Testing the Conjugative Properties of Benzodithiophene and Benzotrithiophene in Charge Transfer Multi(ferrocenyl) Systems

Original Citation:

Availability:
This version is available at: 11577/3285148 since: 2019-12-08T12:15:19Z

Publisher:
American Chemical Society

Published version:
DOI: 10.1021/acs.organomet.8b00537

Terms of use:
Open Access
This article is made available under terms and conditions applicable to Open Access Guidelines, as described at http://www.unipd.it/download/file/fid/55401 (Italian only)

(Article begins on next page)
Testing the Conjugative Properties of Benzodithiophene and Benzotrithiophene in Charge Transfer Multi(Ferrocenyl) Systems

Serena Rossi, Annalisa Bisello, Roberta Cardena, and Saverio Santi*

Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.

Supporting Information Placeholder

ABSTRACT: The charge transfer properties of the mono-, di-, and tricationic derivatives of bis(ferrocenyl)benzodithiophene and tris(ferroceny1)benzotrithiophene were investigated. The cations were generated by chemical oxidation using ferrocenium(BF₄) and acetylferrocenium(BF₄) as the oxidative agents, and monitored in the visible and NIR regions. By changing the supporting electrolyte from [nBu₄N][PF₆] to [nBu₄][B(C₆F₅)₄] we were able to selectively generate the monocationic species of bis and triferrocenyl complexes. The redox and optical properties of the cationic derivatives were rationalized by an in-depth electrochemical and optical study. The comparison with the results previously obtained for the structurally related bis(ferrocenyl)s-indacene and tris(ferrocenyl)-trindene allowed for the evaluation of the huge influence of thiolation on the metal-metal electronic coupling.

INTRODUCTION

Thiophene-based π-conjugated oligomers and polymers have been widely investigated as organic semiconductors.1-3 Owing to their appropriate characteristics (electronic, optical, and magnetic properties) for producing electronic and optical devices, (multi)thiophene fused-aromatic compounds are attracting growing interest as promising electronic materials for organic conductors,4 organic light-emitting diode,5 photovoltaic6 and field-effect transistors.7

Moreover, the extended and planar π-conjugation associated with the electron-rich structure of the fused heterocycles enables them to exhibit strong stacking through intermolecular interactions which confer enhanced hole-carrier mobilities.8 In addition, thiophene-based oligomers and polymers have been shown to be naturally stable and robust.

In the last decade, considerable interest has been devoted towards benz[1,2-6:4,5-b'']dithiophene (BDT) and benz[1,2-b:3,4-b':5,6-b'']trithiophene (BTT) as potential π-cores for organic semiconductors (Chart 1).

Chart 1. Fused-thiophene compounds.

BDT is a linear-shaped fused dithiophene with two identical thiophene moieties with C₂ᵥ symmetry which has been widely used in semiconductors.9 It was first employed in photovoltaic polymers by Hou and coworkers in 2008,10 and became one of the most successful building blocks in highly efficient organic solar cells11 and field effect transistors,12 which have been proven to match the desirable requirements for these devices.12

BTT is a sulfur-rich and extended π-system possessing a planar structure with three identical thiophene rings fused to a central benzene ring,3,13 which has been studied thoroughly and used as a core for the construction of star-shaped oligomers and dendrimers.14 Its C₆ᵥ symmetry takes advantage of the intermolecular π–π and S···S interactions responsible of the efficient hole-transporting properties of its materials.15

BTT is one of the most promising candidates for high performance photovoltaic devices,16-18 field effect transistors,19 optoelectronics20 and charge carrier discotic liquid crystals.21 Interestingly, in very recent works Martin, Nazeeruddin and co-workers reported new star-shaped families of hole-transporting (HTMs) materials based on BTT isomers as central cores bearing p-methoxydi- and triphenylamines, which exhibited remarkable power conversion efficiencies (PCEs) when used in organometal trihalide perovskites solar cells.14

The set-up of multicomponent compounds with specific redox, optoelectronic and conductive properties is presently essential for modern technology.19 Ferrocene is one of the most employed organometallic components. Its stability, redox properties, specific electron donor character and well-developed functionalization chemistry make it a primary candidate for testing the electronic properties in conjugated systems. Especially, (multi)ferrocenyl systems with conjugated spacer groups exhibit multielectron redox chemistry and are of particular interest owing to their unpaired electron migration properties.22

Examples of bimetallic BDT are rather rare.23 The bis(ferrocenyl) derivative, 2,6-bis(ferroceny1)benzo[1,2-b:4,5-b']dithiophene (I), was previously synthesized by Negishi ferrocenylation of the appropriate bromo-substituted BDT.24 Very recently, we described a more efficient approach to prepare I in good yield and short reaction time via one-pot Cu/TMEDA catalyzed two fold thioannulation with sodium sulfide of 1,4-dibromo-2,5-bis(ethynylferrocenyl)benzene,25

BDT and BTT were of particular interest owing to their unpaired electron migration properties.26

Examples of bimetallic BDT are rather rare.21 The bis(ferrocenyl) derivative, 2,6-bis(ferrocenyl)benzo[1,2-b:4,5-b']dithiophene (I), was previously synthesized by Negishi ferrocenylation of the appropriate bromo-substituted BDT.24 Very recently, we described a more efficient approach to prepare I in good yield and short reaction time via one-pot Cu/TMEDA catalyzed two fold thioannulation with sodium sulfide of 1,4-dibromo-2,5-bis(ethynylferrocenyl)benzene,25

Examples of bimetallic BDT are rather rare.21 The bis(ferrocenyl) derivative, 2,6-bis(ferrocenyl)benzo[1,2-b:4,5-b’]dithiophene (I), was previously synthesized by Negishi ferrocenylation of the appropriate bromo-substituted BDT.24 Very recently, we described a more efficient approach to prepare I in good yield and short reaction time via one-pot Cu/TMEDA catalyzed two fold thioannulation with sodium sulfide of 1,4-dibromo-2,5-bis(ethynylferrocenyl)benzene,25
obtained by Sonagashira-coupling of 1,4-dibromo-2,5-diodobenzene.

Similarly, we prepared the tris(ferrocenyl) derivative of BTT, the 2,5,8-tris(ferrocenyl)benzo[1,2-b:3,4-b':5,6-b'']trithiophene (2), the first examples of organometallic complex of BTT reported so far (Chart 2).

Chart 2. BDT and BTT ferrocenyl complexes

![BDT and BTT ferrocenyl complexes](image)

Multi(ferrocenyl) compounds were intensely studied because conjugated organic chains containing FeI/FeII couples in the ferrocenyl group can be used as switchable arrays in molecular electronics, quantum cellular automata, optoelectronic materials, and biochemistry for application in redox or photonic devices.

The mixed-valence states having at least two equivalent ferrocenyl groups in different oxidation states are excellent standards for the study of intramolecular charge transfer. Actually, the formation of mixed-valence species is often accountable for the aforementioned performances. The factors affecting the formation, stability, and nature of mixed-valence states in multi(ferrocenyl) derivatives were methodically examined. In particular, it was found that the electron transfer mechanism in mixed-valence intermediates is mostly based on the Marcus–Hush theory.

In this work, we present the results of an in-depth experimental and theoretical study on the optical and redox properties of the cationic derivatives of compounds 1 and 2 (Chart 2). The comparison with the results previously obtained for the structurally related 1,5-dihydro- and 1,7- and 2,6-diferrocenyl-s-indacenes20h (3) and 4,7- and 6,7-dihydro-2,5,8-triferrocenyl-trindenes20d (4) complexes (Chart 3) allows for the evaluation of sulfur atom influence on the metal-metal electronic coupling.

Chart 3. Indacene and trindene ferrocenyl complexes

![Indacene and trindene ferrocenyl complexes](image)

The electrochemical characterization in different media is described. The optical properties of the mixed valence and of the fully oxidized species, selectively generated by chemical oxidation using ferrocenium and acetylferrocenium(BF4) as the oxidants, were monitored by vis-NIR spectroscopy. The charge transfer processes are rationalized in the framework of the Hush theory. Given their well-recognized and growing interest as electronic materials as scaffolds for organic conductors, the determination of the degree of the electronic coupling through the BDT and BTT bridging ligand represents a suitable tool for probing the conductive capability of these ligands.

RESULTS AND DISCUSSION

Electrochemistry. Oxidative cyclic voltammetry (CV) of 1 and 2 recorded under argon in CH2Cl2/0.1 M nBu4NB(C6F5)4, (Figures 1a, c). Large waves with oxidation potential maximum at 0.27 (1) and 0.24 V (2) are present.

Figure 1. Oxidative CV at 20 °C of 1 (a) and 2 (c) at scan rate 0.5 Vs⁻¹. DPV of 1 (b) and 2 (d). Solvent CH2Cl2, supporting electrolyte 0.1 M nBu4NB(C6F5)4. DPV conditions: modulation amplitude, 5 mV; modulation time, 0.05 s; interval time (Δt), 0.5 s, step potential (ΔE), 0.005 V; scan rate, ν = ΔE/ΔtM, 0.01 V s⁻¹.

We and Ogawa have previously reported that oxidation of 216,22 and 222 in the presence of the supporting electrolyte nBu4NB(F4) containing a strong coordinating anion with a low delocalized negative charge, such as BF4⁻, showed single oxidation waves despite of the number of electro-active ferrocenyl groups. These results indicated that in that medium the ferrocenyl groups of 1 and 2 are electrochemically undistinguished. Similar results were previously found by us for structurally correlated bis(ferrocenyl) complexes of s- and as- indacenes20b and tris(ferrocenyl) derivative of trindene20d in the same conditions.

Otherwise, in the presence of nBu4NB(C6F5)4 as supporting electrolyte enclosing the feeble ion-pairing and nucleophilic anion B(C6F5)4⁻ the waves slightly splits into two oxidation processes.

In fact, the deconvolution of the differential pulse voltammetric (DPV) measurement of bis(ferrocenyl) complex 1 evidenced two oxidation peaks of equal areas (Figure 1b, green curves) due to two subsequent oxidation processes, 1/1' and 1'/1', at potential 0.18 and 0.27 V. At difference, the 2:1 ratio of the deconvoluted DPV peaks displayed by the triferrocenyl complex 2 (Figure 1d, green curves) evidenced that the second oxidation is a two-electron redox process, with an overall two steps three electron oxidation, 2/2' and 2'/2″, at 0.17 and 0.28 V. The wave separation ΔE = ΔEp2-Ep1 and the comproportionation equilibrium constant Kc for 2 (ΔE = 110 mV, Kc = 78) are greater than those of 1 (ΔE = 86 mV, Kc = 30), being Kc = exp(FΔE/RT). The ΔE and Kc values are smaller than those found for the related compound 4 (165 mV, Kc = 687) and 3 (110 mV, Kc = 78) respectively.

For organic and organometallic systems containing two or more identical redox groups and undergoing electron-transfer reactions, the typical observation is that the second and subsequent redox events occur with greater difficulty than the first. The separation between the standard potentials, ranging from about 0.1 V to over 1 V, is mainly due to electrostatic factors. However, as pointed out by Evans there are cases in which the potential differences is so small such that in cy-
cyclic voltammetry the two electron-transfer processes produce almost a single voltammetric peak. These are examples of "potential compression". At first glance, this situation seems to controvert the electrostatic argument. However, structural changes associated with the electron transfers occur and are usually responsible for potential compression and even inversion.\(^{30}\) In addition, Sáveant established that the small ΔE and potential inversion found in the oxidation (or reduction) of a series of carotenoids are ruled by large solvation energies stabilizing the dication (or dianion) forms with respect to mixed-valence species.\(^{30}\)

In the presence study, the magnitude of ΔE is diagnostic for low thermodynamic stability of 1^+ and 2^+ and indicates that significant disproportionation occurs upon oxidation, taking into account that only 40-50% of the equilibrium species are monocations, according to the related values of K_c.

In a recent review,\(^{31}\) Winter presented a cautionary reminder against the often claimed direct correlation between ΔE and the degree of electronic coupling, that frequently fails for systems in which the organic bridge actively participates in the redox processes. In these systems, the redox groups are connected by fully π-conjugated bridges, which contribute to the respective frontier orbitals. In such cases, large electronic couplings are observed despite small potential splittings, sometimes even just above the statistical limit, as found for 1, or below. Actually, we found that the frontier Kohn–Sham MOs of 1 and 2 have a large ligand contribution.\(^{22}\)

Trustworthy information on metal-metal electronic coupling in 1^+ and 2^+ can be attained only if the mixed-valent monocations can be selectively generated in solution by examining the charge transfer bands in near infrared (NIR) spectral region.

Optical Spectroscopy. The charge transfer properties of the mono-, di- and tri-oxidized species obtained from oxidation of complexes 1–2 in CH$_2$Cl$_2$ / 0.1 M nBuNB(C$_6$F$_5$)$_6$ have been probed by analysis the spectra in the NIR region (Figure 2).

![Figure 2](image-url)

Figure 2. Oxidation of 2.50 mM 1 (a,c) and 2.96 mM of 2 (b,d) solutions in CH$_2$Cl$_2$ / 0.1 M nBuNB(C$_6$F$_5$)$_6$ by incremental addition of acetylferrocenium(BF$_4$) (a,b) or ferrocenium(BF$_4$) (c,d), 1 equiv (black bold line) and 2 (a) or 3 (b) equiv (red bold line).

Oxidation of yellow solutions of 1 and 2 in CH$_2$Cl$_2$ / 0.1 M nBuNPF$_6$ by stepwise addition of acetylferrocenium(BF$_4$) (Supporting Information, Figure S1) produced the fully oxidized cations 1^{2+} and 2^{2+}. Otherwise, in the presence of nBu$_4$NB(C$_6$F$_5$)$_6$ as supporting electrolyte, oxidation by incremental addition of acetylferrocenium(BF$_4$) (Figures 2a,b) initially afforded deep green solutions and induced the appearance of energy absorptions at wavelength $\lambda = 1420$ and 1180 nm, corresponding to the formation of the monocation 1^+ and 2^+.

Upon further oxidation addition up to 2 and 3 equivalents, the solutions turned from green to red due to the gradual formation of 1^{2+} and 2^{2+} which absorb at $\lambda = 1010$ and 995 nm, respectively.

Interestingly, oxidation by ferrocenium(BF$_4$) of 1 and 2 in the same medium generated more selectively 1^+ and 2^+ (Figures 2c,d) due to the lower formal oxidation potential of ferrocene with respect to that of acetylferrocene, 0.46 and 0.73 V vs SCE in CH$_2$Cl$_2$ / nBuNPF$_6$, respectively.\(^{32}\) In addition, we found that in CH$_2$Cl$_2$ / 0.1 M nBuNB(C$_6$F$_5$)$_6$ the oxidation potential of both ferrocene and acetylferrocene decreases of 0.10 V. We attribute the lower energy bands to intervalence charge-transfer (IVCT) transitions.

Gaussian de-convolution of 1^+ and 2^+ spectra (Figure 3a,c) allowed for the determination of their absorption parameters (Table 1) by using the classical electron transfer Hush model. In particular, the comparison of the experimental and calculated half-bandwidths,\(^{23a}\) ($\Delta \tilde{\nu}_{1/2} \mu_{ab}$ (cm$^{-1}$) = [16R7n2 $\tilde{\nu}_{max}$]${\frac{1}{2}}$) revealed the narrowness of these bands.

![Figure 3](image-url)

Figure 3. NIR spectra of 1^+ (a) 2^+ (b), 1^{2+} (c) and 2^{2+} (d) in CH$_2$Cl$_2$ / 0.1 M to nBuNB(C$_6$F$_5$)$_6$ solution at 20 °C (black lines) obtained by oxidation with 1 equiv of acetylferrocenium(BF$_4$). Gaussian deconvolution (green lines) after background subtraction.

The values of $\Gamma = 1 - (\Delta \tilde{\nu}_{1/2} \mu_{max})/ (\Delta \tilde{\nu}_{1/2} \mu_{Hush})$ for 1^+ (0.32) and for 2^+ (0.42), a criterion proposed by Brunschwig, Creutz and Sutin\(^{23e}\) to classify the mixed valence species, are larger than those previously found for the structurally related cations of bis(ferrocenyl)-π-indacene\(^{23d}\) 3^+ (0.24) and tris(ferrocenyl)-trindacene\(^{23e}\) 4^+ (0.27).

These results, besides being consistent with quite strong coupling (Class II mixed-valent cations) greater in 2^+ than in 1^+, are in favor of a metal-metal electronic coupling stronger in 1^+ than in 3^+ and in 2^+ than in 4^+, despite the values of ΔE and K_c found for 1 and 2 being lower than those found for 3 and 4 (Table 1).

The correct evaluation of the electronic coupling $H_{\text{ab}} = [0.0205(\tilde{\nu}_{\text{max}} \tilde{\nu}_{\text{max}} \Delta \tilde{\nu}_{1/2}]^{1/2})/d$, as predicted by the Hush model, is prevented by the relevant narrowness of the low en-
ergy IVCT band for 1^+ and 2^+ (where d is the unknown adiabatic electron transfer distance).26a

Finally, the absorption coefficients of the IVCT and LMCT bands found for 2^+ and 2^{3+} result almost threefold higher than those of 1^+ and 1^{2+} (Table 1).

<table>
<thead>
<tr>
<th>λ_{max} (cm$^{-1}$)</th>
<th>Type</th>
<th>ε_{max} (M$^{-1}$cm$^{-1}$)</th>
<th>($\Delta \tilde{v}{12}$)${\text{thad}}$ (cm$^{-1}$)</th>
<th>($\Delta \tilde{v}{12}$)${\text{lab}}$ (cm$^{-1}$)</th>
<th>J^\ast</th>
</tr>
</thead>
<tbody>
<tr>
<td>1^{2+}</td>
<td>7041</td>
<td>IVCT</td>
<td>370</td>
<td>2728</td>
<td>4033</td>
</tr>
<tr>
<td>1^{2+}</td>
<td>9900</td>
<td>LMCT</td>
<td>929</td>
<td>3580</td>
<td>-</td>
</tr>
<tr>
<td>2^{2+}</td>
<td>8582</td>
<td>IVCT</td>
<td>1095</td>
<td>2602</td>
<td>4474</td>
</tr>
<tr>
<td>3^{2+}</td>
<td>10050</td>
<td>LMCT</td>
<td>2615</td>
<td>2890</td>
<td>-</td>
</tr>
<tr>
<td>3^{2+}</td>
<td>5576</td>
<td>IVCT</td>
<td>1286</td>
<td>2690</td>
<td>3590</td>
</tr>
<tr>
<td>3^{2+}</td>
<td>9230</td>
<td>LMCT</td>
<td>2930</td>
<td>2600</td>
<td>-</td>
</tr>
<tr>
<td>4^{2+}</td>
<td>9230</td>
<td>LMCT</td>
<td>2930</td>
<td>2600</td>
<td>-</td>
</tr>
<tr>
<td>4^{2+}</td>
<td>9230</td>
<td>LMCT</td>
<td>2930</td>
<td>2600</td>
<td>-</td>
</tr>
</tbody>
</table>

a ($\Delta \tilde{v}_{12}$)$_{\text{lab}}$ (cm$^{-1}$) = ($16\Delta \tilde{v}_{12}$)$_{\text{thad}}$ (cm$^{-1}$) calculated for the de-convoluted low energy Gaussian component; b T = 20 °C; c Γ = 1; d nBu$_4$NB(C$_6$F$_5$)$_2$ as supporting electrolyte. e Ref. 20h. f Ref. 20d. g The concentrations of 2^+ and 3^+ have been determined taking into account of the dication concentration.

We attribute this effect to the more efficient charge transfer capability of BTT with respect to BDT. This is not the case for the absorption coefficients of 4^+ and 4^{3+} compared to those of 3^+ and 3^{2+}, indicating less conductive properties of the sulfur-free bridging ligand.

CONCLUSIONS

The optical analysis of the bimetallic and trimetallic cations 1^+ and 2^+ in the NIR region allowed for the determination of their charge transfer properties and the evaluation of the magnitude of metal-metal electronic coupling. The cations were generated by chemical oxidation using ferrocenium(BF$_4$) and acetylferrocenium(BF$_4$) as the oxidants. Ferrocenium(BF$_4$) produced more selectively 1^+ and 2^+ due to its formal oxidation potential lower than acetylferrocenium(BF$_4$), but in poorer amounts.

The CV profiles of 1 and 2 could be switched from a non-resolved two electron oxidation to two processes separated to some extent by changing the anion of the supporting electrolyte from PF$_6$ to B(C$_6$F$_5$)$_2$, the latter having notably feeble ion-pairing and nucleophilic capability. Despite the low ΔE splittings, the mixed-valence cation 1^+ and 2^+ could be selectively generated and analyzed.

Their NIR spectra displayed typical charge transfer bands, which were rationalized in the framework of the Marcus–Hush theory. The IVCT transitions showed astoundingly large Γ values of 0.32 and 0.42, placing these systems well into the regime of rather strongly coupled mixed-valence systems of class II.

Interestingly, the comparison with the results previously found for the structurally related sulfur-free 3^+ and 4^+ clearly indicates that the sulfur atom strongly increases the metal-metal electronic coupling in 1^+ and 2^+.

EXPERIMENTAL SECTION

General Methods. All complex manipulations were performed under an oxygen- and moisture-free atmosphere utilizing standard Schlenk techniques. Solvents were dried by reflux over the appropriate drying agent and distilled under stream of argon. Ferrocene was Sigma Aldrich products. (Acetylferricenium)(BF$_4$) was synthesized according to published procedures.31 CV experiments were performed in an air-tight three-electrode cell connected to a vacuum/argon line. The reference electrode was a SCE (Tacussel ECS C10) separated from the solution by a bridge compartment filled with the same solvent/supporting electrolyte solution used in the cell. The counter electrode was a platinum spiral with ca. 1 cm2 apparent surface area. The working electrodes were disks obtained from cross sections of gold wires of different diameters (0.5 and 0.125 mm) sealed in glass. Between successive CV scans, the working electrodes were polished on alumina according to standard procedures and sonicated before use. An EG&G PAR-175 signal generator was used. The currents and potentials were recorded on a Lecroy 9310L oscilloscope. The potential was home-built with a positive feedback loop for compensation of the ohmic drop.33 An Autolab PGSTAT 100 potentiostat/galvanostat (EcoChemie, The Netherlands) run by a PC with GPES software was used for the differential pulse voltammetry (DPV) experiments. The measurements were conducted in an airight three-electrode cell, the same used for the CV experiments. UV–vis and near-IR absorption spectra were recorded with a Varian Cary 5 spectrophotometer.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website.

UV-vis and NIR spectra of 1^+ and 2^+ in CH$_2$Cl$_2$ / nBu$_4$NPF$_6$ (PDF)

AUTHOR INFORMATION

Corresponding Author
*Email: saverio.santi@unipd.it

ORCID
Saverio Santi: 0000-0002-6403-4467

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENT

Financial support by the University of Padova through the grant PRAT 2014 action (2015K7FFZLH) is acknowledged.

REFERENCES

Table of Contents artwork

[Diagram showing molecular structure with labels Fe and IVCT]