Resistance of nosocomial pathogens in burns unit (Yaroslavl, Russia)
S. Palyutin a,∗, I. Vedenin b, V. Berezin b, A. Shagarova b, M. Ershova c, E. Poletaeva c, S. Angelova c, G. Abrosimova c

a Yaroslavl State Medical University, Clinical Pharmacology, Yaroslavl/RU
b Clinical Hospital n.a. N.V. Solovyev, Burn Unit, Yaroslavl/RU
c Clinical Infectious Diseases Hospital №1, Clinical bacteriological laboratory, Yaroslavl/RU

Purpose: In patients in burn units (BU) with infectious complications are often problems with the appointment of antimicrobial agents, including in relation with a higher level of resistance of pathogens. The aim of our study was to evaluate the resistance of the main problematic pathogens in the BU.

Methods: Pathogen isolates were collected from patients hospitalized in BU of Yaroslavl Emergency Clinical Hospital in 2015 year. Susceptibility (S) and resistance (R) of Ps.aeruginosae, Acinetobacter baum., E.coli, Klebsiella pneum. and S.aureus was interpreted to principal antimicrobial drugs according to current CLSI standard by disk-diffusion. The results suggested a heavy bacterial pollution of both water and sediment. A total of 47 strains (water 21, 44.68%; sediment 26, 55.32%) were isolated, namely each Enterococcus spp. and Staphylococcus spp., equally distributed in the water and sediment (47.62% and 52.38%, respectively), while E. faecalis (5 strains) was prevalent in the sediment (80%). There were no significant differences between the sensitivity to antibiotics of enterococci from water (w) and sediment (s), but although the latter were less resistant to ampicillin (42.86% versus 100%), their MAR index was higher (0.2±0.072 versus 0.156±0.05) indicating the strains originated from high risk sources. The staphyloccoci were least sensitive to ampicillin (w 66.67%, s 20%), but resistance to eritromycine, enrofloxacin, ciprofloxacin and streptomycin was present, ranging from 16.4 to 40%. The MAR index was the highest for the strains in the sediment (0.333±0.072).

Conclusion: The results of the study partially supported our hypothesis, indicating a large numbers of enterococcal and staphyloccocal isolates, with an increased antibiotic resistance posing a high health risk in the ecosystem. Supported by PNII/61-2012

http://dx.doi.org/10.1016/j.ijid.2016.11.126
also in companion animals to have a complete picture of the dynamics of this phenomenon.

http://dx.doi.org/10.1016/j.ijid.2016.11.128

19.046

Prevalence and antimicrobial-resistance characterization of vancomycin resistant enterococci (VRE) strains in healthy household dogs in Italy

D. Pasotto*, G. Dotto, M.L. Menandro, A. Mondin, M. Martini
University of Padua, Department of Animal Medicine, Production and Health, Legnaro - Agricola PD/IT

Purpose: Enterococci are one of the leading causes of nosocomial infections for humans and the emergence of vancomycin-resistant enterococci (VRE) and high-level aminoglycoside-resistant enterococci (HLRRA) caused public health concern because these drugs are often one the few therapeautic alternatives for treatment of multidrug-resistant (MDR) enterococcal infections. The widespread effect of MDR enterococci is partially driven by the selective pressure produced by the use and overuse of drugs in both human and veterinary medical practice. In recent decades, the analyses of their virulence and antimicrobial-resistance traits in hospital-acquired infections have been extensively reported in humans. However, less attention has been given to the role of pets as reservoir of MDR enterococci, despite their relationship with humans. The aim of this study was to evaluate the prevalence and the antimicrobial-resistance traits of VRE from household dogs.

Methods & Materials: Faecal samples of 237 healthy household dogs were tested to detect Enterococcus spp. using the classical bacteriological procedure. The species identification was confirmed by PCR assays as previously described. Antimicrobial-resistance to vancomycin was assessed by plating single colonies on Brillance VRE Agar (Oxoid). The antimicrobial susceptibility to high-level aminoglycosides and to other compounds (together with the confirmation of vancomycin-resistance), was evaluated by the disk diffusion method based on recommendations of the CLSI.

Results: Enterococci were detected in 72% (n=170) of dogs and, in accordance with other studies, the most prevalent Enterococcus species were Enterococcus faealis (n=118; 69.4%) and Enterococcus faecium (n=50; 29.4%). The 49% of the isolates (n=84) were VRE and 2.4% (n=2) and 21.5% (n=18) of VRE strains showed HLR to gentamycin and streptomycin respectively. Interestingly, most of these isolates were also classified as multidrug-resistant.

Conclusion: These results demonstrate that dogs are commonly colonized by antimicrobial-resistant enterococci and highlight the role of pets as reservoir of last-line drug resistances. Moreover, the close contact with humans confirms the possible transmission of antimicrobial-resistant bacteria from dogs to humans. Therefore, the study stresses the need of surveilling this phenomenon also in companion animals.

http://dx.doi.org/10.1016/j.ijid.2016.11.129

19.048

Detection of carbapenemase production by multidrug-resistant Acinetobacter baumannii isolates from selected wards in Dr George Mukhari Academic Hospital

D.T. Phofa
Sefako Makgatho Health Sciences University, Microbiological Pathology, Pretoria, GAUTENG/ZA

Purpose: Carbapenem-resistant Acinetobacter baumannii has emerged as an important cause of nosocomial outbreaks worldwide. Detection of carbapenemase production by modified Hodge test using Mueller Hinton agar has been reported to be less sensitive. The objectives of this study were two-fold: i. to compare the performance of MacConkey agar (MA) and Mueller Hinton agar (MHA) for the detection of carbapenemases; ii. to determine the type of carbapenemases that are produced by A. baumannii isolates from Dr George Mukhari Academic Hospital (DGM).

Methods & Materials: Twenty four stored carbapenem-resistant and 2 carbapenem-susceptible A. baumannii isolates were identified using Vitek 2 automated system (bioMerieux, France). The modified Hodge test (MHT) was done according to CLSI guidelines on MHA (DMP, South Africa) and MA (DMP, South Africa) using Escherichia coli ATCC 25922 and meropenem disks. All the plates were incubated at 37°C overnight. Detection of carbapenem-resistant genes (OXA-23, OXA-40, OXA-58, SIM, VIM-1, VIM-2 AND IMP-like) was done according to published molecular methods.

Results: Of the 24 carbapenem-resistant isolates which were screened, 87.5% (21) and 62.5% (15) were found to be carbapenemase positive by MHT on MA and MHA, respectively. The cloverleaf pattern on MHA appears to be absent for some of the isolates but it is accentuated on MA. Both MHA and MA showed 50% false positive result for the 2 susceptible isolates. Of the 24 resistant isolates which were screened for bla genes, 87.5% (21) and 25% (6) were found to have OXA-23 and OXA-40, respectively.

Conclusion: MA may be used in place of MHA for the screening of carbapenem-resistant A. baumannii and thus will impact on infection control practices. OXA-23 bla gene was the most prevalent carbapenemase type at DGM Hospital. Though the numbers were small, the study confirms that phenotypic methods lack specificity and sensitivity, hence their results have to be confirmed by molecular methods.

http://dx.doi.org/10.1016/j.ijid.2016.11.130