The 2nd International Conference ‘Insects to Feed the World’ (IFW 2018)

15-18 May 2018

Wuhan, China P.R.

This supplement of Journal of Insects as Food and Feed can be found at

Local organising committee

• Ziniu Yu
Huazhong Agricultural University, China P.R.

• Longyu Zheng
Huazhong Agricultural University, China P.R.

• Jibin Zhang
Huazhong Agricultural University, China P.R.

• Hong Yang
Central China Normal University, China P.R.

• Yusheng Liu
Shandong Agricultural University, China P.R.

• Ying Feng
Chinese Academy of Forestry Sciences, China P.R.

• Richou Han
Guangdong Institute of Applied Biological Resources, China P.R.

• Yun Ke
State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, China P.R.

• Zheng Wu
JM Green Co. Ltd., China P.R.

Secretariat

• Longyu Zheng
Huazhong Agricultural University, China P.R.

• Qing Li
Huazhong Agricultural University, China P.R.

• Minmin Cai
Huazhong Agricultural University, China P.R.

• Wu Li
Huazhong Agricultural University, China P.R.

• Linghua Ding
Huazhong Agricultural University, China P.R.

• Xiaopeng Xiao
Huazhong Agricultural University, China P.R.

• Zhaolu Zhu
Huazhong Agricultural University, China P.R.

International advisory board

South and Central America

• Eraldo M. Costa Neto
Universidad de Estadual de Feira de Santana, Brazil.

North America

• Katharina Unger
Livin Farms Ltd., Hong Kong.

• Jeffery K. Tomberlin
Texas A&M University, USA.

Asia

• Huanchun Chen
Chinese Academy of Engineering Academicians, Huazhong Agricultural University, China P.R.

• Long Li
Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Laboratory of Quality & Safety Risk Assessment for Sericultural Products and Edible Insects, China P.R.

• Yongping Huang
Institute of Plant Physiology and Ecology Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China P.R.

• Yupa Hanboonsong
Khon Kaen University, Thailand.

• Victor Benno Meyer-Rochow
Research Institute of Luminous Organisms, Japan.

Europe

• Antoine Hubert
International Platform of Insects for Food and Feed (IPIFF), Belgium.

• Arnold van Huis
Wageningen University & Research, the Netherlands.

Africa

• Segenet Kelemu
Africa Insect Science for Food and Health, Kenya.
Black soldier fly larvae (*Hermetia illucens*) are a suitable protein source for poultry. However, the effect of live black soldier fly larvae (BSFL) supplementation on growth performance and behaviour has never been demonstrated and quantified in turkeys. Wild turkeys eat insects during the first two weeks of life which is in contrast with commercially fed crumbs or pellets. Damaging pecking behaviour is a severe problem in turkeys. More lively diets may improve natural behaviour and decrease damaging pecking behaviour. The aim of the experiment was to stimulate natural behaviour of young non-beak treated turkeys by supply of live BSFL, and thus avoid damaging pecking behaviour. Two treatments with seven replicates were studied in 14 floor pens (1.5 m²/pen and 20 turkeys) from 0 to 35 days of age. Control groups were fed commercial diets and BSFL groups received live BSFL. The daily BSFL intake was calculated to be 10% of the expected daily feed intake (based on fresh weight) and dietary nutrient composition was adjusted in a way that control and BSFL groups were fed iso-nutritious. Daily feed intake and body weight gain of BSFL groups were significantly higher compared to control groups resulting in a significantly higher body weight at five weeks of age (2,190 vs 2,015 g; \(P=0.003 \)) and a significantly lower feed conversion ratio. Feather and skin damage tended to be lower in the BSFL groups until three weeks of age and at 4 and 5 weeks a significant difference in favour of the BSFL groups was observed. In the first week there was a tendency for more foraging related behaviour for the BSFL groups and in the third and fifth week BSFL groups showed less foraging related behaviour compared to control groups. Provision of BSFL slightly reduced aggressive pecking directed at the back and tail base.

Evaluation of carcass and meat traits of Muscovy duck fed with black soldier fly partially defatted meal

M. Gariglio¹, S. Dabbou¹, C. Caimi¹, I. Biasato¹, F. Gai², M.T. Capucchio¹, E. Biasibetti¹, M. Birolo³, A. Trocino⁴, R. Vincenzi², M. Meneguz¹, L. Gasco¹² and A. Schiavone¹

¹University of Torino, School of Agriculture and Veterinary Science, Largo P. Braccini, 2, 10095 Grugliasco (TO), Italy, ²Institute of Science of Food Production, National Research Council, Largo P. Braccini, 2, 10095 Grugliasco (TO), Italy, ³University of Padova, Department of Agronomy Food Natural Resources Animal and Environment, Viale dell’Università, 16, 35020 Legnaro (PD), Italy, ⁴University of Padova, Department of Comparative Biomedicine and Food Science, Viale dell’Università, 16, 35020 Legnaro (PD), Italy, ⁵A.I.A. Agricola Italiana Alimentare S.p.A., via Val Pantena, 18G, 37142 Verona (VR), Italy; marta.gariglio@unito.it

The aim of this study was to evaluate the carcass characteristics and breast meat quality in Muscovy duck (*Cairina moschata domestica*) fed different inclusion levels of a partially defatted black soldier fly larva (BSF) meal. A total of 256 Muscovy ducklings (average live weight, LW: 71.32±2.70 g) were reared from day 3 to day 48 and randomly allotted in 32 pens (8 replicates/treatment). Four different diets were formulated with increasing substitution level of corn gluten meal with BSF larva meal (0, 3, 6 and 9%; BSF0, BSF3, BSF6 and BSF9, respectively) and divided in 3 feeding phases: starter (1-14 days), grower (14-35 days) and finisher (35-48 days). At day 48, 2 animals/replicate were slaughtered and dissected to determine their carcass yields. The weights of spleen, bursa of Fabricius, liver, heart and abdominal fat were recorded. Breast and thigh muscles were then excised from 16 ducks/treatment and weighted. Ultimate pH (pHu) and L*, a*, b* colour values were then measured on breast muscle. The collected data were tested by means of one-way ANOVA evaluating the effect of dietary BSF inclusion level by polynomial contrasts. Significance was declared at \(P<0.05 \). The inclusion of BSF did not affect final LW (2,515.68±92.42 g on average). Hot and cold carcass weights were not affected by treatments. Weight of spleen, bursa of Fabricius, liver and heart did not differ among treatments. The weight of abdominal fat showed a quadratic response to increasing BSF meal with a minimum corresponding to BSF6; however, refrigeration losses were not affected by treatments. Weight of spleen, bursa of Fabricius, liver and heart did not differ among treatments. The weight of abdominal fat showed a quadratic response to increasing BSF meal with a minimum corresponding to BSF6 group (\(P<0.05 \)). Breast and thigh yields, pHu and L*, a*, b* colour values did not differ among groups. With the exception of BSF6, the inclusion of BSF meal did not affect meat traits and carcass characteristics, confirming the potential use of BSF meal in Muscovy duck diets.