting the time dependency between the data points. In particular, LSTM layers are
designed so that the output does not depend only on the state from the last few nodes,
but can have long term dependencies.

As shown in Fig. 5.21, we chose to use a Neural Network with 2 stacked LSTM layers
with 64 units each, both returning the whole sequence of outputs of each unit. Thus, the
second layer receives in input these output and reprocesses them sequentially to obtain
new outputs. These are finally fed into a fully connected layer with a single output to
perform regression on the prediction value. A linear activation function is used on the
output neuron.

The second model was built using a Temporal Convolutional Network (TCN) from
[82]. We already introduce this type of NN in section 3.3.4, but we recall that this model
is based on 1D causal convolution layers arranged so that the output depends only on
the inputs from earlier in the sequence. Furthermore, by stacking the layers it’s possible
to obtain a large receptive field, meaning that the input sequence can be long and the
data dimensionality is reduced by the convolution. Skip connections can be added to
propagate the gradient between deep stacks of layers. In this case the complete network
is composed by a stack of 3 layers with dilations of 1, 4 and 16, 64 filters and skip
connections. After that a fully connected layer with 16 nodes precedes the single output
node with linear activation.

The aforementioned models both use the trend of multiple input time-series to forecast
a single value: the RF power. The choice of the single variable to forecast is arbitrary and
can have a big impact on the final results. An alternative approach is to forecast multiple
values at once and then combine the losses of each prediction to obtain a more robust

115

Figure 5.21: A simplified schematic of the LSTM based neural network architecture.

outlier score. Thus, we developed a third model, based on a TCN network, to predict
the forward and reverse RF power and the helium pressure. The dataset is changed to
include the three variables in Y and the output layer of the network is increased to 3
nodes. Finally, the average of the prediction loss in the three variables is used as the
final score.

The hyperparameters of the three model were chosen empirically balancing accuracy
and fit times, since the final goal is not to obtain a perfect forecasting model but to
produce a good anomaly score. These models are trained with the Adam optimizer for
10 epochs using the Mean Squared Error (MSE) loss function. The parameters of the
dataset presented in the previous section are chosen as shown in Table 5.3. This means
that the LSTM model predicts 30s in the future by looking at 1 value every 30 seconds
in the last 256 minutes, while the TCN models look at one value every 10s in the last 30
minutes and predict 10s in the future.

The three models achieve similar performance, with the LSTM network obtaining a
MSE 0.723 and a Mean Absolute Error (MAE) of 0.5222, while the TCN achieved a MSE
of 0.702 and MAE of 0.5229. The TCN predicting multiple variable reaches a MSE of

116

Table 5.3: Dataset preprocessing parameters

LSTM TCN TCN Multi
Data sampling period 0.5s 1s 1s

Input PVs All All All

Output PVs RF power RF power RF power,
He pressure

Lookback window 30720 1800 1800
Shift samples 60 10 10

Batch size 128 128 128
Step size 3 1 1

Window sampling rate 1/60 1/10 1/10

0.503 and a MAE of 0.4044. By computing the absolute value of the difference between
the predicted value and the actual value, it’s possible to obtain an outlier score for each
point. In fact, we expect the forecasting model to be less accurate on anomalous data
point. This can be observed in Figure 5.22, where the time series of all the prediction
errors in the last 300 samples before each event are shown. The prediction errors explode
in the last few samples before an event, indicating the presence of anomalous data and
thus anticipating the fault event.

5.3.3 Experimental Results

The outlier score obtained from the prediction error, as presented in the previous para-
graph can thus be used as an outlier score to predict faults, following the same steps of
the classical ML approach. In fact, given the outlier score the following steps are the
same.

A simple threshold function is used to classify each point between anomalous or not.
The value of the threshold must be chosen to maximize the number of true positive while
avoiding false positives and false negatives. For this purpose artificial labels were com-
puted from the Y dataset using equation (5.1): all the datapoints which are far from the
next events are assigned a label of -1, meaning that they are considered non-anomalous.
The samples in the last 5 seconds are assigned a non-negative value, identifying the cor-
responding event, to indicate that they are considered outliers. After that a threshold
is applied on the prediction loss and all the points are classified as either 0 or 1, where
1 is considered an anomalous point. Now, a fault is considered correctly classified if at
least one point in the last 5 seconds before its occurrence is classified as anomalous. Vice
versa, a false positive is counted for each sequence of 1s in the predicted labels which are
not in the last 5 seconds before the event. Finally, the correct threshold must be chosen.
This can be done by testing the F-score (defined in section 3.2.3) at different threshold
levels, and choosing the one that minimized it.

The results of this procedure for the three models are shown in Table 5.4. The metrics

117

−300 −250 −200 −150 −100 −50 0
Samples (fault event at 0)

0

20

40

60

80

100

120

140

Pr
ed

ict
io

n
er

ro
r

Figure 5.22: The prediction errors on the last 300 samples of all the events, aligned with
fault at sample 0.

are calculated using a 5-fold cross validation procedure, where the dataset is split into 5
folds and the training is repeated 5 times, each time using a different fold as test set.

Table 5.4: Fault prediction results

LSTM TCN TCN Multi
Fscore 0.578± 0.004 0.642± 0.006 0.691± 0.006

Precision 0.713± 0.025 0.743± 0.043 0.831± 0.023
Recall 0.419± 0.019 0.507± 0.036 0.516± 0.019
TP 25.6± 1.20 66.4± 4.92 67.6± 2.57
FP 10.4± 1.85 23.6± 6.65 13.8± 2.78
FN 35.4± 1.20 64.4± 4.71 63.4± 2.57

The results show that these models are able to correctly predict many faults with
few false positives. When compared, TCN models are more robust and obtain a higher
F-score than the LSTM one, and a further advantage is gained by predicting multiple
variables. The Precison-Recall plot in Fig. 5.23 shows the behaviour of the models when
changing the threshold level, and the TCN Multi outperforms the other on the whole
range of threshold. Moreover, the graph highlights that by accepting a lower recall value

118

it’s possible to reach high levels of precision, which may be useful depending on the use
case.

These results are comparable with the ones of a few classical ML models presented
in section 5.2, trained on the same dataset, even though they do not reach the F-score
of 0.87 of the best one. Even so, DL models have the unique advantage of being usable
without any manually crafted feature, which means that they are directly portable to
different environments and different kinds of faults. Furthermore, while the dataset
includes millions of data points, not all of them are usable to build the training models,
and they pertain only to a short time span of 1 month of operation, meaning that they
did not include much variability. Even if the DL training did not take into account the
faults, the data included less than 200 events, a very small number to build a confident
model. This is probably an advantage for simpler models, but by collecting more data
and recording more events DL models are expected to reach better performance.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision Recall Plot
LSTM
TCN
TCN multi

Figure 5.23: The Precision-Recall plot of the three models.

5.4 Conclusions

In this chapter we presented two separate approaches to the problem of fault prediction
in the RF control system of the ALPI particle accelerator. The first one is based on
the CBLOF method, while the second one uses LSTM and TCN networks. The original

119

data is composed of multiple time series of the process variables from a one month-long
accelerator run. After a preprocessing phase, where the data is split into events and
resampled to a constant frame rate, the actual training dataset is computed. In the first
approach, the dataset is composed of manually extracted features, while in the second
one the dataset is composed of sliding windows of the original data. Classical ML models
are trained to output an outlier score for each point, while DL models predict the future
value of the process variables and the prediction loss is used as anomaly score. In both
cases, the F-score is used to select the best threshold on the outlier score to distinguish
between normal and anomalous points.

The first method has led to good results, especially after the permutation importance
procedure which helped to identify the most relevant features and the optimal length of
the sliding window. The final F-score is 0.87 ± 0.19, which is a good result considering
the small number of events available. Even so, there are some aspects that require some
more investigation. For example, when dealing with events from different cavities the
model is less accurate. One possible improvement is to use a different threshold level for
each cavity or for each cryostat. More data is also required to gain enough confidence in
cavities with fewer events.

The second method, based on DL models, has shown promising results, with an F-
score of 0.691 ± 0.006 for the best model. This is comparable with the results of the
classical ML models, even though it does not reach the best result. The main advantage
of this approach is that it does not require manually crafted features, and thus it can
be easily applied to different systems and different faults. Furthermore, it is expected to
scale better with more data and more faults, which are not available at the moment.

At the same time, it would be extremely interesting to integrate these models in the
control system of the accelerator and to test them during the next run of the accelerator.
Since the control system is easily accessible and scriptable with python, the integration
is straightforward. By analyzing the behaviour of the models on real-world scenarios it
is possible to better understand their strengths and limitations to plan future upgrades.
Even if the models are not perfect, they could already bring some benefits to the accelera-
tor operation. For example, the models could be used to show a live graph of the anomaly
score to the operators, to help them understand how well the accelerator is working. In
fact, even if everything is running correctly, there is a big difference between a system
working at the limit of its capabilities and a system working with a lot of margin. An
operator could use this information to decide to adjust the operating parameters of the
RF control system to be more conservative to avoid possible faults or instead to push
the performance to the maximum. In this case the anomaly score could be considered as
a sort of health indicator of the accelerator and could fall under the category of virtual
sensors introduced in section 4.2.2.

In general, this experience highlighted the opportunity to introduce anomaly detec-
tion in the control system of ALPI and similar accelerators to improve the operation and
reduce the number of faults. This work could be extended to different subsystems of the
accelerator, with the aim of building a complete fault prediction and alarm system. Fur-

120

thermore, by analyzing the prediction models it could be possible to understand the root
cause of the faults and to improve the accelerator design to avoid them in the future.

121

122

Chapter 6

Reinforcement Learning for Beam
Emittance Optimization

6.1 Introduction

This chapter proposes a novel approach based on a RL model to tune online the control
system parameters of a particle accelerator and obtain the minimal beam emittance. The
approach is tested on the ADIGE MRMS beam line at INFN Legnaro National Labora-
tories to demonstrate its feasibility. As presented in chapter 2, this beam line includes an
electrostatic multipole with 48 independent voltage terminals, and thus represents the
perfect example of a beam transport element which is hard to tune manually.

As reported in section 2.5 and section 4.2.3, beam dynamics is one of the areas where
ML models can have a big impact on the performance of a particle accelerator. In fact,
it requires to compute the optimal setpoint of each beam transport element to opti-
mize a number of beam properties. In particular, the beam emittance is a fundamental
parameter which determines the quality of the beam and thus the performance of the
accelerator. We recall that the emittance is a measure of the spread of the beam in the
phase space, and thus a low emittance corresponds to a narrow beam with a small spread
of the particles velocities and positions. This is fundamental for the performance of the
accelerator, since a narrow beam can be focused more easily and thus can be accelerated
to higher energies.

Finding the configuration of all the voltage values of the multipole that minimize the
beam emittance is not trivial, given its high parameter space and its strong dependency
on the details of the real machine. As we highlighted in section 2.5.2, while it’s possible to
simulate the non-linearities introduced by the MRMS dipoles, they are highly dependent
on the actual position of the beam compared with the dipole, its focusing, energy spread
and the actual distribution of the magnetic field inside the dipole magnet. In practice,
the optimal solution can be found only by iteratively adjusting the configuration on the
real machine. For this reason, this problem is used as a first demonstration of the usage
of RL models for beam commissioning.

123

We want thus to develop a model which, given the real machine, is able to iteratively
converge to the multipole configuration which minimizes the beam emittance after the
MRMS. This model can be trained on a simulation but over time it can be fine-tuned on
the data from the real machine. The model should be generic enough to be able to reach
the correct solution even when the optimal value changes: our goal is for the model to
not learn a single optimal configuration but to be able to iteratively move towards the
optimal solution. In fact, the optimal solution is not static and depends on the beam
parameters, which can change over time. Learning a single solution with RL would be
equivalent to use any other optimization algorithm, such as the simplex method, while
learning a policy to move towards the optimal solution is a more complex task which
requires the ability to generalize to different situations. Furthermore, a good model could
be able to converge to the solution in far fewer step than any optimization algorithm,
as it incorporates the knowledge of the physics of the problem, and thus could be used
online much more efficiently. Given the time required to measure the beam emittance,
which is in the order of the minutes, moving from a method that requires hundreds of
iterations to one that requires just a few would mean moving from a timescale of hours
to minutes. This would be a huge improvement for the beam commissioning process.

6.2 Physics simulation

The standard approach to solve this kind of problems is to use an optimization algorithm
on a physics simulator. In particular, the TraceWin [166] simulator is used, a common
tool in the community. This simulator is able to compute the beam dynamics of a particle
beam along a beam line, with a configurable number of particles. Given a high enough
number of particles, the simulator outputs a beam distribution which can represent the
real beam.

First we need to define the beam line shown in figure 2.8 using the syntax of the
simulator. This is usually provided by the physicists who designed the line and is reported
in source code A.4. While a complete description of the syntax is out of scope for this
thesis, it can be retrieved on the TraceWin documentation [167]. The beam line is
simulated from the output of the charge breeder, which acts as an ion source for the
beam dynamics, up to the beam emittance meter at the exit of the MRMS. In particular,
we can highlight:

• lines 4, 7: the AD.SO.01 and AD.SO.02 solenoids

• line 12: the electrostatic field of the MRMS platform

• line 17, 55-59: the AD.BI.04 and AD.BI.05 beam diagnostics

• lines 20, 50: the AD.ST.04 and AD.ST.05 steerers

• lines 22, 24, 44, 46: the AD.1EQ.01, AD.1EQ.02, AD.1EQ.03 and AD.1EQ.04
quadrupoles

124

• lines 27, 41: the AD.D.02 and AD.D.03 dipoles

• lines 29 to 38: the AD.EM multipole

As can be seen the multipole is obtained as the superimposition of 4 different field maps.
The multipole has 48 independent terminals, and thus in theory our configuration should
contain 48 parameters. In practice, we are not interested in generating a skewed field,
and thus the terminals are connected to 24 power supplies symmetrically over the y axis.
Furthermore, since the non-linear effects introduced by the dipoles follow the order of
x2, x3, x4, etc. where x is the size of the beam envelope on the x axis, we chose to
correct them by using a linear combination of the fields of sextupole, octapole, decapole
and dodecapole. This effectively reduces the number of parameters to 4 and forces the
solution to follow the physics of the problem.

Figure 6.1: Example configuration of the multipole voltages.

Then, with the following formula we can derive the voltage value on all the terminals
(see Figure 6.1):

ϕ(ρ, θ) =
∑︂

n∈[3,4,5,6]

Anρ
n cos(nθ) (6.1)

where ρ is the multipole cilinder radius, θ is the angle of each high voltage terminal,
and An is the parameter to learn. This acts as a weight for each of the basic configurations
(sextupole, octapole, decapole and dodecapole), so that the final solution is a linear
combination of those.

125

6.2.1 Traditional optimization methods

Given the setup presented in the previous section, we can now use the physics simulator
to compute the beam emittance after the MRMS for a given set of An values. Then, we
can use an optimization algorithm to find the optimal configuration. In particular, we
can use the simplex method, which is a well known algorithm for the minimization of a
function and is integrated into TraceWin. The optimization is shown in figure 6.2. As

Figure 6.2: simplex method for the minimization of the beam emittance.

can be seen, the simplex method starts from a random configuration of the An values
and then iteratively moves towards the minimum. Initially the multipole does not correct
the aberrations of the beam and thus the beam emittance is high and its graph is not
a simple ellipse shape but appears distorted. Furthermore, the beam envelope after the
dipoles is not centered on the x axis, and thus the beam is partially lost. As the simplex
method iterates, the beam emittance is reduced and the beam envelope is centered on the
x axis. On the graphs on the right of the figure, we can see how the final configuration
is able to correct the aberrations of the beam and thus the beam emittance is reduced
to a minimum.

The algorithm is able to find the minimum in about 220 iterations, which can hand-
ily be performed on simulation, but would be unfeasible on the real machine. Further-
more, some experiments showed that the algorithm is not always able to converge to the
minimum when the number of parameters is increased, or the computation time grows
exponentially. For these reasons, this kind of methods can only be applied to small por-
tions of the beam line, with a limited number of parameters, and are not directly usable
online. Since no learning happens in the optimization, the algorithm is not able to trans-

126

fer the knowledge to a different beam line or to a different beam. Thus, the algorithm
should be re-run from scratch every time the beam line or the beam changes, which is
computationally expensive and time-consuming.

6.3 Reinforcement Learning approach

In this Section we present our approach for the development of a model able to find the
optimal configuration of the multipole high voltage values. The general idea is illustrated
in figure 6.3. Given a configuration of the multipole values we can simulate the beam

Figure 6.3: Reinforcement learning training and evaluation.

with the physics simulator and compute the beam emittance. Then, we can train a model
to perform actions, that is to change the multipole values, in order to reduce the beam
emittance. If the resulting emittance is lower than the previous one, then the model is
rewarded, otherwise it is penalized. The model is trained to maximize the reward, thus it
should learn to converge to the minimum beam emittance configuration. Since we don’t
want to learn a single solution, we build a RL model that learns to move the parameters
towards the optimal solution. Finally, once the model is trained, it can be used online
to change the multipole values on the real machine, hopefully converging to the optimal
configuration in few steps.

6.3.1 Python wrapper

To be able to execute the RL loop illustrated in figure 6.3, it’s necessary to integrate
the physics simulator into the RL algorithms, which are run from python. To do so, a
python wrapper was developed to run the simulator from python code and retrieve the
results.

The wrapper is implemented as a standalone python module, called pyTraceWin. It
provides a class called TraceWin with a few useful methods to interact with the simulator.

127

The main method of this class is run() which launches the simulator with a specific set
of parameters and waits for the simulation to complete. It exploits the possibility to
run TraceWin from the command line, without the graphical user interface, and uses
the subprocess python module to run the simulator as a subprocess. When run from the
command line, TraceWin accepts a few arguments to specify the project file to load, the
output folder and the parameters to change. The project file includes the description of
the beam line presented in source code A.4, while the output folder is used to store the
results of the simulation. The remaining arguments can be used to overwrite the values
in the project file, like the configuration of the multipole. The wrapper then builds the
command line arguments and runs the simulator. Unfortunately, even though the GUI
is not executed, the simulator still requires a display to run, which is often not available
when running on a remote server. To overcome this limitation, the pyvirtualdisplay
python module is used to create a virtual display that the simulator can use. This allows
to run the simulator anywhere, but introduces some computing overhead due to the
creation of a virtual display every time a simulation is run.

Finally, other methods allow retrieving and parsing the results from the output files.
A python module from ESS (ess−python−tools) is used to parse the particle distribution
files. To minimize the I/O operations on the disk, which is often slow, the output path
is set to a ramdisk, which is a portion of the memory used as a file system. This allows
to speed up the simulation and the parsing of the results.

6.3.2 REINFORCE

The first RL algorithm tested was REINFORCE, a policy gradient algorithm introduced
in section 3.4.2. It was chosen for its simplicity and because it is a good starting point
to understand the basic concepts of RL. Furthermore, it can be easily implemented in
python from scratch.

To verify the feasibility of the approach and validate the code, we initially consider
a reduced version of the problem, where we make the following assumptions:

• The total number of parameters is reduced from 48 to 4, corresponding to the 4
basic configurations of the multipole as expressed by equation (6.1).

• We further reduce the parameters to just 1 by setting the value of the other 3 to
their optimal value. This is equivalent to consider only the sextupole component
of the multipole.

• As observation we use the x, x′ beam emittance graph image, which is a 2D his-
togram of the particle distribution in phase space on the diagnostic box at the end
of the MRMS. To further reduce the complexity of the problem, we reduce the
resolution of the image to 9x9 pixels.

• Our agent can only select two actions, that is to increase or decrease the value of
the parameter. The amount of the increment is fixed to 50, which is a reasonable
value for the operating range of the sextupole.

128

• We limit the number of steps in an episode to 10, which is enough to reach the
minimum beam emittance. Furthermore, we terminate an episode successfully if
the beam emittance is below a threshold of 0.15 mm mrad, or we abort the episode
if the emittance is above 0.7 mm mrad, as it is considered a minimization failure.
These little tricks are used to speed up the training process.

Now the optimization problem becomes a 1D problem, where we want to find the optimal
value of A3 to minimize the beam emittance. This is a much simpler problem, which
can be solved with a simple minimization algorithm, but it allows us to test the RL
framework and verify that it works as expected.

Another important design choice is the reward function. As we highlighted in sec-
tion 3.4, the reward function is a fundamental part of the RL algorithm, since it deter-
mines the behavior of the agent. In our case, we want to minimize the beam emittance,
thus we can use the following formula as reward:

rn = εn−1
x − εnx (6.2)

The reward is positive when the beam emittance decreases, negative otherwise, thus by
maximizing the reward the agent should converge towards the minimum beam emittance.

The next step requires to build the environment, that is the interface between the
simulator and the RL algorithm.

Environment

We define a class which implements the standard RL methods by using the TraceWin
simulator to perform an observation of the environment, perform an action and receive
a reward. This class is called TraceWinEnv and its main methods are shown in source
code A.5.

This class implements the reset() method, which is called at the beginning of each
episode to reset the environment to its initial state. In our case, this means to reset
the multipole parameters to a random value and run the simulator to obtain the initial
observation. The step() method is called at each iteration of the episode and performs
the following operations:

• It calls the _perform_actions() method to compute the new multipole parameters
given the actions of the agent. This method simply increments or decrements the
parameter values by 50, depending on the action.

• It runs the simulator with the new parameters and retrieves the results.

• It calls the _observation() method to compute the new observation, reward and
done flag following the logic presented in the previous paragraph.

129

Training

Given the environment defined in the previous paragraph, we need to define a policy.
This is a ML model which will receive the observation from the environment and will
output the action to perform.

In our case, we implement the policy in pytorch as a simple CNN with a conv2d layer
with 3 3x3 kernels and a single hidden fully connected layer of 10 neurons. The input of
the network is the observation, that is the 9x9 image of the beam emittance, while the
output layer is a vector of 2 values with the softmax activation function, corresponding to
the probability of performing the two actions. Figure 6.4 shows a schema of the network.

Figure 6.4: Policy network for the REINFORCE algorithm.

Then, the main training loop is implemented as shown in source code A.6. Initially
the environment is reset and the first observation is retrieved. Then, the policy network
is used to retrieve the probability of performing each action. The Categorical class from
pytorch is used to sample an action from the probability distribution. The action is
then performed on the environment and the new observation, reward and done flag are
retrieved. This process is repeated until the episode is concluded. Then, the the policy
network is updated by following the gradient descent formula 3.28.

Evaluation

The minimization problem as formulated in the previous paragraphs is quite simple to
solve, as the only free parameter has a clear minimum around −1200. While using RL
for such a problem is overkill, it allows us to test the code and train the model in a
reasonable amount of time. In fact, even thought the NN training is offloaded to the
GPU, the TraceWin simulator can only run on the CPU and, having to simulate a beam

130

composed of 10000 particles, it takes about 15 seconds to complete a single simulation,
even on modern hardware. This means that, even with a simple problem like this, the
training can take many hours. Unfortunately this is a big limiting factor and must be
carefully considered when designing the RL model.

(a) After 3 hours of training, ∼ 300
episodes and ∼ 1700 steps.

(b) After 20 hours of training, ∼ 3100
episodes and ∼ 11000 steps.

Figure 6.5: Policy learned by the REINFORCE algorithm.

An advantage of the simplified setup is that the policy network outputs two simple
probabilities, which can easily be visualized. In figure 6.5a we can see the learned policy
after 3 hours of training, while in figure 6.5a we can see the policy after 3 hours of
training. The orange line which shows the beam emittance when varying the multipole
parameter, with a clear minimum around −1200. As can be seen, the policy learns to
perform the correct action, that is to decrease the parameter value when it is above
−1200, and to increase it when below −1200. Even so, the probabilities of performing
the correct actions are not close to 1 and are quite noisy, even when the beam emittance
curve is very smooth. In fact, the policy does not know the current beam emittance value
and has to rely only on the observation.

In figure 6.5b instead we can see the results after 20 hours of training, corresponding
to about 3100 episodes and 11000 simulations. The policy is now much more stable
and the probabilities are closer to 1. This is due to the fact that the policy network
has learned to recognize better the beam emittance graph and thus it can perform the
correct action with higher probability.

Overall these results show that the RL approach is applicable to the beam emittance
minimization task and that it’s possible to learn a policy to perform the correct actions.
Nevertheless, the model has to scale to more parameters, to a higher resolution of the
observation and to perform steps of variable length. When these factors are taken into
account, the training becomes much more difficult and the REINFORCE algorithm is
not able to converge to a solution. One solution to improve performance is to replace
the return in the policy gradient formula 3.28 with and advantage function. This is a
common technique in RL and the simplest way to implement it is to subtract the average
return. This means that each action is rewarded positively only if it performs better

131

than the average. With this addition the learning process becomes more powerful and
can be extended to more parameters. Nevertheless, the training is still very slow and
more advanced techniques can be used to improve the performance. For this reason, we
decided to use a more efficient algorithm to scale to multiple parameters.

6.3.3 Proximal Policy Optimization

The Proximal Policy Optimization (PPO) algorithm was chosen for its flexibility and
popularity in the RL community. In fact, it requires very little tuning and it is able to
scale to complex problems. Furthermore, it is implemented in the Stable-Baseline3 [132]
library, which implements many RL algorithms in PyTorch with a unified interface.

Gymnasium Environment

The algorithms from Stable-Baseline3 require an environment which adheres to the
gymnasium interface, a standard API for creating RL environments. This is similar to
the environment in source code A.5, having the following methods:

• reset(): reset the environment to its initial state and return the initial observation.

• step(action): perform the given action on the environment and return the new
observation, the reward, the done flag and some additional information.

• render(): render the environment, usually by plotting the observation.

• close(): close the environment and free the resources.

When implementing the environment, we decided to restrict the problem the 4 pa-
rameter A3, A4, A5, A6 following equation (6.1) as this simplification injects some physics
knowledge in the model and guarantees that the solution is valid. Whenever it’s possible
to constrain an optimization problem with knowledge of the system it makes sense to
do so, as it reduces the search space and thus the complexity of the problem. Then the
policy network has to decide how to update each parameter. In the previous approach
the policy network had to decide whether to increase or decrease the parameter, but
this is not ideal when each parameter is close to its optimal value, as it may overshoot.
We decided to use a continuous action space, where the network can decide both the
direction of parameter update (increase or decrease) and also its amplitude. For this
reason, the action space is set to a gym.spaces.Box space, that is a vector consisting of 4
real values between -1 and 1. This value is then multiplied by a vector of coefficients
([200, 100, 50, 50]) to obtain the values to adjust the multipole setpoints. These coeffi-
cients were chosen by dividing the expected operating range of each parameter by the
maximum number of iterations per episode.

Furthermore, we decided to use a higher resolution for the observation, that is a 36x36
image of the beam emittance graph. This is the same observation used in the previous
section, but at a higher resolution so that the agent can better recognize small variations

132

in the graph. In fact, when correcting the high order parameters (A5 and A6) the effect
on the beam emittance graph is a distortion on the tails of the ellipse, which are not
visible at low resolution. On the other hand increasing the resolution means that the
policy network will have many more parameters and thus it will be more complex and
slower to train. Since the observation is a 2D image, the policy network was configured
to use a CNN with an architecture which satisfies the constraints given by the input and
output specifications. For simplicity the default CNN policy from the library was used.
This is composed of 3 convolutional layers, followed by a fully connected layer with 512
neurons and a final linear layer with 4 outputs.

The reward is calculated with the following formula:

rn =

(︄
εn−1
x − εnx +

In−1
l − Inl

a

)︄
∗ b (6.3)

where εnx is the emittance value at iteration n, Il is the number of lost particles on the
beam transport through the MRMS, a is a calibration factor which was set to a = 10000
(number of simulated particles) and b = 10 is a gain used to amplify the reward value.
Compared to equation (6.2), this last term was introduces to avoid a solution where the
beam emittance reaches its minimum due to heavy transmission losses. As before, an
episode is concluded when the emittance reaches a low threshold or when the number of
iterations in the episode reach a limit of 10.

Now, with this setup it’s possible to train the model using the PPO algorithm and
evaluate its ability to converge to the minimum beam emittance.

Results

The physics simulator is configured with a Sn19+ beam at 0.76MeV. To correctly simulate
the beam distribution the simulator calculates the complete dynamics of 10000 particles
along the ADIGE beam line. As we noted before, even on a high performance server, a
single simulation takes about 15 seconds to complete. GPU acceleration is used for the
neural network training, but the simulator does not support it and the simulation step is
responsible for most of the computing time. This is obviously a big limiting factor on the
amount of simulations that can be performed and thus on the complexity of our model.

Given this setup, the agent is trained for a few days and about 25k episodes. As can
be seen in Figure 6.6 the mean reward reaches a fairly constant positive value in relatively
few episodes. Instead, the average episode length requires more episode to stabilize to a
small value. This means that the training is actually successful and the model is able to
reach the minimum beam emittance in few steps. Around the 9000th episode the reward
decreases drastically and the mean episode length increases correspondingly. While this
behaviour was not expected, it’s probability due to the training escaping from a local
minima: the model explored different areas of the state action space, which resulted in a
lower reward for some episodes. Nevertheless, the training was able to recover by learning
the optimal behavior in all the situations, resulting in a more robust policy overall.

133

0 5000 10000 15000 20000
Episode

0.0

0.1

0.2

0.3

0.4

0.5
Re

wa
rd

2

3

4

5

Ep
iso

de
 L

en
gt

h

Reward
Episode Length

Figure 6.6: Mean reward and episode lenghts during training.

Finally, we evaluated the model by running the trained agent on new simulations,
each starting from a random configuration of the multipole. We observed that the model
is able to converge to a minimum 97% of the times with an average of just 2.2 steps.
This is a great result because, if it translates to the real machine, it means that the
model is able to converge to the optimal configuration in just a few minutes. This is a
huge improvement over the traditional optimization methods, which require hundreds of
iterations to converge to the minimum.

6.4 Conclusions

In this chapter, we presented a method based on reinforcement learning to train an
agent which is able to iteratively optimize the parameters of an electrostatic multipole
on the ADIGE beam line to minimize the beam emittance. This demonstrates the
feasibility of using reinforcement learning models to automatically explore in a smart
way the parameter space of a complex beam line and converge towards the optimal beam
dynamics solution.

A first approach based on the REINFORCE algorithm was presented, but it was not
able to scale to more parameters and to a higher resolution of the observation. Then,
a more advanced algorithm based on Proximal Policy Optimization was used to train a

134

model which is able to converge to the minimum beam emittance in just a few steps.
This is a great result, as it means that the model can be used online to optimize the
beam line in a few minutes, instead of the hours required by traditional optimization
methods.

Nevertheless, the proposed method requires further research to scale it to more param-
eters and evaluate its performance with a greater environment variability. In particular,
it would be interesting to test how much a trained model is able to adapt to a different
input beam or slightly different beam line, thus generalizing to different use cases. The
current results are obtained in simulation, but the actual performance on the real ma-
chine have yet to be tested. Finally, data from the real machine could be used to further
fine tune its behaviour and actually learn the peculiarities of a specific beam line. The
policy network architecture could be fine-tuned to the specific problem, for example by
decreasing its complexity to ease the training process. Furthermore, other algorithms
could be tested to improve the performance and the training time, especially Q-learning
based algorithms which are known to be more sample efficient.

From the experience gained on this work we can conclude that reinforcement learning
is a promising approach to the optimization of beam lines, but currently we are limited
by the computational complexity of the physics simulator. In fact, the simulator is the
bottleneck of the whole process, as it requires a lot of computing time to simulate even
a small beam line. Exploring the use of different physics simulators, especially GPU
accelerated ones, may be required to scale further the approach.

135

136

Chapter 7

Dynamic Sampling

We report here a work carried out during the last period of the Ph.D., which concerns
the application of data-driven techniques to the optimization of metrology plans. While
this project is not directly related to the main topic of the thesis, it is still relevant to the
research activity carried out during the Ph.D. as it is a good example of the application
of data-driven and ML algorithms to optimize industrial processes. Such techniques are
studied primarily for quality assessment in the manufacturing industry, but they can be
applied to a wide range of different fields. In the field of particle accelerators they can
be used to optimize the measurement plan when verifying the alignment of the beam
line, which means reducing the number of measures and speeding up the process. More
broadly, these techniques can be applied for the design of experiment task, where the
goal is to minimize the number of experiments or measures required to obtain a certain
level of accuracy. This is a very important task in the field of particle accelerators, where
certain measures are very expensive and time-consuming.

7.1 Introduction

Metrology operations are fundamental for quality assessment of production processes
[35]. However, these operations are often expensive both in terms of time and money
hence, it is pivotal to optimize metrology plans in order to guarantee a good trade-off
between production costs and final product quality. In many cases a set of measures is
required to assess a certain property of the measured object over its physical extension,
or between different objects produced by the same process. For example, if one wants to
verify that the thickness of the sheets of metal produced by a plant is within the accepted
range, measurements of the thickness need to be taken at many points across each sheet
[13]. When a dataset of past measurements is available, it is possible to exploit data-
driven techniques to build predictive models that exploit the spacial correlations between
measurements, allowing a subset of the available locations to be measured with the values
at the remaining sites estimated using the prediction models [124].

This optimization can have a great impact on a wide range of different industries.

137

As in the previous example, in many mechanical manufacturing applications different
quantities and properties need to be measured over a spatial domain to guarantee the
quality of the final product [119]. When working with particle accelerators a measurement
plan is used to verify the alignment of a beam line over hundreds or thousands of meters
with a precision of ∼ 100µm, which is critical for the correct transport of a beam to the
physics experiment [88]. In this case a temporal correlation is expected between different
alignment campaigns.

Another paradigmatic example of the need for good metrology plans is in the semi-
conductor manufacturing industry. Here electronic circuits are built up on wafers using
a complex sequence of chemical and photo-lithographic processes - including Chemical
Vapor Deposition (CVD) [150], plasma etching [137], ion implantation [172], and pla-
narization [151]. For each of these processes, key parameters such as the height of a
deposited layer, depth of an etched trench, etc., need to be measured at multiple loca-
tions (called sites) distributed over the wafer surface to ensure they are within specified
tolerances [69], otherwise the wafer is considered defective. In all these cases optimizing
the measurement plan is of critical importance, as the measurement equipment is typi-
cally expensive and can only measure sites sequentially resulting in a very time-consuming
operation.

For these reasons we design a measurement plan that allows the number of measured
sites on each unit to be reduced. We use here the term unit to denote the item being
measured, e.g. a silicon wafer or a metal sheet in our examples. We reduce the number
of measured sites from v (the total number of available sites) to k (with k < v). The
value of the measure on the remaining v − k unmeasured sites will be predicted using
a regression model exploiting the expected spatial and temporal correlations with the
measured sites. Thus the k parameter allows the measurement process to be adjusted to
be more precise (with higher k values) or faster and cheaper (using smaller values of k).
Given a certain k, set by the constraints of the manufacturing process, we can compare
the measurement plans in terms of prediction error.

In [129] the authors presented a method for optimal site selection in wafer metrology
based on an algorithm called Forward Selection Component Analysis (FSCA). Given
a unit, it iteratively selects the site which, taken with the previously selected sites,
minimizes the reconstruction error. FSCA is a "static sampling" algorithm, which means
that it only identifies a single set of sites to be used for measurement of all future units.
This approach reduces the number of selected sites, but there is the risk of missing
anomalies or important process information by having sites that are never measured on
any unit.

Dynamic strategies are thus preferable, where the set of measured sites changes at
every unit so that all the sites are eventually measured at least once, increasing the unit
coverage temporally, and thus creating a more robust and reliable measurement plan.
In [114, 158] the authors proposed spatial dynamic sampling techniques that are able to
guarantee that all candidate measurement sites are visited periodically, however, these
methods do not allow the user to specify a priori the allowable temporal sampling interval

138

(i.e the maximum number of units that can be processed before all sites are visited at
least once), or to directly trade-off spatial visibility for temporal visibility.

In this chapter we consider the temporally constrained dynamic sampling problem.
This formulation is especially useful when a production process runs with a certain peri-
odicity and we want to guarantee that each site is visited at least once in that period or
to satisfy regulatory constraints. To guarantee that the temporal constraint is satisfied
it is necessary to force the measurement of a number of previously unmeasured sites for
each unit over the measurement plan. To do this efficiently, while retaining the best
possible reconstruction accuracy, it is necessary to determine how best to distribute the
forced sites over the measurement plan and how to select the forced sites for each unit.
In the following section we explore a number of different approaches to addressing these
problems and, with the aid of extensive experimental evaluation, establish that an even
distribution of forced sites over the temporal window is optimal, and that a generalized
FSCA algorithm is the best methodology for selecting the sites on each unit. Thus, the
main contributions of this work are:

• A new formulation of the spatial dynamic sampling problem that allows the a priori
specification of the maximum number of iterations required to visit all the available
sites in the measurement plan.

• A novel dynamic sampling algorithm that optimizes spatial visibility (i.e. minimizes
the measurement reconstruction error per unit) while satisfying a temporal visibility
constraint.

• A generalized version of the FSCA algorithm that extends the algorithm presented
in the literature [131] by adding the capacity to preselect sites, and to specify the
sets of candidate sites from which sites can be selected.

7.2 Methodologies

In this section we provide an overview of existing methodologies used for spatial metrology
optimization. Typical optimization pipelines are composed of three main phases: the
first (optional) is to use Principal Component Analysis (PCA) to determine how much
redundancy there is among the candidate measurement sites - we can obtain a lower
bound on the number of sites that must be measured to achieve reliable results. If this
redundancy is high enough, we can proceed to the second phase, that is, the selection of
a subset of sites with one of the algorithms described in the following sections. The third
phase is the reconstruction of the remaining (redundant) sites using virtual metrology
models. Here, linear regression models are adopted, but more complex models such as
those found in [177, 71, 23, 78], can also be employed for this task.

139

7.2.1 Preliminaries

Let P = {P1,P2, ...,PM} be an M -unit measurement plan with Pi denoting the set of
k measured sites from the v available sites (with index set IV) for the i-th unit. In
general, the t-th unit in a production sequence will be measured using the sites specified
by P(1+tmodM). Static sampling corresponds to the case where the same set of sites is
measured on each wafer, i.e, M = 1.

For static sampling the optimum site selection problem can be formulated as

I∗S = argmin
IS⊂IV

||X− X̂(IS)||2F , s.t. |IS | = k, (7.1)

where X is an m× v matrix of historical measurements and X̂(IS) is the reconstructed
version of X using only measurements taken at the locations specified in IS . Here we
employ linear regression based reconstruction, that is, X̂(IS) = XISΘ, where

Θ = (X⊤
ISXIS)

−1X⊤
ISX (7.2)

and XIS is the subset of columns of X indexed by IS . FSCA provides a greedy search
approximate solution to this NP hard subset selection problem. We hereafter consider
this to be the optimal solution.

The resulting reconstruction accuracy (process visibility) may be quantified in terms
of the normalized mean squared reconstruction error, ER. This is defined over the train-
ing set as

ER(X, IS) =
1

σ2X

1

mv
||X− X̂(IS)||2F × 100% (7.3)

and over the m′ unit test set Z as

ER(Z, IS) =
1

σ2X

1

m′v
||Z− Ẑ(IS)||2F × 100%, (7.4)

where, Ẑ(IS) = ZISΘ, with Θ as defined in (7.2). The normalization factor σ2X is the
variance in the data observed over all measurement points for the training dataset, that
is:

σ2X =
1

mv
||X−X||2F , where xij =

1

mv

∑︂
ij

xij , (7.5)

and xij and xij denote the elements of X and X, respectively.
The choice of k is a trade-off between metrology cycle-time and spatial visibility (as

reflected in ER) and is typically chosen to achieve a specified reconstruction accuracy.
The site sampling interval τi is the interval between successive sampling of site i. The

Maximum Site Sampling Interval (MSSI) [114] is then defined as:

T = max
i∈IV

τi. (7.6)

140

For static sampling plans the MSSI in infinite, which leads to a risk of the appearance of
previously unseen process behaviour (at unmeasured sites) going undetected. Dynamic
sampling strategies seek to address this deficiency with static sampling by changing the
sites measured for each unit in a production sequence, such that all locations are visited
periodically. In temporally bounded dynamic sampling an upper limit is placed on the
acceptable MSSI, that is, we require that T ≤ Tmax for a given measurement plan P. If
we set M = Tmax then this corresponds to requiring

⋃︁M
i=1 Pi = IV . Thus, the temporally

bounded dynamic sampling problem can be formulated as:

P∗ = argmin
P

E

⎡⎣ 1

M

M∑︂
i=1

ER(X,Pi)

⎤⎦ (7.7)

subject to |Pi| = k ∀i, and
⋃︁M

i=1 Pi = IV . Note that for (7.7) to be solvable k and M
must be selected such that kM ≥ |IV |.

7.2.2 Forward Selection Component Analysis (FSCA)

The state-of-the-art algorithm for metrology optimization is called Forward Selection
Component Analysis (FSCA) [129], [131]. It is a simple greedy algorithm which provides
an ordering of the sites from the one with maximum contribution to the variation ob-
served in the dataset to the one with minimum contribution. Specifically, this algorithm
iteratively repeats two steps: a minimization step and a deflation step. In the first step
the algorithm selects the site i∗ that minimizes the reconstruction error over the dataset.
The unmeasured sites values are estimated as

X̂(x̃i∗) =
x̃i∗ x̃

⊤
i∗

x̃⊤
i∗ x̃i∗

X̃,

where X̂(x̃i∗) estimates X̃ by regressing on x̃i∗ . The deflation step (line 7 in algorithm 4)
is the projection of the matrix X̃ on the space orthogonal to xi∗ .

In algorithm 4 we introduce the pseudocode for a generalized version of FSCA, which
extends the original algorithm to allow for a finer control over the selection of sites. In
particular, the user can specify a set of preselected sites I0, which will be included in the
final set of selected sites, leaving the algorithm to select only the remaining k− |I0| sites
from the set of candidate sites IC . This functionality is useful for the dynamic sampling
algorithms presented later in this chapter. The original FSCA algorithm, as presented in
[129], corresponds to the case where I0 = ∅ (no preselected sites) and IC = IV (the set
of all available sites). Recently a lazy implementation of FSCA has been developed that
has similar performance to FSCA, but can be an order of magnitude faster to compute
[181].

141

Algorithm 4: Generalized FSCA (GenFSCA)
Input: X, k, I0, IC
1: IS ← I0
2: q = |I0|
3: X̃← X− X̂(XIS)
4: for i← 1 to k − q do
5: i∗ ← arg min

i∈IC
||X̃− X̂(x̃i)||2F

6: IS ← IS ∪ i∗
7: X̃ = X̃− X̂(x̃i∗)
8: end for
9: return IS

7.2.3 Sequential Dynamic Sampling (SDS)

The first dynamic sampling algorithm presented is called Sequential Dynamic Sampling
(SDS). It was developed in [114] and is heavily reliant on the effectiveness of FSCA. The
pseudocode for this algorithm is shown in algorithm 5. SDS proceeds in the following
way: it computes the k best static measurement sites with FSCA, and then uses these
locations as the centers of k clusters C = {C1, C2, ..., Ck} to cluster the remaining sites.
Each site is assigned to the cluster corresponding to the nearest FSCA selected site.
The measurement plan is then built by taking sequentially one site from each the k
clusters. Whenever a cluster is completed it restarts again from the first element in
the cluster. This proceeds until all elements of the largest cluster have been used. Of
course, this means that sites in small clusters will be measured multiple times. The
choice of the distance function for clustering is not trivial. In fact it has been shown that
a data-driven correlation function leads to overall better results (in terms of ER) than
the classic euclidean function [114]. In any case, the MSSI for this algorithm is equal to
the cardinality of the largest cluster among the k clusters, that is

TSDS = max
i=1,...,k

|Ci|. (7.8)

7.2.4 Induced Start Dynamic Sampling (ISDS)

The current state-of-the-art algorithm yielding the best spatial visibility performance
(i.e., minimum ER) for dynamic sampling is the Induced Start Dynamic Sampling (ISDS)
algorithm introduced in [158]. The key idea in ISDS is to preselect at each iteration an
initial subset of q sites at random from the set of currently unmeasured sites IU and then
to use FSCA to select the remaining k − q sites. The pseudocode for ISDS is given in
algorithm 6. Here, the I0 parameter of the generalized FSCA algorithm (algorithm 4),
called at line 5, is used to force the inclusion of q previously unmeasured sites. Parameter
q is a user-defined tuning parameter. A low value of q leads to low ER but high MSSI,

142

Algorithm 5: SDS
Input: X, k
1: IFSC ← GenFSCA(X, k, ∅, IV)
2: {C1, C2, ..., Ck} ← CLUSTER(X, IFSC)
3: for t← 1 to max

i=1,...,k
|Ci| do

4: for i← 1 to k do
5: Pt,i ← Ci,(1+tmod |Ci|)
6: end for
7: end for
8: return P

while a larger value increases the ER but reduces the MSSI. Choosing q = 1 is the best
choice for minimum ER, but results in the largest finite MSSI, while setting q = k yields
the minimum MSSI and the largest ER. This trade-off cannot be avoided for fixed k,
but ISDS allows it to be adapted to user need. While the MSSI for ISDS cannot be
determined a priori due to the potential for FSCA to select unmeasured sites at each
iteration, it follows that it is upper bounded by ⌈v/q⌉, that is:

TISDS ≤
⌈︃
v

q

⌉︃
. (7.9)

Algorithm 6: ISDS
Input: X, k, q, IV
1: IU ← IV
2: t← 1
3: while IU ̸= ϕ do
4: Istart ← select a subset of q random elements from IU
5: Pt ← GenFSCA(X, k, Istart, IV)
6: IU ← IU \ Pt
7: t← t+ 1
8: end while
9: return P

7.3 Proposed Methods

While SDS and ISDS provide some level of control over the MSSI, they do not opti-
mize ER over a specified temporal horizon and therefore do not address the temporally
bounded dynamic sampling problem, as encapsulated in equation (7.7). In this section we
present a number of novel temporally bounded algorithms that seek to leverage the extra

143

flexibility offered by having a MSSI budget to maximize ER performance. The underly-
ing assumption is that the MSSI bound Tmax is sufficiently large to provide flexibility in
site selection, or more precisely, that Tmax · k ≫ v.

7.3.1 Constrained Induced Start Dynamic Sampling (CISDS)

The majority of algorithms developed are based on the most effective algorithm in the
literature, ISDS. This can be constrained to make sure that no more than Tmax iterations
are required by selecting the value of the q parameter as follows:

q(t) =

⎧⎪⎨⎪⎩
0, if t = 1

min

{︃⌈︂
v−k

Tmax−1

⌉︂
, |IU |

}︃
, if t > 1

(7.10)

where t is the iteration counter, v is the total number of sites, k is the number of sites
measured per unit, and IU is the set of currently unmeasured sites. Here, q is set to zero in
the first iteration (t = 1) since initially there are no previously measured sites and FSCA
is guaranteed to only select unmeasured sites. Thus after the first iteration we are left
with v − k sites and Tmax − 1 iterations to visit them. To guarantee that the remaining
sites are visited at least

⌈︂
v−k

Tmax−1

⌉︂
previously unmeasured sites must be included at

each iteration, hence q is set accordingly for t > 1. Since FSCA may also potentially
select unmeasured sites at each iteration IU may become empty before reaching Tmax

iterations. To account for this case we set q = |IU | when |IU | <
⌈︂

v−k
Tmax−1

⌉︂
. The resulting

pseudocode, presented in Algorithm 7, is a minor variation on Algorithm 6.

Algorithm 7: CISDS
Input: X, k, IV , Tmax

1: P1 ← GenFSCA(X, k, ∅, IV)
2: IU ← IV \ P1
3: t← 2
4: while IU ̸= ϕ and t ≤ Tmax do
5: q ← min(⌈ |IV |−k

Tmax−1⌉, |IU |)
6: Iinit ← select a subset of q random elements from IU
7: Pt ← GenFSCA(X, k, Iinit, IV)
8: IU ← IU \ Pt
9: t← t+ 1

10: end while
11: return P

To assist with the understanding and reproducibility of this method and the following
ones, we report some example simulations of sequences of the q parameter produced using
the various methods here presented. In all the examples we assume that k = 6, v = 50
and Tmax = 22. By applying the formula in equation (7.10) we get q = 3 for all iterations

144

after the first one, as shown in Figure 7.1. The upper plot shows the evolution of q in
the worst case scenario where there are no "lucky choices", that is, where FSCA does not
select any additional sites from IU at each iteration. After 16 iterations all sites have
been measured and q drops to 0. This is much less than the specified Tmax due to the
impact of rounding which is dependent on the choice of input parameters. For example,
if instead Tmax is chosen to be 23 then q = 2 for all 22 iterations following the initial full
FSCA iteration.

The lower plot in Figure 7.1 shows an example where we FSCA selects an additional
previously unmeasured site at iterations t = [4, 8, 12]. As a result the number of elements
in IU decreases faster than the minimum rate to satisfy the MSSI constraint with all sites
measured after 15 iterations.

0

5

0

3 3 3 3 3 3 3 3 3 3 3 3 3 3
2

0 0 0 0 0 0

q(t)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
t

0

5

0

3 3 3 3 3 3 3 3 3 3 3 3 3
2

0 0 0 0 0 0 0

6

3 3
4

3 3 3
4

3 3 3
4

3 3
2

0 0 0 0 0 0 0

q(t)
New sites measured

Figure 7.1: Evolution of q(t) in CISDS with and without additional unmeasured sites
selected by FSCA.

7.3.2 Greedy CISDS

While analyzing how CISDS is built, it is evident that with FSCA free to choose new
sites both from IS and IU , at each iteration the total number of samples drawn from IU
may be greater than q. When this happens, the constraint for the next iterations can
be relaxed. The goal is to keep the total number of preselected ’forced’ sites as low as
possible to increase ER performance. This can be achieved by recalculating q at each
iteration as follows:

q(t) =

⎧⎨⎩ 0, if t = 1⌈︂
|IU |

Tmax−t+1

⌉︂
, if t > 1

(7.11)

While in equation (7.10) q depends only on the number of unmeasured sites after the first
iteration, here the parameter depends on the actual number of unmeasured sites after
each iteration. The CISDS pseudocode has already been reported in Algorithm 7. The
only adaptation required for Greedy CISDS is the adjustment of q in line 5 in accordance
with equation (7.11).

145

Figure 7.2 shows the sequence of q values with Greedy CISDS for the same simulation
settings as used with CISDS in Figure 7.1. While initially q = 3, as in CISDS, it drops
to two after the third iteration resulting in a more even distribution of forced sites across
the measurement plan. Since there are unmeasured sites until the last iterations, FSCA
has more opportunities to select sites from IU (i.e., at t = [16, 20]) and thus the total
number of forced sites is lower than in CISDS.

0

5

0

3 3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

q(t)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
t

0

5

0

3 3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1
0

6

3 3 3
2 2 2

3
2 2 2

3
2 2 2

3
2 2

1
2

1
0

q(t)
New sites measured

Figure 7.2: Evolution of q(t) in Greedy CISDS with and without additional unmeasured
sites selected by FSCA.

7.3.3 Step Up CISDS

The previous approach recalculates q to take into account additional sites drawn from
IU in earlier iterations, but is conservative with respect to future iterations. It acts as
if the following iterations would draw exactly q sites from IU . It might be better to
start optimistically, setting q to a lower value than what is needed, and hoping that
sites chosen by FSCA will also be from IU . Then, after a number of iterations, we start
increasing q to be sure to satisfy the MSSI constraint. The idea is to delay the "forced
site selection" as long as possible, so that in the end the total number of forced sites will
hopefully be significantly lower than with Greedy CISDS.

Specifically, we chose to compute q given k, the iteration t and the number of sites
yet to be measured r as:

q = f(t, r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if t = 1
1, if t < Tmax − ⌈ rk⌉+ 1
k, if t ≥ Tmax − ⌊ rk⌋+ 1

rmod k, otherwise

(7.12)

Initially the function always returns 1, as there are enough iterations in the future to
enable all sites to be visited, so that FSCA has the opportunity to select as many sites
from IU as possible. In the end as iterations are running out the function switches to

146

selecting k sites per iteration to comply with the MSSI constraint. If r is not a multiple
of k it may be necessary to select q = rmod k sites during one iteration. The algorithm
for this method follows directly from the previous ones.

The operation of Step up CISDS is illustrated in Figure 7.3. In the worst case
scenario (upper plot) the value of q remains at 1 for most of the measurement plan and
then steps up to 6 for the final four iterations. When FSCA selected unmeasured sites
at t = [4, 8, 12, 16] are assumed (lower plot) the step up period reduces to the last three
iterations. The drawback of this method is that if insufficient additional unmeasured
sites are selected by FSCA a larger number of the final iterations will be composed only
of forced sites, resulting in suboptimal ER performance.

0

5

0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4
6 6 6 6q(t)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
t

0

5

0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5
6 6 66

1 1
2

1 1 1
2

1 1 1
2

1 1 1
2

1 1

5
6 6 6q(t)

New sites measured

Figure 7.3: Evolution of q(t) in Step up CISDS with and without additional unmeasured
sites selected by FSCA.

7.3.4 Ramp Up CISDS

One could argue that in the Step Up CISDS method the transition from q = 1 to q = k
sites preselected from IU per iteration occurs too quickly. In order to study the behaviour
of the algorithm with a softer transition, q can be increased gradually by performing a
"ramp". This can be achieved by developing a function similar to equation (7.12), where
q increases from 1 to k in step increments, while guaranteeing the MSSI constraint is
satisfied. Algorithm 8 can be used to generate such ramp behaviour. This takes as its
input arguments the current iteration t ∈ [1, Tmax], the maximum number of measured
sites per iteration k, the number of remaining sites to measure r, the remaining iterations
u = Tmax− t+1 and the width of the ramp steps α. The notation "RAMP−1" indicates
the last element of the RAMP array. This algorithm simulates the current and all the
future iterations as if no sites are selected from IU by FSCA and forces the simulation
to be a ramp. Then, a new simulation is run at each iteration to take into account
the actual number of remaining sites. The algorithm creates an array of ones with its
length equal to the number of remaining iterations. This array represents the expected
q value at each iteration, so initially a single forced site is selected per iterations. After

147

that, starting from the end of the array more values are added to each cell until all the
remaining sites are included in the measurement plan. The last iterations will have up to
k forced site measurements (line 13), while iterations are filled with values from a ramp
(line 15).

Algorithm 8: Ramp Up Function
Input: t, k, r, u, α
1: Q← (1, 1, ..., 1) ∈ Ru

2: r ← r − u
3: if r < 0 or t = 1 then
4: return 0
5: end if
6: RAMP ← RampGenerator(1, k − 2, α)
7: i← 1; j ← 1
8: while r > 0 do
9: a← 0

10: µ← max(0, |RAMP | − 1− u+ i)
11: if r >

∑︁k
x=µRAMPx then

12: a← k − 1
13: else
14: a← min(r,RAMP−j)
15: j ← j + 1
16: end if
17: Q−i ← Q−i + a; r ← r − a; i← i+ 1
18: end while
19: return Q0

Algorithm 9: Ramp Generator
Input: from, to, α
1: RAMP ← ϕ
2: for i← from to to do
3: for j ← 1 to α do
4: RAMP .append(i)
5: end for
6: end for
7: return RAMP

The ramp is an array with values from 1 to k−2 included, which can be generated with
Algorithm 9. For example for k = 6 and α = 1 we have [1, 2, 3, 4]. Since this ramp will
be added to the array of ones, the values in Q will range from 2 to k− 1. The first index
(from the end of the array) to be filled with the ramp elements is selected by taking into
account the sum of the values in the ramp. Since the ramp could be cut at the beginning

148

of the array, µ is the first index of the ramp that fits inside Q and is used to sum only the
values actually fitting into Q. Finally, when the simulation is complete, the first element
of Q represents the q value to be used for the current iteration. This algorithm should
be called on line 5 of Algorithm 7 to set the q value, similarly to the previous methods.
The basic approach is to use a ramp with α = 1, so that RAMPi = RAMPi−1+1. This
may be the optimum choice for some cases, but for others the ramp rate may be too
high. Ideally we would like to distribute the forced site selection as evenly as possible
across the measurement plan to reduce the number of iterations where q = k. The slope
of the ramp can be reduced by increasing the α parameter, which indicates the number
of iterations to wait before increasing the value of the ramp. For example, if α = 2 the
ramp will be [1, 1, 2, 2, 3, 3, 4, 4]. The optimal α parameter can be tuned by finding the
value which minimizes the resulting reconstruction error, ER. Note that while the Q
array is simulated for all the remaining iterations, it is important to recalculate q with
a new simulation of the full Q array every iteration since the number of remaining sites
to select r depends both on the previous q and on the outcome of FSCA.

The results of applying the ramp algorithm to the aforementioned example problem
are shown in Figure 7.4 for α ∈ {1, 2, 3}. The α parameter is the width of the ramp steps,
meaning that a bigger α value corresponds to a slower increase of the q value. Then, to
guarantee that the total number of sites sums to v − k, some values of the ramp may
be cut at the beginning. For example, in the third subplot, the value 3 is missing from
the ramp, while in the third subplot, the value 3 occurs only once even though α = 3.
In these cases a lower value of q is enough to guarantee that all unmeasured sites were
covered by the end of the iterations.

As expected, q increases more gradually than in the Step Up method, and the total
number of forced sites is lower. In fact, the last few iterations are less likely to saturate
to k forced sites, creating the possibility of unforced unmeasured site selection by FSCA.
Furthermore, increasing α reduces the slope of the ramp further and the final iterations
do not saturate. Additional FSCA site selection was not considered in these plots, but if
this were to occur, it would further delay the onset and/or reduce the slope of the ramp,
reducing the risk of saturation towards the end of the measurement plan.

To further aid in the understanding of the different methods for choosing q in Fig-
ure 7.5 we present a comparison between the cumulative value of q(t) produced by each
method over the temporal window, Tmax for the sample problem introduced previously
and assuming worst case conditions, that is, no additional unmeasured site selection by
FSCA. Note that at the first iteration (t = 1) FSCA selects k unmeasured sites, so
q(1) = 0, while at the end of the measurement plan all v sites must be visited, hence,∑︁
q = v − k.
The plot includes two extremes, early limit which represents the earliest possible

selection of all sites, and delay limit which represents the latest possible selection of all
sites. In the former, the first iterations are all saturated at q = k (all sites are forced)
until all sites are visited at least once, while in the later unmeasured sites selection is
left to the very end, so that the last iterations all have q = k and all preceding iterations

149

0

5q

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
4 5 6 6 6= 1

0

5q

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 3 4 4 5 5 6= 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

t

0

5q

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 4 4 4 5 5 5= 3

Figure 7.4: Ramp Up CISDS selection of the q parameter, with different α values and
no additional unmeasured site selection by FSCA.

have q = 0. While these methods are not considered in the paper, they bound the site
selection behaviors that can be achieved with the proposed methods. It can be observed
that CISDS and Greedy CISDS have more forced sites early in the measurement plan,
while Step Up and Ramp Up (with different α values) delay the selection of forced sites
to later in the plan.

7.3.5 Double FSCA (DFSCA-Greedy)

In CISDS (Algorithm 7), and its variants introduced thus far, the q preselected elements
are drawn randomly from IU . This may not be the most effective way to select the
forced sites. To achieve an optimized selection, the q preselected sites can be chosen
using the FSCA algorithm, but forcing it to choose only among sites in IU that maximize
process visibility (i.e. minimize ER). The remaining k − q sites are then computed with
FSCA from the full set of candidate sites, as in the original CISDS implementation.
The resulting Double FSCA (DFSCA) process is applicable to all CISDS variants. The
pseudocode for DFSCA applied to the Greedy CISDS variant (equation (7.10)) is given
in Algorithm 10. Here, the first q sites are selected from IU on line 7 and the remaining
k − q sites are selected from IV on line 8.

7.3.6 Ramp Up CISDS with DFSCA (DFSCA-Ramp)

As a further test, DFSCA is also implemented with the most advanced technique for se-
lecting the q value, the Ramp Up CISDS algorithm. This implementation simply requires
calling Algorithm 8 on line 6 of Algorithm 10 to select the q previously unmeasured sites
at each iteration.

150

1 3 5 7 9 11 13 15 17 19 21
t

0

10

20

30

40

Cu
m

ul
at

iv
e

fo
rc

ed
 si

te
s (

q)

Early limit
Delay limit
CISDS
Greedy
Step Up
Ramp Up = 1
Ramp Up = 2
Ramp Up = 3

Figure 7.5: A comparison of the unmeasured site selection profiles obtained with various
temporally constrained dynamics sampling algorithms

7.3.7 Recursive FSCA (RFSCA)

The previous algorithms are based on different strategies for forcing the selection of
q unmeasured sites at each iteration, while accounting for the possibility that FSCA
will also select some previously unmeasured sites. However, FSCA is not restricted to
selecting sites from IU , so it may happen that the k − q sites are all selected from
previously selected sites. To avoid this, we can force FSCA to select all k sites directly
from the set of unmeasured sites IU at each iteration. This can be done by simply setting
IC = IU in Algorithm 4. After a number of iterations, IU will contain less than k sites
(eventually zero), so we can switch to the standard FSCA algorithm. The pseudocode for
the resulting algorithm, which we refer to as Recursive FSCA (RFSCA), is reported in
Algorithm 11. Note that RFSCA is an exemplar of the early limit site selection strategy,
as plotted in Figure 7.5.

7.3.8 Constrained Clustering SDS (CCSDS)

As noted earlier the MSSI of SDS is determined by the cardinality of the largest cluster
generated. As such, a temporally bounded implementation of SDS can be obtained if
the cardinality of the clusters can be upper bounded. In [49] the authors showed how
it is possible to obtain good clustering performance, while having a bounded maximum
cluster cardinality, using a modified version of Lloyd’s algorithm [97]. Lloyd argued that
constrained clustering can even outperform classical k-means if you have a good initial
guess for the locations of the centroids. In our setting, we can use FSCA to select the
initial centroids. Other than the constrained clustering modification all other aspects
of SDS (already detailed in Algorithm 5) remain unchanged. The pseudocode for the

151

Algorithm 10: DFSCA-Greedy
Input: X, k, IV , Tmax

1: P1 ← GenFSCA(X, k, ∅, IV)
2: IS ← P1
3: IU ← IV \ IS
4: t← 2
5: while IU ̸= ϕ and t ≤ Tmax do
6: q = ⌈ |IU |

Tmax−t+1⌉
7: Iinit ← GenFSCA(X, q, ∅, IU)
8: Pt ← GenFSCA(X, k, Iinit, IV)
9: IS ← IS ∪ Pt

10: IU ← IV \ IS
11: t← t+ 1
12: end while
13: return P

constrained clustering algorithm is presented in Algorithm 12. Here, correlation is used
as the distance function, and Iinit is the set of initial cluster centroids.

7.4 Results

7.4.1 Case studies and Experimental setup

In this section we evaluate the performance of the different temporally constrained dy-
namics sampling algorithms previously introduced for two case studies, both represen-
tative of spatial metrology applications in semiconductor manufacturing. The first is an
industrial dataset consisting of wafer metrology data for a process used in read–write
head formation within disk drive semiconductor manufacturing. A static measurement
plan with 50 sites (v = 50) has been used to measure 316 wafer profiles from a single
production tool. For confidentiality reasons the data is normalized and cannot be shared,
but the results can be compared with [114], which uses the same dataset. The second case
study (the RBF dataset), first introduced in [114], is a synthetic dataset consisting of
wafer height data at 100 measurement points (v = 100) on 1257 simulated wafer profiles
generated from the sums of randomly generated Gaussian Radial Basis Functions (RBF).
The wafer height z(x, y) at position (x, y) on the wafer surface is:

z(x, y) =

Ng∑︂
i=1

hi e

(︄
(x−cxi)

2+(y−cyi)
2

S2
f

)︄
+ ϵ, (7.13)

where hi ∼ N (0, 1), cxi , cyi ∼ U(−1, 1) and ϵ ∼ N (0, 0.02). The wafers are defined on
a unit radius disk centered at the origin (i.e. at (x, y) = (0, 0)) and the measurements
are subject to Gaussian measurement noise (ϵ). Equation (7.13) has two user defined

152

Algorithm 11: RFSCA
Input: X, k, IV , Tmax

1: IU ← IV
2: t← 1
3: while t ≤ Tmax do
4: if |IU | < k then
5: Pt ← GenFSCA(X, k, IU , IV)
6: else
7: Pt ← GenFSCA(X, k, ∅, IU)
8: end if
9: IU ← IU \ Pt

10: t← t+ 1
11: end while
12: return P

Algorithm 12: Constrained Clustering
Input: X, k, Iinit, IV , Tmax

1: for i← 1 to k do
2: ci ← XIinit[i]

3: Ci ← ∅
4: end for
5: while not converged do
6: for all j ∈ IV do
7: i∗ ← argmin

i=1,...,k
{distance(ci,xj) s.t. |Ci| < Tmax}

8: Ci∗ ← Ci∗ ∪ xj

9: end for
10: for i← 1 to k do
11: ci ← centroid(Ci)
12: end for
13: end while
14: return C

153

parameters, the number of basis functions, Ng, and the spread factor Sf which charac-
terize the process spatial variability. Following [158] we set Ng = 100 and Sf = 0.6. The
candidate measurement sites are taken from a uniform grid with a resolution of 0.05.

Since the performance of a dynamic sampling algorithm depends on the number of
measured sites, k, per unit and the specified MSSI limit, Tmax, we evaluate the perfor-
mance of our algorithms for different values of k and different MSSI limits. The minimum
MSSI achievable is inversely proportional to k, specifically it is computed as

⌈︁
v
k

⌉︁
, where

v is the total number of sites. To account for this, we evaluated algorithm performance
for MSSI values that were multiples of v

k , i.e. Tmax =
⌈︁
β v
k

⌉︁
with β = 1.3 and 1.7. Larger

values of β were not considered as the greater flexibility this provides in choosing q results
in algorithm performances approaching that of unconstrained ISDS which forces q = 1
unmeasured sites to be selected at each iteration.

The presented results are based on the statistics of the reconstruction error, ER as
defined equation (7.4), computed over 100 Monte Carlo cross validation simulations. In
each simulation 67% of the data is randomly selected for training and the remaining 33%
is used for testing. In the case of Ramp Up and DFSCA-Ramp results are presented for
the best performing α ∈ {1, 2, 3}. The optimal α values are noted in the tables.

We also report the performance of the unconstrained ISDS algorithm (q = 1) as this
represents a lower bound on the ER that can be achieved with temporally constrained
algorithms.

7.4.2 Performance Comparison

The mean and standard deviation of the reconstruction error ER (over 100 Monte Carlo
cross validation simulations) achieved by each method are reported in Tables 7.1 to 7.4 for
k ∈ {4, 5, 6, 7, 8}. Tables 7.1 and 7.2 are the results for the industrial dataset for β = 1.3
and 1.7, respectively, and Tables 7.3 and 7.4 are the corresponding results for the RBF
dataset. For each value of k, the best performing method is highlighted in bold font and
the second best method is highlighted in blue. A method is deemed to be better than
the next best method if the difference in their mean reconstruction errors is statistically
significant (p = 0.05). Otherwise they are considered equivalent. Consequently, for some
results presented there are ties for first place (e.g. for k = 5 in Table 7.1) and second
place (e.g. for k = 8 in Table 7.3).

To visualize the difference in performance between methods boxplots of the distri-
bution of ER over the 100 Monte Carlo simulations for each method are presented in
Figure 7.8 for selected k values for both the industrial and RBF datasets.

The results show that across all parameter combinations considered Constrained Clus-
tering SDS (CCSDS) is consistently the worst performing method, while DFSCA-Greedy
is consistently the best method. The other methods show more variability in performance,
with Ramp Up and DFSCA-Ramp Up in second place or joint first place for the indus-
trial dataset and DFSCA-Ramp and Greedy in second place for the RBF dataset. The
performance of Step Up is generally poor, and, as expected, is outperformed by the Ramp

154

CISDS
Greedy

Step Up
Ramp Up

DFSCA-Greedy
DFSCA-Ramp

RFSCA
CCSDS

0

20

40

60

80
Er

ro
r r

el
at

iv
e

to
 IS

DS
 (%

) = 1.3
= 1.7

Figure 7.6: Performance of each temporally constrained dynamic sampling algorithm
relative to ISDS.

Up and DFSCA-Ramp enhancements. RFSCA works well for low values of k but its per-
formance deteriorates as k increases. This is because RFSCA is an early limit method,
and as such the forced sites are distributed more equally when k is low. However, as
k increases the forced sites are concentrated in the early units, and the performance of
RFSCA deteriorates.

To enable aggregation of results across k values and datasets we define the relative
performance of each method with respect to ISDS as

EISDS =
ER − EISDS

R

EISDS
R

× 100% (7.14)

where EISDS
R denotes the reconstruction error with ISDS.

Figure 7.6 shows the EISDS for each method, averaged over both the Industrial and
RBF datasets and all values of k, for β = 1.3 and 1.7 (i.e., for Tmax =

⌈︁
1.3 · vk

⌉︁
and⌈︁

1.7 · vk
⌉︁
). As expected, the relative performance of each method improves when β is

increased, with EISDS reducing by between 40% and 60% for most methods. The excep-
tions are RFSCA and CCSDS with reductions of 29% and 6.6%, respectively, as these
methods do not explicitly take advantage of the extra flexibility afforded by the relaxation
of the temporal constraint.

Overall, the results clearly validate the assumptions made in Section 7.2: the best
performing methods are those that distribute the forced sites as evenly as possible across
the measurement plan, and those that employ FSCA selection of the forced sites from
IU rather than random selection. These assumptions are validated by the fact that
DFSCA-Greedy is the best performing method, since it incorporates both the Greedy
distribution of forced sites, which yields the most even distribution among the methods

155

investigated, and the FSCA selection of the q sites from IU . In fact, DFSCA-Greedy
achieves an overall relative error of 9%, which is half that of Greedy and DFSCA-Ramp,
the second best performing methods (EISDS = 18%). Ramp Up is in fourth place with
EISDS = 21%. The values for RFSCA, CISDS, Step Up and CCSDS are 25%, 27%, 36%
and 76%, respectively.

7.4.3 Forced sites distribution over the measurement plan

0 10 20 30 40
t

0

1

2

3

4

5

6

7

8

Fo
rc

ed
 si

te
s q

(t)

Forced sites - RBF Dataset - k=4 - Tmax = 1.7 v
k

CISDS
Ramp Up
DFSCA-Greedy

1 4 7 10 13 16 19 22
t

Forced sites - RBF Dataset - k=8 - Tmax = 1.7 v
k

CISDS
Ramp Up
DFSCA-Greedy

Figure 7.7: Forced sites trends.

Figure 7.7 shows the q(t) trends for the different methods on the RBF dataset, with
k ∈ {4, 8} and Tmax =

⌈︁
1.7 · vk

⌉︁
. Each line represents the mean q(t) value over 100 cross

validation cycles, while the shaded area highlights the minimum and maximum values
recorded. We can see that the average q(t) trends are in line with the example trends
presented in Section 7.2. CISDS accumulates all the forced sites at the beginning of
the measurement plan and the only uncertainty derives from the emptying of the IU
set. The Ramp Up method instead postpones the forced sites selection, and tends to
saturate towards the end. In contrast with Greedy selection, as employed in DFSCA-
Greedy, the forced sites are generally lower in number and distributed more evenly over
the measurement plan, which is linked to its good performance. In general, the plots
show that, while the additional unmeasured sites selected by FSCA do influence the q(t)
trend, their contribution is limited and the trends are dominated by the characteristics
imposed by the q(t) selection method.

7.5 Conclusions

This chapter has considered the problem of temporally constrained spatial dynamic sam-
pling for metrology optimization. We explored different methods of incorporating a con-
straint on the MSSI into spatial dynamic sampling techniques, providing the user with

156

the ability to specify a desired maximum temporal horizon Tmax by which all candidate
sites must be measured. This is a desirable property for such methods since it guarantees
that potential abnormal behaviors can be detected in a limited amount of time.

To satisfy the temporal visibility constraint it is necessary to force some previously
unmeasured sites to be visited at each iteration. We have proposed a range of strategies
(algorithms) for selecting the number and location of the forced sites on each unit across
the measurement plan, and evaluated their performance on real world and simulated
semiconductor manufacturing datasets. Our results show that distributing the forced
sites evenly over the measurement plan, and employing FSCA to select them from the set
of previously unselected sites, achieves the best overall performance. This combination,
which is embodied in DFSCA-Greedy, achieves a reconstruction accuracy performance
approaching that of the unconstrained ISDS algorithm that serves as a lower bound on the
achievable performance with constrained dynamic sampling approaches. On average, over
the various parameter and dataset combinations investigated, DFSCA-Greedy achieves
measurement reconstruction errors that are within 9% of the ISDS lower bound. This is
a factor of two better than the next best algorithm. For appropriately chosen k values
and/or more relaxed temporal constraints the difference between DFSCA-Greedy and
ISDS is much less. For example, in the Industrial case study, when k = 8 and β = 1.7
the relative error is less than 1%. As such, for practical deployment, DFSCA-Greedy is
the recommended approach for temporally constrained dynamic sampling.

157

ISDS CISDS
Greedy

Step Up
Ramp Up

DFSCA-Greedy
DFSCA-Ramp

RFSCA
CCSDS

4

6

8

10

E R
Industrial Dataset - k=4 - Tmax = 1.3 v

k

ISDS CISDS
Greedy

Step Up
Ramp Up

DFSCA-Greedy
DFSCA-Ramp

RFSCA
CCSDS

4

6

8

10

E R

Industrial Dataset - k=4 - Tmax = 1.7 v
k

ISDS CISDS
Greedy

Step Up
Ramp Up

DFSCA-Greedy
DFSCA-Ramp

RFSCA
CCSDS

0.8

1.0

1.2

1.4

1.6

1.8

E R

Industrial Dataset - k=7 - Tmax = 1.3 v
k

ISDS CISDS
Greedy

Step Up
Ramp Up

DFSCA-Greedy
DFSCA-Ramp

RFSCA
CCSDS

0.8

1.0

1.2

1.4

1.6

1.8

E R

Industrial Dataset - k=7 - Tmax = 1.7 v
k

ISDS CISDS
Greedy

Step Up
Ramp Up

DFSCA-Greedy
DFSCA-Ramp

RFSCA
CCSDS

12

14

16

18

20

22

24

E R

RBF Dataset - k=4 - Tmax = 1.3 v
k

ISDS CISDS
Greedy

Step Up
Ramp Up

DFSCA-Greedy
DFSCA-Ramp

RFSCA
CCSDS

12

14

16

18

20

22

24

E R

RBF Dataset - k=4 - Tmax = 1.7 v
k

ISDS CISDS
Greedy

Step Up
Ramp Up

DFSCA-Greedy
DFSCA-Ramp

RFSCA
CCSDS

4

5

6

7

8

9

E R

RBF Dataset - k=7 - Tmax = 1.3 v
k

ISDS CISDS
Greedy

Step Up
Ramp Up

DFSCA-Greedy
DFSCA-Ramp

RFSCA
CCSDS

4

5

6

7

8

9

E R

RBF Dataset - k=7 - Tmax = 1.7 v
k

Figure 7.8: Distribution of the normalised mean squared wafer profile reconstruction
error (ER) with each dynamic sampling algorithm for the industrial and RBF datasets
when k = 4 (top) and k = 7 (bottom) and the temporal constraint is Tmax =

⌈︁
1.3 · vk

⌉︁
(left) and Tmax =

⌈︁
1.7 · vk

⌉︁
(right)

.

158

Table 7.1: ER as a function of the number of selected sites, k, for the industrial dataset
when Tmax =

⌈︁
1.3 · vk

⌉︁
.

The values reported are the Mean ± standard deviation over 100 Monte Carlo simula-
tions. For each value of k, the best performing method is highlighted in bold and the
second best in blue, assuming a statistical significance level of 95% (p = 0.05).

Normalised Mean Squared Reconstruction Error (%), ER

k = 4 k = 5 k = 6 k = 7 k = 8
ISDS 3.41± 0.25 2.15± 0.15 1.38± 0.10 0.93± 0.08 0.70± 0.07
CISDS 4.73± 0.58 2.80± 0.34 1.86± 0.20 1.13± 0.14 0.84± 0.09
Greedy 4.47± 0.56 2.59± 0.28 1.69± 0.18 1.09± 0.11 0.78± 0.09
Step Up 5.91± 1.22 3.19± 0.57 1.96± 0.32 1.23± 0.18 0.87± 0.14
Ramp Up 4.83± 0.83

α = 3
2.49± 0.29
α = 3

1.62± 0.17
α = 3

1.08± 0.12
α = 3

0.78± 0.08
α = 2

DFSCA-Greedy 3.72± 0.28 2.29± 0.19 1.49± 0.13 0.98± 0.11 0.71± 0.07
DFSCA-Ramp 4.23± 0.63

α = 3
2.49± 0.37
α = 3

1.55± 0.14
α = 3

1.05± 0.11
α = 2

0.79± 0.09
α = 2

RFSCA 3.99± 0.44 2.75± 0.40 1.72± 0.18 1.21± 0.18 0.83± 0.10
CCSDS 7.15± 1.39 3.88± 0.55 2.09± 0.28 1.47± 0.18 0.99± 0.11

Table 7.2: ER as a function of the number of selected sites, k, for the Industrial dataset
when Tmax =

⌈︁
1.7 · vk

⌉︁
. The values reported are the Mean ± standard deviation over 100

Monte Carlo simulations. For each value of k, the best performing method is highlighted
in bold and the second best in blue, assuming a statistical significance level of 95%
(p = 0.05).

Normalised Mean Squared Reconstruction Error (%), ER

k = 4 k = 5 k = 6 k = 7 k = 8
ISDS 3.42± 0.27 2.11± 0.14 1.39± 0.12 0.94± 0.09 0.70± 0.06
CISDS 4.50± 0.55 2.39± 0.21 1.63± 0.17 1.02± 0.11 0.77± 0.08
Greedy 3.79± 0.38 2.25± 0.19 1.46± 0.11 1.00± 0.09 0.74± 0.07
Step Up 4.34± 0.71 2.50± 0.41 1.57± 0.17 1.09± 0.15 0.80± 0.10
Ramp Up 3.83± 0.49

α = 3
2.26± 0.20
α = 3

1.49± 0.14
α = 2

1.00± 0.10
α = 1

0.74± 0.08
α = 1

DFSCA-Greedy 3.62± 0.28 2.22± 0.17 1.46± 0.13 0.97± 0.09 0.70± 0.06
DFSCA-Ramp 3.95± 0.49

α = 3
2.22± 0.20
α = 3

1.44± 0.11
α = 3

0.99± 0.09
α = 3

0.74± 0.08
α = 1

RFSCA 3.92± 0.47 2.65± 0.36 1.68± 0.18 1.17± 0.16 0.82± 0.11
CCSDS 7.12± 1.13 3.86± 0.51 2.14± 0.26 1.44± 0.21 0.95± 0.13

159

Table 7.3: ER as a function of the number of selected sites, k, for the RBF dataset
when Tmax =

⌈︁
1.3 · vk

⌉︁
. The values reported are the Mean ± standard deviation over 100

Monte Carlo simulations. For each value of k, the best performing method is highlighted
in bold and the second best in blue, assuming a statistical significance level of 95%
(p = 0.05).

Normalised Mean Squared Reconstruction Error (%), ER

k = 4 k = 5 k = 6 k = 7 k = 8

ISDS 12.77± 0.34 8.09± 0.26 5.40± 0.18 3.67± 0.11 2.54± 0.08

CISDS 16.09± 0.52 11.24± 0.46 8.01± 0.38 5.57± 0.28 3.49± 0.17
Greedy 15.85± 0.43 10.72± 0.41 7.20± 0.29 4.81± 0.21 3.28± 0.14
Step Up 16.89± 0.69 11.91± 0.61 8.45± 0.58 5.86± 0.37 4.08± 0.40
Ramp Up 16.61± 0.64

α = 3
11.37± 0.59
α = 3

7.67± 0.43
α = 3

5.08± 0.35
α = 3

3.36± 0.16
α = 3

DFSCA-Greedy 14.55± 0.38 9.42± 0.36 6.36± 0.25 4.29± 0.16 2.97± 0.13
DFSCA-Ramp 15.15± 0.49

α = 1
10.08± 0.38
α = 3

6.96± 0.32
α = 2

4.99± 0.23
α = 1

3.45± 0.20
α = 3

RFSCA 15.24± 0.48 10.22± 0.35 7.08± 0.22 4.79± 0.24 3.30± 0.17
CCSDS 19.89± 0.75 14.83± 0.90 10.28± 0.67 7.48± 0.53 5.37± 0.41

Table 7.4: ER as a function of the number of selected sites, k, for the RBF dataset
when Tmax =

⌈︁
1.7 · vk

⌉︁
. The values reported are the Mean ± standard deviation over 100

Monte Carlo simulations. For each value of k, the best performing method is highlighted
in bold and the second best in blue, assuming a statistical significance level of 95%
(p = 0.05).

Normalised Mean Squared Reconstruction Error (%), ER

k = 4 k = 5 k = 6 k = 7 k = 8

ISDS 12.78± 0.40 8.08± 0.25 5.38± 0.18 3.67± 0.13 2.54± 0.08

CISDS 15.30± 0.50 9.56± 0.36 6.74± 0.25 4.30± 0.16 3.05± 0.13
Greedy 14.30± 0.45 9.35± 0.31 6.17± 0.24 4.12± 0.16 2.88± 0.12
Step Up 14.91± 0.51 10.21± 0.41 7.14± 0.36 4.90± 0.28 3.44± 0.22
Ramp Up 14.71± 0.56

α = 3
9.83± 0.44
α = 3

6.59± 0.32
α = 3

4.34± 0.19
α = 3

3.02± 0.16
α = 2

DFSCA-Greedy 13.81± 0.39 8.81± 0.30 5.87± 0.20 3.98± 0.14 2.81± 0.11
DFSCA-Ramp 14.53± 0.47

α = 2
9.51± 0.34
α = 3

6.46± 0.28
α = 3

4.34± 0.22
α = 3

3.17± 0.15
α = 3

RFSCA 14.68± 0.49 9.63± 0.38 6.72± 0.26 4.52± 0.20 3.15± 0.16
CCSDS 18.93± 0.63 13.82± 1.40 10.55± 1.09 6.85± 0.56 5.04± 0.34

160

Chapter 8

Conclusions and Future Perspectives

This thesis and the Ph.D. research projects focused on the application of innovative ML
and DL models to the control systems of particle accelerators. The main goal was to
improve the performance of the control systems, in terms of reliability, efficiency, and cost-
effectiveness. The research was carried out in collaboration with the INFN at the LNL.
Furthermore, we explored the use of data-driven algorithms to optimized measurement
plans in industrial processes.

First we explored the use of Anomaly Detection models to predict faults in the ma-
chine. The RF control system of the ALPI accelerator was used as a case-study given
the availability of a recent dataset containing runtime faults. Two different approaches
have been studied and evaluated: the first is based on simple unsupervised AD models
which calculate an outlier score from a static dataset composed of features extracted from
sliding windows of the original data. In the second method instead, the outlier score is
obtained as the prediction loss of a deep learning time-series forecasting model. In this
case the model does not require defining custom features but is able to learn complex
patterns from the raw data. Then, the F-score is used to select an optimal threshold on
the outlier score to distinguish between faults and normal data points.

The second area of research focused on Reinforcement Learning models applied to
the optimization of beam dynamics, which is a fundamental task in the setup of a run of
a particle accelerator. The goal is to find the optimal set of control system parameters,
which maximize the beam quality or to minimize the beam losses. We tested both the
REINFORCE and PPO algorithms, both policy gradient methods, to train a model on
the ADIGE beam line which could iteratively reduce the beam emittance by correcting
the configuration of an electrostatic multipole with 48 parameters. This single element
is used as an example in place of a more complete beam line where a high number of
parameters have to be tuned together to achieve the best beam dynamics, often requiring
online adjustments.

Finally, we studied the problem of constrained dynamic sampling for quality assess-
ment in industrial processes, which output a certain product at the end of a production
line. In these cases, the quality of the product is assessed by measuring a set of features

161

at different sites of the product, with the assumption that such measures are spatially
correlated. Data-driven strategies are employed to minimize the number of measures
required to achieve a certain level of accuracy. In particular, we want to guarantee that
all measurement sites are visited at least once in a certain number of iterations of the
process, while retaining the best possible measurement accuracy. This is useful to avoid
undetected defects on the production line resulting in anomalous measurement values in
any given site. We proposed and evaluated different strategies to force new sites to be
visited along the measurement plan, in order to fulfill the constraint. Distributing such
forced sites evenly across the measurement plan and choosing the actual sites with the
FSCA algorithm resulted in the best performance.

When discussing the results of the various methods presented in this thesis we high-
lighted the strengths and weaknesses of each approach. In particular, the results ob-
tained from the two AD approaches are comparable, with the simpler and lighter ML
model slightly outperforming the DL one. This indicates that in some cases deep domain
knowledge and good feature engineering, especially when combined with feature selec-
tion techniques like feature importance, can lead to excellent results without requiring
complex DL models. On the other hand, this approach is not very scalable and requires
a lot of time and effort to be applied to different systems. The flexibility offered by DL
models is therefore a great advantage, especially when the data is not well understood
and the features are not trivial to extract. Furthermore, while a large amount of data
was available, the number of faults was very limited, which means that it was difficult to
build a reliable statistics on the results. By collecting new datasets from future run of
the machine it will be possible to improve the performance of the models and to better
understand their limitations. In fact, different types of faults can be present in the data,
with some of them being extremely rare. The more variability and different scenarios are
included in the data, the more the model will be able to learn the underlying patterns.
In this case, the advantage of more complex DL models will become more evident.

However, this does not come without a cost. The computational requirements of
dealing with larger and larger datasets can easily become a limiting factor. In fact,
once the data can no longer fit in the GPU memory, the training process has to be
updated to streaming solutions, as we did in chapter 5. To speed up the training one
can consider scaling to multiple GPUs on the same machine. Then, when even the
host memory or processing power is not enough, the whole computing model has to
be rethought. In this case, the use of cloud computing platforms or large computing
clusters becomes necessary. This is a very common problem in the fields of DL and big
data, and requires the use of specific software frameworks like Spark or Hadoop, where the
computation is distributed across multiple machines. Thus, high performance computing
infrastructures are required, along with high quality, production-grade software to exploit
it. This is not always the case in research environments, where the focus is on the
scientific results and not on the software engineering, and it’s an area where experience
from the industry can be very useful. Nevertheless, this could easily become a limiting
factor or a hurdle to research in a world where models are becoming more and more
complex, with trillions of parameters. Researches should be able to focus on the scientific

162

aspects of their work, having easy access to the computational resources they need. For
this reason cloud computing platforms are becoming more and more popular, as they
allow to scale up and down the computational resources as needed, without having to
worry about the underlying hardware and provide high-level easy to use access to the
resources. The experimental physics research community has a long history of developing
and maintaining large computing infrastructures, without relying on expensive third-
parties, and should leverage it to provide modern solutions for the new computation
paradigms. In this sense initiatives like INFN-Cloud are very promising and should be
further developed and supported.

The work on Reinforcement Learning to optimize beam dynamics is a paradigmatic
example of these requirements. Even on a small scale beam line the simulation computing
time became the limiting factor, with limited options for scaling. On one side research on
sample efficient algorithms should be pursued, but on the other side even experimenting
with different algorithms requires a lot of computing resources. Thus, providing an
effective platform open to researchers could enable better research and finally better
models. Nevertheless, results presented in chapter 6 showed that combining physics
constraints and the RL framework it’s possible to learn an optimization model for the
beam dynamics. This means that the model, once trained mainly offline, can be used
online on the accelerator to optimize the beam transport by tuning all the control system
parameters. In linear accelerators this is useful on the beam preparation phase, while
synchrotrons can use these techniques for continuous orbit correction. The advantage over
traditional methods comes from the knowledge learned during training, which results in
faster and more accurate corrections, thus reaching the optimal objective function value
in few iterations.

The models presented in this thesis can be already tested on the real machine as aids
to the human operators, such as to indicate how well the RF control system is working
based on the online outlier score produced by the AD models. The RL model can be used
to optimize the beam dynamics in the ADIGE beam line, and the results can be compared
with the current manual procedure or other online optimization algorithms. However, ML
techniques like these have the potential to enable future control systems to run completely
autonomously, with all the beam transport and acceleration parameters automatically
tuned. This means that the operations of large facilities like particle accelerators or
complex industrial plants can become much more efficient, thus maximizing the scientific
output or the production yield. Both theoretical and applied research is needed to achieve
this goal, and a strong community of researchers and engineers is required to develop the
necessary tools and infrastructures. The interest for ML techniques inside the particle
accelerator community is growing as demonstrated by the many papers published in
recent years [76, 146, 98, 50, 99], and we hope that the work presented in this thesis will
further raise interest and awareness on the topic, finally contributing to the development
of the field.

163

164

Appendix A

Source Code

Features definition

2 features = {

’mean’ : ([’FrwwRd’, ’RflwRd’, ’NetwRd’, ’PresRd’],

4 [’FrwwAv’, ’RflwAv’, ’NetwAv’, ’PresAv’]),

’std’ : ([’FrwwRd’, ’RflwRd’, ’NetwRd’, ’PresRd’],

6 [’FrwwStd’, ’RflwStd’, ’NetwStd’, ’PresStd’]),

’delta’ : ([’FrwwRd’, ’NetwRd’, ’PresRd’],

8 [’FrwwDt’, ’NetwDt’, ’PresDt’]),

’sum’ : ([’Motr.MOVN’], [’MotrMov’]),

10 ’rising’ : ([’Motr.TDIR’], [’MotrRev’])}

12 # Output result

feature_df = pd.DataFrame()

14 # Resample to one point per second

data_by_step = data.resample(step, label=’right’).mean().ffill()

16 data_roll = data_by_step.rolling(window)

for func, io in features.items():

18 # Calc feature values

if func == ’delta’:

20 feature_df[io[1]] = data_by_step[io[0]].diff(periods = (window/

step)).bfill()

elif func == ’rising’:

22 feature_df[io[1]] = (data[io[0]].diff() > 0).resample(step, label

=’right’).sum().rolling(window).sum()

else:

24 feature_df[io[1]] = getattr(data_roll[io[0]], func)().bfill()

Source Code A.1: Fast feature calculation for classical ML models.

def calc_f_score(y_pred, y_true, beta=1.0):

165

2 available_events = len(np.unique(y_true[y_true >= 0].dropna()))

4 true_pos = len(np.unique(y_true[y_true >=0][y_pred].dropna()))

false_pos_all = y_true[y_true < 0][y_pred]

6 false_pos = false_pos_all.mask((false_pos_all.shift(1).notna())).count

().sum() #remove consecutive duplicates

false_neg = available_events − true_pos

8

prec = true_pos/(true_pos+false_pos) if true_pos else 0.0

10 recall = true_pos/(true_pos+false_neg)

f_score = (1+beta∗∗2) ∗ true_pos / ((1+beta∗∗2) ∗ true_pos + beta∗∗2∗
false_neg + false_pos)

12

return pd.Series({’f_score’:f_score, ’prec’:prec,

14 ’recall’:recall, ’true_pos’:true_pos ,

’false_pos’:false_pos , ’false_neg’:false_neg})

Source Code A.2: F-score, precision and recall metrics implementation.

1 class DeepicsModel(object):

def __init__(self, model, roll_t=False, beta=1.0):

3 self.model = model

self.thrs = None

5 self.roll_t = roll_t

self.beta = beta

7

get outlier probability , eventually averaged over roll_t seconds

9 def _probability(self, X):

I tried unify method but it’s much worse, using linear

11 y_prob = self.model.predict_proba(X)[:, 1]

y_prob = pd.DataFrame(y_prob, index=X.index)

13 if self.roll_t:

y_prob = y_prob.rolling(self.roll_t).mean()

15 return y_prob

17 # fit model and choose best thrs based on f_score

def fit(self, X_train, y_train):

19 self.model.fit(X_train)

y_train_prob = self._probability(X_train)

21

head = y_train_prob[y_train >= 0].mean().sum()

23 tail = y_train_prob[y_train < 0].mean().sum()

25 max_f_score = 0

166

best_scores = None

27 for rel_thrs in np.linspace(0.5, 2.5, num=81, endpoint=True):

thrs = rel_thrs ∗ head
29 y_pred = y_train_prob > thrs

scores = calc_f_score(y_pred, y_train, self.beta)

31 if scores[0] > max_f_score:

max_f_score = scores[0]

33 best_scores = scores

self.thrs = thrs

35

return best_scores

37

predict outlier probability of new data

39 def predict(self, X_test):

y_test_prob = self._probability(X_test)

41 return y_test_prob > self.thrs

43 def score(self, y_pred, y_true):

return calc_f_score(y_pred, y_true, self.beta)[0]

Source Code A.3: DeepicsModel class implementation. This wraps a pyod model to
extend the fit method to search for the best threshold value.

DRIFT 1e−008 150 0 0 0
2 DRIFT 214 150 0 0 0

DRIFT 112 150 0 0 0

4 AD.SO.01 : SOLENOID 320 0.375536 65

DRIFT 425 150 0 0 0

6 DRIFT 308.5 150 0 0 0

AD.SO.02 : SOLENOID 320 0.134319 65

8 DRIFT 88.5 150 0 0 0

DRIFT 190.5 150 0 0 0

10

DRIFT 200 150 0 0 0

12 AD.AT.01 : ELECTROSTA_ACC 120000 500 0.817421 50

DRIFT 200 150 0 0 0

14 DRIFT 42.5 150 0 0 0

DRIFT 42.5 150 0 0 0

16

Dia : DRIFT 1e−008 150 0 0 0
18 DRIFT 150 150 0 0 0

DRIFT 100 150 0 0 0

20 AD.ST.04 : THIN_STEERING 0 0 150 0

DRIFT 150 150 0 0 0

167

22 AD.1EQ.01 : QUAD_ELE 200 −9530.98 50 0 0 0 0 0 0
DRIFT 513.209 150 0 0 0

24 AD.1EQ.02 : QUAD_ELE 200 −2262.8 50 0 0 0 0 0 0
DRIFT 155.77 350 0 0 0

26 SUPERPOSE_MAP_OUT 1050 1050.0 0.0 0 0 −90
AD.D.02 : FIELD_MAP 70 1400 0 550 −0.200708 0 0 0 sd1b

28

DRIFT 4 350 0 0 0

30 superpose_map 0

AD.EM : FIELD_MAP 7 1200 0 150 0 −1230.72 0 0 MpoloV6b
32 superpose_map 0

AD.EM : FIELD_MAP 7 1200 0 150 0 −24.4137 0 0 MpoloV8b
34 superpose_map 0

AD.EM : FIELD_MAP 7 1200 0 150 0 −1.99093 0 0 MpoloV10b
36 superpose_map 0

AD.EM : FIELD_MAP 7 1200 0 150 0 −83.4286 0 0 MpoloV12b
38 DRIFT 4 350 0 0 0

40 SUPERPOSE_MAP_OUT 1050 1050.0 0.0 0 0 −90
AD.D.03 : FIELD_MAP 70 1400 0 550 0.200708 0 0 0 sd2b

42 DRIFT 4 350 0 0 0

DRIFT 151.77 350 0 0 0

44 AD.1EQ.03 : QUAD_ELE 200 −2262.8 50 0 0 0 0 0 0
DRIFT 513.209 150 0 0 0

46 AD.1EQ.04 : QUAD_ELE 200 −9530.98 50 0 0 0 0 0 0
DRIFT 50 150 0 0 0

48 DRIFT 50 150 0 0 0

DRIFT 50 150 0 0 0

50 AD.ST.05 : THIN_STEERING 0 0 150 0

DRIFT 50 150 0 0 0

52 DRIFT 50 150 0 0 0

DRIFT 50 150 0 0 0

54 DRIFT 100 150 0 0 0

dia : DRIFT 1e−008 150 150 0 0
56 DIAG_TWISS 22 0.0001 0.3 0.0001 0.3

DIAG_WAIST 20 0.001

58 DIAG_EMIT 30 0.1

end

60

Source Code A.4: ADIGE beam line definition for the TraceWin simulator.

1 class TraceWinEnv():

168

3 def _perform_actions(self, actions):

actions = np.array(actions)

5 decim = np.array([50]∗len(self.params))
self.params[actions >0] = self.params[actions >0] − decim[actions >0]

7 self.params[actions <=0] = self.params[actions <=0] + decim[actions

<=0]

return self._params_to_args(self.params)

9

def _observation(self):

11 # Parse resulting files

curr_run = self.get_current_run()

13

Calculate reward

15 res = curr_run.results

ex = res[res["##"]==48]["ex"].to_numpy()

17 ex_diff = (self.last_ex − ex)∗10
self.last_ex = ex

19

Calculate new state

21 distr = curr_run.dst

H, xedges, yedges = np.histogram2d(distr["x"]∗1000, distr["xp"]∗
1000, bins=9, range=[[−10, 10], [−20, 20]], normed=False)

23 state = H.T/(H.max()+0.0001)

25 # Calculate done

done = ex < 0.15 or ex > 0.7 or self.n_steps > 10

27 return state, ex_diff, done, ex # observation , reward, done, info

29 def reset(self, size=1, params=None):

self.n_steps = 0

31 self.params = params

if self.params is None:

33 self.params = np.random.randint(−1700, −700, size=size).astype
("float64")

state, _, _, info = self.step(np.random.randint(1))

35 return state, info

37 def step(self, actions): # {0: UP 1: DOWN}

self.current_run = None

39 self.n_steps +=1

41 # Decide new params given the actions

args = self._perform_actions(actions)

169

43

RUN simulation

45 self.tracewin.run(args)

47 # Return an observation

return self._observation()

Source Code A.5: TraceWin environment for the REINFORCE algorithm.

policy = PolicyNet()

2 env = TraceWinEnv("ramdisk/MRMS_config/CB_newMRMS_RFQ_Fields_1.ini")

optimizer = torch.optim.Adam(policy.parameters(), lr=0.01)

4 n_episode = 1

6 try:

while True:

8 rewards = []

actions = []

10 states = []

12 # reset environment

state, ex = env.reset()

14

while True:

16 inps = torch.tensor(state).unsqueeze(0).unsqueeze(0).float()

probs = policy(inps)

18 sampler = Categorical(probs)

action = sampler.sample()

20

use that action in the environment

22 new_state , reward, done, info = env.step(action)

24 # store state, action and reward

states.append(state)

26 actions.append(action)

rewards.append(reward)

28

state = new_state

30 if done:

break

32

preprocess rewards

34 rewards = np.array(rewards)

R = torch.sum(torch.tensor(rewards))

170

36

preprocess states and actions

38 states = torch.tensor(np.array(states)).unsqueeze(1).float()

actions = torch.tensor(actions)

40

calculate gradient

42 probs = policy(states)

sampler = Categorical(probs)

44 log_probs = −sampler.log_prob(actions)
pseudo_loss = torch.sum(log_probs ∗ R)

46

update policy weights

48 optimizer.zero_grad()

pseudo_loss.backward()

50 optimizer.step()

52 n_episode += 1

54 except KeyboardInterrupt:

pass

Source Code A.6: Training loop for the REINFORCE algorithm.

171

172

Appendix B

Acronyms

LNL Legnaro National Laboratories

ALPI Acceleratore Lineare per Ioni

PIAVE Positive Ion Accelerator for VEry low velocity ions

INFN Istituto Nazionale di Fisica Nucleare

SPES Selective Production of Exotic Species

ADIGE Acceleratore Di Ioni a Grande Carica Esotici

MRMS Medium Resolution Mass Separator

TIS Target Ion Source

LHC Large Hadron Collider

ML Machine Learning

RF Radio Frequency

ECR Electron Cyclotron Resonance

RFQ Radio Frequency Quadrupole

HV High Voltage

FC Faraday Cup

He Helium

N Nitrogen

Cu Copper

Nb Niobium

QWR Quarter Wave Resonator

EPICS Experimental Physics and Industrial Control System

IOC Input Output Controller

173

CA Channel Access

PV Process Variable

GUI Graphical User Interface

STSC Subsequence time-series Clustering

LOF Local Outlier Factor

KNN K-Nearest Neighbour

LRD Local Reachability Density

CBLOF Cluster Based Local Outlier Factor

NN Neural Network

CNN Convolutional Neural Network

RNN Recurrent Neural Network

LSTM Long Short Term Memory

CSV Comma Separated Values

TP True Positive

TN True Negative

FP False Positive

FN False Negative

AD Anomaly Detection

DL Deep Learning

SVM Support Vector Machine

MSE Mean Squared Error

SGD Stochastic Gradient Descent

GPU Graphical Processing Unit

TCN Temporal Convolutional Network

RL Reinforcement Learning

MDP Markov Decision Process

POMDP Partially Observable Markov Decision Process

A2C Advantage Actor-Critic

PPO Proximal Policy Optimization

LEB Low Energy Buncher

ESS European Spallation Source

MSSI Maximum Site Sampling Interval

174

FSCA Forward Selection Component Analysis

SDS Sequential Dynamic Sampling

ISDS Induced Start Dynamic Sampling

CISDS Constrained Induced Start Dynamic Sampling

DFSCA Double FSCA

CCSDS Constrained Clustering SDS

RBF Gaussian Radial Basis Functions

175

176

Bibliography

[1] K. Agari et al. An Application of Machine Learning for the Analysis of Temperature
Rise on the Production Target in Hadron Experimental Facility at J-PARC. In
Proc. ICALEPCS’19, pages 992–996, 08 2020.

[2] Andreetto, Paolo, Costa, Fulvia, Crescente, Alberto, Fantinel, Sergio, Fanzago,
Federica, Mazzon, Paolo Emilio, Menguzzato, Matteo, Sella, Gianpietro, Sgara-
vatto, Massimo, Traldi, Sergio, Verlato, Marco, Zanetti, Marco, and Zangrando,
Lisa. Evolution of the cloudveneto.it private cloud to support research and inno-
vation. EPJ Web Conf., 245:07013, 2020.

[3] F. Angiulli and C. Pizzuti. Fast outlier detection in high dimensional spaces. In
European conference on principles of data mining and knowledge discovery, pages
15–27. Springer, 2002.

[4] M. Antonini, M. Vecchio, F. Antonelli, P. Ducange, and C. Perera. Smart audio
sensors in the internet of things edge for anomaly detection. IEEE Access, 6:67594–
67610, 2018.

[5] R. Arboretti, R. Ceccato, L. Pegoraro, and L. Salmaso. Design of experiments and
machine learning for product innovation: A systematic literature review. Quality
and Reliability Engineering International, 38(2):1131–1156, 2022.

[6] P. Arpaia et al. Machine learning for beam dynamics studies at the cern large
hadron collider. Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment, 985:164652,
2021.

[7] S. Aryal, K. Santosh, and R. Dazeley. usfad: a robust anomaly detector based
on unsupervised stochastic forest. International Journal of Machine Learning and
Cybernetics, pages 1–14, 2020.

[8] S. Aryal, K. M. Ting, J. R. Wells, and T. Washio. Improving iforest with relative
mass. In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages
510–521. Springer, 2014.

[9] P. Baldi, P. Sadowski, and D. Whiteson. Enhanced higgs boson to τ+τ− search
with deep learning. Phys. Rev. Lett., 114:111801, Mar 2015.

177

[10] T. Barbariol, F. D. Chiara, D. Marcato, and G. A. Susto. A review of tree-based
approaches for anomaly detection. In Control Charts and Machine Learning for
Anomaly Detection in Manufacturing, pages 149–185. Springer, 2022.

[11] L. Bellan et al. New techniques for the lnl superconductive linac alpi beam dy-
namics simulations and commissioning. In Proc. IPAC’23, number 14 in IPAC’23
- 14th International Particle Accelerator Conference, pages 1289–1292. JACoW
Publishing, Geneva, Switzerland, 05 2023.

[12] I. Bird. Computing for the large hadron collider. Annual Review of Nuclear and
Particle Science, 61(1):99–118, 2011.

[13] E. Boldsaikhan, M. Milhon, S. Fukada, M. Fujimoto, and K. Kamimuki. Metrol-
ogy of sheet metal distortion and effects of spot-welding sequences on sheet metal
distortion. Journal of Manufacturing and Materials Processing, 7(3), 2023.

[14] M. Braei and S. Wagner. Anomaly detection in univariate time-series: A survey
on the state-of-the-art. arXiv preprint arXiv:2004.00433, 2020.

[15] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[16] M. M. Breunig et al. Lof: Identifying density-based local outliers. SIGMOD Rec.,
29(2):93–104, May 2000.

[17] K. Brown and S. Biedron. Summary of the 3rd icfa beam dynamics mini-workshop
on machine learning applications for particle accelerators. In Proc. IPAC’23, num-
ber 14 in IPAC’23 - 14th International Particle Accelerator Conference, pages 4389–
4392. JACoW Publishing, Geneva, Switzerland, 05 2023.

[18] M. Carletti, C. Masiero, A. Beghi, and G. A. Susto. Explainable machine learning
in industry 4.0: Evaluating feature importance in anomaly detection to enable
root cause analysis. In 2019 IEEE International Conference on Systems, Man and
Cybernetics (SMC), pages 21–26. IEEE, 2019.

[19] M. Carletti, C. Masiero, A. Beghi, and G. A. Susto. Explainable machine learning
in industry 4.0: Evaluating feature importance in anomaly detection to enable
root cause analysis. In 2019 IEEE International Conference on Systems, Man and
Cybernetics (SMC), pages 21–26, 2019.

[20] M. Carletti, M. Terzi, and G. A. Susto. Interpretable anomaly detection with
diffi: Depth-based feature importance for the isolation forest. arXiv preprint
arXiv:2007.11117, 2020.

[21] P. F. Carmona et al. Introducing big data analysis in a proton therapy facility to
reduce technical downtime. Proceedings of the 17th International Conference on Ac-
celerator and Large Experimental Physics Control Systems, ICALEPCS2019:USA,
2020.

178

[22] F. Chollet et al. Keras. https://keras.io, 2015.

[23] P.-H. Chou, M.-J. Wu, and K.-K. Chen. Integrating support vector machine and
genetic algorithm to implement dynamic wafer quality prediction system. Expert
Systems with Applications, 37(6):4413–4424, 2010.

[24] L. Clissa, M. Lassnig, and L. Rinaldi. Analyzing WLCG File Transfer Errors
Through Machine Learning: An Automatic Pipeline to Support Post-mortem Dis-
tributed Data Management. Comput. Softw. Big Sci., 6(1):16, 2022.

[25] M. Comunian, C. Roncolato, E. Fagotti, F. Grespan, and A. Palmieri. Beam
dynamics simulations of the piave-alpi linac.

[26] Y. Cui, Z. Liu, and S. Lian. A survey on unsupervised anomaly detection algorithms
for industrial images. IEEE Access, 11:55297–55315, 2023.

[27] A. Dainelli et al. Commissioning of the alpi post-accelerator. Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment, 382(1):100 – 106, 1996.

[28] D. Dalle Pezze. Methodological advancements in continual learning and industry
4.0 applications. 2022.

[29] M. Das and S. Parthasarathy. Anomaly detection and spatio-temporal analysis
of global climate system. In Proceedings of the third international workshop on
knowledge discovery from sensor data, pages 142–150, 2009.

[30] L. de Ruvo, M. Allegrini, D. Benini, et al. Functional architecture of spes safety
system. In Proc. IPAC’23, number 14 in IPAC’23 - 14th International Particle Ac-
celerator Conference, pages 4682–4684. JACoW Publishing, Geneva, Switzerland,
05 2023.

[31] Deja, Kamil, Trzcin´ski, Tomasz, and Graczykowski, Lukasz. Generative models
for fast cluster simulations in the tpc for the alice experiment. EPJ Web Conf.,
214:06003, 2019.

[32] C. Désir, S. Bernard, C. Petitjean, and L. Heutte. One class random forests. Pattern
Recognition, 46(12):3490–3506, 2013.

[33] T. Dewitte et al. Anomaly detection for cern beam transfer installations using
machine learning. In Proc. ICALEPCS’19, pages 1066–1070. JACoW, 2019.

[34] A. Di Girolamo et al. Preparing Distributed Computing Operations for the HL-
LHC Era With Operational Intelligence. Front. Big Data, 4:753409, 2022.

[35] A. C. Diebold. Handbook of silicon semiconductor metrology. CRC Press, 2001.

179

https://keras.io

[36] Z. Ding and M. Fei. An anomaly detection approach based on isolation forest
algorithm for streaming data using sliding window. IFAC Proceedings Volumes,
46(20):12–17, 2013.

[37] Z.-G. Ding, D.-J. Du, and M.-R. Fei. An isolation principle based distributed
anomaly detection method in wireless sensor networks. International Journal of
Automation and Computing, 12(4):402–412, 2015.

[38] Y. Donon et al. Extended anomaly detection and breakdown prediction in linac
4’s rf power source output. In 2020 International Conference on Information Tech-
nology and Nanotechnology (ITNT), pages 1–7, 2020.

[39] A. Edelen, S. Biedron, S. Milton, and J. Edelen. First steps toward incorporating
image based diagnostics into particle accelerator control systems using convolu-
tional neural networks. arXiv preprint arXiv:1612.05662, 2016.

[40] A. Edelen, C. Mayes, D. Bowring, D. Ratner, A. Adelmann, R. Ischebeck, J. Snu-
verink, I. Agapov, R. Kammering, J. Edelen, I. Bazarov, G. Valentino, and J. Wen-
ninger. Opportunities in machine learning for particle accelerators, 2018.

[41] A. L. Edelen et al. Neural networks for modeling and control of particle accelerators.
IEEE Transactions on Nuclear Science, 63(2):878–897, apr 2016.

[42] B. H. et al. Machine learning applications for orbit and optics correction at the
alternating gradient synchrotron. In Proc. IPAC’23, number 14 in IPAC’23 - 14th
International Particle Accelerator Conference, pages 4409–4412. JACoW Publish-
ing, Geneva, Switzerland, 05 2023.

[43] C. G. et al. Virtual photon pulse characterisation using machine learning methods.
In Proc. IPAC’23, number 14 in IPAC’23 - 14th International Particle Accelerator
Conference, pages 4417–4419. JACoW Publishing, Geneva, Switzerland, 05 2023.

[44] E. Fagotti et al. Upgrade of the heavy ion accelerator complex at infn-lnl. In
Proc. IPAC’23, number 14 in IPAC’23 - 14th International Particle Accelerator
Conference, pages 2169–2172. JACoW Publishing, Geneva, Switzerland, 05 2023.

[45] L. Felsberger et al. Explainable deep learning for fault prognostics in complex
systems: A particle accelerator use-case. In Machine Learning and Knowledge
Extraction, pages 139–158, Cham, 2020.

[46] A. Franciosi and M. Kiskinova. Elettra-sincrotrone trieste: present and future. The
European Physical Journal Plus, 138(1):79, 2023.

[47] A. Galatà et al. Progresses in the installation of the spes-charge breeder beam line.
Journal of Instrumentation, 13(12):C12009, dec 2018.

[48] A. Galatà et al. First beams from the 1+ source of the adige injector for the spes
project. Journal of Physics: Conference Series, 2244(1):012069, apr 2022.

180

[49] N. Ganganath, C.-T. Cheng, and C. K. Tse. Data clustering with cluster size con-
straints using a modified k-means algorithm. International Conference on Cyber-
Enabled Distributed Computing and Knowledge Discovery, pages 158–161, 2014.

[50] Y. Gao. Autoencoder-based anomaly detection in the air conditioning system of
brookhaven collider-accelerator complex. In Proc. IPAC’23, number 14 in IPAC’23
- 14th International Particle Accelerator Conference, pages 4397–4400. JACoW
Publishing, Geneva, Switzerland, 05 2023.

[51] M. Goldstein and A. Dengel. Histogram-based outlier score (hbos): A fast unsu-
pervised anomaly detection algorithm. KI-2012: Poster and Demo Track, pages
59–63, 2012.

[52] P. Gopalan, V. Sharan, and U. Wieder. Pidforest: anomaly detection via partial
identification. arXiv preprint arXiv:1912.03582, 2019.

[53] E. Govorkova, E. Puljak, T. Aarrestad, T. James, V. Loncar, M. Pierini, A. A. Pol,
N. Ghielmetti, M. Graczyk, S. Summers, J. Ngadiuba, T. Q. Nguyen, J. Duarte, and
Z. Wu. Autoencoders on field-programmable gate arrays for real-time, unsupervised
new physics detection at 40 MHz at the large hadron collider. Nature Machine
Intelligence, 4(2):154–161, feb 2022.

[54] F. Grespan, L. Antoniazzi, A. Baldo, C. Baltador, R. Baron, A. Battistello, L. Bel-
lan, T. Bencivenga, P. Bottin, A. Colombo, M. Comunian, D. Conventi, E. Fagotti,
L. Ferrari, B. Jones, P. Mereu, C. Mingioni, M. Nenni, E. Nicoletti, A. Palmieri,
R. Panizzolo, A. Pisent, and D. Scarpa. ESS Drift Tube Linac Manufacturing,
Assembly and Tuning. In Proc. IPAC’21, number 12 in International Particle Ac-
celerator Conference, pages 1797–1800. JACoW Publishing, Geneva, Switzerland,
08 2021. https://doi.org/10.18429/JACoW-IPAC2021-TUPAB173.

[55] F. E. Grubbs. Procedures for detecting outlying observations in samples. Techno-
metrics, 11(1):1–21, 1969.

[56] A. Hagerty and I. Rubinov. Global ai ethics: a review of the social impacts and
ethical implications of artificial intelligence. arXiv preprint arXiv:1907.07892, 2019.

[57] S. Hariri, M. Kind, and R. Brunner. Extended isolation forest. IEEE Transactions
on Knowledge and Data Engineering, 33(4):1479–1489, 2021. cited By 1.

[58] D. M. Hawkins. Identification of outliers, volume 11. Springer, 1980.

[59] Z. He et al. Discovering cluster-based local outliers. Pattern Recognition Letters,
24(9):1641 – 1650, 2003.

[60] D. J. Hill and B. S. Minsker. Anomaly detection in streaming environmental sensor
data: A data-driven modeling approach. Environmental Modelling & Software,
25(9):1014–1022, 2010.

181

[61] G. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief
nets. Neural computation, 18:1527–54, 08 2006.

[62] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[63] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[64] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5):359–366, 1989.

[65] F. Huhn. Automating beam dump failure detection using computer vision. In
Proc. IPAC’23, number 14 in IPAC’23 - 14th International Particle Accelerator
Conference, pages 4405–4408. JACoW Publishing, Geneva, Switzerland, 05 2023.

[66] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in science &
engineering, 9(03):90–95, 2007.

[67] T. Idé. Why does subsequence time-series clustering produce sine waves? In
european conference on principles of data mining and knowledge discovery, pages
211–222. Springer, 2006.

[68] B. Iglewicz and D. C. Hoaglin. How to detect and handle outliers, volume 16. Asq
Press, 1993.

[69] H. Ishii, M. Nagase, N. Ikeda, Y. Shiba, Y. Shirai, R. Kuroda, and S. Sugawa. A
high sensitivity and compact real time gas concentration sensor for semiconductor
and electronic device manufacturing process. ECS Transactions, 85(13):1399–1405,
2018.

[70] A. Ivanov and I. Agapov. Physics-based deep neural networks for beam dynamics in
charged particle accelerators. Physical review accelerators and beams, 23(7):074601,
2020.

[71] X. Jia, Y. Di, J. Feng, Q. Yang, H. Dai, and J. Lee. Adaptive virtual metrol-
ogy for semiconductor chemical mechanical planarization process using gmdh-type
polynomial neural networks. Journal of Process Control, 62:44–54, 2018.

[72] S.-y. Jiang and Q.-b. An. Clustering-based outlier detection method. In 2008 Fifth
International Conference on Fuzzy Systems and Knowledge Discovery, volume 2,
pages 429–433. IEEE, 2008.

[73] Joblib Development Team. Joblib: running python functions as pipeline jobs.

[74] H. John and S. Naaz. Credit card fraud detection using local outlier factor and
isolation forest. Int. J. Comput. Sci. Eng., 7(4):1060–1064, 2019.

182

[75] K. E. Jr. Overview of client tools. Part of the EPICS “Getting Started” Lecture
Series, 2004.

[76] V. Kain, S. Hirlander, B. Goddard, F. M. Velotti, G. Z. Della Porta, N. Bruchon,
and G. Valentino. Sample-efficient reinforcement learning for cern accelerator con-
trol. Phys. Rev. Accel. Beams, 23:124801, Dec 2020.

[77] U. Kamath, J. Liu, and J. Whitaker. Deep learning for NLP and speech recognition,
volume 84. Springer, 2019.

[78] P. Kang, D. Kim, and S. Cho. Semi-supervised support vector regression based
on self-training with label uncertainty: An application to virtual metrology in
semiconductor manufacturing. Expert Systems with Applications, 51:85–106, 2016.

[79] D. Kim, H. Yang, M. Chung, S. Cho, H. Kim, M. Kim, K. Kim, and E. Kim.
Squeezed convolutional variational autoencoder for unsupervised anomaly detec-
tion in edge device industrial internet of things. In 2018 international conference
on information and computer technologies (icict), pages 67–71. IEEE, 2018.

[80] M. Kopp, T. Pevny, and M. Holeňa. Anomaly explanation with random forests.
Expert Systems with Applications, 149:113187, 2020.

[81] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012.

[82] C. Lea et al. Temporal convolutional networks: A unified approach to action
segmentation, 2016.

[83] C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager. Temporal convolutional
networks for action segmentation and detection, 2016.

[84] S. learn developers. Outlier detection with local outlier factor (lof).

[85] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural
Computation, 1:541–551, 1989.

[86] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[87] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuo-
motor policies, 2016.

[88] R. J. Leão, C. R. Baldo, M. L. C. da Costa Reis, and J. L. A. Trabanco. Engineering
survey planning for the alignment of a particle accelerator: part ii. design of a ref-
erence network and measurement strategy. Measurement Science and Technology,
29(3):034007, feb 2018.

183

[89] S. Li and A. Adelmann. Review of time series forecasting methods and their
applications to particle accelerators. 9 2022.

[90] S. Li et al. A novel approach for classification and forecasting of time series in
particle accelerators. Information, 12(3), 2021.

[91] F. T. Liu, K. M. Ting, and Z.-H. Zhou. Isolation forest. In 2008 eighth ieee
international conference on data mining, pages 413–422. IEEE, 2008.

[92] F. T. Liu, K. M. Ting, and Z.-H. Zhou. On detecting clustered anomalies us-
ing sciforest. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 274–290. Springer, 2010.

[93] F. T. Liu, K. M. Ting, and Z.-H. Zhou. Isolation-based anomaly detection. ACM
Transactions on Knowledge Discovery from Data (TKDD), 6(1):1–39, 2012.

[94] J. Liu, J. Guo, P. Orlik, M. Shibata, D. Nakahara, S. Mii, and M. Takáč. Anomaly
detection in manufacturing systems using structured neural networks. In 2018 13th
World Congress on Intelligent Control and Automation (WCICA), pages 175–180.
IEEE, 2018.

[95] S. Liu et al. Time series anomaly detection with adversarial reconstruction net-
works. IEEE Transactions on Knowledge and Data Engineering, 35(4), 2023.

[96] W. Liu, J. He, S. Han, F. Cai, Z. Yang, and N. Zhu. A method for the detec-
tion of fake reviews based on temporal features of reviews and comments. IEEE
Engineering Management Review, 47(4):67–79, 2019.

[97] S. Lloyd. Least squares quantization in pcm. IEEE transactions on information
theory, 28(2):129–137, 1982.

[98] I. Lobach. Long short-term memory networks for anomaly detection in storage
ring power supplies. In Proc. IPAC’23, number 14 in IPAC’23 - 14th International
Particle Accelerator Conference, pages 4373–4376. JACoW Publishing, Geneva,
Switzerland, 05 2023.

[99] J. Lundquist. Virtual diagnostics for longitudinal phase space imaging. In Proc.
IPAC’23, number 14 in IPAC’23 - 14th International Particle Accelerator Confer-
ence, pages 4420–4423. JACoW Publishing, Geneva, Switzerland, 05 2023.

[100] J. MacQueen et al. Some methods for classification and analysis of multivari-
ate observations. In Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, volume 1, pages 281–297. Oakland, CA, USA, 1967.

[101] M. Maggiore, D. Campo, P. Antonini, A. Lombardi, M. Manzolaro, A. Andrighetto,
A. Monetti, D. Scarpa, J. Esposito, and L. Silvestrin. Spes: A new cyclotron-based
facility for research and applications with high-intensity beams. Modern Physics
Letters A, 32:1740010, 05 2017.

184

[102] M. Maggipinto, A. Beghi, and G. A. Susto. A deep convolutional autoencoder-based
approach for anomaly detection with industrial, non-images, 2-dimensional data:
A semiconductor manufacturing case study. IEEE Transactions on Automation
Science and Engineering, 2022.

[103] K. L. Malanchev, A. A. Volnova, M. V. Kornilov, M. V. Pruzhinskaya, E. E. Ishida,
F. Mondon, and V. S. Korolev. Use of machine learning for anomaly detection
problem in large astronomical databases. In DAMDID/RCDL, pages 205–216,
2019.

[104] D. Marcato. Progettazione e sviluppo di un nuovo software per il controllo della
radiofrequenza dell’acceleratore alpi., 2017.

[105] D. Marcato, G. Arena, M. Bellato, D. Bortolato, F. Gelain, G. Lilli, V. Martinelli,
E. Munaron, M. Roetta, and G. Savarese. Pysmlib: A Python Finite State Machine
Library for EPICS. JACoW, ICALEPCS2021:TUBL05, 2022.

[106] D. Marcato, G. Arena, D. Bortolato, F. Gelain, V. Martinelli, E. Munaron,
M. Roetta, G. Savarese, and G. A. Susto. Machine learning-based anomaly de-
tection for particle accelerators. In 2021 IEEE Conference on Control Technology
and Applications (CCTA), pages 240–246, 2021.

[107] D. Marcato, D. Bortolato, V. Martinelli, G. Savarese, and G. A. Susto. Time-series
deep learning anomaly detection for particle accelerators. In Proceeding of the 22nd
World Congress of the International Federation of Automatic Control (IFAC’23),
2023.

[108] D. Marcato et al. Demonstration of beam emittance optimization using reinforce-
ment learning. In Proc. IPAC’23, number 14 in IPAC’23 - 14th International
Particle Accelerator Conference, pages 2838–2841. JACoW Publishing, Geneva,
Switzerland, 05 2023.

[109] D. Marcato et al. Upgrade of the alpi low and medium beta rf control system.
In Proc. IPAC’23, number 14 in IPAC’23 - 14th International Particle Accelerator
Conference, pages 4154–4157. JACoW Publishing, Geneva, Switzerland, 05 2023.

[110] V. Martinelli, L. Bellan, D. Bortolato, M. Comunian, E. Fagotti, P. Francescon,
A. Galatà, D. Marcato, and G. Savarese. BOLINA, a Suite for High Level Beam Op-
timization: First Experimental Results on the Adige Injection Beamline of SPES.
In Proc. IPAC’22, number 13 in International Particle Accelerator Conference,
pages 933–936. JACoW Publishing, Geneva, Switzerland, 07 2022.

[111] B. Maschler and M. Weyrich. Deep transfer learning for industrial automation: A
review and discussion of new techniques for data-driven machine learning. IEEE
Industrial Electronics Magazine, 15(2):65–75, 2021.

[112] mc.ai. My notes on neural networks.

185

[113] W. Mcculloch and W. Pitts. A logical calculus of ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5:127–147, 1943.

[114] S. McLoone, A. Johnston, and G. A. Susto. A methodology for efficient dynamic
spatial sampling and reconstruction of wafer profiles. IEEE TRANSACTIONS
ON AUTOMATION SCIENCE AND ENGINEERING, 15(14):1692–1703, October
2018.

[115] L. Meneghetti, M. Terzi, S. Del Favero, G. A. Susto, and C. Cobelli. Data-driven
anomaly recognition for unsupervised model-free fault detection in artificial pan-
creas. IEEE Transactions on Control Systems Technology, 28(1):33–47, 2018.

[116] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning, 2016.

[117] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[118] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[119] J. Molleda, R. Usamentiaga, A. F. Millara, D. F. García, P. Manso, C. M. Suárez,
and I. García. A profile measurement system for rail quality assessment during man-
ufacturing. IEEE Transactions on Industry Applications, 52(3):2684–2692, 2016.

[120] J. Moody and M. Saffell. Learning to trade via direct reinforcement. IEEE Trans-
actions on Neural Networks, 12(4):875–889, 2001.

[121] Z. Obermeyer, B. Powers, C. Vogeli, and S. Mullainathan. Dissecting racial bias in
an algorithm used to manage the health of populations. Science, 366(6464):447–
453, 2019.

[122] S. Oehmcke, O. Zielinski, and O. Kramer. Event detection in marine time series
data. In KI 2015: Advances in Artificial Intelligence: 38th Annual German Con-
ference on AI, Dresden, Germany, September 21-25, 2015, Proceedings 38, pages
279–286. Springer, 2015.

[123] M. Paganini, L. de Oliveira, and B. Nachman. CaloGAN : Simulating 3D high
energy particle showers in multilayer electromagnetic calorimeters with generative
adversarial networks. Phys. Rev. D, 97(1):014021, 2018.

[124] T. Pan, B. Sheng, D. S. Wong, and S. Jang. A virtual metrology system for predict-
ing end-of-line electrical properties using a mancova model with tools clustering.
IEEE Transactions on Industrial Informatics, 7(2):187–195, 2011.

186

[125] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent
neural networks, 2013.

[126] T. Pevny. Loda: Lightweight on-line detector of anomalies. Machine Learning,
102(2):275–304, 2016.

[127] A. Pisent, G. Bisoffi, A. Lombardi, V. Andreev, G. Bassato, G. Bezzon, S. Canella,
F. Cervellera, F. Chiurlotto, M. Comunian, et al. The new lnl injector piave, based
on a superconducting rfq. In Proceedings of the sixth European Particle accelerator
Conference Stockholm, Sweden, pages 758–760, 1998.

[128] A. M. Porcellato. Corso nuovi operatori, 05 2013.

[129] P. Prakash, B. Honari, A. Johnston, and S. McLoone. Optimal wafer site selection
using forward selection component analysis. Proc. Adv. Semiconductor Manuf.
Conf. (ASMC), pages 91—-96, May 2012.

[130] Psycopg2 Development Team. Psycopg2.

[131] L. Puggini and S. McLoone. Forward selection component analysis: Algorithms and
applications. IEEE Transactions on Pattern Analysis and Machine Intelligence,
39(12):2395–2408, 2017.

[132] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann. Stable-
baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021.

[133] A. Raghu, M. Komorowski, L. A. Celi, P. Szolovits, and M. Ghassemi. Continu-
ous state-space models for optimal sepsis treatment-a deep reinforcement learning
approach. Proceedings of Machine Learning in Healthcare, 2017.

[134] D. Ramotsoela, A. Abu-Mahfouz, and G. Hancke. A survey of anomaly detection
in industrial wireless sensor networks with critical water system infrastructure as
a case study. Sensors, 18(8):2491, 2018.

[135] J. Reback et al. pandas-dev/pandas: Pandas 1.2.0, 2020.

[136] V. Rigato. Multidisciplinary physics with mev ion beams at the laboratori nazionali
di legnaro using the cn and an2000 accelerators. Technical report, 2022.

[137] J. V. Ringwood, S. Lynn, G. Bacelli, B. Ma, E. Ragnoli, and S. McLoone. Estima-
tion and control in semiconductor etch: Practice and possibilities. IEEE Transac-
tions on Semiconductor Manufacturing, 23(1):87–98, 2010.

[138] RL4AA-Collaboration. Collaboration on reinforcement learning for autonomous
accelerators https://rl4aa.github.io/.

[139] F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6):386–408, 1958.

187

https://rl4aa.github.io/

[140] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533–536, Oct. 1986.

[141] S. Saadat. Model of a dynamic orbit correction system based on neural network in
cls. In Proc. IPAC’23, number 14 in IPAC’23 - 14th International Particle Accel-
erator Conference, pages 2819–2822. JACoW Publishing, Geneva, Switzerland, 05
2023.

[142] G. Savarese, L. Antoniazzi, D. Bortolato, A. Conte, F. Gelain, D. Marcato, and
C. Roncolato. Vacuum Control System Upgrade for ALPI Accelerator. In Proc.
IPAC’22, number 13 in International Particle Accelerator Conference, pages 744–
746. JACoW Publishing, Geneva, Switzerland, 07 2022.

[143] G. Savarese, G. Arena, D. Bortolato, F. Gelain, D. Marcato, V. Martinelli, E. Mu-
naron, and M. Roetta. Design and Development of the New Diagnostics Control
System for the SPES Project at INFN-LNL. In Proc. ICALEPCS’21, number 18 in
International Conference on Accelerator and Large Experimental Physics Control
Systems, pages 428–432. JACoW Publishing, Geneva, Switzerland, 03 2022.

[144] G. Savarese et al. First installation of the upgraded vacuum control system for alpi
accelerator. In Proc. IPAC’23, number 14 in IPAC’23 - 14th International Particle
Accelerator Conference, pages 840–843. JACoW Publishing, Geneva, Switzerland,
05 2023.

[145] A. Scheinker et al. Applying artificial intelligence to accelerators. Proceedings of
the 9th Int. Particle Accelerator Conf., IPAC2018:Canada, 2018.

[146] M. Schenk, E. F. Combarro, M. Grossi, V. Kain, K. S. B. Li, M.-M. Popa, and
S. Vallecorsa. Hybrid actor-critic algorithm for quantum reinforcement learning at
cern beam lines, 2022.

[147] R. M. Schmidt. Recurrent neural networks (rnns): A gentle introduction and
overview, 2019.

[148] J. Schulman et al. Proximal policy optimization algorithms, 2017.

[149] R. Sharankova. Time-drift aware rf optimization with machine learning techniques.
In Proc. IPAC’23, number 14 in IPAC’23 - 14th International Particle Accelerator
Conference, pages 32–35. JACoW Publishing, Geneva, Switzerland, 05 2023.

[150] A. Sherman. Sequential chemical vapor deposition, 6 1999. US Patent 5,916,365.

[151] A. Shukla, S. N. Victoria, and R. Manivannan. A review on chemical mechanical
planarization of barrier layer metals. Key Engineering Materials, 882:171–180,
2021.

188

[152] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,
N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel,
and D. Hassabis. Mastering the game of go with deep neural networks and tree
search. Nature, 529:484–489, 01 2016.

[153] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–
489, 2016.

[154] A. Solopova et al. Srf cavity fault classification using machine learning at cebaf.
Proceedings of the 10th Int. Particle Accelerator Conf., IPAC2019:Australia, 2019.

[155] L. Stojanovic, M. Dinic, N. Stojanovic, and A. Stojadinovic. Big-data-driven
anomaly detection in industry (4.0): An approach and a case study. In 2016 IEEE
international conference on big data (big data), pages 1647–1652. IEEE, 2016.

[156] A. Sulc et al. A Data-Driven Anomaly Detection on SRF Cavities at the European
XFEL. In Proceedings of IPAC 2022. JACoW, Jun 2022.

[157] H. Sun, Q. He, K. Liao, T. Sellis, L. Guo, X. Zhang, J. Shen, and F. Chen.
Fast anomaly detection in multiple multi-dimensional data streams. In 2019 IEEE
International Conference on Big Data (Big Data), pages 1218–1223. IEEE, 2019.

[158] G. A. Susto, M. Maggipinto, F. Zocco, and S. McLoone. Induced start dynamic
sampling for wafer metrology optimization. IEEE TRANSACTIONS ON AU-
TOMATION SCIENCE AND ENGINEERING, 17(1):418–432, JANUARY 2020.

[159] G. A. Susto, D. Marcato, M. Maggipinto, M. Donà, and S. McLoone. On temporally
bounded spatial dynamic sampling for metrology optimization. submitted to IEEE
Transactions on Automation Science and Engineering, 2023.

[160] G. A. Susto, A. Schirru, S. Pampuri, S. McLoone, and A. Beghi. Machine learning
for predictive maintenance: A multiple classifier approach. IEEE Transactions on
Industrial Informatics, 11(3):812–820, 2015.

[161] M. Szczepanski. Economic impacts of artificial intelligence (ai). 2019.

[162] S. C. Tan, K. M. Ting, and T. F. Liu. Fast anomaly detection for streaming data.
In Twenty-Second International Joint Conference on Artificial Intelligence, 2011.

[163] K. M. Ting, G.-T. Zhou, F. T. Liu, and J. S. C. Tan. Mass estimation and its
applications. In Proceedings of the 16th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 989–998, 2010.

[164] J. F. Torres, D. Hadjout, A. Sebaa, F. Martínez-Álvarez, and A. Troncoso. Deep
learning for time series forecasting: A survey. Big Data, 9(1):3–21, 2021. PMID:
33275484.

189

[165] Y.-L. Tsou, H.-M. Chu, C. Li, and S.-W. Yang. Robust distributed anomaly detec-
tion using optimal weighted one-class random forests. In 2018 IEEE International
Conference on Data Mining (ICDM), pages 1272–1277. IEEE, 2018.

[166] D. Uriot and N. Pichoff. Status of TraceWin Code. In Proc. 6th International
Particle Accelerator Conference (IPAC’15), Richmond, VA, USA, May 3-8, 2015,
number 6 in International Particle Accelerator Conference, pages 92–94, Geneva,
Switzerland, June 2015. JACoW. https://doi.org/10.18429/JACoW-IPAC2015-
MOPWA008.

[167] D. Uriot and N. Pichoff. Tracewin documentation, 04 2019.

[168] M. Weber, S. Klug, E. Sax, and B. Zimmer. Embedded hybrid anomaly detection
for automotive can communication. In 9th European Congress on Embedded Real
Time Software and Systems (ERTS 2018), 2018.

[169] P. J. Werbos. Applications of advances in nonlinear sensitivity analysis. In Pro-
ceedings of the 10th IFIP Conference, 31.8 - 4.9, NYC, pages 762–770, 1981.

[170] G. White et al. The EPICS Software Framework Moves from Controls to Physics.
In Proc. 10th International Particle Accelerator Conference (IPAC’19), pages 1216–
1218, Geneva, Switzerland, Jun. 2019. JACoW Publishing.

[171] Wikipedia. Isolation forest.

[172] J. Williams. Ion implantation of semiconductors. Materials Science and Engineer-
ing: A, 253(1):8–15, 1998.

[173] R. J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8:229–256, 1992.

[174] C. Xu. Beam trajectory control with lattice-agnostic reinforcement learning. In
Proc. IPAC’23, number 14 in IPAC’23 - 14th International Particle Accelerator
Conference, pages 4436–4439. JACoW Publishing, Geneva, Switzerland, 05 2023.

[175] C. Xu, R. Roussel, and A. Edelen. Neural network prior mean for particle acceler-
ator injector tuning, 2022.

[176] X. Yang. Accurate prediction of mega-electron-volt electron beam properties from
ued using machine learning. In Proc. IPAC’23, number 14 in IPAC’23 - 14th In-
ternational Particle Accelerator Conference, pages 4401–4404. JACoW Publishing,
Geneva, Switzerland, 05 2023.

[177] Yaw-Jen Chang, Yuan Kang, Chih-Liang Hsu, Chi-Tim Chang, and Tat Yan Chan.
Virtual metrology technique for semiconductor manufacturing. In The 2006 IEEE
International Joint Conference on Neural Network Proceedings, pages 5289–5293,
2006.

190

[178] X. Zhang, W. Dou, Q. He, R. Zhou, C. Leckie, R. Kotagiri, and Z. Salcic. Lshiforest:
A generic framework for fast tree isolation based ensemble anomaly analysis. In
2017 IEEE 33rd International Conference on Data Engineering (ICDE), pages 983–
994. IEEE, 2017.

[179] Y. Zhao et al. Pyod: A python toolbox for scalable outlier detection. Journal of
Machine Learning Research, 20(96):1–7, 2019.

[180] X. Zhou, Y. Hu, W. Liang, J. Ma, and Q. Jin. Variational lstm enhanced anomaly
detection for industrial big data. IEEE Transactions on Industrial Informatics,
17(5):3469–3477, 2021.

[181] F. Zocco, M. Maggipinto, G. A. Susto, and S. McLoone. Lazy fsca for unsupervised
variable selection. Engineering Applications of Artificial Intelligence, 124:106624,
2023.

[182] T. Zonta, C. A. da Costa, R. da Rosa Righi, M. J. de Lima, E. S. da Trindade,
and G. P. Li. Predictive maintenance in the industry 4.0: A systematic literature
review. Computers & Industrial Engineering, 150:106889, 2020.

191

192

Acknowledgements

I would like to thank my supervisor, Prof. Gian Antonio Susto, for his guidance and
support during these years. I would also like to thank my colleagues at INFN, especially
D. Bortolato, for the opportunity to pursue this Ph.D..

Finally, I would like to thank my wife Alice for her support and patience.

193

	Abstract
	Scientific Publications
	Introduction
	Particle Accelerators
	Overview
	Particle Accelerators at Legnaro National Laboratories
	ALPI
	RF cavities
	Control System Architecture
	The Archiver
	RF control system

	ADIGE
	Medium Resolution Mass Separator (MRMS)

	Control Systems Challenges
	RF Runtime Faults
	ADIGE multipole configuration

	Machine Learning Elements
	AI and ML brief introduction
	Anomaly Detection
	Outliers
	Taxonomy and classes of algorithms
	Performance Metrics
	Machine Learning Methods
	Isolation tree based methods

	Deep Learning Techniques
	Vanilla Neural Networks
	Convolutional Neural Networks (CNNs)
	Autoencoders
	Deep Learning Forecasting

	Reinforcement Learning
	Value Functions Methods
	Policy Gradient Methods

	Machine Learning for Particle Accelerators
	ML in physics laboratories
	Literature Review
	Anomaly detection and Fault Prediction
	Virtual Sensors
	Beam Dynamics Optimization and Optimal Control
	Industrial applications

	Summary and future directions

	Anomaly Detection and Fault Prediction
	Prerequisites
	Signals description
	Computing setup
	Data acquisition and preprocessing
	Event visualization

	Classical ML approach
	Feature Extraction
	Model selection
	Experimental Results
	Permutation importance
	Window length optimization

	Deep Learning approach
	Dataset preparation
	Forecasting Models
	Experimental Results

	Conclusions

	Reinforcement Learning for Beam Emittance Optimization
	Introduction
	Physics simulation
	Traditional optimization methods

	Reinforcement Learning approach
	Python wrapper
	REINFORCE
	Proximal Policy Optimization

	Conclusions

	Dynamic Sampling
	Introduction
	Methodologies
	Preliminaries
	Forward Selection Component Analysis (FSCA)
	Sequential Dynamic Sampling (SDS)
	Induced Start Dynamic Sampling (ISDS)

	Proposed Methods
	Constrained Induced Start Dynamic Sampling (CISDS)
	Greedy CISDS
	Step Up CISDS
	Ramp Up CISDS
	Double FSCA (DFSCA-Greedy)
	Ramp Up CISDS with DFSCA (DFSCA-Ramp)
	Recursive FSCA (RFSCA)
	Constrained Clustering SDS (CCSDS)

	Results
	Case studies and Experimental setup
	Performance Comparison
	Forced sites distribution over the measurement plan

	Conclusions

	Conclusions and Future Perspectives
	Source Code
	Acronyms
	Bibliography

