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Abstract

The main object of this thesis is the study of some moduli spaces of curves from the
point of view of one of the most important topological invariants: rational cohomology,

i.e. singular cohomology with rational coefficients.

The moduli space we want to to study is the moduli space 7, of trigonal curves of
genus g. [ts coarse moduli space is a quasi-projective algebraic variety which parametrizes
complex trigonal curves of fixed genus g, up to isomorphism. A trigonal curve is defined
as a smooth irreducible non-hyperelliptic curve admitting a linear system g3 or, equiv-
alently, a degree 3 map to P'. Hence, 7, naturally sits inside the moduli space M, of
complex smooth irreducible curves of genus g, as a locally closed subvariety. Moreover,
given a curve in 7, its trigonal structure defines a natural embedding in some ratio-
nal geometrically ruled surface, called Hirzebruch surface. The degree of the surface
is defined as the Maroni invariant of the trigonal curve and it determines the Maron:

stratification of T, into locally closed subvarieties.

In order to study the cohomology of 7,, we will study first that of each stratum. We
will see that Maroni strata are quotients of complements of discriminants in a given
complex vector space by the action of an algebraic group. To compute the cohomology
of complements of discriminants we will use Gorinov-Vassiliev’s method, specifically
Tommasi’s adaptation of the method. From the cohomology of the complement of a
discriminant and that of the algebraic group acting on it, one can deduce the cohomology

of the corresponding stratum thanks to a theorem of Peters and Steenbrink.

In chapter I we will recall the main properties of trigonal curves, together with the
techniques mentioned above. These will be applied first in chapter II in order to obtain
a full description of the rational cohomology of 75. Then, in chapter III, we will use
the same techniques to generalize the result obtained in the previous chapter to higher
genera. This will give us a description of the cohomology of 7, with g > 6, in a certain
range. In particular, we will prove that its cohomology ring stabilizes to its tautological
ring. Penev and Vakil proved that the tautological ring of 7, coincides with its Chow
ring, which is known from a work by Canning and Larson. Finally, in chapter IV, we
will discuss the stabilization of the cohomology ring of moduli spaces of smooth curves

of higher gonality, also embedded in a given Hirzebruch surface.
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Riassunto

L’argomento principale di questa tesi ¢ lo studio di alcuni spazi di moduli di curve dal
punto di vista di uno dei pit importanti invarianti topologici: la coomologia razionale,

i.e. la coomologia singolare con coefficienti razionali.

Lo spazio di moduli che studieremo ¢ lo spazio di moduli 7, delle curve trigonali
di genere g, una varieta quasi-proiettiva che parametrizza curve trigonali complesse di
genere fissato g, a meno di isomorfismo. Una curva trigonale ¢ definita come una curva
liscia irriducibile non iperellittica che ammette un sistema lineare g3 o, equivalentemente,
una mappa di grado 3 sulla retta proiettiva P'. Dunque, 7, & naturalmente contenuto
nello spazio di moduli M, di curve complesse lisce irriducibili di genere g, come una
sottovarieta localmente chiusa. Inoltre, data una curva in 7, la sua struttura trigonale
definisce un’immersione naturale in una superficie razionale geometricamente rigata,
cioe una superficie di Hirzebruch. 1l grado di queste superfici € chiamato invariante di
Maroni della curva e questo definisce la stratificazione di Maroni di T, in sottovarieta

localmente chiuse.

Al fine di studiare la coomologia di 7, studieremo prima quella di ciascuno strato.
Vedremo che gli strati di Maroni sono quozienti del complementare di un discriminante
in un dato spazio vettoriale complesso per 'azione di un gruppo algebrico. Per calcolare
la coomologia di complementari di discriminanti useremo il metodo di Gorinov-Vassiliev,
precisamente la versione del metodo di Tommasi. A partire dalla coomologia del comple-
mentare di un discriminante e quella del gruppo algebrico che agisce su di esso, si deduce

la coomologia del corrispondente strato grazie ad un teorema di Peters e Steenbrink.

Nel capitolo I ricorderemo le principali proprieta delle curve trigonali, assieme alle
tecniche appena menzionate. Queste tecniche verranno applicate prima nel capitolo II,
al fine di ottenere una descrizione completa della coomologia razionale di 75. Succes-
sivamente, nel capitolo III, utilizzeremo le stesse tecniche per generalizzare il risultato
ottenuto nel capitolo precedente per generi piu alti. Questo ci dara una descrizione
della coomologia di 7,, con g > 6, in un certo intervallo. In particolare, dimostreremo
che il suo anello di coomologia si stabilizza al suo anello tautologico. Penev e Vakil

hanno dimostrato che I'anello tautologico di 7, coincide con il suo anello di Chow, il
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quale e noto da un lavoro di Canning e Larson. Infine, nel capitolo IV, discuteremo la
stabilizzazione dell’anello di coomologia di spazi di moduli di curve lisce di gonalita piu

alta, anch’esse immerse in una data superficie di Hirzebruch.
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Introduction

Overview

The moduli space M, of complex non-singular curves of genus g is a central object in
algebraic geometry. Nonetheless only few general statements about its geometry are
known. More precisely, the existence of the coarse moduli space M, of complex di-
mension 3g — 3 that parametrizes isomorphism classes of complex non-singular curves
of genus g was first known thanks to Mumford’s Geometric Invariant Theory [Mum65].
Later, for g > 2, Deligne and Mumford not only proved that M, is irreducible
but they also introduced the important notion of a Deligne-Mumford stack. In partic-
ular, Knudsen [Knu83] then proved that M, is quasi-projective.

These moduli spaces are singular and, for g > 4, their singular loci correspond to
isomorphism classes of curves having non-trivial automorphisms, [ACGHSE], [Cor87].
On the other hand, if we use the language of stacks, it turns out that the moduli spaces
M, are smooth irreducible DM-stacks.

The moduli spaces M, have been extensively studied in the last few decades and
some results about their geometry are well known. Harer, Arbarello and Cornalba, in
[Har83] and [ACST], computed the Picard group of the moduli stack of smooth curves
of genus g > 3 and they proved that it is a free abelian group generated by a single
element. Harris, Mumford and Eisenbud proved in [HMS82],[Har84],[EH87], that M, is
of general type for all g > 24, and it has Kodaira dimension K, = 3g — 3 if g > 24 and
K33 > 1. More recently, Farkas improved this result proving that K,3 > 2, [Far00], and,
together with Jensen and Payne, they proved that Mo is also of general type, [EJP20].
It is also know that M, is unirational for ¢ < 14, [ACRI], [Sex&T], [CR&4], [Ver03].

Another way to understand these spaces is by computing some topological invariants,

such as their cohomology groups. In particular we are interested in their cohomology
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2 INTRODUCTION

with rational coefficients and since there is an isomorphism between rational cohomology
groups of a DM-quotient stack and of its underlying coarse moduli space, [Edil3], we
will abuse notation and denote by M, both the DM-stack and the coarse moduli space,
without distinguishing them. In the last few decades, there has been a considerable
progress in the understanding of the rational cohomology ring of M,. What is known
until know, for general values of g, is mostly due to Harer, Mumford, Madsen and
Weiss. Harer proved in [Har85) that the cohomology ring H*(M,; Q) is independent
of the genus g for ¢ > 3¢ — 1. Harer’s stability bound was later refined by Ivanov and
Boldsen, [[va89], [Boll12], who proved that the optimal bound is 2¢g > 3i+ 2. This allows
us to define the stable cohomology ring H*(M; Q) as H*(M,; Q) for a sufficiently large
g. Mumford also conjectured in [Mum&3] that the stable cohomology ring is generated by
tautological classes. This conjecture was later proved by Madsen and Weiss in [MWOT]

using topological techniques.

The tautological ring of the moduli space of curves

The tautological ring, denoted by R*(M,) is the subring of the Chow ring A*(M,)
of the moduli space of smooth curves of genus g generated by tautological classes k; €
A'"(M,). These are classes which “naturally come from geometry”. Specifically, they
are defined as Chern classes of some natural vector bundles on M.

Let C; = Mg 1 be the universal curve, or equivalently, the moduli space of 1-pointed
smooth curves of genus g. Let us also denote by 7 : C;, — M, the natural morphism
forgetting the marked point, by w, its relative dualizing sheaf and K = ¢1(w,) € A'(C,).
Then

ki = (K € AY(M,).

For their properties and relations in the tautological ring we refer to [Fab99).

These classes were first introduced by Mumford, who proved in [Mum&3] that the
tautological ring is generated by the kappa classes k1, ..., Kg_o.

Furthermore, Mumford conjectured that the stable cohomology of M, coincides with
the image of the tautological ring through the cycle-class map A*(M,) — H?*(M,; Q).
Initially this conjecture has been partially proved by Miller [Mil86], then Madsen and
Weiss [MWOT] provided a complete proof.



Outline of the results 3

Furthermore, for fixed values of g, we have a complete description of the rational co-
homology ring of M, with g = 2, 3,4, due to the works of Mumford [Mum83], Looijenga
[Loo93] and Tommasi [Tom05b], respectively. Unfortunately, for g > 5 the full rational

cohomology ring of M, is still unknown.

The moduli space of trigonal curves

One way to approach this problem is to compute first the cohomology of some loci
inside M,. Let us assume g > 3, the moduli space M, has a standard stratification
given by gonality. The gonality of a curve C' is the smallest positive integer d such that
C has a g; and M, can be stratified as

1 1
Mo EMyz & -0 € My,

where M ; = {[C] € M|C has a g} is an irreducible variety of dimension 2d +2g — 5
ifd < g/2+1 and M} ; = Mg assoon as d > g/2+1, [ACGII, XXI.11]. In other words,
if the Brill-Noether number 2d — g — 2 is negative then the general curve of genus g has
no gi. Thus, curves with negative Brill-Noether number correspond to special points in
the moduli space M, and these are indeed the curves we will be interested in.

In fact, the aim of this thesis is to study the rational cohomology of the locus 7T, =
M;yg\./\/l;Q C M, of trigonal curves, i.e. smooth non-hyperelliptic curves with a g3,
of genus g. The (coarse) moduli space 7T, for g > 4, is then an irreducible variety of
dimension 2¢g + 1 with finite quotient singularities, which correspond to isomorphism
classes of curves having a non-trivial automorphism group, [ELSVOI].

Moreover, Arbarello and Cornalba proved that 7, is unirational for any g, [ACEI],
and later Stankova proved in [SEQQ] that its rational Picard group is freely generated
by the tautological class k.

Let us observe that it makes sense to consider tautological classes on 7T, as well.
Indeed, when considering a subvariety of M,, we will say that a class is tautological if
it comes from a tautological class of Mg, through the pullback of the restriction map.

For g < 4, the moduli space 7, is not really interesting since it is either empty or it
coincides with the complement of the hyperelliptic locus H,, whose rational cohomology
is completely known. Thus, g = 5 represents the first case in which the cohomology of
T, cannot be automatically determined from that of H, and of M,. Note also that the
moduli space 7, has the structure of a DM-stack, by being a locally closed substack of
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a DM-stack, hence, also in this case, we will not distinguish between the DM-stack and

its underlying coarse moduli space.

Outline of the results

The results that we will produce in this thesis are based on the canonical embedding
of trigonal curves in Hirzebruch surfaces and on the relation between the rational coho-
mology of their moduli spaces and the cohomology of complements of discriminants.

In fact, the computation of the rational cohomology of 7, can be first reduced to
that of the strata of the so-called Maroni stratification, which is defined by the degree
of the Hirzebruch surfaces that naturally contain trigonal curves as divisors.

In the genus 5 case, which will be discussed in chapter II, we will see that this
stratification consists of only one stratum, therefore the cohomology of this stratum will
automatically give that of the whole moduli space 75. For higher genera, the stratification
consists of more strata, thus we will have to consider all of them.

To be more precise, the cohomology of each stratum is strictly related to that of
the complement of the discriminant of some complex vector space. This vector space
V' is the vector space of global sections of a vector bundle over the Hirzebruch surface
F defining the corresponding stratum. Then, any element f € V can be associated
to a subvariety in F defined by the vanishing locus of f and the discriminant > is the
subspace in V of elements defining singular subvarieties, or the whole of IF in the case
f=0.

With these definitions we will see that the cohomology of each stratum is precisely
the cohomology of the quotient of the complement of the discriminant by the action
of a given algebraic group. We will also prove, using a theorem of Peters and Steen-
brink [PS03], that the cohomology of this quotient is isomorphic to the tensor product
of the cohomology of the total space and that of a subgroup of the group acting on
it. Finally, the cohomology of complements of discriminants will be computed using
Gorinov-Vassiliev’s method [Vas99],[Gor05], [Tom05b], which allows us to compute the
Borel-Moore homology of ¥ by constructing a simplicial resolution of it, starting from a
classification of all singular loci of the elements that it contains. By Alexander’s duality
this is equivalent to the cohomology of its complement V'\X.

We will apply these techniques to study the rational cohomology ring of 7, and

provide a complete description for the case g = 5, while, for higher genera, we will prove
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that H'(7,; Q) is independent of g for g >> 4. By comparing the description that we
obtain with the results of [PV15a], [CL21D] and [CL21a] we deduce that the cohomology
ring H'(7,; Q), with ¢ in the stable range, coincides with the image of tautological ring,
through the cycle class map. Thus, analogously to moduli spaces of smooth curves, this
allows us to define the stable cohomology ring H*(7;Q) as H*(7,; Q) for g sufficiently
large.

Finally, we will also study the stabilization of the cohomology of some other moduli
spaces of curves, defined as smooth sections of a vector bundle defined on a given
Hirzebruch surface. More precisely, we will prove the stabilization of their cohomology,

by extending the result obtained for the moduli space of trigonal curves.






Chapter 1

Preliminaries

1 Notation and conventions

Symbol
Cn
An

Description

n-dimensional complex vector space

n-dimensional complex affine space

n-dimensional complex projective space

weighted projective plane of weight w = (wy, ws, w3)

symmetric group on n elements

irreducible representation of &,, associated with the partition A 4 n
general linear group of degree n over C

projective linear group of degree n over C

special linear group of degree n over C

space of ordered configurations of k£ points on Z

space of unordered configurations of k points on 2

cohomology of Z with coefficients in the local system £

reduced cohomology of Z with coefficients in the local system £
Borel-Moore homology of Z with coefficients in the local system £
category of rational pure Hodge structures

category of rational mixed Hodge structures

Grothendieck group of the abelian category C

rational Tate Hodge structure of weight —2k

class of the Tate Hodge structure Q(—1) in Ky(HSq)

7



8 I . PRELIMINARIES

Throughout this thesis, we will work over the field of complex numbers C. Unless other-
wise specified, a smooth curve will denote a non-singular, irreducible, projective variety
of dimension 1. Moreover, all cohomology groups will be considered with rational coeffi-
cients. By Deligne’s Hodge theory, cohomology and Borel-Moore homology of complex
quasi-projective varieties carry mixed Hodge structures. In particular, we will work
with mixed Hodge structures which are extensions of rational Tate Hodge structures.
The rational cohomology of a given space can be described using its Hodge-Grothedieck
polynomial, whose i-th coefficient corresponds to the degree i cohomology group of the

space.

Definition 1. Let T, be a graded Q-vector space with mixed Hodge structures. Then
we define the Hodge-Grothendieck polynomial of 7, as

P(T.;Q) := > [Ti]t' € Ko(HSq)[t]. (1.1)

icZ
Notice that the Grothendieck groups K,(HSq) and K¢(MHSq) are the same. Further-
more, we will simply write P(X; Q) when T, = H*(X;Q) is the cohomology of X. We
will write P(X; Q) when T, = H,(X; Q) is the Borel-Moore homology of X, defined as
the homology with locally finite support, [Ful98, Chapter 19].

2 Trigonal curves and the Maroni stratification

In this section we present the moduli space we want to study, namely that of trigonal
curves. We will also discuss its stratification by the so-called Maroni invariant, which

is defined by the natural embedding of trigonal curves in Hirzebruch surfaces.
Definition 2. A trigonal curve is a smooth non-hyperelliptic curve admitting a g..

Let us consider first trigonal curves of low genera. For g = 2, it is well known that
any curve is hyperelliptic. Denote then by C' a smooth non-hyperelliptic curve of genus
g > 3. 1f g = 3,4 then C is trigonal, [Har7d IV.5.5.2]. Precisely, if g = 3 then C
canonically embeds in P? as a quartic curve: projecting from any point of the curve to
P! defines a g3, hence C has infinitely many gi. If g = 4, the canonical embedding of C
in P? is the complete intersection of a cubic surface either with a non-singular quadric
surface or with a quadric cone. Each of the rulings of the quadric surface on which C'

lies, singular or not, cuts out a gi.



2 . Trigonal curves and the Maroni stratification 9

Thus, if we define the moduli space 7, as the locus of trigonal curves in the moduli
space M, of smooth curves of genus g, for g = 3, 4, the locus 7, is open dense in M, and
it coincides with the complement of the hyperelliptic locus H,. Recall that the moduli
space Hy, with g > 2, has always the cohomology of a point. This follows from the fact
that any hyperelliptic curve has precisely 2g 4+ 2 distinct branch points, and thus the
coarse moduli space of H, is isomorphic to the quotient of the moduli space M 9442 of
2g + 2-pointed genus 0 curves by the action of the symmetric group Ga42, which has
the cohomology of a point by [KL02, Theorem 2.13].

On the other hand, the cohomology of 73 and T, has been completely determined by
Looijenga [Loo93, (4.7)] and Tommasi [Tom05b, Theorems 1.2 and 1.3], respectively.

Precisely, we have that

Q. =0
H'(T5;Q) = 4 Q(—6), i=6; (1.2)
W otherwise;
p
Q7 1= 07
A Q(—1), ©=2;
H (T4 Q) = = (1.3)
Q(_3)7 =5
L0, otherwise.

Equivalently, their Hodge-Grothendieck polynomials are
P(T5Q) =L%° + 1,

P(T;Q) = L° + Lt* + 1.

From now on, we assume g > 5. In this case a non-hyperelliptic curve is not necessarily
trigonal [Har7d, IV.5.5.3].
The moduli space 7, of trigonal curves of genus ¢ is then contained in the moduli
space M, of smooth curves of genus g as a locally closed subset of dimension 2g + 1.
In fact, let us consider the open dense subset 7 C 7, parametrizing curves whose
degree 3 cover of P! is simply branched. By Riemann-Hurwitz formula, any of these

covers must be ramified at 2g 4+ 4 points. Up to isomorphism, there are only finitely
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many triple covers with same branch locus. Thus, we have
dim7, =29+ 4 —dim PGLy = 2g + 1.

Remark 1. Let us remark that we can relate the moduli space 7, of trigonal curves to
the Hurwitz scheme 3 ,, parametrizing pairs (C, «), consisting of a smooth curve C' of
genus ¢ and a degree 3 cover o : C' — P!, up to isomorphism. For the main properties
of the Hurwitz scheme, we refer to [HM98] I.G]. The scheme #3 , naturally maps to the
moduli space M, via the forgetful map = : (C,a) — C. Clearly, its image through 7
must contain the trigonal locus 7,. Conversely, to get Hs, from 7,, we need to take
into account the maps «, or equivalently, the linear systems g3 on each curve. If the g3
is unique, the map 7 is a 1-1 correspondence and this is always the case when g > 5,
see [ACGHSE] II1.B-3.(i)]. Thus, for g > 5, we have H3 , = 7T,.

For g = 3, we know from the discussion above that any point of the curve identifies a
g3, hence H3 3 is isomorphic to the trigonal locus inside the moduli space M3 of genus
3 curves with one marked point.

For g = 4, the g} is uniquely determined by the choice of a ruling on the surface on
which the curve lies. Thus, the forgetful map 7 : Hs4 — 74 is a double cover ramified
over the locus of curves whose canonical model lies on a quadric cone, i.e. curves with
a vanishing theta-null.

Thus, the rational cohomology of Hs 3 and Hs 4 can be easily deduced from the results

in [BT07), [Tom05H.

2.1 Canonical embedding and Hirzebruch surfaces

As we have already anticipated, our study of trigonal curves is mainly based on
the study of the surfaces on which they lie. Therefore this subsection is devoted to a
discussion of these surfaces and their geometry.

It is well known from the classical results of Max Noether, Enriques, Babbage and
Petri [ACGHSH], I11.3] that the canonical model of a curve is contained in the intersection
of linearly independent quadrics and, if the curve is trigonal, it lies on a rational normal
scroll, i.e the image of a rational ruled surface over P! through its embedding in some
projective space PV, [Har77, Cor 2.19].
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Here is the idea behind this canonical embedding. Let C' be a trigonal curve of genus

g and K its canonical divisor. Consider then the canonical embedding
¢K O — PY _1,

and let D = p; +py+ps3 be any divisor of the pencil gi. By geometric Riemann-Roch, the
dimension of the linear system containing D equals the number of independent linear

relations on the points p; on the canonical curve, i.e.

dim ¢x (D) = 1.

Hence the images of p; are three collinear points and any quadric containing these three
points must also contain the whole line passing through them. This means that the
canonical curve lies on a rational ruled surface whose ruling cuts out the gi.

Moreover, it is also well known, see for instance [Har77, V.2.13], that any rational

ruled surface over P! must be isomorphic to a Hirzebruch surface, first introduced by

Hirzebruch in [Hir51].

Definition 3. The surface F,, := P(Op: @ Op1i(n)), with n € Zs is called the n-th

Hirzebruch surface.

For n = 0, it is easy to see that Fy = P! x P!. For n > 1, one can provide a

description for F,, starting from the weighted projective plane P(1,1,n), defined as

C*\{0}/ ~,

where (z,y, z) ~ (Az, Ay, A\"z) for any A € C*. Equivalently, P(1,1,n) is the projective
variety Proj C [z,y, z] where C[z,v, 2] is the graded ring with degxz = degy = 1 and
deg z = n.

By [HarT7, V.2.11.4], the Hirzebruch surface F,, can also be described as the blow
up of a cone C C P"*! over a rational normal curve of degree n at its vertex. In turn,

C is the image of the weighted projective plane P(1,1,n), via the embedding

P(1,1,n) — P™!

[z,y, 2] — [:U", "y Yt z} .
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Hence, we will think of FF,, as the blow up of P(1,1,n) at its singular point [0,0, 1].
Notice that for n = 1 this description further simplifies, as indeed, P(1,1,1) is just the

usual projective plane P2

The Picard group of a Hirzebruch surface and its intersection form are well known.

By abuse of notation we will identify curves with their classes in the Picard group.

Proposition 2.1 ([Har7d V.2]). Let n > 0, and consider the surjective morphism
7:F, 2 P(Op: @ Opi(n)) — P! defining the ruling of F,,

1. Pic(F,) 2 ZE, ®ZF,, where E,, is the image of the section (0,1) of Op1®Op1(n),
which is the unique irreducible curve of negative self-intersection when n > 0, and

F, is any fiber of the ruling;

2. E,, F, satisfy
E? = —n, F? =0, E, F,=1;

3. K, ~ =2E, + (=2 —n)F,, where K,, denotes the canonical divisor on F,,.

Remark 2. When n = 0, Fy = P! x P! and in this case, £, F, are lines, each of a

distinct ruling in P! x P!, both with trivial self-intersection.

By the geometry of Hirzebruch surfaces that we have just recalled, the canonical
embedding ¢ can be actually made more precise. Namely we can relate the degree n
of the Hirzebruch surface with the genus g of the trigonal curve lying on it, by explicitly

describing C' in terms of the generators of the Picard group of F,,.

Proposition 2.2. Let C be a trigonal curve of genus g, then it can be embedded in T,

as a divisor of class
g+3n+2

C ~3E,
* 2

F,, (14)

with g =n mod 2 and 0 < n < (g+ 2)/3.

Proof. Let C be a trigonal curve of genus g and « : C' — P! be the degree 3 cover.
We have already seen at the beginning of this section that C' canonically embeds in
some Hirzebruch surface. However, let us also notice that this also follows from the
Casnati-Ekedahl factorization theorem, [CE9G, Theorem 1.3], for which the degree 3

cover defines a unique P'-bundle 7 : P€ — P! and an embedding

i:C — PE&, (L5)
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such that a = moi and € is the dual of the Tschirnhausen module for «, [Mir85], which
is defined as follows.
For any open U C P!, the homomorphism Op:(U) — (a,O¢)(U) is just the compo-

sition by o~ ! and thus yields a short exact sequence
Oé# \V
0— Op1 — a,Oc — &7 — 0.

This short exact sequence splits, i.e. a,O¢ = Op1 @ EY and £V := coker o is a locally
free Opi-module of rank 2 and it decomposes as €Y = Opi(—a) @ Op1(—b) for some
a,b € Z. Without loss of generality we will assume a < b.

Twisting £ by Opi(—a) gives us an isomorphism P(Op:(a) ® Op1 (b)) = P(Op: &
Opi(n)), with n := b — a € Zs(, and hence the embedding in the n-th Hirzebruch
surface.

The first condition on n follows by an application of the Grothendieck-Riemann-Roch

formula to « :

ch(a.O¢) - td(Tp1) = . (ch(O¢) - td(T¢)),

1 1 1 1
Ch(Oé*OC) <1 - éKpl + E(Kﬁl + CQ(T&;))) = Ol (1 - §KC + E(K% + CQ(TC))) .

Here ¢;(+), ch(-) and td(-) denote the i-th Chern class, the Chern character and the Todd
class, respectively, and Ty is the tangent bundle of X.
Comparing classes in H?(P!;Z) gives us the equality

1
Cl(Oé*Oc) = —5 (Oé*KC — 3KP1) .

Since « is a degree 3 cover from C to P!, Ko = a*Kp1 + R, where R denotes the
ramification divisor. By the projection formula and Riemann-Hurwitz formula we have
that

c1(EY) = a1(a,O¢) = —%a*R =—qg—2,

which proves the equality
a+b=g+2, (1.6)

and thus n must have the same parity of g.
By Prop. 2.1.1 we can write C' ~ myE, + msF,, for some my, mo € Z and from the

trigonal structure of the curve we require C' - F,, = 3, hence m; = 3. Then, by applying
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the genus formula we have that
L
g:1+§(0 +C'Kn),

where K,, ~ —2F,, + (=2 — n)F,, by Prop 2.1.3. This gives us my = W. Finally,
since C, E,, are both smooth irreducible curves, their intersection number must be non-

negative, hence C - E,, = —3n + 242 > ( and n < Z£2, 0

2.2 Stratification by the Maroni invariant

The explicit characterization of a trigonal curve as a divisor in a Hirzebruch surface
that we just gave, allows us to stratify the moduli space 7,. This stratification is called
the Maroni stratification and it depends on the degrees of the Hirzebruch surfaces on
which the curves lie.

Let C' be a trigonal curve of genus g, then, from the previous results, we know
that it canonically embeds in some Hirzebruch surface IF,,, for a unique integer n, as in

Proposition [2.2.
Definition 4. The integer n is called the Maron: invariant.
The Maroni stratification can then be written as follows

Ny C---CNy=T,, ifgiseven,
NyC---C N1 =T, ifgisodd,

(L7)

where s is the largest index with the same parity as g satisfying s < L%J and for all

0 <n <s, g=mn(mod2) we denote by N, the closed subscheme
N, :={[C] € T,| C has Maroni invariant > n} C 7.

Let us conclude this section by computing the dimension of each of these strata.
As a consequence of [Mir85, Theorem 3.6], a triple cover o : C' — P! defines a unique
pair (€Y, ¥), up to isomorphism, where £¥ = Op1(—a) ® Op1(—b) is the Tschirnhausen

module for v and ¥ can be considered as a section of A2£Y ® Sym® €. Thus,

dim N, = dimT'(A*€Y ® Sym® £) — dimp: Aut(€) — dime Aut(P!). (L.8)
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Consider the first summand in the right hand side of (1.8):

A*EY @ Sym* € = (Op1(—b —a)) @ (Op1(3a) B Op1(2a + b) © Op1(a + 2b) & Op1(3b))
= Opl (2@ - b) ) OPI (CL) D OPI (b) ) Opl (2b - CL).

Let us recall that a,b are such that a <b,b—a=n>0and b+a =g+ 2 > 0. So, in
particular all sheaves above are twisted by non-negative integers. Thus, the dimension

of the first summand in (I.8) is

20 —b+1 1 b+1 26 —a+1
dimF(A2€V®Sym3€):(a 1+ >+(a1r >+( le >+< 1@+ )

= 2b+ 2a + 4.

As regards the second summand, recall that, by extending operations on vector spaces,
there is a bijection between morphisms of vector bundles £, F over the same space and

sections of the associated Hom-bundle, which in turn is isomorphic to the tensor bundle

EY ® F. Then,
AutprE2T(EY @ E) = Op1 @ Op1(a —b) ® Opr(b — a) ® Opa,

and all sheaves above but Op1(a —b), with a # b, have positive dimension for any value

of a, b satisfying the usual inequalities. Precisely,
dim Autpr& =b—a+ 3+ 04p,

where 9, denotes the Kronecker delta.

Thus, together with the fact that Aut(P') = PG L, has complex dimension 3, yields

dlmNn =b +3a—2— 5a,b'

By recalling once more that n = b — a and b+ a = g + 2, one can rewrite the above

equation as
dim N, =2g+2—n — o

Let us observe that the open dense subscheme in 7, parametrizing curves with mini-

mal Maroni invariant is N1\Nj3 if g is odd, or Mo\ N5 if g is even. For any n > 0, N, 12 in
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(L.7) is closed of codimension 2 in NV,,, with the exception of Ny, which is a divisor in Nj.

3 Gorinov-Vassiliev’s method

In this section we present the Gorinov-Vassiliev’s method, which will be used in the
following chapters in order to compute the cohomology of complements of discriminants.
The method was first developed by Vassiliev in [Vas99], then generalized by Gorinov in
[Gor05] and finally by Tommasi in [Tom05b]. We will use Tommasi’s adaptation of the
method, which extends the constructions of Vassiliev and Gorinov to the language of
cubical spaces, allowing us to get more information about the mixed Hodge structure
on the cohomology of the complement of discriminant we are interested in. The method
is already written out in [TomO5bl Section2.1], but we will rewrite it here, not only
for the sake of completeness, but also with the aim of fixing the notation that will be

maintained in the following chapters.

Let Z be a projective variety and let V' be a vector space of sections on a vector bundle
over Z. We define the discriminant ¥ as the closed subset in V' of sections which are
singular or do not have the expected dimension. Denote by X the complement of ¥ in
V.

As we have already mentioned in the introduction, computing the cohomology of the
complement of a discriminant is equivalent to compute the Borel-Moore homology of

the discriminant and this is due to Alexander duality:
H'(V\%;Q) = H T (V,V\S; Q) & Hay1 (55 Q) (—0), (1.9)

where v := dime¢ V and H *(—; Q) denotes the reduced cohomology.

Therefore we will compute the Borel-Moore homology of ¥ instead. This can be
achieved by constructing a simplicial resolution of ¥, starting from a collection of families
Xi,..., Xy of elements in X.

Let K C Z be a subset. We will say that K is a configuration in Z if it is compact
and non-empty. For any f € V, let K; be the set of singular points of the section f
on Z. Set Ky = Z and define the linear space L(K) = {f € V : K; # (} for any
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configuration K C Z. Then we require the families X, ..., Xy to satisfy the following

conditions.

LisTt I.1

1. For any f € X, Ky belongs to some X;.

2 tKeX,, LeX,;, KCL,theni<j.

3. XinX; =0ifi#j.

4. Any K € X;\X, belongs to some X; with j < i.

5. Forany i =1,..., N, L(K) has the same dimension d; for all K € X,.

6. For every i the space 7; = {(z,K) € Z x X, : z € K} with the evident projection,

is the total space of a locally trivial bundle over Xj;.

7. Suppose X; consists of finite configurations. Then for all K, L such that L € X;
and K C L, K belongs to some X; with j <.

From such X;’s, we then define the cubical spaces we will work with.
Let I C N ={1,...,N} and consider the simplex A,, where

Alz{g:I%[O,l]\Zg(i)zl}.

For any I,.J € N such that I C J, we will have natural maps e;; : A; — A given by
extending g € Ay to 0 on J\I.
We define the N-cubical spaces

Ap={K e [[X;:if K; € X;, K; € X;,i < j, then K; C K;};

el

Ap={K e [[X::if K; € X;, K; € X;,i < j, then K; C K};

i€l

X ::{<f7K)€ZXAI:KfDKmaXI}7 1f]7é®, X@ :Za

Xr={(f,K)€X xAr: K; D Kpaxr}, ifI#10; X=X
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The natural forgetful maps ¢;; : Ay — Ap, ¢y @ Ay — Ap, org @ Xy — A&,
P;7: Xy — X give the spaces above the structure of cubical spaces over the index set

N. Consider then their geometric realization, which is defined for A, as the map
]+ [As] = Ay

induced by the natural augmentation on the quotient
IA.| = || Arxar|/~
Ic{1,..,N}

where (K, g) ~ (K',¢’) if and only if K’ = ¢;;(K) and ¢ = e;;(g), and similarly for
the other cubical spaces.

We then construct a surjective map
¢ [Ad] — |Ad]

as follows: let (K, g) € Ay x A; and let [K, g] be its corresponding class in |A,|. Then
by conditions 3 and 4, for each Kj, i € I, there is a unique family X ;) containing K.
We define ¢([K, g]) as the class in |A,| of the element (L,h) € A; x A; where

J = {k(i)|i € I},

L:= HLk; L, = K, for any i s.t. k(i) =k,

keJ
hed—[0,1, hk)= Y g().
il|k(i)=k
Similarly, define a surjective map
@ X = |

We consider the spaces |A,|,|X,| with the quotient topology under the equivalence
relation ~ of the direct topology of the A;, X7, and on |A,], |X,| the topology induced
by @, p, respectively.
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Proposition 3.1 ([Gor0d]). The geometric realization |X,| — Xy = ¥ is a homotopy

equivalence and induces an isomorphism on the Borel-Moore homology groups.

From the theory of cubical spaces [PSO8| Section 5.3], the Borel-Moore homology
of the spaces X7 has a mixed Hodge structure which will naturally be induced on the
Borel-Moore homology of |A,], and to that of X.

The geometric realizations constructed above admit increasing filtrations. Precisely,
Fil;|Ae| := Im (JAe;| — |Ad]) ,

where |A,[;| is the geometric realization of the cubical spaces restricted to the index set

i, and analogously for |X,|. Define then locally closed subsets

Proposition 3.2 ([Tom05h]). The filtration Fil;|X,| defines a spectral sequence that con-
verges to the Borel-Moore homology of 32, whose E;q-term is isomorphic to H,y,(F,; Q).

Finally, as we have already mentioned, the Borel-Moore homology of each stratum

F; can be computed by considering their description as fiber bundles over the family X;.

Proposition 3.3 (Gor05). 1. For any i = 1,...,N, the stratum F; is a complex

vector bundle of rank d; over ®;, which is a locally trivial fibration over X;.

2. If X; consists of configurations of m points, the fiber of ®; over any K € X; is a
(m —1)-dimensional open simplex, which changes orientation under the homotopy

class of a loop in X; interchanging a pair of points in K.

3. If Xy = {Z}, Fy is the open cone with vertex a point (corresponding to the

configuration Z ), over Fily_1|A|.

3.1 A generalized version of Leray-Hirsch theorem

The moduli spaces N,, we are interested in are actually related to a geometric quo-
tient. Although this will be made more precise later, let us present the theorem of Peters
and Steenbrink that we have already mentioned in the introduction. They proved in-
deed that the Leray-Hirsch theorem can be extended from fiber bundles to geometric

quotients by reductive groups.
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Let G be an affine reductive algebraic group acting on X, with finite stabilizers. For
any z € X, denote by p, : G — X the orbit map and by ¢ : X — X/G the geometric
quotient. The cohomology ring H*(G) is well known: it is an exterior algebra generated

by classes n; of odd degree 2r; — 1 with i = 1,... rank G.

Theorem 3.4 ([PS03, Theorem 3]). Suppose that, for all i = 1,...,rank G, there are
subschemes Y; C ¥ of pure codimension r; in V whose fundamental classes map to a

non-zero multiple of n; under the composition

Hogyriy(Ys) = Haoor(3) S HZH(X) 25 H”Y(G).
Denote the image of [Yi] in H*(X;Q) by y;, then the map a @ n; — ¢*a — y;, a €
H*(X/G;Q) extends to an isomorphism of graded Q-vector spaces

H*(X/G;Q)® H*(G;Q) = H*(X; Q).

4 Homological lemmas and configuration spaces

We close this first chapter with some homological lemmas which will be repeatedly
used in our following computations, in order to compute the Borel-Moore homology of
the families X; that we have defined in the previous section. The families X; consist of
configuration spaces, so let us first give some definitions and properties for the case of

configurations of a finite number of points on a given variety.

Definition 5. Let Z be a projective variety. The space of ordered configurations of k

points in Z is defined as

F(Zk)y=2" |J {(z,... %) € 2%z = 2}

1<i<j<k

The quotient by the natural action of the symmetric group &y, is denoted by B(Z, k)

and it is the space of unordered configurations of k points in Z.

In the next chapter, we will consider configurations spaces in Z = P?\{P} with P a

fixed point in P2. In this case, we will need to give a further definition.

Definition 6. Fix P € P?. A configuration of k points in P?\{P} will be called general

if its points are in general position, i.e. no three points lie on the same line and no
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two points lie on the same line through P. The open subsets of F(P*\{P},k) and
B(P?\{P}, k) consisting of general configurations will be denoted by F(P?\{P}, k) and
B(P?\{P}, k), respectively.

Recall also from the previous section, and in particular from Proposition |3.3| that,
for families consisting of a finite set of points, the fiber of the bundle ®; — X; may be
non-orientable. In these cases we will have to consider the Borel-Moore homology in

some local system of rank 1. More precisely,

Definition 7. For any subset Y C B(Z, k), the local system +Q over Y is the one locally
isomorphic to Q that changes its sign under any loop defining an odd permutation in
a configuration from Y. We will denote by H,(Y;4Q) the Borel-Moore homology of Y
with twisted coefficients, or the twisted Borel-Moore homology of Y, and by P(Y;+Q)
its Hodge-Grothendieck polynomial, defined as in (I.1).

Moreover, the Borel-Moore homology of configuration spaces on a projective variety
can be deduced from that of configuration spaces defined over an N-dimensional affine

or projective space, which are well known.
Lemma 4.1 ([Vas99, Lemma 2]).  a. H.(B(CN,k); £Q) is trivial for any k > 2.

b. H(B(PY,k);£Q) = He jp-1)(G(k,CN™);Q), where G(k,CN*Y) is the
Grassmann manifold of k-dimensional subspaces in CN*L.  In particular
H,(B(PN,k); £Q) is trivial if k > N + 1.

From this, it is not difficult to recover the Borel-More homology of other configuration

spaces.

Remark 3. In particular, the twisted Borel-Moore homology of a configuration space
B(X, k) can immediately be read off from Lemma 4.1 for any space X which admits a
stratification whose strata are affine spaces. Such a stratification induces a stratification

on B(X, k), whose strata record the number of points in each stratum of X.

Lemma 4.2 ([Tom05al Lemma 2.14]). The Hodge-Grothendieck polynomial of
H(B(C*, k); £Q) is th + L4 L for any k > 1. If we consider the action of Gy on C*
mduced by T — %, we have that the Borel-Moore homology classes of even degree are

invariant and those of odd degree are anti-invariant.

Lemma 4.3. The Hodge-Grothendieck polynomial of Hy(B(P*\{P},2); £Q) is L=3t°.
H (B(PA\{P},k); £Q) is trivial for k > 3.
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Proof. P?\{P} can be decomposed into the disjoint union of spaces S;, Sz, isomorphic
respectively to C? and C. Then, to any configuration of points in B(P*\{P}, k) we
can associate an ordered partition (aj, as), where a; is the number of points contained
in S;. We consider each possible partition of k as defining a stratum in B(P*\{P}, k),
and order each strata by lexicographic order of the index of partition. All strata with
any a; > 2 have no twisted Borel-Moore homology by Lemma |4.1.a, so the second part
of the Lemma is proved. When k = 2, the only admissible partition is (1, 1) that is a
stratum isomorphic to C3, hence it has twisted Borel-Moore homology Q(3) in degree

6 and trivial homology in all other degrees. O]

Lemma 4.4. The Hodge-Grothendieck polynomial of Hy(F(P?\{P},2): Q) is L% +
L—3°.

Proof. By definition, F(P?\{P},2) consists of pairs of points, lying on a line not passing
through P. The space of lines not passing through P is (P?\{P})" = C?. Therefore
F(P?\{P},2) is a C*bundle over the space of ordered pairs of points on a line, i.e.
F(P!,2). The Borel-Moore homology of the base space is Q(2) in degree 4, Q(1) in
degree 2 and zero in all other degrees. Then, the Borel-Moore homology of F(P2\{P},?2)
is Q(4) in degree 8, Q(3) in degree 6 and zero in all other degrees. ]

Lemma 4.5. The Hodge-Grothendieck polynomial of Hy(F(P?\{P},3); Q) is L=6¢'2 4
L75t11 + L74t9 + L73t8'

Proof. The space F(P2\{P},3) consists of triples of points, each contained on a distinct
line through P, such that there is no line containing all of them. In other words,
F(P?\{P},3) is the complement of the space Y; of triples of points all lying on a line
not passing through P, in the space Y5 of triples of points all lying on distinct lines
through P. The space Y; is a C*-bundle over F(P!,3) and its Borel-Moore homology
is Q(5) in degree 10, Q(3) in degree 7 and zero in all other degrees. The space Y5 is,
instead, a C3-bundle over F((P)V,3) = F(P*,3). Its Borel-Moore homology is Q(6) in
degree 12, Q(4) in degree 9 and zero in all other degrees. Finally, by considering the
Gysin exact sequence induced by the inclusion F(P2\{P},3) = Y5\Y; < Y5, we have
that the Borel-Moore homology of F(PQ\{P}, 3) is Q(6) in degree 12, Q(5) in degree
11, Q(4) in degree 9, Q(3) in degree 8 and zero in all other degrees. ]

Lemma 4.6. There are isomorphisms

Hy(B(PM\[P},2): £Q) = H.(B(PA\{P},2); Q)
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H,(B(P*\{P},3); +Q) = H.(B(P*\{P},3);+Q)
induced by the natural inclusions.

Proof. Let us consider the inclusions B(P?\{P},k) — B(P?\{P},k), k = 2,3. The
complement B(P2?\{P},2)\B(P?\{P},2) is the space of pairs of points lying on the
same line through P : it is fibered over (P)¥ = P! with fiber isomorphic to B(C,?2).
On the other hand, B(P?\{P},3)\B(P?\{P},3) is the union of 3 locally closed strata:
the space of triples lying on the same line not passing through P, the space of triples
lying on the same line through P, and the space consisting of triples where exactly 2
points lie on the same line through P. These fiber spaces have fibers B(P!,3), B(C,3)
and B(C,2) x C?, respectively. By Lemma [4.1] all these fibers have trivial twisted
Borel-Moore homology. O

Lemma 4.7 ([Gor03, Corollary 3.5]). Let p : N' — N be a finite sheeted covering
of manifolds, and let L be a local system of coefficients on N'. Then Hy(N', L) =
H,(N,p(L)), where p(L) denotes the direct image of the system L.

Let us, once more, stress the fact that our aim is to compute the Borel-Moore ho-
mology of families of singular configurations of elements in our discriminant. Hence
we will need to compute the Borel-Moore homology of configurations of k points on a
Hirzebruch surface FF,,, for any n > 0, and this can be deduced from the above lemmas
by Remark 3.

In fact, IF,, can be stratified into two affine cells, one isomorphic to P?\{P} = A2UA!
and the other isomorphic to P* = A' U A°. Then, as a consequence of Lemma 4.1, we

have

Lemma 4.8. Forn > 0,

Q. i =0,
_ 2Q(1), =2,
H;(B(F,,1); £Q) = A

Q(2), i1=4,

0, otherwise;
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(

2Q(1), =2
H(BE, 2 +q) = { ¥ 7=
W otherwise;
Q(2)7 1= 4,
H;(B(F,,3); +Q) = 2Q(3), i=6,
Q(4)7 1= 8,
0, otherwise;
H;(B(F,,4); Q) = Q4), =38,
0, otherwise;

H.(B(F,,k);£Q) =0,  Vk > 5.

Note also that the twisted Borel-Moore homology groups computed above agree
with the ones computed by Tommasi in [Tom05b, Lemma 2.13] for Fy = P! x P!

Finally let us consider the case of families corresponding to configurations containing
curves. These types of families give no contribution to the Borel-Moore homology of

the discriminant.

Lemma 4.9 ([Tom05D, Lemma 2.17]). Let Z be a projective variety and suppose we

have the following families of configurations in Z :

X, =B(Z,1);

Xo ={{p.q} € B(Z,2) : p,q € 1,1 a line in Z};

Xs ={{p,q,r} € B(Z,3) : p,q,r € I,1 a line in Z};
Xy ={lines in Z}.

Construct the cubical space A,, its geometric realization and the filtration as in section

3. Then the space ®, has trivial Borel-Moore homology.

As it has already been discussed in [Tom05b, Remark 1.18 and Lemma 2.19], a

slight modification of the above lemma gives us an analogous result also for families
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of singular configuration consisting of the union of a rational curve and a fixed finite

number of points and of the union of two rational curves, meeting at one point.






Chapter 11

Rational cohomology of 75

This chapter is based on [Zhe21a].

1 Introduction and results

Let us recall once more that for g = 3,4, the rational cohomology of 7, has already
been computed by Looijenga in [Loo93] for ¢ = 3, and by Tommasi in [Tom05D] for
g = 4. In these two cases, 7, coincides with M \H,, where H, is the moduli space of
smooth hyperelliptic curves of genus g. For g = 3, any non-hyperelliptic curve admits
infinitely many pencils of degree 3, while, for ¢ = 4, any non-hyperelliptic curve admits
either one or two of them.

On the other hand, when g > 5 a non-hyperelliptic curve is not necessarily trigo-
nal. In particular, 75 represents the first case where the cohomology of 7, cannot be
automatically deduced from that of ‘H, and M,. In fact, M5 can be decomposed into
the disjoint union of the moduli spaces of hyperelliptic curves Hs, of trigonal curves
Ts, and the one parametrizing curves that are the complete intersection of three lin-
early independent smooth quadric hypersurfaces in P*, which will be denoted by Qs.
Therefore, knowing the rational cohomology of 75 represents an advance not only in the
understanding of that of M5, which is unknown at present, but hopefully also of the
cohomology of 7, for any g > 5.

What is known about 7, U H, until now is mostly due to the works of Stankova,
Bolognesi and Vistoli. Stankova computed in [SEQQ] the rational Picard group of the
closure T, C M,, while Bolognesi and Vistoli computed in [BVIZ] the integral Picard

27
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group of T,UH,. Later, Patel and Vakil established that the rational Chow ring Ag(7,)
is generated by a single class in codimension 1, [PV15al.

More recently, for ¢ = 5, Wennink, in [Wen2(], counted the number of points of 75
over any finite field F;, with ¢ points:

T5(Fg)| = 4" +¢"° =" + 1.

By [vdBEQ3], [Ber08, Theorem 3.2], this determines the Euler characteristic of 75 in
Ky(HSq), the Grothendieck group of rational Hodge structures.
We will refine Wennink’s result and compute the rational cohomology of 75 with its

mixed Hodge structure.

Theorem 1.1. The rational cohomology of Ts is

/

Q, i =0;

Q(-1), i=2
H(T5:Q) =14 Q(-3), i=5;

Q(—11), i=12;

0, otherwise;

\

where Q(—k) denotes the Tate Hodge structure of weight 2k.

The whole rational cohomology of 75 can also be expressed in terms of its Hodge-

Grothendieck polynomial. By Theorem 1.1, then
P(T5; Q) = L' + L1 + Lt* 41,

where L denotes the class of the Tate Hodge structure Q(—1).

Moreover, since the moduli space Hy, g > 2, has always the rational cohomology of

a point, we can also prove the following
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Corollary 1.2. The rational cohomology of Ts U Hs is

(Q, 1 =0;
Q(-1), i=2
HTH U Q) - T
Q(-3), i=5;
Q(—11), i=12;
0, otherwise.

\

Theorem 1.1 and Corollary 1.2 are consistent with the known results on the co-
homology of Mj5. In particular, the maximal weight class of the cohomology of 75
can be identified with the top weight cohomology class of Mj, described by Chan,
Galatius and Payne in [CGP2]I] and [CGP20]. They proved indeed that the cohomol-
ogy H*97%(M,; Q) is non-zero for g = 5 and that, by studying the dual complex of the
boundary divisor in ﬂg, the top graded piece on the cohomology of Mj is such that

dimGry,_oH'(Ms; Q) = 0 iz
, 1 :

The stratification of Mj

closed open

TsUHs — Ms < Qs
induces a Gysin exact sequence in Borel-Moore homology
= He1(Q55Q) = Hi(Ts UHs: Q) — He(Ms;Q) — Hi(25:Q) — ..

Since Qs is affine and dim Qs = 12, [FLOS, Theorem 4.1], H1o(Ms; Q) = Hio(T5; Q),
and Poincaré duality gives H'*(M5; Q) = H*(T5; Q).
This also determines part of the cohomology of Mj :

Corollary 1.3. H"%(M;; Q) = Q(—12) and H'(Ms5; Q) =0 for any i > 13, i # 14.

The proof of Theorem 1.1 relies on Gorinov-Vassiliev’s method, presented in the

previous chapter.
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2 Moduli space 7; from a geometric quotient

In this section we define our moduli space 75 as the quotient of the complement of a
discriminant by the action of an algebraic group. We recall from (I.4) that any trigonal
curve of genus g may be embedded, via the canonical embedding, in a Hirzebruch surface

IF,, as a divisor of class
g+3n+2

2

where FE,, is the exceptional divisor and F}, is the class of any fiber of the ruling and the

C ~3E,+ F,,

Maroni invariant n has to satisfy ¢ =n mod 2 and 0 < n < %.

Thus, for ¢ = 5, the Maroni stratification consists of only one stratum and any
trigonal curve lies on the Hirzebruch surface F;, as an element of the linear system
|3E1 + 5F1|. We will also drop the subscript and simply write E, F, in the rest of this
chapter. The Hirzebruch surface F; is the blow up of the projective plane at one point.

There is an additional equivalent description of trigonal curves of genus 5.

Proposition 2.1. There is a one-to-one correspondence between isomorphism classes
of trigonal curves of genus 5 and of projective plane quintics having exactly one ordinary

node or cusp.

Proof. Given a trigonal curve C, and hence a g3, one can show that the linear system
| K — D] is a base point free g2, where D € g4 and K is the canonical divisor. This defines
a morphism C' — P? such that the image has degree 5, with precisely one singularity of
delta invariant 1.

Conversely, a plane projective curve of degree 5 with one singularity that is a node
or a cusp has arithmetic genus 5, and each line through the singular point meets the

curve in three other points, counting multiplicity, defining a g3. O

Let us then consider a projective plane quintics having exactly a node or a cusp and
let P € P? denote this singular point. Let Z = F; and define V to be the vector space of
global sections of Oz (3E + 5F'). Let X be the open subset of sections defining smooth
curves and the discriminant X is the complement of X in V.

The vector space V is isomorphic to the vector space of polynomials defining plane
curves of degree 5 having at least a singular point at P. Therefore its dimension is
18. Indeed, the dimension of the vector space of polynomials defining plane quintics is

dim C [z, 1, x2]5 = 21. A polynomial f € C [z, 71, 2], is singular at a point P € P? iff
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g—i(P) =0, ¢=0,1,2. Hence the dimension of the vector space of polynomials defining

plane quintics with a fixed singularity is 21 — 3 = 18.

This can be also proved as follows. Let us consider a general plane quintic having at
least a node or a cusp at the point P that we will blow up. Without loss of generality
we may assume P = [1,0,0]. The plane quintic curve is then defined by a polynomial
f € Clxg, 21, o] having degree < 3 with respect to the variable x,. For any such curve
we can consider a projection with center P: fix a line [ not passing through P, for
instance [ := {[0,y1, y2]}, and take the map sending all points of the curve distinct from
P to the point of intersection between the line connecting the point to P and [.

The preimage of any point through this map is given by points of the curve on the

same line through P, which has parametric equation

To = to
riyx =6ty s [to,tl] € Pl.
T2 = 11Ys

Since any line through P corresponds to a line of the ruling in the blow up, any curve

we want to consider can be embedded in the blow up via the mapping

[to, t1y1, t1y2] — [to, tiyr, t1ye) X [y, y2)

and it has to satisfy f(to,t1y1,t192) = 0. Therefore it has equation

t1(toga(yr, yo) + totigs(y1, yo) + totsga(y1, v2) + 595 (y1, v2)),

where each g¢; is a homogeneous polynomial of degree i. Counting the number of

parameters will indeed give 18.

The automorphism group of the homogeneous coordinate ring of BlpP? is the set of

automorphisms of the graded ring C [xg, 21, x2] that fix the point that is blown up, i.e.

ok %
G = 0 * x| €GL3 p D C*"x GLs.

0 * =x
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Note that ignoring the second and the third entry in the first row of each of the matrices
in G means contracting the vector space C[z1,22]; = C? to a point. Therefore G is
homotopy equivalent to C* x G Ls.

Note also that G contains the normal unipotent subgroup

o O =
S = %

*
0| e GL3 ;,
1

hence it is not reductive and we cannot construct our moduli space as a GI'T quotient by
G. However, we can consider its reductive part C* x GLs, consider the stack quotient
[X/(C* x GL3)] and compute its cohomology, or equivalently the cohomology of its
coarse moduli space, the affine quotient variety X /(C*x G Ls). The space X/(C*x GLy)
parametrizes isomorphism classes of pairs (C, L), with C' a trigonal curve of genus 5 and
L its unique g3, plus a hyperplane section H corresponding to the line [ not meeting P
that we defined before, when computing the dimension of V. By duality, H is a point
in C?, therefore [X/(C* x GLy)] is a C?-bundle over Ts, in the orbifold sense, and they
have the same rational cohomology.

We will first consider the reductive subgroup {1} x GLy; C C* x G Ly and the quotient
stack [X/GLsy]. Then, we will compute its cohomology by using the generalized version

of the Leray-Hirsch theorem. Finally, we will consider the orbifold C*-bundle
[X/GLy] = [X/(C" x GLy)],

and deduce the cohomology of the base space from the Leray spectral sequence associ-
ated to this bundle.

Let us stress once more that a quotient stack and its underlying coarse moduli space
have the same rational cohomology, therefore, by abuse of notation, we will drop the
brackets.
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2.1 Generalized Leray-Hirsch theorem

We want to prove that there exists an isomorphism of graded Q-vector spaces with

mixed Hodge structures
H*(X/GLy; Q) ® H*(GL2; Q) = H*(X; Q).
By Theorem 1.3.4]it suffices to prove the surjectivity of the orbit map on cohomology

P H'(X;Q) ——  H'(GLy»; Q)
2l 2l
HZdimV—i—l(Z§ Q) H2dimM—i—1(D§ Q)u

where M denotes the space of 2 x 2 matrices and D the discriminant of GLy in M.
We know that the cohomology of GLy has generators in degrees ¢ = 1,3, and the
generators of H,(D; Q) are [D] € Hg(D; Q) and [R] € Hy(D;Q), where we can assume
R to be the subvariety of matrices with only zeros in the first column. Moreover,
from the spectral sequence that will be exhibited in Table [[1.4, H34(3; Q) = ([X]), and
H3(2; Q) = {[¥41], [Z2]), where X is the subspace in V' of polynomials defining curves
having a singular point on E, and Y, is the subspace in V' of polynomials defining a
singularity on a fixed line of the ruling F.

Let us consider the extension p: M — V of the orbit map p: GL, — X. Fix f € X

and consider the image of an element in R :

0 b
A= (0 d) — A f(xo, 1, 22) = f(x0, bxa, drs) = (b, d)x%hg(xo,xg),

where (b, d) is some constant and hg is the product of 3 lines through the point [0, 1,0] .
So, elements of R are mapped to polynomials whose zero loci are the union of a
double line of the ruling of fixed equation y, = 0 and three lines through a point of the
ruling ([to,t1,0],[1,0]). Similarly, elements in D are mapped to curves which are the
union of any double line of the ruling and three lines through a point of that ruling.
Hence we can deduce that p*([X]) is a non-zero multiple of [D], while the preimage
of [R] through p* must be a non-trivial linear combination of [¥4],[¥5], proving the

surjectivity of the map in cohomology.
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3 Application of Gorinov-Vassiliev’s method

In this section we apply Gorinov-Vassiliev’s method, introduced in section 1.3, proving
thus Theorem [1.1. First of all, we produce a list of all the possible configurations of
singularities of genus 5 curves in BlpP?, meeting the exceptional divisor E at least
twice. To do so, we recall that we are considering curves in F; which are elements of
the linear system |3E + 5F.

Since all singularities are obtained as degenerations of nodes, we will first consider
only such singularities. Assume that the curve is irreducible. By computing the arith-
metic genus we get an upper bound for the number of singularities. For instance, by

the genus formula, we have that
1
gBE+5F) =1+ 5((3E +5F)? + (3E+5F) - K) =5,

where K is the canonical divisor on [F;. So we can have at most 5 ordinary double points.

Then, we will consider all the possible ways in which the curve can be reducible.
Here we will have to take into account not only the singularities of each irreducible
component, but also all the intersections between them.

Finally, we will consider all the possible degenerations of the singularities obtained
in this way (points can be on the exceptional divisor or points in general position can
become collinear, etc...) and all the subsets of finite configurations.

For any configuration of singularities, the elements in V' which are singular at least
at that configuration form a vector space and we can compute its codimension. By or-
dering all the configurations obtained by increasing codimension, and then by increasing
number of points, we will get a list of configurations indexed by (j). By defining X; as
the space of configurations of type (j) we will get a sequence of families of configurations
that will satisfy conditions 1-7 in List 1.1, We denote by ¢; the codimension in V' of the
vector space of elements which are singular at least at the configuration of type (7).

For the complete list see List A.1. Here we report instead only a shorter version
of this list. We can omit, for instance, all configurations containing rational curves.
These, in fact, give no contribution to the Borel-Moore homology of the discriminant
by Lemma [.4.9. We also combine similar configurations that give no contribution.

In the following, we call a configuration of points general if it is a configuration of

points in general position, where no point is contained in £ and no two points lie in the
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same line of the ruling. When we consider configurations containing both ‘general’ and
‘not general’ points, we also require the general points to be in general position with
respect to the others. However, we allow the general points to belong to the same lines
of the ruling defined by points that are on E, in the same configuration space. Indeed, in
this case, the configuration space in which k general points are defined is B(P*\{P}, k),
as in the case without points on F.

For each item below, we write in square brackets the codimension ¢; of the vector
space of elements in V, which are singular at least at the corresponding configuration.

We will also use the following notation:

line of the ruling it is an element in |F,
i.e. the strict transform of a line in P? passing through P;

line it is an element in |E + F|,

i.e. the strict transform of a line in P? not passing through P;
conic Cp it is an element in |E + 2F,

i.e. the strict transform of a conic in P? passing through P:;
conic C it is an element in |2E + 2F,

i.e. the strict transform of a conic in P? not passing through P.

A point on the exceptional divisor F; [3]

A general point; [3]

Two points on E; [5]

Two (or three) points on a line of the ruling; [6 (7)]
A point on E + a general point; [6]

Two general points; [6]

Three points or more on E; [6]

Two points on £ + a general point; [§]

© o N T WD =

A point (that can be either on E, or general) + two (or three) points on a line of

the ruling; [9 (10)]

10. A point on F + two general points;[9)]

11. Three (or four) points on a line L; [9 (10)]

12. Three (or resp. four, five) general points; [9 (12, 15)]

13. A point on E + two (or three) points on a line F' of the ruling + the point of
intersection between F' and F; [9 (10)]

14. Three points on E + a general point; [9]

15. Two points on £ + two (or three) points on a line of the ruling; [10 (11)]
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16.

17.
18.
19.

20.

21.
22.

23.
24.

25.

26.
27.
28.
29.
30.

31.
32.

33.
34.

35.

36.
37.
38.
39.
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Two points on E + two (or three) points on a line F' of the ruling + the point of
intersection between F' and F; [10 (11)]

Two points on E + two general points; [11]

Three points on E + two (or three) points on a line of the ruling; [11 (12)]
Three points on E + two (or three) points on a line F' of the ruling + the point
of intersection between F' and F; [11 (12)]

Two points on each of two lines of the ruling (or resp. two points on a ruling and
three points on the other one, or three points on each of two rulings); [12 (13, 14)]
Two general points + two (or three) points on a line of the ruling; [12 (13)]

A point (that can be either on E, or general) + three (or four) points on a line L;
12 (13)

A point on E + three (or four) general points; [12 (15)]

A point on E + two (or three) points on a line F of the ruling + a general point;
12 (13)

A point on E + two (or three) points on a line F' of the ruling + a general point
+ the point of intersection between F' and FE; [12 (13)]

Three points on E + two general points; [12]

Two points on E + three (or four) points on a line L; [14 (15)]

Two points on E + three general points; [14]

Two points on a line F' of the ruling + three points on a line L; [14]

Two points on a line F' of the ruling + three points on a line L. + the point of
intersection between I’ and L; [14]

Five (or six) points on a conic Cp (C); [14 (17)]

Two points on each of two lines F}, F5 of the ruling + the intersection points with
E + a point on E; [14]

Two points on each of two lines + the point of intersection; [15]

Two points on each of two lines of the ruling (or two points on a ruling and three
on the other one) + a general point; [15 (16)]

A point on E + two general points + two or more points on a line of the ruling;
15]

Three general points + two (or three) points on a line of the ruling; [15 (16)]

A point on E + a general point + three (or four) points on a line; [15 (16)]

Two general points + three (or four) points on a line; [15 (16)]

Three points on £ + three (or four) points on a line; [15 (16)]



40.
41.

42.

43.

44.

45.

46.

A7.

48.

49.

50.

ol.

52.

93.

54.

99.

56.
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Three points on E + three general points; [15]

Two points on E + two general points + two points on a line F' of the ruling +
the point of intersection between E and F’; [16]

Five points on a conic Cp + a general point; [17]

Three points on E + four points on a conic Cp; [17]

Two points on a ruling F' 4 three points on a line L + the intersection point
between F' and L + a general point; [17]

Three points on each of two rulings + a general point; [17]

Three points on each of two lines + the point of intersection; [17]

7 points: three points of intersection between two conics Cp and Cp, one of which
is on E + four points of intersection with a line; [17]

7 points: three points of intersection between two conics Cp and C}, none of which
are on E + four points of intersection with a line; [17]

7 points: four points of intersection between two conics C, Cp + three points of
intersection with a line of the ruling; [17]

8 points: a point on F + two points on each of two rulings F;, Fy + the points of
intersection between F; and F, and Fy and E + a general point; [17]

8 points: two points on F + three points on a line L + the intersection points of
a line F' of the ruling with F and L + another point on F’; [17]

8 points: three points of intersection of two conics Cp and Cp, each meeting a line
F' of the ruling and F at one point + the point of intersection between F' and F;
17

8 points: two points of intersection between two lines Fj, Fy of the ruling and a
line L 4+ 6 points of intersection with a conic C meeting each line at two distinct
points; [17]

8 points: three points of intersection between a line F' of the ruling and two lines
Ly, Ly + five points of intersection with a conic Cp meeting each line twice and F
only once, outside £} [17]

8 points: three points of intersection between a line F' of the ruling and two lines
Ly, Ly + five points of intersection with a conic Cp meeting each line twice and F
at the intersection point with E; [17]

9 points: four points of intersection between F, two lines Fy, F5 of the ruling and

a line L + five points of intersection with a conic Cp meeting L twice and E, F},
F;, once; [17]
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57. 9 points: three points of intersection between E and three lines F, Fy, F3 of the
ruling 4+ 6 points of intersection with a conic C meeting each F; at two distinct
points; [17]

58. 9 points: the points of intersection between two lines of the ruling and three
general lines; [17]

59. 10 points: the points of intersection between E, three lines of the ruling and two
lines; [17]

60. The whole BlpP?. [18]

3.1 Non-trivial configurations

Since simplicial bundles are non-orientable, we will consider the Borel-Moore homol-
ogy with coefficients in the local system +Q.

We also recall from Lemmas [14.1 and 1.4.3 that configurations with at least three
points on a rational curve, configurations with at least two points on a rational curve
minus a point, and configurations with at least three general points give no contribution.
Thus, among the first 41 configurations, only the following have non-trivial Borel-Moore
homology:

(A) A point on E. [3]

(B) A general point. [3]

(C) Two points on E. [5]

(D) A point on E + a general point. [6]

(
(

(G) Two general points + one point on E. [9]
(

)

)

)
E) Two general points. [6]
F) One general point + two points on E. [§]

)
H) Two general points + two points on E. [11]
We will also prove in Subsection I1.3.3 that there are only four other configurations
having non-trivial Borel-Moore homology:

(I) 7 points: configuration 47. [17]

(J) 7 points: configuration 48. [17]

(K) 8 points: configuration 55. [17]

(L) Whole BIpP2. [18]
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Recall that we are studying singular configurations of curves that are equivalent to
plane projective quintics having at least one singularity. So, we can deduce their Borel-
Moore homology by considering their equivalent description in the projective plane.
This equivalent description is obtained by fixing a point P that is the one that, when
blown-up, will give us the corresponding curve in [Fy.

Note that the configuration spaces that we will consider in the following are empty

unless they are defined as the singular locus of the plane quintics that will be described.

Columns (A)-(H)

From Proposition I.3.3, if X; consists of configurations of m points, then the stratum
Fj is a C®¥% x A,,_j-bundle over X;, where A,,_; is an (m — 1)-dimensional open
simplex. Therefore we get the following results.
The space Fy is a C'®-bundle over X4 = P
The space Fj is a C'-bundle over X5 = P*\{P}.
The space F is a C* x A;-bundle over X¢ = B(P!, 2).
The space Fjp is a C2 x Aj-bundle over Xp = P! x P2\ {P}.
The space Fiz is a C'2 x A;-bundle over X & B(P2\{P},2).
The space Fr is a C!° x Ay-bundle over X = P2\{P} x B(P*,2).
The space Fg is a C? x Ay-bundle over X¢ = B(P2\{P},2) x PL.
The space Fy is a C7 x Ag-bundle over Xy & B(P2\{P},2) x B(P',2).

Column (I)4(J)

Each configuration in X is defined as the singular locus of the blow up at P of a
plane quintic defined by two irreducible and reduced conics tangent at P and a line

meeting the conics at four distinct points, as in Figure [[I.1.

FIGure II.1: Configuration of type (I).
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On the other hand, configurations of type (J) arise from blowing up P, where P is
now one of the four points of intersection between two irreducible and reduced conics
that, together with a line not meeting the conics at any of the points of intersection,

define the plane projective quintic curve in Figure [1.2l

FIGURE I1.2: Configuration of type (J).

By noticing that the configuration space X; is contained in the closure of X; (by
allowing one of the points A, B,C' to lie on the exceptional divisor E of F;) we can
consider a bigger configuration space containing both of them, which we will denote by
X1t

The space Xy, consists of 7 singular points A, B,C, Ry, Ry, S1,5:. The points
A, B,C are in general position, also with respect to P, and only one of them is al-
lowed to lie on E, i.e to coincide with P. The points Ry, Rs, 51,5 are four distinct
points of intersection between two distinct conics passing through A, B, C, P and a line
[ not passing through any of these points.

We can fiber X7, ; over the space parametrizing the points A, B, C' and the choice of

the line:
Xrg—=B:={{A,B,C}1): A, B,C,l as in the description above}.

The fiber of this map, which we denote by Z, will then be the space of pairs of conics
passing through the four points and not tangent to the line. Note that Z is exactly the
same fiber space considered in [Gor05], Section 4.2] in Column 38.

As both conics have to satisfy 4 linear independent conditions (that consist either in
the passage through 4 distinct points or 3 points plus the tangency condition), each of
them is uniquely determined by a point on the line [. We denote these points by Si, Ry,
as in the figures. Recall that there are exactly two conics in the pencil with base locus

A+ B+C'+ P that are tangent to [. Let T}, T5 be the points of intersection between [ and
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the two tangent conics. Any other conic will meet [ at two distinct points. Exchanging
these two intersection points defines an involution on [ = P! that fixes T}, T5, and by
choosing an appropriate coordinate system we can assume that 77 = [1,0], T = [0, 1]
and that the involution will be [1,¢] — [1, —t].

Therefore we can set S; = [1,t], Sy = [1,—t], Ry = [1,s], Rs = [1, —s] and the space

Z parametrizing the two conics of the configuration will be a quotient of
(t,s) e Z:=CO\({t=0 U{s =0 U{s=t}U{s = —t}).

We note that {t =0} U{s =0} U{s =t} U{s = —t} is the disjoint union of four copies
of C* and one point, so we have that the Borel-Moore homology of Z is Hy(Z) = Q(2),
H3(2) = 4Q(1), Hy(Z2) = 3Q and H,(Z) =0 for any ¢ < 1 or ¢ > 5.

To get the Borel-Moore homology of Z, we need first to consider the following invo-

lutions of Z :

i: (t,s) — (s,t) exchanges the two points S; and Ry, hence the two conics;

11

j: (t,s) = (3,5) exchanges 0 and oco. Therefore it acts as the involution on [ that

exchanges the two tangency points;

k: (t,s) — (t,—s) exchanges Ry and Rs. (Note that k has the same action on homol-

ogy as k' : (t,s) — (—t, s) so we can consider only one of them).

By studying the action of 7, j, k on the stratification of 02\2 into four copies of C*

and a point, we obtain:

Lemma 3.1. The action of i, j, k on the Borel-Moore homology classes ofé' 1S as given
i Table |[1.1.

TaBLE II.1
i | j |k
degree 4 | + | + | +
degree 3 | + | + | +
+ |+
+ |- |+
- =]+
degree 2 | + | — | +
+ — —
- |+ |+
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Proof. We consider the following classes of degree 2 in ({t = 0}U{s = 0}U{s = t}U{s =

t=0+[s= 0],
t=0]~[s=0].
s =] + 5 = 1.
s =1~ [s = 1

By computing the actions of 7, 7, k we get the signs written in row ‘degree 3’. To get the
signs for the row ‘degree 2’ we recall that the Borel-Moore homology of each copy of C*,
with the local system induced by the involution that exchanges 0 <+ 0o, is Sy in degree 2
and Si2 in degree 1, so, the signs for the involutions ¢, k£ will be the same, while we need to
invert the sign for the involution j. Note that there should be a class that is invariant for
all 4, j, k, but this is the class of the point defining ({t = 0}U{s = 0}U{s = t}U{s = —t})
together with four copies of C*. [

Recall that by exchanging the two conics we are actually exchanging the points R;
with S, and Ry with S5. So, in order to get the Borel-Moore homology of Z from that
of Z, we have to consider the invariant classes with respect to the involution 7. On the
other hand, if we exchange R, with Ry, the two conics are not necessarily swapped. So,
we also require the classes to be anti-invariant with respect to the action of k.

By Table 1.1, H,(Z) is Q in degree 2, Q(1) in degree 3, and zero in all other degrees.
Therefore, the spectral sequence of the bundle X7, ; — B will have two rows, determined

by the homology classes of the base space:
in degree 3: defined by the Borel-Moore homology of B with constant coefficients;

in degree 2: defined by the Borel-Moore homology of B with non-constant coeffi-
cients J.

Here, the system of coefficients is determined by the action of the involution j on the
corresponding class in Hy(Z). In fact, by moving the line [ around one of the three
points A, B, C, the points T}, T; are exchanged.

To compute the Borel-Moore homology of the base space B, we consider a covering B,
where the points A, B, C' are ordered. Thus, there is a natural action of the symmetric
group &5 on B and we can recover the Borel-Moore homology of B by taking the &s-

anti-invariant classes of the Borel-Moore homology of B.
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Note that B can be thought of as a fiber space over the space parametriz-
ing three lines through P, and the line [, not passing through P, which is
F(P!,3) x C2%. Denote by ra,rp,rc the three lines containing the points
A, B, C, respectively. After an appropriate change of coordinates, we may

assume
ra:xy =0, rg:x; =0, ro a1 — xo =0, l:x29=0.

Then, the fiber of B over (ra,rp,7c,l) is the space parametrizing the points
A, B,C and can be identified with a subset in C?: the point (u,v,w) € C3

corresponds to the choices
A=1,u,0], B =11,0,v], C=[1,w,uw].

We need then to remove the locus where the three points are collinear, which

is a quadric cone of equation uw + vw — uv = 0.

Thus, H,(B;Q) is invariant with respect to the involution u < v, and by
noticing that this involution corresponds to the exchange of a couple of points

among A, B, C, it is also invariant with respect to the G3-action.

. In order to compute the Borel-Moore homology of B with non-constant co-

efficients, we will consider the subsets

where

B;={((A,B,C),l) € B|A,B,C +# P}

defines configurations of type (J), and
B; = {((A,B,C),l) € B| one of A, B,C is equal to P}

defines those of type (7).

Consider the projection onto the triples (A, B, C'),

B, REN {(A,B,C)|P ¢ AB,BC,AC; A, B, C not collinear},
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where Y; = P?\{four lines in general position}. By studying the preimage
of Y; in the double cover of P? ramified along four lines we notice that there
is one only class in its Borel-Moore homology with non-constant coefficients,

that is Q(1) in degree 2, and it is Gz-invariant.

Similarly,
B, i, {(A, B,C)| one of A, B, C belongs to E},
where Y7 = P?\{three lines in general position, one with mult. 2}. Here,

because of the double component, the covering is not normal, and its normal-
ization is the double cover of P2, ramified over the two simple lines. The fiber
Y; and its double cover have the same homology with rational coefficients,

thus the Borel-Moore homology with non-constant coefficients is trivial.

Finally, by considering the Gysin exact sequence associated to inclusions

~ closed ~ open ~

B[‘—>B<—’BJ

we get that I:I.(B; J) also has no Gs-anti-invariant classes.

Since both homologies have only Gs-invariant classes, the Borel-Moore homology

of B, both with constant and non-constant coefficients, will be trivial. Therefore we

can conclude that the whole configuration space, and consequently F7, ;, has trivial

Borel-Moore homology.

Column (K)

Configurations of type (K) are the singular locus of the blow up at P of a conic

tangent to a line at P and two other lines in the projective plane. Note that we can

assume the conic to be irreducible, since we have already considered the reducible case

that is configuration 59. Let us define the space of configurations of the same type with

the only exception that we let P free in P? : K := {(P, f) € P?xP(Z)|f has a node in P

and its singular points define a configuration of type (K)}. Then we can consider the
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space X as the fiber of the bundle

K — P2
(P, f)— P.

Let us consider such a configuration. In the projective plane, this is defined by the
point P, the intersection point of a conic C through P, its tangent at P, and 2 general
lines r, s, not meeting at P or any other point of the conic. We denote by E;,71=1,...,4
the four points of intersection of the two lines and the conic, and by A, B the intersection

points with the tangent line to the conic. We label the points as in the following figure.

FIGURE II.3: Configuration of type (K).

Up to projective transformations, we may assume the E; to be the projective frame
of P2 : By = [1,0,0], By = [0,1,0], E3 = [0,0,1], and E; = [1,1,1]. Then we can

consider another fiber bundle

PGL3

K ——=Y,

where Y := {(P, A, B)|P € P2\U E;E;; {A, B} = TpCN(rUs)}, and TpC is the tangent
line of C' at the point P. Note that, once we have fixed the points P, F;, i = 1,...,4,
and hence the lines r, s and the conic, the points A, B are uniquely determined.

Thus, Y is isomorphic to the space PQ\UTEJ-, that is isomorphic to the moduli

space M5 of genus 0 curves with 5 marked points. In fact, for n > 3,

MO,n == {(t07 cee 7tn—3) S (Pl)n_3|ti 7& Oa 17 o0, and tl 7é t]}



46 IT . RATIONAL COHOMOLOGY OF T;

By the equivariant Hodge-Euler characteristic of M5, which is computed in [Get97],
we have that the Borel-Moore homology of M, 5 is generated by the following classes:

Q(2) ® S5 in degree 4;

Q(1) ® S35 in degree 3;

Q ® S3 ;2 in degree 2;
where by — ® S, we mean that we are considering the local system of coefficients
corresponding to the irreducible representation of &5, associated to the partition A
of 5. On Y there is a natural action of the dihedral group Dy, that is the group of
symmetries of a square, defined by the points E;. So, when computing its Borel-Moore
homology, we need to consider local systems of coefficients defined by the action of
Dy. The action of D4 can be embedded in the symmetric group &, by sending each
symmetry to the corresponding permutation of vertices. Restricting to &4, we get the

following representations:

S5 — 84
S32 = S31 @ Sy (I1.1)
Sg12 — S3.1 @ Sg 2.

We then consider the character table of Dy, plus the lines of the character table of &4
corresponding to the irreducible representations in (I1.1), that can be found in [Ser77],
displayed in Table [II.2.

TABLE II.2: Character table of D4 and some irreducible characters of Gy.

e (12)(34) (1324) (12) (13)(24)

Y |1 1 1 1 1

vy |1 1 1 -1 -1

vy |1 1 -1 1 -1

vy |1 1 -1 -1 1

X |2 -2 0 0 0

Sy, |1 1 1 1 1 =1
8371 3 -1 -1 1 -1 =X + U3
Sop | 2 2 0 0 2 =11 + Yy
Soq2 | 3 -1 1 -1 -1 =X+ Uy

Hence we can write the Borel-Moore homology groups of My, 5 as D,- representations:
Q(2) ® ¢ in degree 4;
Q(1) ® (1 + Y3 + ¢4 + x) in degree 3;
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Q ® (Vg + 3 + x®?) in degree 2.

Now, we only need to consider the term involving the representation that corresponds
to a local system of coefficients obtained by the restriction of +Q on 7 (B(P?,8)) = Gy
to the fundamental group of our configuration space, represented in Figure [1.3 As we
noticed before, the latter group is D, C Gg. In fact, it has to fix the points P, M and the
points A, B are uniquely determined by the choice of the points F;, whose permutations
define the symmetric group &4 C Gg. Since we also require E, Fy € r and E3, Fy € s
we get indeed Dy. So the local system we are looking for is the restriction of the sign

representation of Gg to D, whose trace can be computed as follows.

e: Clearly the identity will be mapped to +1;

(12)(34): the element (12)(34) acts by exchanging the two points on each of the two
lines: E) <» Fs, F3 <> E, and thus will give a +1;

(1324) : the element (1324) corresponds to a rotation by /2 of the E; that is an odd
permutation of the F;. It also interchanges the two lines and hence the points

A, B, giving a +1;

(12) : the element (12) is the transposition of two points on the same line, moving

no other point, so it will be mapped to -1;

(13)(24) : finally, the element (13)(24) corresponds to the symmetry with respect to
the dashed line, that is an even permutation. This interchanges again the

two lines, and hence A, B, giving -1.

By comparing this to the character table of D4, we get that the local system we
want to consider is the one defined by the representation v, that we will denote by
W. Hence the Borel-Moore homology of Y with coefficients in W is Q in degree 2
and zero in all other degrees. We can compute the Borel-Moore homology of I just by
tensoring that of Y with the one of PG L3. The latter can be computed by duality from
its cohomology: His(PGLs; Q) = Q(8), Hi3(PGLs; Q) = Q(6), Hi(PGLs; Q) = Q(5),
Hg(PGLs3; Q) = Q(3), and it is zero in all other degrees. Therefore, Hi5(K; Q) = Q(8),
Hi5(K; Q) = Q(6), Hi3(K; Q) = Q(5), Hio(K; Q) = Q(3), and it is zero in all the other
degrees.

Finally we compute the Borel-Moore homology of Xx from the fibration

K — P2
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Since P? is simply connected, there is a first quadrant spectral sequence

E,,=H"P?)® H'(Xg) = H""(K; Q).

14Q@6). Q7). Q@)
13 Q(5)\Q(6)\Q(7)
12
11/QM@. QB). Q@)
10 Q(3)\Q(4)\Q(5)
9

0 1 2 3 4

where the differentials d3 ,o, d3 1o, d3 13, d3 13 must all be isomorphisms in order to obtain
the Borel-Moore homology of the total space that we computed above. Therefore, since
the space F is a C X As-bundle over X i, the Hodge-Grothendieck polynomial of
H.(Fx; Q) must be L7 + L7622 4 L5¢20 4 L4419

Column (L)

As a consequence of Proposition 1.3.3, F, is an open cone and its Borel-Moore ho-

mology can be obtained from the spectral sequence in Table [1.3|

TABLE I1.3

12 Q(6)
11 Q(5)
10
9 Q)
8 Q(3)
7
6
5
4
3 Q@) Q1)< Q)
2 Q(2) QB) QB)
1] Q) Q(2)” Q(3)
0 Q1) Q) Q(2)
1] Q Q1)

A B C D E F G H K

Its columns coincide with those of the main spectral sequence, which is the one

converging to H,(3; Q), shifted by twice the dimension of the complex vector bundle
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that defines each column. The space V\X is affine of dimension 18, hence H'(V\X) =
Hss_;(X) must be trivial for any ¢ > 18. For this reason, the differential d; 5 : E}; 4 —
Eag, is non-trivial, and in the second page of the spectral sequence all differentials in
the columns (A) — (G) are also non-trivial.

We can then conclude that the Hodge-Grothendieck polynomial of H,(F.;Q) is
L6422 4 [,-5421 4 [,~4419 4 [, 3418,

3.2 Main spectral sequence

The first page of the spectral sequence converging to H,(3, Q) is given in Table I1.4.
TABLE 1.4

32 Q(17)
31 | Q(16)

30 Q(16)
29 | Q(15)

28
27 Q(15)

26 Q(14) Q(15)
25 Q(14)?

24
23 Q(13)

22 Q(13)

21 Q(13)
20 Q(12)

19 Q(12)
18
17 Q(11)
16
15
14 Q(7)

13 Q(6)

12 Q(6)
11 Q(5) Q
10 Q

A B C D E F G H K L

Following Section I1.2.1, the cohomology of X must contain a copy of the cohomology
of GLy. So, all differentials in Table I1.4] are trivial. Applying then the isomorphism
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induced by the cap product with the fundamental class of the discriminant
H*(X;Q) = Hy-(5:Q)(—18)

we compute the whole cohomology of X and that of X/GLy. The Hodge-Grothendieck
polynomial of the cohomology of X/GLy is L2t + L1112 + TL4° + L3t° + L2t3 + 1.
We finally consider the fibration

There is a first quadrant cohomology spectral sequence starting with Ey and converging
to H*(X/GLs; Q):

Ey* = HY(X/(C* x GLy); H'(C* Q) = H"(X/GLy; Q).

Since we know the cohomology of the total space and of the fibre, we can compute the
cohomology of the base space from the second page of the spectral sequence represented
in Table 1.5, with non-trivial differential dy"' : E5"' — E3° because the term Q(—1) is

not appearing in the cohomology of X/GL,.

TABLE I1.5
Q-1 Q(-2) Q(-4) Q(-12)
0| q \"Q(—l) Q(-3) Q(-11)

\01234567891011 12

The choice of this spectral sequence is due to [CL21al Theorem 1.1]. An alternative spec-
tral sequence would give two additional classes Q(—2) € H*(T5; Q), Q(—2) € HX(T5; Q),
but this is impossible since the rational Chow ring of 75 is trivial in degree bigger or
equal than 2.

Therefore, the Hodge-Grothendieck polynomial of the cohomology of the base space,
and hence of the moduli space of trigonal curve of genus 5, is L1112 + L3#° + Lt? + 1.

3.3 Trivial configurations

As we promised in the computation of the spectral sequences in Tables I1.3| and 11.4,

we now consider the remaining configurations and prove that they have trivial twisted
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Borel-Moore homology.

Configurations (42)-(43)

Both these configurations are equivalent to the configurations of singularities of a
plane quintic that is the union of a conic and a singular cubic. To be more precise, in
the first type, the two curves meet each other at 6 distinct points and P is any of the
points of intersection, while in the second one they intersect at the singular point of the
cubic, that is P.

F1Gure I1.4: Configurations of type (42)-(43).

Both configuration spaces can be fibered over the space of conics through P. If we
denote the conic by C, the fibers will be respectively isomorphic to B(C\{P},5) and
B(C\{P},4). They both have trivial twisted Borel-More homology by Lemma [/4.1.

Configurations (44)-(45)-(46)

These configurations are all obtained by blowing up a singular point in the configu-
ration of type 37 in [Gor(9], defined by the intersection points of two lines and a cubic
curve in P? having one singular point. To be more precise, configurations of these types
correspond to the blow up at P, where P has to be an ordinary double point.

In the first type, P is defined as the point of intersection between a line and the
cubic, in the second one, it is the point of intersection between the two lines, and finally
it is the singular point of the cubic. Note that, in the first two configuration spaces, the
cubic need not to be irreducible: it can decompose into three concurrent lines or into the
union of a conic and a line tangent to it. However, this cannot happen for configuration
(46), otherwise P would not be an ordinary double point. The two reducible cases,
with P not an ordinary double point, define configurations (59) and (55), respectively.
Configuration (55) was already considered as configuration (K), while configuration (59)

will be considered later.
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F1GURE I1.5: Configurations of type (44)-(45)-(46).

Configuration spaces of type (44), (45), (46) can then all be fibered over the space
parametrizing the two lines r, s. The fibers are isomorphic to the quotient of B(C*,2) x
B(C,3), B(C,3) x B(C, 3) and B(C,3) x B(C, 3), respectively, by the involution given
by exchanging the two lines. Since they have all trivial twisted Borel-Moore homology,

the homology of the configuration spaces will be trivial as well.

Configuration (49)

Configurations of type (49) are obtained by the same plane curve considered for type

(J), where P is defined as the point of intersection of a conic and the line.

F1GUuRE I1.6: Configuration of type (49).

Then X9 can be fibered over B(P?\{P},4) > {A, B,C,D}. Once these points
are fixed, we notice that the conic C passing also through P is uniquely determined.
Therefore the fiber Y is itself a fiber bundle over the space L = P\ {5 points} of lines
not passing through any of the points A, B, C, D and not tangent to C. The fiber Z is
defined as the space of conics, passing through {A, B,C, D}, not tangent to [ € L and
different from C.

The space Z is isomorphic to P'\{0,1,00} = C\{0,1}. Moreover, determining a
conic in Z is equivalent to choosing a point in [ that is different to P, () and the 2 points
of tangency T, T3 in [. Thus, H,(Z,£Q) is Q in degree 1 and 0 in all other degrees.

Note also that, when moving [ around A, for instance, the points of tangency in [ are
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swapped. Therefore m (L) acts on H,(Z,+Q) anti-invariantly and the Borel-Moore
homology of the fiber Y is defined by that of L with non-trivial coefficient system:

HJ.(L;Hi(2)) =Q, in degree 0.

Finally, notice that we are considering a local system on L that changes its sign under
the action of any loop in P! around any point removed. Therefore any v € B(P?\{P}, 4)
transposing a pair of points must act on the fiber as the multiplication by -1. This means
that the local system induced by the fiber on B(P?\{P},4) is =Q and by Lemmas 1.4.3
and [.4.6 the twisted Borel-Moore homology of X 49, will be trivial.

Configurations (50)-(51)

In all the following configuration spaces P has to be a triple point. More precisely,

they are defined by blowing up the following curves at P.

N

F1cure I1.7: Configurations of type (50)-(51).

We can fiber the configuration spaces over the space parametrizing the pairs of lines.
The fiber spaces will be then isomorphic to a quotient of B(C,2) x B(C,2) and C* x
B(C, 3), respectively, and they both have trivial twisted Borel-Moore homology.

Configuration (52)

As above, P must be again a triple point. In particular, configurations of type (52)
are defined by two distinct conics meeting at P and three additional points A, B, C, and
a line [ through P, not meeting any of A, B, C.

Then, the configuration space can be fibered over the space B(P2\{P},3) x
(P'\{3 points}) > {({A, B,C},1)}, parametrizing the intersection points between the

two conics and the choices for the line [. Once we have fixed [, two points on it will



o4 IT . RATIONAL COHOMOLOGY OF T;

C B

F1cure I1.8: Configuration of type (52).

uniquely determine the two conics. Hence, the fiber space will be B(C, 2) whose Borel-
Moore homology will be considered with constant coefficients. In fact, when we exchange
the two conics we are actually exchanging 2 couples of points in the configuration space:
the two points lying on the line, and the two points of intersection between the excep-
tional divisor and the strict transforms of the two conics. On the other hand, there
is a natural action of &3 on the base space. By noticing that both factors have no
Gs-anti-invariant classes in their homologies', the total space will have trivial twisted

Borel-Moore homology.

Configurations (53)-(54)

These configurations are obtained by blowing up a point of intersection between two
lines and a point of intersection between a line and a conic, respectively, in the set of
9 distinct points in P? defined as follows. Three points A, B, C' are in general position,
defined as the intersection points of three distinct lines. The other six points are defined
as the intersection points between the three lines AB, BC, AC and a conic not tangential
to the lines. This is configuration 39 in [Gor(03].

FIGURE I1.9: Configurations of type (53)-(54).

For the factor B(P?\{P},3) this follows by Lemmas 1/4.3 and 1.4.6. While for the second fac-
tor, this can be deduced by computing the Borel-Moore homology of P*\{3 points} in terms of &3-
representations, that is S3(1) in degree 2 and Sy ; in degree 1.
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As in [Gor(3], we want to fiber both configuration spaces over the spaces parametriz-
ing the points of intersection between the three lines. When we choose P as one of these
points, e.g. A, the total space will be fibered over B(P?\{P},2) instead of B(P?,3).
On the other hand, when P is the intersection point between the conic and a line, the
configuration space is fibered over a quotient of B(P?\{P},2) x C* > ({B,C}, A). The
fiber space, denoted by Y in [Gor03], will be in both cases the same, i.e. a fiber bundle
over B(C*,2) x B(C*,2), the configuration space of 2 points on each of AB, BC, ex-
cluding A, B, C, with fiber isomorphic to C* minus a point. Therefore it will have the
same Borel-Moore homology, which is Q in degree 5, Q(1)? in degree 6, Q(2) in degree
7 and zero in all other degrees.

However we will have to consider the action of the fundamental group of the new
base space that is either B(P?\{P},2), or it contains it as a factor of a product. The
fundamental group will then be the restriction of the symmetric group &3 to {B, C}:
S,. Thus, we only need to consider local systems of coefficients corresponding to the
restrictions of the representations of G3: trivial and sign representation will restrict
respectively to trivial and sign representation on G,, while the 2-dimensional irreducible
representation restricts to the direct sum of the trivial and sign representation.

We have that P(B(P?\{P},2),Q) = L™%® and P(B(P?\{P},2),+Q) = L35 by
Lemmas 1.4.3, 1.4.4/and 1/4.7. So we will get a similar E2-term of the spectral sequence,
with the only difference that the action of &y on Hg(Y;+Q) = Q(1)? now must be

reducible.

The differentials df ; : B35 — Eg¢, d3 g : B3¢ — E§; must be non-trivial because other-
wise we would get non-trivial classes in the main spectral sequence whose corresponding
cohomology is not divisible by that of GL,, contradicting section I1.2.1. Therefore, also

these configuration spaces have trivial twisted Borel-Moore homology.

Configurations (56)-(57)

These configuration spaces are the configurations of singularities obtained by blowing

up the following curves at P.
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?bL
F1cure I1.10: Configurations of type (56)-(57).

Consider first configurations of type (56). Similarly to configurations (53), (54), we
fiber the space over the points of intersection between the lines, that is B(P?\{P},2).
These two points, together with P, uniquely determine the three lines. The other 4
points left, together with P, will uniquely determine the conic. The fiber space is then
isomorphic to the quotient of C* x C* x B(C*,2) by the involution exchanging the first
two factors. Thus it has twisted Borel-Moore homology equal to Q in degree 4 and
Q(1) in degree 5. The fundamental group of the base space acts by exchanging the two
points, and thus induces an Gy-action on the line not passing through P that is the one
described in Lemma 1/4.2, Therefore, the Borel-Moore homology class in degree 5 must
be anti-invariant under such an action, while the class in degree 4 will be invariant. By
applying Lemmas [.4.3, 1/4.4] and [.4.6 we have that the second page of the spectral

sequence must have the following form:

where the differential will be an isomorphism.

The second configuration space can be fibered over the space parametrizing the three
lines through P. Since it suffices to fix 5 points on those lines to determine the conic,
the fiber space will be a quotient of B(C,2) x B(C,2) x C, which has trivial twisted
Borel-Moore homology.

Configurations (58)-(59)

These configuration spaces are both defined by 5 lines in the projective plane. The

first is obtained by blowing up any of the singular points of 5 lines in general position,
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while the second one is obtained by blowing up the point of intersection of three concur-
rent lines, in a plane quintic defined by such three lines and two additional lines meeting

at a point outside the other lines.

\>< i

P

FIGURE II.11: Configurations of type (58)-(59).
We can fiber both configuration spaces over the set of lines meeting at P, thus:
Xis) — B(PL,2)  and X5 — B(P',3).

The fiber spaces will then be the spaces of the remaining lines defining the configuration
that are, respectively, B(C?,3) and B(C? 2), by duality. Both have trivial twisted
Borel-Moore homology by Lemma [.4.1.






Chapter 111

Stable cohomology of 7,

This chapter is based on [Zhe2Th).

1 Introduction and results

In this chapter, we give a description of the stable rational cohomology of 7, by
studying the loci of trigonal curves lying on each Hirzebruch surface, hence each stratum
in the Maroni stratification. We will use again Gorinov-Vassiliev’s method [Vas99],
[Gor05], [Tom05bh], which reduces the computation of the cohomology of complements
of discriminants to the study of a filtration on a geometric realization of the discriminant,
based on a classification of its singular loci. In particular we won’t consider the whole
classification, but only the families of singular configurations having low codimension in
the vector space in which the discriminant is defined.

Our starting point will be the result in [Zhe2la], where we computed the rational
cohomology of the moduli space of trigonal curves of genus 5. For g = 5, in fact, all
trigonal curves lie on the first Hirzebruch surface [F; as smooth divisors. However, [F;
and the other IF,,’s contain other trigonal curves of higher genera. For higher values of
g, the classification of the singular loci of such curves is more complicated, but we will
see that the families of singular configurations we will consider have a description which
is analogous to the one we had for g = 5. This will allow us to compute the cohomology

of trigonal curves lying on [F,, in a certain range.

59
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We will exhibit the procedure for any Hirzebruch surface of degree n > 0 in order
to compute the stable cohomology of the locus of trigonal curves lying on it, defined as
N, :={[C] € T,| C has Maroni invariant n}.

We prove first that the cohomology of each N, stabilizes and compute it in the stable
range.

By considering then the spectral sequence associated to the Maroni stratification of
T4, we show that almost all the cohomology classes of all strata N,, are canceled by
non-trivial differentials in the E; and Es pages.

We finally obtain a description of the stable cohomology of 7, for g sufficiently large.

Precisely,

Theorem 1.1. The rational cohomology of Ty, in degree i < HJ, 18

Q7 Z = 07
; Q(_l)v =2
H'(T; Q) =
Q(_z)a 1= 47
0, otherwise.

Remark 4. Note that, if ¢ = 2mod 4, the above description of the rational cohomology
of 7, holds for ¢ < L%J )

In [PVI5a] Patel and Vakil proved that the rational Chow ring Ag(7,) coincides
with its tautological ring, denoted Rg(7,), which is defined as the subring generated by
the pullback of the tautological classes in Ag(M,). In particular, they proved that it is
generated by a single class in codimension 1, the kappa class ;. Then, our main result

also implies that

Corollary 1.2. For g,7 as above,

RgQ(Tg), i even;
0, 1 odd.

H(T5;Q) =

Remark 5. For g = 3,4,5, H*(7,;Q) is completely known from [Loo93], [Tom05h],
[Zhe21a], respectively. However, in none of these cases the cohomology ring is tautolog-

ical.
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From the proof of our main result, we can also deduce the stable cohomology of the
moduli space ’TgT of framed triple covers, i.e. the moduli space parametrizing pairs (C, «)
with C' a smooth curve of genus ¢ and o a degree 3 map from C' to a fixed P!. Notice
that 7, is the underlying moduli space of the stack H{ ,, defined in [PVI5al.

3,9’

Corollary 1.3. Let g > 6, the rational cohomology of 7;, in degree 1 < L%J , 18

(@ i-o

Q(-1), i=2;
H(T5Q) =1 Q(-3), i=5

Q(—4), i=T;

0 otherwise.

\

Remark 6. Let us remark that our results are in contradiction with Theorems
A and BJ. For a sufficiently large g, the rational Chow ring of 7? is strictly smaller than
that of 7,4, which has a different description from the one given by Patel and Vakil. In

fact, there was an error in the last section of their preprint concerning relations between

kappa classes, which has been corrected by Canning and Larson in [CL21a].

The chapter is organized as follows. In section 2 we introduce the main ingredients
that we will need in order to prove the results that we have just stated. Then, in section
3 we will apply Gorinov-Vassiliev’s method to our setting and we prove in section 4
that the generalized Leray-Hirsch theorem can be applied. Finally, we give a proof of

Theorem 1.1/ and of Corollary |1.3|in section 5.

2 Trigonal curves as divisors in [F,, and codimensions

of spaces of sections

In this section we introduce the notation and some results that we will use throughout
this chapter. Recall once more from Prop 1.2.2 that any trigonal curve of genus ¢ can

be embedded in a Hirzebruch surface IF,, as a divisor of class

g+3n+2

C ~3E,
* 2

Fy,

with Maroni invariant n, such that g = nmod2 and 0 <n < (g + 2)/3.
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Definition 8. Define V;,, to be the vector space of global sections of Oy, (3E,, + dF},).
The discriminant locus ¥4, C Vg, is the closed subset of sections defining singular

curves and Xy, is its complement in Vj,,.

There is an explicit way to compute the dimension of V,. Recall that a further
description of a Hirzebruch surface F,,, with n > 1, is given by blowing up the weighted

projective space P(1,1,n) at its singular point [0, 0, 1]:
Fn = Bl[O,O,l]P(la ]-7 TL),

where P(1,1,n) = Proj C [z, vy, z] such that degz = degy = 1 and degz = n.

Then, a polynomial f defining a trigonal curve of degree d in P(1,1,n) is of the form:

f(xa Y, Z) = O-/d—?m(l‘a ’y)Z3 + ﬁd—?n(l‘a ?/)22 + W/d—n(xa ?/)Z + 6(1(1‘7 y) =0 (III]-)

where ag—3,(2,Y), Ba—2n(Z,Y), Va—n(z,y), da(x,y) are homogeneous polynomials in the
coordinates x,y, of degrees d — 3n, d — 2n, d — n, d respectively, with d > 3n.

We can visualize the coefficients in the following figure:

d—3n+1 ° . e °
d—2n+1 ° ° o ° °
(I11.2)
d—n+1 ° ° . e ° °
d+1 ° ° e . e ° °
where the j-th row, j = 1,...,4, corresponds to the coefficients of monomials z%ybz3—7+!

with a + b =d —n(3 — j 4+ 1). Counting the number of parameters we get that vy, :=
dimcVy,, = 4d + 4 — 6n, when n > 1. Note that this also agrees when n = 0 : Vg
is isomorphic to the vector space of polynomials of bidegree (3,d), with d = 3=, on
P! x P!, ie.

Vio = Clzo, 71,90, Y1]34 = cHHHy,

We now want to consider elements in V,, ¢ which are singular at configuration spaces
B(F,, N), discussed in section 1.4. Since we are dealing with projective surfaces, re-
quiring any polynomial f € V,, 4 to be singular at any fixed point in F,, will impose 3

linearly independent conditions. If we require f to be singular at a configuration of N
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points we expect the number of imposed conditions to be 3N and we will prove that

this is indeed what happens when d is sufficiently large with respect to V.

Lemma 2.1. Fiz N > 1. For any n > 0, the restriction of

{(f7p17"'7pN) € ‘/d,n X B(FnaN)’pb’pN € Slng(f)} l> B(IFTHN)

to the locus where at most two points p; lie on the same line of the ruling is a vector
bundle of rank vq,, — 3N provided d > 2N + 3n — 1 holds.

Remark 7. Before proving the lemma, note that we can further simplify the assumption
that no more than two points lie on the same line of the ruling, by considering only
the case where they all belong to distinct lines of the ruling. Clearly, curves which are
singular at pairs of points in the same line of the ruling are easier to treat and they
can be reduced to curves of smaller degree which are singular at points lying on distinct
lines of the ruling. The reason behind this is that, in both cases, the vector subspaces
in Vg, of curves which are singular at these points have the expected codimension.

In fact, let us consider first a set of N = 2k points consisting of k couples of points
on k distinct lines of the ruling. It is easy to show that the vector subspace of curves
which are singular at these 2k points is non-empty for d > %(k +mn) — 1, which is always

satisfied when d > 2N + 3n — 1, and it is given exactly by all polynomials of the form
1Ly, (I11.3)

where /4, ..., are the equations of the k lines of the ruling containing the 2k points
and g is a section of O, (3E, + (d — k)F,), vanishing at the 2k prescribed points.
Then, counting parameters as we have done in (I11.2), the vector subspace generated by
these polynomials has dimension 4(d — k) 4+ 4 — 6n — 2k, which is non-negative by the
assumption d > %(/{: +n) — 1, hence it has codimension 6k = 3N in V.

This also holds if we consider a set of N points consisting of 2k points, defined as
above, together with A points, each lying on a distinct line of the ruling, all different
from the k lines of the ruling containing the 2k points. In this case the vector subspace of
curves which are singular at these N points is given exactly by polynomials of the form
(IT1.3), where we further require g to be singular at the h points. As we will prove below,
this last assumption will increase the codimension by 3h and thus the codimension in

Van of the vector subspace generated by these polynomials will be 6k + 3h = 3N.
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Proof. By the above remark, we will assume that all p;’s lie on distinct lines of the
ruling. Following the proof of [Tom20, Lemma 4], let us fix a set of N distinct points
{p1,...,pn} C F,. Assume first that n > 1, and consider the evaluation map

Clz,y, 2], SN M; n(C)

which assigns to each f(x,y, 2) = a(z,y)23+B(x, y)2*+v(z, y)2+06(z, y) in the weighted
polynomial ring C [z, y, 2], with deg x = degy = 1 and deg z = n, a 3 x N matrix whose
i-th column is defined by

Of /0x(pi)

of /0y(p;) if p; € F,\Ep;

9f/0z(p;)

Oa/0xo(p;)

da/Oyo(ps) | if pi € En;
B(pi)

\

where xg,yo denote the coordinates in E,, = {([0,0,1],[zo,50]) € {[0,0,1]} x P!} C
Blp,oP(1,1,n) 2 F,. The evaluation map is a linear map and its kernel is exactly the
fiber of ™ over {p1,...,pn}. Therefore, in order to prove the lemma, it is sufficient to
show that ev is surjective for d > 2N + 3n — 1.

Consider first the case where p; € F,,\ E,,. After an appropriate change of coordinates

we may assume that p; = [1,0,0]. Fix a degree » > 3n+1 and consider the polynomials
o = :):W%---E?V,

pr ="yl 0,
o = 2" "2ly - 05,

where /5, ...,y are the equations of the lines of the ruling containing ps,...,py. All
; vanish with multiplicity 2 at po, ..., py and hence they are all sent to matrices with

trivial entries outside the first column. Moreover, since p; & ¢;, for ¢ > 2, then

Oy - Uy
ox

0ly - Un

52"'5N(p1)=ao7£03 ay

(p1) = Nay; (p1) = a1 #0.
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and the evaluations on such polynomials are

ra3 +2NaZ 0
ev(po) = 2a; 0 ... 1,

Q
o

ev(p1) =

ev(pz) =

az 0
Hence ev(pg),ev(p1),ev(ps) are linearly independent generators for the subspace in
Ms; n(C) of matrices with zeros outside the first column.

Next, consider the case where p; € E, : it is of the form ([0,0,1],[xo,y0]) €
Blp,oP(1,1,n), and we may assume p; = ([0,0,1],[1,0]), after an appropriate change

of coordinates. We now define
_r=3n_3/2 2
Yo =1 2205 - Uy,

_ _r—3n—1 392 2
o1 =x yzols - Uy,
_or—2n_242 2
Yo =1a 25 Uy,

where /s, ...,y are defined as in the previous case. The evaluations on these polyno-

mials now are

(r+2N —3n)a 0

ev(po) = 2a0a, 0 ... |,
0 0
0 0
2
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which are again linearly independent generators for the subspace in M; x(C) of matrices
with zeros outside the first column.

Hence, we have proved that all matrices in M; x(C) with trivial entries outside
the first column belong to the image of ev and by symmetry this can be generalized
to all the other columns, proving the surjectivity of ev. This has been proved using
polynomials ¢; which have degree d > r + 2(N — 1) > 2N + 3n — 1. This bound is
actually sharp: if E, is a component of the curve, then we can refer to (I11.2): by
counting the number of parameters of a polynomial f defining a curve having F, as a

component and N distinct singular points on E,,, we get that d > 2N +3n—1, as desired.

Finally, when n = 0, recall that Vg = C[2o, 71, Yo, 1] 4 , hence any polynomial f €
C [z, z1, Yo, Y1 3.4 18 homogeneous of degree 3 in the variables xo, z1 and homogeneous of
degree d in the variables g, y1, at the same time. By definition, f is singular at a point
p if and only if a%(p) = ngl(p) = g—y{)(p) = %(p) = 0, and these are actually three
independent conditions. In fact, if we denote p = ([Xo, Xi], [Yo, Y1]) the coordinates
of p € P' x P!, then f(xo,1,Yp, V1) = g(z0,21) € C (20, 1] and f(Xo, X1, 90, 91) =
h(yo0,v1) € Clyo, y1],. By Euler’s formula both on g and h, the vanishing of any three
partial derivatives forces also the fourth one to be zero.

So we can define the evaluation map as

C [330737173/071/1]3,(1 = M; n(C)

of [0xo(p1) ... Of/Oxo(pN)
fr=|0f/0x1(p1) ... Of/0x1(pn)
of [0yo(p1) .. Of/0yo(pn)

Notice that, since Ej is now a line of the ruling distinct from the one containing Fj,
there is no need to discuss if p; € Ey or not. Choose coordinates such that p; =
([1,0],[1,0]) € P! x P! and define

2 2 r—1_. /2 2 r—1_ 2 2
o = zoly -+ Ly, o1 =1y wly Ly, o2 =y Yoly - Ly,
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where r > 1 and /5, ...,fN are again the equations of the lines of a ruling containing
P2, ..., pn. One can check that the evaluations on these polynomials are again linearly
independent generators for the subspace in M; x(C) of matrices with zeros outside
the first column, hence ev is again surjective and the polynomials ; now have degree
d>r+2(N —1)> 2N — 1, which agrees with what we have proved for n > 1. O

3 Vassiliev’s spectral sequence

In this section, we compute the first columns of the Vassiliev’s spectral sequence,
hence the stable part of the cohomology of X,,.
First of all, recall that the rational cohomology of Xy, is equivalent to the Borel-

Moore homology of ¥,,, by Alexander duality, (L.9):

I*(Vy\Zan; Q) = Houy o —1-0(Za0; Q) (—van)-

Then, in order to compute the Borel-Moore homology of ¥;, we apply Gorinov-
Vassiliev’s method, which consists in constructing a simplicial resolution of X,
admitting a filtration such that the Borel-Moore homology of the strata define a

spectral sequence converging to that of ¥4,,.

Precisely, assume that d > 2N +3n —1,let I C N = {1,..., N} and define the
N-cubical spaces of section 1.3 as {xr}rcn, {X;}1cn, where, if I = {iy,...,4,} such that

i; # N forany j=1,...,r,

xr={(f, 91, 4r) € Van X HB(anijﬂZ/l C--- Cuy, CSing(f)},

j=1
X0 = Eal,n> and XIU{N} = {(f7 Y1, - - 7:’-/1") € XI’f S EN}’

YI = {(f?g/la"'ayr) € Vd,n X HB(Fnaz])’yl c.--C Yr C Slng(f)}?

j=1

Y(Z) = Ed,?’w and XIU{N} = {(fvyla'”7y7“) EY[’JC GEN}7
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where Xy denotes the Zariski closure of the locus in Y4 of polynomials defining curves

with at least N distinct singular points. We then construct its geometric realization

Xe| = |_| Xt X Ap |/ ~,

as in section 1.3, and define the increasing filtration

Fililxe| := Tm ([xe|i| = Ixe) ,

with locally closed subsets

By 1.3.2, the filtration Fil; defines a spectral sequence, called the Vassiliev’s spectral
sequence. This spectral sequence converges to the Borel-Moore homology of ¥4 ,,, whose
E, ~term is isomorphic to H,4(F,; Q).

Then, in order to compute the Borel-Moore homology of the discriminant ¥, we
need to consider first the Borel-Moore homology of each F;. By construction, we have
that

F; = I_l X1 XA |/ ~.

Ic{1,..,N};maxI=t

When ¢ < N, by Proposition 1.3.3, Fj is a non-orientable simplicial bundle over x;
with fiber isomorphic to the interior of a (i — 1)-dimensional simplex.
Moreover, by Lemma 2.1, since we are working under the assumption that d > 2N +
3n — 1 holds, xy; is a complex vector bundle over B(F,,,) of rank vy, — 3i. Putting all
together we obtain an explicit formula for the Borel-Moore homology of F; for ¢« < N,

namely

Ho(F;Q) = Hosu,, 16i—i41(B(Fp,1); £Q) ® Q(va, — 3i), (ITL.4)

which can be computed by Lemma [.4.8. In particular, for any n > 0, the configuration
spaces B(F,, k) have all the same twisted Borel-Moore homology, which is trivial for
k > 4. Thus, among the first N — 1 strata, only Fj, ..., Fy contribute non-trivially to
the Borel-Moore homology of ¥;,. They correspond to the following classification of

singular configurations:

(1) Ome point, [3] ;
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(2) Two points, [6];
(3) Three points, [9];
(4) Four points, [12].

By the formula (III.4) and by Lemma 1.4.8, we compute the Borel-Moore homology
of the associated strata and we get that the first columns of the E'-page of the spectral

sequence will look as the ones represented in Table I11.1.

TABLE 1I1.1

2Ud,n -3 Q(Ud,n - 1)
2’0(17” —4
2vd,n — 5 Q(Ud,n — 2)2
2Ud,n —6
2vd,n -7 Q(Ud,n - 3) Q(Ud,n - 3)2
2Ud,n —8
2vd,n -9 Q(Ud,n - 4)2
QUd,n — 10
2vd,n — 11 Q(Ud,n — 5)2 Q(Ud,n — 5)
204, — 12
Wam — 13 Q(vgy — 6)?
Wap — 14
W4 — 15 Q(vgy —7)
2'Ud,n — 16
Wy — 17 Q(vgy — 8)
2Ud,n — 18

1 2 3 4

Remark 8. Notice that this does not agree with the first 5 columns of the spectral
sequence obtained in [Zhe2Tal Table 3]. Indeed, for g = 5, we have that the inequality
d > 2N + 2 is not satisfied when N > 2, hence the corresponding configurations do not

have the expected codimension.

Remark 9. For n = 0, the spectral sequence agrees with the first 4 columns of the
spectral sequence in [Tom05b] Table 3], twisted by Q(vao — 16) in degree 2(vqo — 16).

When i = N, recall that

FN: |_| X]XA[ /N

Ic{1,...N};maxI=N
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Following [TomI4l Lemma 18] we can further stratify the stratum Fy as the union of

locally closed substrata

do = (xvy X Aqny) /[ ~, ¢ = (xruvy X Arogwy) / ~ 1<I<N-1.

Then, for any of these substratum we have natural maps

o = X{N}s O1 = X{,NY

where ¢y = xyn} by definition of ~, and the fiber of ¢, — xq ny is the interior of a
l-dimensional simplex: it is a cone over the fiber of F; — {3, which by [Gor(Q3], Theorem
3 and Lemma 1] is again the interior of a (I — 1)-dimensional simplex.

Moreover, for any f € Xy, the projections (f,pi,....pn) — f, (f,p1,...,pN) =
(f,p1,...,p) define surjections

{(fapla--'7pN) € V;i,n X B(Fn7N)’pl>"'7pN € Smg(f)} — X{N}s

{(f7p17 s apN) € ‘/d,n X B(FnaN)|p17 ...,PN € San(f)} — X{l,N}?

where the domain, by the assumption that d > 2N + 3n — 1 and by Lemma 2.1 is a
vector bundle of rank vg,, — 3N over B(F,, N), which has dimension 2N. Therefore, we
have that

dimg ¢¢ < 2v4, — 2N and dimg ¢ < 2v4,, — 2N +[; 1<I<N-—-1.

Then, since the largest dimensional stratum is ¢ny_i, we have dimg Fy =
dimg ¢n—1 < 2v4, — N — 1. So the Borel-Moore homology of Fy must vanish in degree
k > 2v4, — N. As a consequence, when considering the whole spectral sequence, we
have that, for k¥ > 2v,4,, — N, the Borel-Moore homology of ¥, is defined only by the
strata Fi,...Fy. By Alexander duality, this means that the cohomology of X, is given
by that of the strata F,...Fy, for k < N < 42041

4 Group action on Hirzebruch surfaces

In this section we compute the rational cohomology of each stratum of the Maroni

stratification, by considering the action of the automorphism group of F,, for any n > 0.
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Let G, denote the automorphism group of F,,. When n > 1, G, is isomorphic
to Aut(P(1,1,n)), which is the group of automorphisms of the weighted graded ring
Cz,y, z] with degxz = degy = 1 and deg z = n, fixing the singular point [0, 0, 1]. Such

automorphisms are of the form

T = a1 + agy
Yy — bixr + byy

2 ez +q(z,y),

where a1, as,b1,be,c € C are such that c(a;by — a1by) # 0 and ¢ € C|z,y], . Note that
Clz,y], = C™"! is contractible, therefore G, is homotopy equivalent to the reductive
group C* x GLs.

The coarse moduli space X, /(C* x GLy) parametrizes isomorphism classes of triples
(C, L, H), where C'is a trigonal curve of genus g = 2d — 3n — 2, L is the linear system
defining its trigonal structure and H a hyperplane section of F,,. Thus Xg,,/(C* x GLs)
is an orbifold C"*'-bundle over N, = {[C] € T,|C has Maroni invariant n}, and we
can deduce the stable rational cohomology of the latter from that of X, /(C* x GLs).

Let us observe that, when n > 1, a generalized version of the Leray-Hirsch theorem
can be applied to H*(X,,,; Q) in order to recover the rational cohomology of X, ,,/G Loy
from that of X, and of GL,.

Proposition 4.1. For n > 1, there is an isomorphism of graded Q-vector spaces with

mixed Hodge structures
H*(X4n/GLo; Q) ® H*(GLo; Q) = H* (Xan; Q).

Proof. By Theorem 1.3.4 it is sufficient to prove the surjectivity of the map on coho-
mology

J szd,nfz‘fl(xd,n; Q) = Hi(Xd,n; Q) - Hi(GL2; Q) = I:IQdimeifl(DQ Q),

induced by the orbit map p : GLy = Xg4,, where M is the space of 2 x 2 matrices and

D is the discriminant in M.
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The generators of H,(D;Q) are [D] in degree 6 and [R] in degree 4, where R C D
is the subvariety of matrices with zeros in the first column. From [Zhe2Ial Section 3.1]
we already know that, for n = 1, p* is surjective: the preimages of the generators [D]
and [R] are a non-zero multiple of the class [$,,,] € Ho, 21-2(241; Q) and a non-trivial
linear combination of the classes [Zﬁzl?)z] , [ZE;T)L] € Hy, a1-4(3a1; Q), respectively, where
227)1 is the subspace of polynomials in Vj;,, which are singular at a point on E,, and 251?7)1
is the subspace of polynomials in V;;,, which are singular at a point on a line of a ruling.
From Table III.1, we observe that the class in degree 2v4, — 2 and the two classes in
degree 2v4, — 4 appear in each Vassiliev’s spectral sequence, with n > 1, therefore p*
must be surjective for any n > 1.

In fact, by recalling that elements of V;,, are polynomials of the form (III.1)), if we
consider the extension of the orbit map D — X, and the subvariety R, the latter acts
on Vg, by

(O Cl) fla,y,2) = Cler, )y ™"y, 2),
0 Co

for a fixed f € Xy, where C(c1, ;) € C and g is a weighted polynomial in Cy, 2], ,
with degy = 1, deg z = n.

Thus, elements in R are sent to polynomials defining curves which are union of the
line of the ruling of equation y = 0, with multiplicity d — 3n, and some other curve of
lower degree passing through a point of this line of the ruling. Similarly elements in
D will be sent to polynomials defining curves that are union of some line of the ruling,
with multiplicity d — 3n, and another curve meeting this line of the ruling at some point.
Therefore the preimages of [D] and [R] through p* must be a non-zero multiple of [¥,,,]

and a non-trivial linear combination of [ZSBL] , [Egi

}, respectively, as predicted. O

With the above result, we are now able to give a description of the rational cohomol-

ogy of N, in degree i < Ld_%J .
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Proposition 4.2. The rational cohomology of N, for n > 1 and in degree i < [d_%J ,

is etther .
Q, i =0,
Q(=1), i=2
H'(N.;Q) = { Q(-3), i=5, (ITL5)
Q(—4), =7,
\ 0, otherwise;
or .
Q, i =0,
Q(-1), i=2,
Q(-2), i=3,
H'(N,; Q) =14 Q(-2), i=4, (IIL.6)
Q(-3), i=5,
Q(—4), i=T7,
\0, otherwise.
The rational cohomology of Ny, in degree i < LgTHJ , 1S
Q, i =0,
H'(Ny; Q) = Q(-3), i=5, (I11.7)
0, otherwise.

Proof. Consider first the case n > 1. By applying Proposition 4.1, the rational coho-

mology of the quotient X, /G Lo, in degree i < L%J, will be

Q, i =0;
Q(-2), i=3;
H'(X4n/GLy; Q) =  Q(=3), i=5; (I1L.8)
Q(-5), i=8;
0, otherwise.
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Consider then the spectral sequence associated to the bundle
Xgn/GLy =5 Xy /(C* x GLy),

which will look either as

TABLE II1.2
Q(-1) Q(-2) Q(—4) Q(-5)
0| qQ \Q(—l) Q(—3)\“Q(—4)
o 1 2 34 5 6 7 8
TABLE II1.3
Q(-1) Q(-2) —3) —3) Q(—4) Q(-5)
0| Q \Q<—1>MQ<—3>\Q<—4>
01 2 3 4 5 6 7 8

where in both spectral sequences the differentials must be non-trivial because of
(I11.8).

Both spectral sequences also imply that H?(N,;Q) is generated by the Euler class
¢ of the C*-bundle, which is a non-zero multiple of x;, by [PVI5a]. Moreover, the
spectral sequence represented in Table [II1.3| would imply that H*(N,;Q) is generated
by k1 - & = ak? # 0.

Hence, the choice of the spectral sequence corresponds to verify if 2 = 0 holds in
H*(N,; Q) and we cannot determine this a priori. Thus, from Tables 1I1.2 and TII.3 we
obtain two possible description of the cohomology of N,,, which are (II1.5) and (II1.6),

respectively.

d—3n

5 J is the same obtained for

d—3n

H'(X4,/GLy; Q). Indeed, if we had a non-trivial class in EQL 2] 0 in Tables [II.2
and [[11.3, then additional non-trivial classes would also appear in H'(X,,/GLs; Q),
for i < |42 |

Finally, when n = 0, the group G acting on Fy is different from those we have

Here, notice that the stable range ¢ < [

considered when n > 1. However, also in this case a generalized version of Leray-

Hirsch theorem can be applied. Indeed, Gy is exactly the group considered in [Tom05D]
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Section 3.1]. Precisely Gy is a reductive group which is isogenous to C* x SLy X S L,
whose cohomology is known. The isogeny ¢ : C* x SLy x SLy, — (G is an isogeny
between connected algebraic groups and therefore ¢ induces an isomorphism on rational
cohomology.

Thus, the rational cohomology of X,;,/Go has already been computed in [Tom05h]
Section 3.7] and by applying the generalized version of Leray-Hirsch theorem we get
(I11.7). O

Remark 10. From the rational cohomology of 75, computed in chapter II, we can estab-
lish that, when g is odd, the cohomology of the stratum Ny is described by (II1.5). This
is due to the fact that /V; is open in 7, and the fundamental class of its complement is

a non-zero multiple of x%. Therefore, from the description of the rational Chow ring of
7T in [CL21al Theorem 1.1] we can conclude that 7 = 0 in H*(Ny; Q).

5 Maroni stratification

Recall that 7, has a natural stratification by the Maroni invariant, (1.7):
NLQTHJ C o CN’ngdZ:EJ

where N, = {[C] € T,|C has Maroni invariant > n} with 0 < n < [%2] and
g = nmod 2. Notice that N,, = N,,\V,, 12, so we have indeed computed the cohomology

of the strata in the Maroni stratification of 7,, within a certain range.

In order to deduce the cohomology of 7, from that of the strata, we consider the

spectral sequence associated with this stratification. Recall that
dimN,, =29 +2 —n — o,

so that each N, > has codimension 2 in N, with the sole exception of Ny C 7T, which
is a divisor for g even. Moreover, observe from Proposition 4.2 that Ny is the only
stratum having different cohomology from the other strata. Consequently, we will need

to distinguish the cases for g even and odd.
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5.1 Case g even

Suppose first that g is even. We can recover the rational cohomology of 7,, in a
certain range, from the Gysin spectral sequence in Borel-Moore homology induced by
the Maroni stratification (1.7).

Precisely, the E'- page of the spectral sequence is obtained by considering in each
column the Borel-Moore homology of each stratum N,,. We will twist the whole spectral
sequence by Q(—dim 7,) in order to get the fundamental class of 7, in degree 0.

Recall also from Proposition 4.2 that, for n > 2 we have two possible descriptions
for the cohomology of each stratum.

Assume first that the cohomology of each stratum, except Ny, in the Maroni strati-

fication is given by (IIL.5). The corresponding spectral sequence is represented in Table
I11.4.

TABLE III1.4

N N, Ny No

4 -3 2 1 0
Q 0
Q(-1) -1
2
Cy Q(-2) -3
Q(-3 4
Ty |
- Q(—4)« Q(—4) -6
Q(-5 7
T aqey) 8
- Q(—6)« Q(—6) -9
Q(-7 -10
\Q(—7) 11
. Q(=8) 12
13
Q(-9) 14

Let us consider the differentials highlighted in Table [II[.4. The targets of these
differentials are the O-th or 2-nd cohomology group of a stratum, which are 1-dimensional
by Proposition |4.2. Hence the differentials in the stable range may only have rank 0 or
1.

To check whether they have rank 1 or not, it suffices to study both the fundamental
class [NV,] and the generator of H*(N,;Q), if n > 1, for each stratum N, in 7,. This

has been already done in [PV15D] and [PVI5a].
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Penev and Vakil proved in [PVI5D, Theorem 3.3] that any Chow class in N, is the
restriction of a tautological class on M. By abuse of notation we will denote both the
tautological class in R*(M,) and its pullback through the restriction map in R*(7,) in
the same way.

Patel and Vakil showed indeed that the rational Chow ring of 7, is generated by the
kappa class k1 and that the fundamental class [V,,] is a multiple of the (n — 1)-th power
of k1, in [PVI5al, Proposition 6.2].

Moreover, for n > 1, the second cohomology group H?*(N,; Q) is generated by the
fundamental class of the locus of curves tangent to F,. Therefore the generator of
H?(N,; Q) must also be a multiple of a power of k1, precisely of a n-th power.

Then, both the fundamental classes [NV,,] and the class generating H?(N,,; Q) must
vanish for n > 4 by [CL2Ial Theorem 1.1].

This means that the differentials d), , : E} — E,  ,and d}, : E> — E2 , .| must
all be of rank 1.

Now, assume instead that there exist at least one stratum Nj, whose cohomology is
described by (I11.6) and denote by 7 the minimum integer for which this happens.

If n = 2, then the corresponding spectral sequence will look like the one in Table

II1.5.
TABLE III.5

Q |0
Q(-1) 1
2
2) 3
3) 4
—3)<Q(-3) | 5
4) 6
Q(-5) ... 7

.. Q(-5) 8
Q(-6) Q(-6) -9

Thus we get two extra classes Q(—3) in degrees 5 and 6, and the latter must be
algebraic from the discussion on Table [II.3. Therefore it must vanish also from by
[CL2Tal Theorem 1.1] and means that the differentials highlighted in Table II1.5 will be

of rank 1, while the other differentials will behave exactly as in the previous case.
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Similarly this happens for all the next strata whose cohomology is described by

(I11.6).

Assume then that n > 2. In this case, the corresponding spectral sequence will look

like the one represented in Table (II1.6).

TABLE III.6
Niyo Nr Nii—2
-5 - o B L
Q(—n+3) —2(n—1)+2+3
—2(n—1)+ 242
Q(-n+2) Q(-n+2) | —2m-1)+2+1
Q(—n+1) —2(n—1)+2%
Q(-n+1) | —2(n—-1)+2—
Q(—n) Q(—n) —2(n—1)+ 75 -2
Q(-n—1)«Q(—n—1 —2(n—1)+%-3
Q(-n— 1)+ Q(-n—1) —2(n—1)+5—4
Q(-n—2) Q(—n—2 —2(n—1)+3%-5
Q(—n —3) —2(n—1)+2-6
Q(—n —3) —2(n—-1)+2-7

The two additional classes that we might have here are Q(—n — 1) in degrees 21 + 1

and 2n+2. The second class is again algebraic, hence it must vanish also from by [CL2Tal,
Theorem 1.1]. The differentials highlighted in Table [II1.6/ will be of rank 1, while the

other differentials will behave exactly as in the previous case. This can be repeated to

all strata N,,, with n > i when their cohomology is given by (I11.6).

Therefore we may conclude that, in degree i < 4,

Q7 v = 07
’ Q(_l)? L= )
H'(T;Q) =
Q(_2)7 1 =4
W otherwise;

where the bound ¢ < £

cohomology of each strata NV,, is known in degree lower than #

, where d =

is obtained by recalling from the previous section that the
g+3n+2
.
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For any 0 <n < L%J , We require

d— 1
Z<m1n{2cod1m7—gN + 32n+ n < { J}
g+3n—|—2 —3n+1
0< n< |¥=—— —1
{ 4 + 2 - 3

= min
g
4

5.2 Case g odd

Consider now the odd genus case. The E!- page of the Gysin spectral sequence
in Borel-Moore homology induced by the Maroni stratification (twisted again by
Q(—dim 7)), with all strata having cohomology as in (IIL.5), is represented in Table
I11.7.

TaBLE II1.7

N7 N5 N3 Ny

-4 -3 -2 -1 0
Q 0
-1
Q(-1) | -2
Q(-2) -3
-4

Q(-3)<Q(-3) | 5

g, A -8
6 -9
\Q(—G) -10
s Q(-7)«Q(-7) -11
Q(-8 -12
(\Q(f8) 13
-14

For the same reasons discussed in the even genus case, the differentials highlighted
in Table [IL.7 are all of rank 1.

If we also consider the case where there exist at least one stratum whose cohomology
is as in (II1.6), we also have an analogue of the argument discussed in the even genus

case.
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Thus, the stable rational cohomology of 7,, with g odd, coincides with the one

obtained in the even genus case and precisely, in degree i < %3,

Q? Z = O’
. Q(-1), i=2;
H'(T4;Q) =
Q(_2>) 1= 4)
0, otherwise;

where 2 = min {2(n — 1) 4 £E042 4 =Sndl ] <y < L%J} -1

Comparing both results, obtained for g even and odd, we get that the rational coho-
mology H*(7,; Q) stabilizes to its rational Chow ring, and equivalently to its tautological
ring, for g sufficiently large.

5.3 Stable cohomology of the moduli space of framed triple

covers
Finally, let us conclude by giving the proof of Corollary [1.3.

Proof of Corollary|1.5. Let us revisit the computation of the cohomology of the strata
N,,, which were obtained by considering the quotient spaces X,,/H,, with H,, = C* x
GLy for any n > 1 and Hy = C* X SLy X SLo.

Taking first the projectivization P Xy, and considering then the quotients P.X,,,/C*,
forn > 1, and PX;0/SLy would give us the rational cohomology, until a certain degree,
of a SLy-cover of N, that we will denote by N, for any n > 0.

Consider first n = 0. As we have already noticed in section 4, in this case the
generalized version of Leray-Hirsch theorem can be applied to the whole Hy = C* x
SLy x SLy, meaning that the cohomology of X, is completely divisible by that of
C* x SLy x SLy. Therefore the rational cohomology of Ng is simply the cohomology of
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Xgp divided by that of C* x SLs :

Q. =0

Q(-2), i=3;
H'(N§;Q) =4 Q(-3), i="5;

Q(-5), i=38

0, otherwise;

in degree 1 < ng )

For n > 1, the Leray-Hirsch theorem does not apply to the action of the whole group
H,,, but only to the action of GLy on X;,. However, let us recall that NJL has been
defined as an SLs-cover of N,. Hence, the cohomology of N is obtained by tensoring
the cohomology of N,, with that of GLy = SLy x C*, and then dividing by cohomology
of C*. Since we have two descriptions for the cohomology of NV,, by Proposition 4.2, we

also get two for N}
)

Q. i =0;

Q(-1), i=2

Q(-2), i=3;

H'(N}; Q) = 29(=3), +=5 (I11.9)

Q(—4), =7

Q(=5), =38

Q(—6), i=10;

0, otherwise;
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or (
Q, i =0;
Q(-1), i=2
2Q(=2), 1=3;
Q(-2), i=4
H'(N};Q) = 9 2Q(=3), 1=5 (I11.10)

Q(—4), i=6;
Q(—4), =7
Q(=5), 1=8;
Q(—6), i=10;
o, otherwise;

in degree 1 < Ld_%J .

Now, by looking at the Maroni stratification, all these NI can be interpreted as
locally closed strata of a moduli space denoted by 7;[, which is a SLa-cover of 7,. The
cohomology of 7;* can be deduced by writing the analogues of Tables III.4| and III.7.

Similarly to what we have done for 7, let us assume first that the rational cohomology
of all strata are given by (I11.9). We will later prove that the same result holds even if
some (or all) strata are described instead by (II1.10) .

The spectral sequences associated with the Maroni stratification {N;{} of 7;, for g

even and odd, are represented in Tables [[I11.8 and [II1.9, respectively.
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TABLE II1.8: Spectral sequence converging to ﬁ.(ET; Q) for g even.

NJ N} N Ni
-4 -3 -2 -1 0
Q 0
Q(-1) -1
-2
Q(-2) Q(-2)| -3
Q(-3) Q(-3) -4
Q(=3) | -5
Q(—4) 2Q(-4) -6
Q(-5) Q(-5) -7
Q(-5) Q(-5) | -8
Q(-6) 2Q(-6) Q(-6) -9
Q-7 Q(-7) -10
Q-7  Q(-7) -11
Q(-8) 2Q(-8) Q(-3) -12
-13

TABLE II1.9: Spectral sequence converging to H.(T;T; Q) for g odd.

N} N} N N
-4 -3 -2 -1 0
Q 0
-1
Q(-1) | -2
Q(-2) Q(-2) | -3
-4
Q(-3) 2Q(-3) | -5
Q(—4) Q(—4) -6
Q(—4) | -7
Q(-5) 2Q(-5) Q(-5) | -8
Q(-6) Q(-6) -9
Q(—6) Q(=6) | -10
Q(-7) 2Q(-7) Q(=7) -11
Q(-8) Q(-3) -12
-13

Let us consider the even genus case. The odd genus case will be analogous.

83
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We would like to study the differentials in Table II1.8 and, in order to do so, let us
consider the Chow ring of 7.

Patel and Vakil proved in [PVI5al, Prop. 6.1] and [PVI5al Vistoli’s Theorem] that
the Chow ring of 7; is also generated by the tautological class x; and it is related to
that of 7, by

A(T) = A*(T,) 1), ()

g

where p is a multiple of 2.

Moreover, by the previous discussion on the cohomology of each stratum N, for
n > 1, the cohomology of N is isomorphic to the tensor product of the cohomology of
N,, and that of SL,.

The differential d" : Ej 53 — E'; 5 must then be of rank 1. Its target class is in
fact the generator of H2(NJ; Q) = H2(N»; Q), hence a multiple of the 2-nd power of &,
from [PVI5al Prop. 6.1] and the previous discussion on the rank of the differentials in
Table 111.4. Thus, by (II1.11), this class must vanish.

Similarly, the differentials in the E'-page, such as d', 4, dl, 4, d'g_,,,..., etc.
must also be of rank 1. The target classes are indeed defined by generators of
H?(N; Q) = H?(N,;Q) which are multiples of (n — 1)-powers of k; with n > 4 by
[PV15al, Proposition 6.2], and they must vanish by (II1.11) and [CL2Tal Theorem 1.1].

Consider then the differentials in the E'-page, having two-dimensional spaces as
targets. Precisely, these classes are tensor products of the generator H?(N,; Q) by that
of H3(SLy; Q). So, these differentials are also non-trivial by the argument above.

Finally, the differentials in the E'-page, such as d*, _,, d', _;, d'5_,, ..., etc. might
not be of rank 1. In this case, the differentials in the E2-page, having as targets both the
source and the target classes of a trivial differential d*, must be of rank 1. In fact, these
classes are either the generator of the fundamental class of N,,, or its tensor product
by the generator H3(SLs; Q). Therefore they must also vanish by [PVI5al Proposition
6.2].
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In conclusion, for both g even and odd, we have, in degree 1 < L%J ,

(

Q, i =0;

Q(=1), i=2
H(T};Q) ={Q(-3), i=5

Q(—4), =T,

0, otherwise.

]

What is left to do is to show that the same result also holds if any of the strata
N has rational cohomology as in (II11.10). We consider again the even genus case and

assume that N2T is given by (I11.10). The associated spectral sequence is represented in
Table 11L.10.

TaABLE II1.10

N NJ Ny N
-4 -3 -2 -1 0
Q |0
Q(-1) -1
-2
Q(-2) Q(-2)| -3
Q(—3)«—2Q(-3) -4
Q(-3)—Q(-3) | -5
Q(—4) 2Q(—4) -6

Q(-6) 2Q(-6) Q(-6) 9

Q-7 Q(=7) -10
Q-7 Q(=7) -1

Q(-8) 2Q(-8) Q(-8) -12
-13

Notice that, with respect to Table (II1.8), we get four additional classes. Two of which
are a non-zero multiple 3 and its tensor product by H3(SLy; Q). Thus they must vanish
by (II1.11) and [CL2Tal Theorem 1.1], meaning that the differentials dj _, and d§ _g have
maximal rank. Consider then the targets of the other differential highlighted in Table
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[11.10. From the discussion done for Table (I1I.8), these must also have maximal rank.
Summarizing, the differentials are such that the additional classes must also vanish.

These argument can be repeated for all the other strata having cohomology described
by (I11.10), and generalized to N} with n > 2. This yields that the stable cohomology
of 7; is indeed the one in Corollary (1.3.



Chapter 1V

Further stabilization results for
moduli spaces of smooth curves on

a fixed Hirzebruch surface

In this final chapter we want to discuss the stabilization of the cohomology of some
other moduli spaces of curves. More specifically, we generalize the stabilization proved
for the cohomology of 7, to the cohomology of moduli spaces of smooth curves of higher

gonality, embedded in a fixed Hirzebruch surface.

1 Introduction and results

In the previous chapters we have studied the rational cohomology of the moduli
space of smooth curves defining an open subset in the vector space of global sections
H°(F,; Or, (3E, +dF,)). In particular we proved in chapter III that the cohomology of
this moduli space stabilizes for d — oc.

In this chapter we generalize this stabilization result to other moduli spaces of curves,
defined in a similar way.

In fact, we will still consider curves embedded in a fixed Hirzebruch surface F,, for

some n > 0.

Definition 9. Let V', := H°(F,; Ox, (kE, + dF,)). Define then X} C VJ, to be the

locus of sections defining singular curves on F,,, and X% = its complement.
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Let us also recall that every connected linear algebraic group is isogenous to a re-
ductive group and, in particular, the automorphism group G,, of a Hirzebruch surface
is isogenous to the reductive group H, for any n > 0, where H, = C* x GLy if n > 1
and Hy = C* x SLy x SLs.

We can then define the (coarse) moduli space of smooth curves in the linear system
|kE,+dF,| on a fixed Hirzebruch surface IF,, as underlying space of the quotient X, C’f’n /H,,
for any n > 0.

Remark 11. Notice that if k = 3, then V is exactly the vector space denoted Vg,
in chapter III. Therefore, the stabilization of H*®(X, ;{n /H,; Q) has already been proved.
In this case we saw that X3, /H, is an orbifold C"*'-bundle over the Maroni stratum
N,,. Thus X fi”m /H, and N, have the same cohomology and the stable cohomology of
X3, /H, is described in Proposition II1.4.2.

The main result of this chapter is the following
Theorem 1.1. Fiz k > 3, then H'(X} /H,; Q) = H'(X3,/H,; Q) fori < =it

Remark 12. Notice that the above statement agrees with [EWT5, Theorem 9.5], in which
Erman and Wood proved that the probability of a curve of bidegree (k,d) on a fixed

Hirzebruch surface to be smooth is independent of k£ for £ > 3 and d — oo.

The stabilization of the cohomology might also hold for £ = 2. However this case is
radically different from the other ones. It will be sketchily treated in the last section
and in particular we will prove that, even if the cohomology might stabilize, the stable
ring would be different from that obtained for H*(X3,/H,; Q).

2 Cohomology of complements of resultants

Before giving a proof of Theorem 1.1}, let us consider the case k = 1.

We will prove that, for £ = 1, the space X é’n /H, has the rational cohomology of a
point for any n > 0.

Assume first n > 1. Any f € V] is of the form f(x,y,2) = a(z,y)z + B(x,y) with
a, # homogeneous polynomials in C [z, y] of degrees d — n and d, respectively.

The polynomial f is singular if and only if @ and S are not relatively prime, i.e. if

they share a common factor or equivalently if their resultant is zero.
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In fact, in this case, the discriminant Y3, is exactly the resultant of the space of

system

with o and 3 as above.

Furthermore, the cohomology of the complement of this resultant has already been
computed by Vassiliev in [Vas19l Theorem 2]. More precisely, the space PX (}’n is exactly
the one denoted by C”\X¢, with D = 2d + 2 — n, in [VasIh).

Vassiliev’s result establishes that H*(PX é,n; Q) is an exterior algebra generated by
two classes in degrees 1, 3. Moreover, the weights of these generators and their product,
in the mixed Hodge structure of H*(PX in; Q), are 2,4 and 6, respectively.

Thus, by noticing that the generalized version of Leray-Hirsch theorem applies for
the action of GLs, we have that

Q, i=0;

0, otherwise.

Hi(Xé,n/Hn; Q) -

Assume then n = 0.

Any [ € le,o is a bihomogeneous polynomial in C [z, 21, Yo, 1] of bi-degree (1,d),
i.e. it is homogeneous of degree 1 in the variables x, x; and of degree d in the variables
Yo, 1. If we fix a point [zg, 1] = [Xo, X1] € P!, and thus one of the two families of
rulings in P! x P! then f is of the form f(Xo, X1, 50, %1) = Xo9(vo,y1) + X1h(yo, 1),
with g, h € C[yo, y1] homogeneous of degree d.

Recall that the vanishing locus of f is a divisor of class Ey+ dFy. Hence f is singular
if and only if its vanishing locus contains a line of the ruling, namely the one containing
Fy. This is equivalent to require the polynomials ¢ and f to share a common factor.

Therefore, the discriminant in the space of polynomials of the form f(Xo, X1, y0, 1)

is again the resultant of a space of system

9(yo, 1) =

By applying again Vassiliev’s result in [Vasldl Theorem 2], the rational cohomology of
the complement of the resultant is exactly that of P.X é,n with n > 0.
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Finally, we recover the cohomology of P.X 61170 by looking at the Fs-page of the Leray

spectral sequence associated to the projection [z, z1] — [Xo, Xi] :

TABLE IV.1
4| Q(-3) Q(—4)
3| Q2) Q)
2
1| Q(-1) Q(-2)
0| @ QL)
0 1 2

Notice that also in this case a generalized version of Leray-Hirsch applies for the
action of SLy x SLy, therefore the differentials highlighted above have rank 1.
Thus, the rational cohomology of PX is isomorphic to that of SLy x SL; and we

obtain the same result as in the n > 0 case:

Q, i=0;
0, otherwise.

Hi(Xio/HO; Q) =

3 Smooth curves of higher gonality

Let us now consider the case k > 3.
Similarly to what we have already seen in the £ = 3 case, if for instance n > 1, a
section in Vd’fn is equivalent to a polynomial f of degree d in the weighted ring C [z, y, 2],

with degx = degy = 1 and deg z = n, of the form
fla,y,2) = afz,y)z" + Bla,y) " + ...

Assuming that d is large enough with respect to n, the only differences that we may
get from the k = 3 case, when studying the Vassiliev spectral sequence, are determined
by configuration spaces having at least 3 points on the same line of the ruling.

However these configurations have all trivial twisted Borel-Moore homology by
Lemma [4.1. Hence the first columns of the Vassiliev spectral sequence converging to
the Borel-Moore homology of E’j’n are exactly the same ones as in the spectral sequence
converging to the Borel-Moore homology of sz, in Table [III.1.

The only difference then is given by the stable range, which will now depend on k.

More precisely, the proof of Theorem 1.1 follows by an analogue of Lemma IIT2.1.
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Lemma 3.1. Fiz k> 3, N > 1. Then for any n > 0, the restriction of

{(f7p17"'apN) € ‘/dkjn X B(FR’N)|p1""7pN € Slng(f)} 1> B(F’WN)

to the locus where no more than two points p; lie on the same line of the ruling is a
vector bundle of rank dim Vj,, — 3N provided d > 2N + kn — 1 holds.

Remark 13. By the same reasons explained in Remark III.7, also in this case it is
sufficient to prove the above lemma for N points {p1,...,py} C F,, all lying on distinct

lines of the ruling.

Proof. For n = 0 the claim follows from exactly the same argument of Lemma I11.2.1,
also for n = 0.

Assume then n > 0. Similarly to the proof of Lemma III1.2.1, we fix a set of N distinct
points {p1,...,pn} C F,, all lying on distinct lines of the ruling. Then, let us consider
the evaluation map

Clz,y, 2], = M3 n(C)

defined exactly in the same way.

Consider first the case where p; € F,\E,, with p; = [1,0,0], after an appropriate
change of coordinates. Define then the polynomials ;’s exactly as in the proof of Lemma
II1.2.1, with » > kn+ 1. The polynomials ¢; have degree d > 2N + kn — 1, and it is easy
to check that their images through the evaluation map are again linearly independent
generators for the subspace in M; x(C) of matrices with zeros outside the first column.

On the other hand, if p; belongs to the exceptional divisor, and it is of the form
p1 = (0,0,1],[1,0]) € Bl P (1,1,n), after an appropriate change of coordinates, we
define

_ r—kn _kp2 2
Yo =1 270y Uy,
r—kn—1 k 2 2
p1=1 yzily - - Uy,
0y = xr—(k—l)nzk—lgg . g?\f

The polynomials ¢; have again degree d > 2N + kn — 1, and their images through the
evaluation map are again linearly independent generators for the subspace in M; 5 (C)
of matrices with zeros outside the first column.

By generalizing this to all other columns, this proves the surjectivity of the evaluation

map, and thus the statement for n > 0. O]
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Finally, let us observe that, also in this case, the generalized version of Leray-Hirsch
theorem applies for the action of GLy on X}, if n > 0, and for the action of all Hy on
Xk,

This also follows from the fact that the first columns of the Vassiliev's spectral

k

sequence, converging to the Borel-Moore homology of 37

are exactly the ones in the
spectral sequence converging to the Borel-Moore homology of ng, provided that the
lemma above applies.

Taking then the quotient by the action of C*, when n > 1, yields Theorem 1.1.

Precisely, we have that, for k£ > 3 and n > 1, the rational cohomology of X C’in /H,, in

degree i < 4=2+L g either
(
Q, i =0,
Q(-1), i=2,
H' (X /Hn; Q) = { Q(=3), i=5,
Q(-4), i=7,
\O otherwise;
of (
Q, i =0,
Q(-1), i=2,
Q(-2), i=3,
HY (X}, /H; Q) =1 Q(-2), i=4,
Q(-3), i=5,
Q(—4), i=T1,
\ 0, otherwise;

while the rational cohomology of X 570 /Ho, in degree i < %, is

Q, 1 =0,
Hi(XS0/Hy Q) = { Q(—3), i =5,

0, otherwise.
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4 Hyperelliptic case

In this final section, we discuss the case k = 2.

In the previous one, we proved that for £ > 3, the stable cohomology ring of X C]Zn /H,
is the same as the one found for £ = 3 in chapter III, with tighter stable range. This was
motivated by the fact that, when applying Gorinov-Vassiliev’s method, configuration
spaces not having the expected codimension were those with at least 3 points on the
same line of the ruling and these have trivial twisted Borel-Moore homology by [Vas99,
Lemma 2].

On the contrary, for k£ = 2, configurations not having the expected condimension are
also those with two points on the same line of the ruling. These do not have trivial
twisted Borel-Moore homology, therefore we do not expect a similar behavior.

In fact we can compute the first columns in the Vassiliev’s spectral sequence and show
that these are different to the ones found for & > 3. Moreover, we cannot determine
if the cohomology stabilizes, but, if this is the case, we expect the stable ring to be
supported on an infinite number of degrees.

Let f € Vd%n. Configurations with 2 points on the same line of the ruling will have
codimension 5 instead of 6. Notice also that (2E,, + dF;,) - F,, = 2, hence we cannot have
more that 2 singular points on each ruling (if the curve is irreducible): if we do have
two distinct singular points on a line of the ruling, then the curve must be reducible
with that line of the ruling as a component.

Thus, we can distinguish our singular points between couples of points belonging
to the same line of the ruling and single points on distinct lines of the ruling. We will
indeed define the configurations of singularities in Gorinov-Vassiliev’s method according

to this distinction.

Definition 10. A configuration of points in F,, is of type (h,l) if it is defined by h
couples of points on h distinct lines of the ruling, plus [ points on [ distinct lines of the
ruling, different from the previous h ones.

The corresponding configuration space will be denoted by Xj, ;.

Remark 14. When n = 0, we are considering the ruling containing Fj.

From this definition, the configuration space Xj; consists of 2h + [ points. Moreover,
the codimension of the vector subspace in an of elements being singular at least at Xj
is oh + 3l.
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These configuration spaces are fiber spaces
Xnp — F(PL A1), (IV.1)

with fiber B(P!,2)" x (P1).

As usual, we want to compute the Borel-Moore homology of X},; with twisted coef-
ficients. Since the h lines of the ruling contain 2 points, the local system of coefficients
that we have to consider on the base space is the one induced by the trivial represen-
tation on &) and the by the sign representation on &;, which is the representation
Sp1t @ Sppq,1-1 of Spyy.

In the following we will compute the Vassiliev’s spectral sequence converging to
ﬁ.(Zfl,n; Q) for small values of h + [, precisely for h + 1 < 2.

Here is the list the families Xj; with h +{ < 2 ordered by increasing codimension

[ch,] and increasing number of points.

(0,1) One point, [3].

(1,0) Two points on the same line of the ruling, [5].

(0,2) Two points on distinct lines of the ruling, [6].

(1,1) Three points, two of which on the same line of the ruling, [§].

(2,0) Four points, two on each of two lines of the ruling, [10] .

The computation of the Borel-Moore homology of the associated strata is obtained
as usual, by recalling that, if Xj,; consists of configurations of 2h + [ points, then the
Cdim Vi

stratum Fj,; is a n=Ml ¢ Agpyi—1-bundle over X}, ;, where Aoy is an (2h +1—

1)-dimensional open simplex.
Columns (0,1), (1,0)

. i 2 _
The space Fp; is a CYM Vi =3 hundle over Xo1 =2 T,.

. e o B(P'2)
The space Fi is a CamVi, =5 « A;-bundle over X1 P'.

Column (0, 2)

. o 1 1
The space Fyo is a Cdim Vi, —6 A;-bundle over X o LELAN F(P!,2).
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As we noticed above, we need to compute the Borel-Moore homology of X, with
twisted coefficients. The Borel-Moore homology of the fiber P* x P! is defined by 4
classes. Three of these are invariant with respect to the involution exchanging the two
copies of P!, and only one of them is anti-invariant. Therefore, we need to consider
H,(F(P!,2);+Q) for the invariant classes and H,(F(P',2); Q) for the anti-invariant
one. Precisely, the twisted Borel-Moore homology of Xyo can be deduced from the

following spectral sequence.

TABLE IV.2

O = N W
o
=
()
S~—
o
—~
w
=

Column (1,1)

. o 1 1
The space Fi is a ClimVi, =8 Ay-bundle over X 4 BE_2)xP F(PY,2).

Since the induced representation of the trivial representation of &; in &5 is the
regular representation, we need to consider, for each non-trivial class of the Borel-Moore
homology of the fiber, that of the base space with the local system of coefficients induced

by both trivial and sign representations.

Column (2,0)

B(P'2)?
E—

The space Fy is a C™ Vin=10 o Ag-bundle over Xap F(P'2).

Here, as we already explained, we will consider the Borel-Moore homology of
F(P!,2) with coefficients Q.

Putting all together, the first columns of the E'-page of the spectral sequence will
look as the ones represented in Table IV.3 (twisted by Q(—dimV2,)).

Notice that the resulting cohomology is divisible by that of GLy and this agrees
with the fact that the generalized version of Leray-Hirsch theorem can be applied for
the action of GLy on X7, .
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TABLE IV.3

(0,1) (1,0) (0,2) (1,1) (2,0)

Observe also that, since all Hirzebruch surfaces have the same cellular decomposition,
for n = 0, the corresponding spectral sequence is given by Table IV.3 as well. Moreover,
as in the case k > 3, here the generalized version of Leray-Hirsch theorem can be applied
for the whole Hy. This forces the differentials in the E'-page represented in Table IV.3
to have maximal rank.

Therefore we have, in degree i < 8,

| . i=0,
H'(X30/Ho; Q) = @ (IV.2)

0, otherwise;

while for n > 0, after considering the C*-bundle X7 /GLy — X7, /H,, we have

Q7 1= 07
HY (X}, /H;Q) = Q(-1), i=2, (IV.3)
0 otherwise.

Here, the bound 7 < 8 will be explained later.

As predicted, the resulting cohomology ring is different from that of H*(X 5,n /Hy; Q).
Furthermore, we do not expect it to be zero after a certain degree.

Indeed, the Borel-Moore homology of the strata corresponding to h + [ > 3 are
not trivial a priori and they can be computed from (IV.1) and the & ;-equivariant
isomorphism between F(P', h+ 1) and Mg x PGLs.

We will limit ourselves to compute the strata corresponding to i+ = 3 in order to
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verify that, in degree i < 8, there are indeed no other classes than the ones in (IV.2)) and

(IV.3)). The corresponding columns in the spectral sequence will look like the following.

—-10
—11
—12
—13
-14
—15
—16
—10
—11
—12

TABLE IV .4

(0,3)

1
(1,2) (2,1) (3,0)

We see that, in fact, the first non-trivial class is in degree 8 and the other columns

with respect to h + [ > 3 would also give contributions in degree ¢ > 8 since the

corresponding codimension gets higher as h + [ grows.






Appendix

A Configurations of singularities for a genus 5 trig-

onal curve

Here we produce the complete list of families of configurations in ¥, satisfying the
conditions in List I.1.

In the following, ¢ denotes the codimension in V; of the vector subspace of elements
that are singular at least at the corresponding configuration and n is the number of

points defining the configuration.

LisT A.1: List of configurations of singularities for a genus 5 trigonal curve

Description

A point on E;

A general point;

Two points on E;

Two points on a line F' of the ruling;
A point on F + a general point;
Two general points;

Three points on E;

Three points on a line F' of the ruling;

© 0 NS otk WD
B W W NN NN~ S

Four points on F

._
e

The exceptional divisor F;

—_
—_

Two points on E + a general point;
A line of F the ruling;

0 00 N J = O O O O ot w w (o

—
N

99
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13. | A point on F + two points on a line F' of the ruling; 9 13
14. | A general point 4 two points on a line F' of the ruling; 9 13
15. | A point on E + two general points; 9 13
16. | Three general points; 9 |3
17. | Three collinear points; 9 |3
18. | A point on E + two points on a line F' of the ruling + {E N F'}; 9 |4
19. | Three points on E + a general point; 9 14
20. | Two points on E + two points on a line F' of the ruling; 10 | 4
21. | A point on E + three points on a line F' of the ruling; 10 | 4
22. | A general point+ three points on a line F' of the ruling ; 10 | 4
23. | Four collinear points; 10 | 4
24. | Two points on F + two points on a line F of the ruling + {ENF}; | 10 | 5
25. | A point on E + three points on a line F' of the ruling + {E N F}; 10 | 5
26. | Two points on F + two general points; 1114
27. | Three points on E + two points on a line F' of the ruling; 1115
28. | Two points on E + three points on a line F' of the ruling; 1115
29. | Three points on F + two points on a line F' of the ruling + {E N F}; | 11 | 6
30. | Two points on E + three points on a line F' of the ruling + {ENF}; | 11 | 6
31. | A line of the ruling + a general point; 11
32. | A general line; 11
33. | Two points on each of two lines of the ruling; 12 1 4
34. | Two points on a line of the ruling 4+ two general points; 12 | 4
35. | A point on E + three collinear points; 12 1 4
36. | A general point + three collinear points; 12 | 4
37. | A point on E + three general points; 12 1 4
38. | Four general points; 12 | 4
39. | A point on E + two points on a line F' of the ruling +

a general point; 12 | 4
40. | A point on E + two points on a line F' of the ruling +

a general point + {E N F'}; 125
41. | Three points on E + two general points; 12 | 5
42. | A point on E + three points on a line F' of the ruling +

a general point; 13|15
43. | Three points on a line of the ruling + two general points; 1315
44. | Three points on a line of the ruling 4+ two points on another ruling; 1315
45. | Two points on E + two points on a line F' of the ruling +

a general point; 1315
46. | A point on E + four collinear points; 1315
47. | A general point+ four collinear points; 1315
48. | A point on E + three points on a line F' of the ruling +

a general point + {FE N F'}; 13 |6
49. | Two points on E + two points on a line F' of the ruling +

a general point + {E N F}; 136
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50. | Two points on E + three collinear points; 14 | 5
51. | Two points on F + three general points; 14 |5
52. | Two points on a line of the ruling + three collinear points; 1415
53. | Five points on a non-degenerate conic; 14 |5
54. | Two points on a line of the ruling + three collinear points +

the point of intersection; 14 |6
55. | Three points on each of two rulings; 14 | 6
56. | Two points on each of two rulings Fi, Fy + a point on E +

{ENF} +H{EN F}; 14 |7
57. | A line of the ruling 4+ two general points; 14
58. | A general line + a general point; 14
59. | A general point + two points on each of two lines of the ruling; 1515
60. | A point on F + two general points 4+ two points on a line of the ruling; | 15 | 5
61. | Three general points + two points on a line of the ruling; 155
62. | A point on F + a general point + three collinear points; 15|15
63. | Two general points + three collinear points; 1515
64. | Two points on each of two intersecting lines + the point

of intersection; 15 |5
65. | A point on F + four general points; 1515
66. | Five general points; 15|15
67. | Three points on E + three collinear points; 151]6
68. | Three points on E + three general points; 151]6
69. | Two points on E + four collinear points; 1516
70. | Two lines of the ruling; 15
71. | A line of the ruling + a general line; 15
72. | A non-degenerate conic; 15
73. | Three points on a line of the ruling 4+ two points on another ruling +

a general point 16 | 6
74. | Three points on a line of the ruling + three general points; 16 | 6
75. | A point on F + a general point + four collinear points; 16 | 6
76. | Two general points + four collinear points; 16 | 6
77. | Two points on F + two points on a ruling F' + two general points +

{ENF}; 16 | 7
78. | Three points on F + four collinear points; 16 | 7
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79. | Six points on a non-degenerate conic; 17| 6
80. | Five points on a non-degenerate conic + a general point; 17| 6
81. | Three points on E + four points on a non-degenerate conic. 17| 7
82. | Two points on a line F' of the ruling + three points on a line L +

a general point + {F N L}; 17| 7
83. | Three points on each of two lines of the ruling 4+ a general point; 171 7
84. | Three points on each of two intersecting lines +

the point of intersection; 17| 7
85. | Three points of intersection between two non-degenerate conics,

one of which is on F + four points of intersection with a line; 1717
86. | Three points of intersection between two non-degenerate conics,

none of which are on £ + four points of intersection with a line; 17| 7
87. | Four points of intersection of two non-degenerate conics +

three points of intersection with a line of the ruling; 17| 7
88. | A point on E + two points on each of two rulings Fy, Fy +

a general point + {E N Fi} +{E N Fyp}; 171 8
89. | Two points on E + three points on a line L +

a point on a line F' of the ruling + {ENF} + {F N L}; 17 | 8
90. | Three points of intersection of two conics, each meeting

a line F' of the ruling and E at one point + {E N F'}; 17] 8
91. | Two points of intersection between two lines F, F, of the ruling and

a line L + 6 points of intersection with a non-degenerate conic

meeting each line at two distinct points; 17| 8
92. | Three points of intersection between a line F' of the ruling and two

lines Ly, Lo + five points of intersection with a non-degenerate conic

meeting each line twice and F' only once, outside E; 171 8
93. | Three points of intersection between a line F' of the ruling and

two lines Ly, Lo + five points of intersection with a non-degenerate

conic meeting each line twice and F at {E N F'}; 17| 8
94. | Four points of intersection between F, two lines Fy, F» of the ruling

and a line L + five points of intersection with a non-degenerate

conic meeting L twice and E, I, F, once; 171 9
95. | Three points of intersection between E and three lines Fy, Fy, F3

of the ruling + 6 points of intersection with a non-degenerate conic

meeting each ruling at two distinct points; 171 9
96. | The points of intersection between two lines of the ruling and three

general lines; 171 9
97. | The points of intersection between E, three lines of the ruling and

two intersecting lines; 17 | 10
98. | A line of the ruling 4+ 3 general points; 17
99. | A line + 2 general points; 17
100. | The whole BlpP? 18
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