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Abstract

The main object of this thesis is the study of some moduli spaces of curves from the

point of view of one of the most important topological invariants: rational cohomology,

i.e. singular cohomology with rational coefficients.

The moduli space we want to to study is the moduli space Tg of trigonal curves of

genus g. Its coarse moduli space is a quasi-projective algebraic variety which parametrizes

complex trigonal curves of fixed genus g, up to isomorphism. A trigonal curve is defined

as a smooth irreducible non-hyperelliptic curve admitting a linear system g13 or, equiv-

alently, a degree 3 map to P1. Hence, Tg naturally sits inside the moduli spaceMg of

complex smooth irreducible curves of genus g, as a locally closed subvariety. Moreover,

given a curve in Tg, its trigonal structure defines a natural embedding in some ratio-

nal geometrically ruled surface, called Hirzebruch surface. The degree of the surface

is defined as the Maroni invariant of the trigonal curve and it determines the Maroni

stratification of Tg into locally closed subvarieties.

In order to study the cohomology of Tg, we will study first that of each stratum. We

will see that Maroni strata are quotients of complements of discriminants in a given

complex vector space by the action of an algebraic group. To compute the cohomology

of complements of discriminants we will use Gorinov-Vassiliev’s method, specifically

Tommasi’s adaptation of the method. From the cohomology of the complement of a

discriminant and that of the algebraic group acting on it, one can deduce the cohomology

of the corresponding stratum thanks to a theorem of Peters and Steenbrink.

In chapter I we will recall the main properties of trigonal curves, together with the

techniques mentioned above. These will be applied first in chapter II in order to obtain

a full description of the rational cohomology of T5. Then, in chapter III, we will use

the same techniques to generalize the result obtained in the previous chapter to higher

genera. This will give us a description of the cohomology of Tg, with g ≥ 6, in a certain

range. In particular, we will prove that its cohomology ring stabilizes to its tautological

ring. Penev and Vakil proved that the tautological ring of Tg coincides with its Chow

ring, which is known from a work by Canning and Larson. Finally, in chapter IV, we

will discuss the stabilization of the cohomology ring of moduli spaces of smooth curves

of higher gonality, also embedded in a given Hirzebruch surface.
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Riassunto

L’argomento principale di questa tesi è lo studio di alcuni spazi di moduli di curve dal

punto di vista di uno dei più importanti invarianti topologici: la coomologia razionale,

i.e. la coomologia singolare con coefficienti razionali.

Lo spazio di moduli che studieremo è lo spazio di moduli Tg delle curve trigonali

di genere g, una varietà quasi-proiettiva che parametrizza curve trigonali complesse di

genere fissato g, a meno di isomorfismo. Una curva trigonale è definita come una curva

liscia irriducibile non iperellittica che ammette un sistema lineare g13 o, equivalentemente,

una mappa di grado 3 sulla retta proiettiva P1. Dunque, Tg è naturalmente contenuto

nello spazio di moduli Mg di curve complesse lisce irriducibili di genere g, come una

sottovarietà localmente chiusa. Inoltre, data una curva in Tg, la sua struttura trigonale

definisce un’immersione naturale in una superficie razionale geometricamente rigata,

cioè una superficie di Hirzebruch. Il grado di queste superfici è chiamato invariante di

Maroni della curva e questo definisce la stratificazione di Maroni di Tg in sottovarietà

localmente chiuse.

Al fine di studiare la coomologia di Tg, studieremo prima quella di ciascuno strato.

Vedremo che gli strati di Maroni sono quozienti del complementare di un discriminante

in un dato spazio vettoriale complesso per l’azione di un gruppo algebrico. Per calcolare

la coomologia di complementari di discriminanti useremo il metodo di Gorinov-Vassiliev,

precisamente la versione del metodo di Tommasi. A partire dalla coomologia del comple-

mentare di un discriminante e quella del gruppo algebrico che agisce su di esso, si deduce

la coomologia del corrispondente strato grazie ad un teorema di Peters e Steenbrink.

Nel capitolo I ricorderemo le principali proprietà delle curve trigonali, assieme alle

tecniche appena menzionate. Queste tecniche verranno applicate prima nel capitolo II,

al fine di ottenere una descrizione completa della coomologia razionale di T5. Succes-
sivamente, nel capitolo III, utilizzeremo le stesse tecniche per generalizzare il risultato

ottenuto nel capitolo precedente per generi più alti. Questo ci darà una descrizione

della coomologia di Tg, con g ≥ 6, in un certo intervallo. In particolare, dimostreremo

che il suo anello di coomologia si stabilizza al suo anello tautologico. Penev e Vakil

hanno dimostrato che l’anello tautologico di Tg coincide con il suo anello di Chow, il
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quale è noto da un lavoro di Canning e Larson. Infine, nel capitolo IV, discuteremo la

stabilizzazione dell’anello di coomologia di spazi di moduli di curve lisce di gonalità più

alta, anch’esse immerse in una data superficie di Hirzebruch.
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Introduction

Overview

The moduli spaceMg of complex non-singular curves of genus g is a central object in

algebraic geometry. Nonetheless only few general statements about its geometry are

known. More precisely, the existence of the coarse moduli space Mg of complex di-

mension 3g − 3 that parametrizes isomorphism classes of complex non-singular curves

of genus g was first known thanks to Mumford’s Geometric Invariant Theory [Mum65].

Later, for g ≥ 2, Deligne and Mumford [DM69] not only proved thatMg is irreducible

but they also introduced the important notion of a Deligne-Mumford stack. In partic-

ular, Knudsen [Knu83] then proved thatMg is quasi-projective.

These moduli spaces are singular and, for g ≥ 4, their singular loci correspond to

isomorphism classes of curves having non-trivial automorphisms, [ACGH85], [Cor87].

On the other hand, if we use the language of stacks, it turns out that the moduli spaces

Mg are smooth irreducible DM-stacks.

The moduli spaces Mg have been extensively studied in the last few decades and

some results about their geometry are well known. Harer, Arbarello and Cornalba, in

[Har83] and [AC87], computed the Picard group of the moduli stack of smooth curves

of genus g ≥ 3 and they proved that it is a free abelian group generated by a single

element. Harris, Mumford and Eisenbud proved in [HM82],[Har84],[EH87], thatMg is

of general type for all g ≥ 24, and it has Kodaira dimension Kg = 3g − 3 if g ≥ 24 and

K23 ≥ 1. More recently, Farkas improved this result proving that K23 ≥ 2, [Far00], and,

together with Jensen and Payne, they proved thatM22 is also of general type, [FJP20].

It is also know thatMg is unirational for g ≤ 14, [AC81], [Ser81], [CR84], [Ver05].

Another way to understand these spaces is by computing some topological invariants,

such as their cohomology groups. In particular we are interested in their cohomology
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2 INTRODUCTION

with rational coefficients and since there is an isomorphism between rational cohomology

groups of a DM-quotient stack and of its underlying coarse moduli space, [Edi13], we

will abuse notation and denote byMg both the DM-stack and the coarse moduli space,

without distinguishing them. In the last few decades, there has been a considerable

progress in the understanding of the rational cohomology ring ofMg. What is known

until know, for general values of g, is mostly due to Harer, Mumford, Madsen and

Weiss. Harer proved in [Har85] that the cohomology ring H i(Mg;Q) is independent

of the genus g for g ≥ 3i − 1. Harer’s stability bound was later refined by Ivanov and

Boldsen, [Iva89], [Bol12], who proved that the optimal bound is 2g ≥ 3i+2. This allows

us to define the stable cohomology ring H•(M;Q) as H•(Mg;Q) for a sufficiently large

g.Mumford also conjectured in [Mum83] that the stable cohomology ring is generated by

tautological classes. This conjecture was later proved by Madsen and Weiss in [MW07]

using topological techniques.

The tautological ring of the moduli space of curves

The tautological ring, denoted by R•(Mg) is the subring of the Chow ring A•(Mg)

of the moduli space of smooth curves of genus g generated by tautological classes κi ∈
Ai(Mg). These are classes which “naturally come from geometry”. Specifically, they

are defined as Chern classes of some natural vector bundles onMg.

Let Cg =Mg,1 be the universal curve, or equivalently, the moduli space of 1-pointed

smooth curves of genus g. Let us also denote by π : Cg → Mg the natural morphism

forgetting the marked point, by ωπ its relative dualizing sheaf and K = c1(ωπ) ∈ A1(Cg).
Then

κi := π∗(K
i+1) ∈ Ai(Mg).

For their properties and relations in the tautological ring we refer to [Fab99].

These classes were first introduced by Mumford, who proved in [Mum83] that the

tautological ring is generated by the kappa classes κ1, . . . , κg−2.

Furthermore, Mumford conjectured that the stable cohomology ofMg coincides with

the image of the tautological ring through the cycle-class map A•(Mg)→ H2•(Mg;Q).

Initially this conjecture has been partially proved by Miller [Mil86], then Madsen and

Weiss [MW07] provided a complete proof.
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Furthermore, for fixed values of g, we have a complete description of the rational co-

homology ring ofMg with g = 2, 3, 4, due to the works of Mumford [Mum83], Looijenga

[Loo93] and Tommasi [Tom05b], respectively. Unfortunately, for g ≥ 5 the full rational

cohomology ring ofMg is still unknown.

The moduli space of trigonal curves

One way to approach this problem is to compute first the cohomology of some loci

inside Mg. Let us assume g ≥ 3, the moduli space Mg has a standard stratification

given by gonality. The gonality of a curve C is the smallest positive integer d such that

C has a g1d andMg can be stratified as

M1
g,2 ⊆M1

g,3 ⊆ · · · ⊆ Mg,

whereM1
g,d = {[C] ∈Mg|C has a g1d} is an irreducible variety of dimension 2d+2g− 5

if d ≤ g/2+1 andM1
g,d =Mg as soon as d ≥ g/2+1, [ACG11, XXI.11]. In other words,

if the Brill-Noether number 2d− g− 2 is negative then the general curve of genus g has

no g1d. Thus, curves with negative Brill-Noether number correspond to special points in

the moduli spaceMg and these are indeed the curves we will be interested in.

In fact, the aim of this thesis is to study the rational cohomology of the locus Tg =

M1
g,3\M1

g,2 ⊂ Mg of trigonal curves, i.e. smooth non-hyperelliptic curves with a g13,

of genus g. The (coarse) moduli space Tg, for g ≥ 4, is then an irreducible variety of

dimension 2g + 1 with finite quotient singularities, which correspond to isomorphism

classes of curves having a non-trivial automorphism group, [ELSV01].

Moreover, Arbarello and Cornalba proved that Tg is unirational for any g, [AC81],

and later Stankova proved in [SF00] that its rational Picard group is freely generated

by the tautological class κ1.

Let us observe that it makes sense to consider tautological classes on Tg as well.

Indeed, when considering a subvariety ofMg, we will say that a class is tautological if

it comes from a tautological class ofMg, through the pullback of the restriction map.

For g ≤ 4, the moduli space Tg is not really interesting since it is either empty or it

coincides with the complement of the hyperelliptic locus Hg, whose rational cohomology

is completely known. Thus, g = 5 represents the first case in which the cohomology of

Tg cannot be automatically determined from that of Hg and ofMg. Note also that the

moduli space Tg has the structure of a DM-stack, by being a locally closed substack of
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a DM-stack, hence, also in this case, we will not distinguish between the DM-stack and

its underlying coarse moduli space.

Outline of the results

The results that we will produce in this thesis are based on the canonical embedding

of trigonal curves in Hirzebruch surfaces and on the relation between the rational coho-

mology of their moduli spaces and the cohomology of complements of discriminants.

In fact, the computation of the rational cohomology of Tg can be first reduced to

that of the strata of the so-called Maroni stratification, which is defined by the degree

of the Hirzebruch surfaces that naturally contain trigonal curves as divisors.

In the genus 5 case, which will be discussed in chapter II, we will see that this

stratification consists of only one stratum, therefore the cohomology of this stratum will

automatically give that of the whole moduli space T5. For higher genera, the stratification
consists of more strata, thus we will have to consider all of them.

To be more precise, the cohomology of each stratum is strictly related to that of

the complement of the discriminant of some complex vector space. This vector space

V is the vector space of global sections of a vector bundle over the Hirzebruch surface

F defining the corresponding stratum. Then, any element f ∈ V can be associated

to a subvariety in F defined by the vanishing locus of f and the discriminant Σ is the

subspace in V of elements defining singular subvarieties, or the whole of F in the case

f = 0.

With these definitions we will see that the cohomology of each stratum is precisely

the cohomology of the quotient of the complement of the discriminant by the action

of a given algebraic group. We will also prove, using a theorem of Peters and Steen-

brink [PS03], that the cohomology of this quotient is isomorphic to the tensor product

of the cohomology of the total space and that of a subgroup of the group acting on

it. Finally, the cohomology of complements of discriminants will be computed using

Gorinov-Vassiliev’s method [Vas99],[Gor05],[Tom05b], which allows us to compute the

Borel-Moore homology of Σ by constructing a simplicial resolution of it, starting from a

classification of all singular loci of the elements that it contains. By Alexander’s duality

this is equivalent to the cohomology of its complement V \Σ.
We will apply these techniques to study the rational cohomology ring of Tg and

provide a complete description for the case g = 5, while, for higher genera, we will prove
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that H i(Tg;Q) is independent of g for g >> i. By comparing the description that we

obtain with the results of [PV15a], [CL21b] and [CL21a] we deduce that the cohomology

ring H i(Tg;Q), with i in the stable range, coincides with the image of tautological ring,

through the cycle class map. Thus, analogously to moduli spaces of smooth curves, this

allows us to define the stable cohomology ring H•(T ;Q) as H•(Tg;Q) for g sufficiently

large.

Finally, we will also study the stabilization of the cohomology of some other moduli

spaces of curves, defined as smooth sections of a vector bundle defined on a given

Hirzebruch surface. More precisely, we will prove the stabilization of their cohomology,

by extending the result obtained for the moduli space of trigonal curves.





Chapter I

Preliminaries

1 Notation and conventions

Symbol Description

Cn n-dimensional complex vector space

An n-dimensional complex affine space

Pn n-dimensional complex projective space

P(w1, w2, w3) weighted projective plane of weight w = (w1, w2, w3)

Sn symmetric group on n elements

Sλ irreducible representation of Sn associated with the partition λ ⊣ n
GLn general linear group of degree n over C

PGLn projective linear group of degree n over C

SLn special linear group of degree n over C

F (Z; k) space of ordered configurations of k points on Z

B(Z; k) space of unordered configurations of k points on Z

H•(Z;L) cohomology of Z with coefficients in the local system L
H̃•(Z;L) reduced cohomology of Z with coefficients in the local system L
H̄•(Z;L) Borel-Moore homology of Z with coefficients in the local system L
HSQ category of rational pure Hodge structures

MHSQ category of rational mixed Hodge structures

K0(C) Grothendieck group of the abelian category C

Q(k) rational Tate Hodge structure of weight −2k
L class of the Tate Hodge structure Q(−1) in K0(HSQ)

7



8 I . PRELIMINARIES

Throughout this thesis, we will work over the field of complex numbers C. Unless other-

wise specified, a smooth curve will denote a non-singular, irreducible, projective variety

of dimension 1. Moreover, all cohomology groups will be considered with rational coeffi-

cients. By Deligne’s Hodge theory, cohomology and Borel-Moore homology of complex

quasi-projective varieties carry mixed Hodge structures. In particular, we will work

with mixed Hodge structures which are extensions of rational Tate Hodge structures.

The rational cohomology of a given space can be described using its Hodge-Grothedieck

polynomial, whose i-th coefficient corresponds to the degree i cohomology group of the

space.

Definition 1. Let T• be a graded Q-vector space with mixed Hodge structures. Then

we define the Hodge-Grothendieck polynomial of T• as

P (T•;Q) :=
∑
i∈Z

[Ti] t
i ∈ K0(HSQ) [t] . (I.1)

Notice that the Grothendieck groups K0(HSQ) and K0(MHSQ) are the same. Further-

more, we will simply write P (X;Q) when T• = H•(X;Q) is the cohomology of X. We

will write P̄ (X;Q) when T• = H̄•(X;Q) is the Borel-Moore homology of X, defined as

the homology with locally finite support, [Ful98, Chapter 19].

2 Trigonal curves and the Maroni stratification

In this section we present the moduli space we want to study, namely that of trigonal

curves. We will also discuss its stratification by the so-called Maroni invariant, which

is defined by the natural embedding of trigonal curves in Hirzebruch surfaces.

Definition 2. A trigonal curve is a smooth non-hyperelliptic curve admitting a g13.

Let us consider first trigonal curves of low genera. For g = 2, it is well known that

any curve is hyperelliptic. Denote then by C a smooth non-hyperelliptic curve of genus

g ≥ 3. If g = 3, 4 then C is trigonal, [Har77, IV.5.5.2]. Precisely, if g = 3 then C

canonically embeds in P2 as a quartic curve: projecting from any point of the curve to

P1 defines a g13, hence C has infinitely many g13. If g = 4, the canonical embedding of C

in P3 is the complete intersection of a cubic surface either with a non-singular quadric

surface or with a quadric cone. Each of the rulings of the quadric surface on which C

lies, singular or not, cuts out a g13.
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Thus, if we define the moduli space Tg as the locus of trigonal curves in the moduli

spaceMg of smooth curves of genus g, for g = 3, 4, the locus Tg is open dense inMg and

it coincides with the complement of the hyperelliptic locus Hg. Recall that the moduli

space Hg, with g ≥ 2, has always the cohomology of a point. This follows from the fact

that any hyperelliptic curve has precisely 2g + 2 distinct branch points, and thus the

coarse moduli space of Hg is isomorphic to the quotient of the moduli spaceM0,2g+2 of

2g + 2-pointed genus 0 curves by the action of the symmetric group S2g+2, which has

the cohomology of a point by [KL02, Theorem 2.13].

On the other hand, the cohomology of T3 and T4 has been completely determined by

Looijenga [Loo93, (4.7)] and Tommasi [Tom05b, Theorems 1.2 and 1.3], respectively.

Precisely, we have that

H i(T3;Q) =


Q, i = 0;

Q(−6), i = 6;

0, otherwise;

(I.2)

H i(T4;Q) =



Q, i = 0;

Q(−1), i = 2;

Q(−3), i = 5;

0, otherwise.

(I.3)

Equivalently, their Hodge-Grothendieck polynomials are

P (T3;Q) = L6t6 + 1,

P (T4;Q) = L3t5 + Lt2 + 1.

From now on, we assume g ≥ 5. In this case a non-hyperelliptic curve is not necessarily

trigonal [Har77, IV.5.5.3].

The moduli space Tg of trigonal curves of genus g is then contained in the moduli

spaceMg of smooth curves of genus g as a locally closed subset of dimension 2g + 1.

In fact, let us consider the open dense subset T ◦
g ⊂ Tg parametrizing curves whose

degree 3 cover of P1 is simply branched. By Riemann-Hurwitz formula, any of these

covers must be ramified at 2g + 4 points. Up to isomorphism, there are only finitely
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many triple covers with same branch locus. Thus, we have

dim Tg = 2g + 4− dimPGL2 = 2g + 1.

Remark 1. Let us remark that we can relate the moduli space Tg of trigonal curves to

the Hurwitz scheme H3,g, parametrizing pairs (C, α), consisting of a smooth curve C of

genus g and a degree 3 cover α : C → P1, up to isomorphism. For the main properties

of the Hurwitz scheme, we refer to [HM98, I.G]. The scheme H3,g naturally maps to the

moduli space Mg via the forgetful map π : (C, α) 7→ C. Clearly, its image through π

must contain the trigonal locus Tg. Conversely, to get H3,g from Tg, we need to take

into account the maps α, or equivalently, the linear systems g13 on each curve. If the g13

is unique, the map π is a 1-1 correspondence and this is always the case when g ≥ 5,

see [ACGH85, III.B-3.(i)]. Thus, for g ≥ 5, we have H3,g
∼= Tg.

For g = 3, we know from the discussion above that any point of the curve identifies a

g13, hence H3,3 is isomorphic to the trigonal locus inside the moduli spaceM3,1 of genus

3 curves with one marked point.

For g = 4, the g13 is uniquely determined by the choice of a ruling on the surface on

which the curve lies. Thus, the forgetful map π : H3,4 → T4 is a double cover ramified

over the locus of curves whose canonical model lies on a quadric cone, i.e. curves with

a vanishing theta-null.

Thus, the rational cohomology ofH3,3 andH3,4 can be easily deduced from the results

in [BT07], [Tom05b].

2.1 Canonical embedding and Hirzebruch surfaces

As we have already anticipated, our study of trigonal curves is mainly based on

the study of the surfaces on which they lie. Therefore this subsection is devoted to a

discussion of these surfaces and their geometry.

It is well known from the classical results of Max Noether, Enriques, Babbage and

Petri [ACGH85, III.3] that the canonical model of a curve is contained in the intersection

of linearly independent quadrics and, if the curve is trigonal, it lies on a rational normal

scroll, i.e the image of a rational ruled surface over P1 through its embedding in some

projective space PN , [Har77, Cor 2.19].
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Here is the idea behind this canonical embedding. Let C be a trigonal curve of genus

g and K its canonical divisor. Consider then the canonical embedding

ϕK : C ↪→ Pg−1,

and let D = p1+p2+p3 be any divisor of the pencil g13. By geometric Riemann-Roch, the

dimension of the linear system containing D equals the number of independent linear

relations on the points pi on the canonical curve, i.e.

dimϕK(D) = 1.

Hence the images of pi are three collinear points and any quadric containing these three

points must also contain the whole line passing through them. This means that the

canonical curve lies on a rational ruled surface whose ruling cuts out the g13.

Moreover, it is also well known, see for instance [Har77, V.2.13], that any rational

ruled surface over P1 must be isomorphic to a Hirzebruch surface, first introduced by

Hirzebruch in [Hir51].

Definition 3. The surface Fn := P(OP1 ⊕ OP1(n)), with n ∈ Z≥0 is called the n-th

Hirzebruch surface.

For n = 0, it is easy to see that F0
∼= P1 × P1. For n ≥ 1, one can provide a

description for Fn starting from the weighted projective plane P(1, 1, n), defined as

C3\{0}/ ∼,

where (x, y, z) ∼ (λx, λy, λnz) for any λ ∈ C∗. Equivalently, P(1, 1, n) is the projective

variety ProjC [x, y, z] where C [x, y, z] is the graded ring with deg x = deg y = 1 and

deg z = n.

By [Har77, V.2.11.4], the Hirzebruch surface Fn can also be described as the blow

up of a cone C ⊂ Pn+1 over a rational normal curve of degree n at its vertex. In turn,

C is the image of the weighted projective plane P(1, 1, n), via the embedding

P(1, 1, n)→ Pn+1

[x, y, z] 7→
[
xn, xn−1y, . . . , yn, z

]
.
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Hence, we will think of Fn as the blow up of P(1, 1, n) at its singular point [0, 0, 1] .

Notice that for n = 1 this description further simplifies, as indeed, P(1, 1, 1) is just the

usual projective plane P2.

The Picard group of a Hirzebruch surface and its intersection form are well known.

By abuse of notation we will identify curves with their classes in the Picard group.

Proposition 2.1 ([Har77, V.2]). Let n ≥ 0, and consider the surjective morphism

π : Fn
∼= P(OP1 ⊕OP1(n))→ P1 defining the ruling of Fn,

1. Pic(Fn) ∼= ZEn⊕ZFn, where En is the image of the section (0, 1) of OP1⊕OP1(n),

which is the unique irreducible curve of negative self-intersection when n > 0, and

Fn is any fiber of the ruling;

2. En, Fn satisfy

E2
n = −n, F 2

n = 0, En · Fn = 1;

3. Kn ∼ −2En + (−2− n)Fn, where Kn denotes the canonical divisor on Fn.

Remark 2. When n = 0, F0
∼= P1 × P1 and in this case, E0 F0 are lines, each of a

distinct ruling in P1 ×P1, both with trivial self-intersection.

By the geometry of Hirzebruch surfaces that we have just recalled, the canonical

embedding ϕK can be actually made more precise. Namely we can relate the degree n

of the Hirzebruch surface with the genus g of the trigonal curve lying on it, by explicitly

describing C in terms of the generators of the Picard group of Fn.

Proposition 2.2. Let C be a trigonal curve of genus g, then it can be embedded in Fn

as a divisor of class

C ∼ 3En +
g + 3n+ 2

2
Fn, (I.4)

with g ≡ n mod 2 and 0 ≤ n ≤ (g + 2)/3.

Proof. Let C be a trigonal curve of genus g and α : C → P1 be the degree 3 cover.

We have already seen at the beginning of this section that C canonically embeds in

some Hirzebruch surface. However, let us also notice that this also follows from the

Casnati-Ekedahl factorization theorem, [CE96, Theorem 1.3], for which the degree 3

cover defines a unique P1-bundle π : PE → P1 and an embedding

i : C ↪→ PE , (I.5)
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such that α = π ◦ i and E is the dual of the Tschirnhausen module for α, [Mir85], which

is defined as follows.

For any open U ⊂ P1, the homomorphism OP1(U)→ (α∗OC)(U) is just the compo-

sition by α−1 and thus yields a short exact sequence

0→ OP1
α#

−→ α∗OC → E∨ → 0.

This short exact sequence splits, i.e. α∗OC
∼= OP1 ⊕ E∨ and E∨ := cokerα# is a locally

free OP1-module of rank 2 and it decomposes as E∨ ∼= OP1(−a) ⊕ OP1(−b) for some

a, b ∈ Z. Without loss of generality we will assume a ≤ b.

Twisting E by OP1(−a) gives us an isomorphism P(OP1(a) ⊕ OP1(b)) ∼= P(OP1 ⊕
OP1(n)), with n := b − a ∈ Z≥0, and hence the embedding in the n-th Hirzebruch

surface.

The first condition on n follows by an application of the Grothendieck-Riemann-Roch

formula to α :

ch(α∗OC) · td(TP1) = α∗(ch(OC) · td(TC)),

ch(α∗OC)

(
1− 1

2
KP1 +

1

12
(K2

P1 + c2(T
1
P))

)
= α∗

(
1− 1

2
KC +

1

12
(K2

C + c2(TC))

)
.

Here ci(·), ch(·) and td(·) denote the i-th Chern class, the Chern character and the Todd

class, respectively, and TX is the tangent bundle of X.

Comparing classes in H2(P1;Z) gives us the equality

c1(α∗OC) = −
1

2
(α∗KC − 3KP1) .

Since α is a degree 3 cover from C to P1, KC = α∗KP1 + R, where R denotes the

ramification divisor. By the projection formula and Riemann-Hurwitz formula we have

that

c1(E∨) = c1(α∗OC) = −
1

2
α∗R = −g − 2,

which proves the equality

a+ b = g + 2, (I.6)

and thus n must have the same parity of g.

By Prop. 2.1.1 we can write C ∼ m1En +m2Fn for some m1,m2 ∈ Z and from the

trigonal structure of the curve we require C · Fn = 3, hence m1 = 3. Then, by applying
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the genus formula we have that

g = 1 +
1

2
(C2 + C ·Kn),

where Kn ∼ −2En + (−2 − n)Fn by Prop 2.1.3. This gives us m2 = g+3n+2
2

. Finally,

since C,En are both smooth irreducible curves, their intersection number must be non-

negative, hence C · En = −3n+ g+3n+2
2
≥ 0 and n ≤ g+2

3
.

2.2 Stratification by the Maroni invariant

The explicit characterization of a trigonal curve as a divisor in a Hirzebruch surface

that we just gave, allows us to stratify the moduli space Tg. This stratification is called

the Maroni stratification and it depends on the degrees of the Hirzebruch surfaces on

which the curves lie.

Let C be a trigonal curve of genus g, then, from the previous results, we know

that it canonically embeds in some Hirzebruch surface Fn, for a unique integer n, as in

Proposition 2.2.

Definition 4. The integer n is called the Maroni invariant.

The Maroni stratification can then be written as followsNs ⊂ · · · ⊂ N0 = Tg, if g is even,

Ns ⊂ · · · ⊂ N1 = Tg, if g is odd,
(I.7)

where s is the largest index with the same parity as g satisfying s ≤
⌊
g+2
3

⌋
and for all

o ≤ n ≤ s, g ≡ n(mod 2) we denote by Nn the closed subscheme

Nn := {[C] ∈ Tg|C has Maroni invariant ≥ n} ⊆ Tg.

Let us conclude this section by computing the dimension of each of these strata.

As a consequence of [Mir85, Theorem 3.6], a triple cover α : C → P1 defines a unique

pair (E∨,Ψ), up to isomorphism, where E∨ ∼= OP1(−a)⊕OP1(−b) is the Tschirnhausen
module for α and Ψ can be considered as a section of Λ2E∨ ⊗ Sym3 E . Thus,

dimNn = dimΓ(Λ2E∨ ⊗ Sym3 E)− dimP1 Aut(E)− dimCAut(P
1). (I.8)
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Consider the first summand in the right hand side of (I.8):

Λ2E∨ ⊗ Sym3 E = (OP1(−b− a))⊗ (OP1(3a)⊕OP1(2a+ b)⊕OP1(a+ 2b)⊕OP1(3b))

= OP1(2a− b)⊕OP1(a)⊕OP1(b)⊕OP1(2b− a).

Let us recall that a, b are such that a ≤ b, b− a = n ≥ 0 and b+ a = g + 2 ≥ 0. So, in

particular all sheaves above are twisted by non-negative integers. Thus, the dimension

of the first summand in (I.8) is

dimΓ(Λ2E ∨ ⊗ Sym3 E) =

(
2a− b+ 1

1

)
+

(
a+ 1

1

)
+

(
b+ 1

1

)
+

(
2b− a+ 1

1

)
= 2b+ 2a+ 4.

As regards the second summand, recall that, by extending operations on vector spaces,

there is a bijection between morphisms of vector bundles E ,F over the same space and

sections of the associated Hom-bundle, which in turn is isomorphic to the tensor bundle

E∨ ⊗F . Then,

AutP1E ∼= Γ(E∨ ⊗ E) = OP1 ⊕OP1(a− b)⊕OP1(b− a)⊕OP1 ,

and all sheaves above but OP1(a− b), with a ̸= b, have positive dimension for any value

of a, b satisfying the usual inequalities. Precisely,

dimAutP1E = b− a+ 3 + δa,b,

where δa,b denotes the Kronecker delta.

Thus, together with the fact that Aut(P1) = PGL2 has complex dimension 3, yields

dimNn = b+ 3a− 2− δa,b.

By recalling once more that n = b − a and b + a = g + 2, one can rewrite the above

equation as

dimNn = 2g + 2− n− δ0,n.

Let us observe that the open dense subscheme in Tg parametrizing curves with mini-

mal Maroni invariant is N1\N3 if g is odd, or N0\N2 if g is even. For any n ≥ 0, Nn+2 in
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(I.7) is closed of codimension 2 in Nn, with the exception of N2, which is a divisor in N0.

3 Gorinov-Vassiliev’s method

In this section we present the Gorinov-Vassiliev’s method, which will be used in the

following chapters in order to compute the cohomology of complements of discriminants.

The method was first developed by Vassiliev in [Vas99], then generalized by Gorinov in

[Gor05] and finally by Tommasi in [Tom05b]. We will use Tommasi’s adaptation of the

method, which extends the constructions of Vassiliev and Gorinov to the language of

cubical spaces, allowing us to get more information about the mixed Hodge structure

on the cohomology of the complement of discriminant we are interested in. The method

is already written out in [Tom05b, Section2.1], but we will rewrite it here, not only

for the sake of completeness, but also with the aim of fixing the notation that will be

maintained in the following chapters.

Let Z be a projective variety and let V be a vector space of sections on a vector bundle

over Z. We define the discriminant Σ as the closed subset in V of sections which are

singular or do not have the expected dimension. Denote by X the complement of Σ in

V.

As we have already mentioned in the introduction, computing the cohomology of the

complement of a discriminant is equivalent to compute the Borel-Moore homology of

the discriminant and this is due to Alexander duality:

H̃•(V \Σ;Q) ∼= H•+1(V, V \Σ;Q) ∼= H̄2v−1−•(Σ;Q)(−v), (I.9)

where v := dimC V and H̃•(−;Q) denotes the reduced cohomology.

Therefore we will compute the Borel-Moore homology of Σ instead. This can be

achieved by constructing a simplicial resolution of Σ, starting from a collection of families

X1, . . . , XN of elements in Σ.

Let K ⊂ Z be a subset. We will say that K is a configuration in Z if it is compact

and non-empty. For any f ∈ V, let Kf be the set of singular points of the section f

on Z. Set K0 = Z and define the linear space L(K) := {f ∈ V : Kf ̸= ∅} for any
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configuration K ⊂ Z. Then we require the families X1, . . . , XN to satisfy the following

conditions.

List I.1

1. For any f ∈ Σ, Kf belongs to some Xi.

2. If K ∈ Xi, L ∈ Xj, K ⊊ L, then i < j.

3. Xi ∩Xj = ∅ if i ̸= j.

4. Any K ∈ X i\Xi belongs to some Xj with j < i.

5. For any i = 1, . . . , N, L(K) has the same dimension di for all K ∈ Xi.

6. For every i the space Ti = {(z,K) ∈ Z×Xi : z ∈ K} with the evident projection,

is the total space of a locally trivial bundle over Xi.

7. Suppose Xi consists of finite configurations. Then for all K,L such that L ∈ Xi

and K ⊊ L, K belongs to some Xj with j < i.

From such Xi’s, we then define the cubical spaces we will work with.

Let I ⊂ N = {1, . . . , N} and consider the simplex ∆•, where

∆I = {g : I → [0, 1] |
∑
i∈I

g(i) = 1}.

For any I, J ∈ N such that I ⊂ J, we will have natural maps eIJ : ∆I → ∆J given by

extending g ∈ ∆I to 0 on J\I.
We define the N -cubical spaces

ΛI := {K ∈
∏
i∈I

Xi : if Ki ∈ Xi, Kj ∈ Xj, i < j, then Ki ⊂ Kj};

ΛI := {K ∈
∏
i∈I

X i : if Ki ∈ Xi, Kj ∈ Xj, i < j, then Ki ⊂ Kj};

XI := {(f,K) ∈ Σ× ΛI : Kf ⊃ Kmax I}, if I ̸= ∅; X∅ := Σ;

X I := {(f,K) ∈ Σ× ΛI : Kf ⊃ Kmax I}, if I ̸= ∅; X ∅ := Σ.
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The natural forgetful maps ϕIJ : ΛJ → ΛI , ϕIJ : ΛJ → ΛI , φIJ : XJ → XI ,

φIJ : X J → X I give the spaces above the structure of cubical spaces over the index set

N . Consider then their geometric realization, which is defined for Λ• as the map

|ϵ| : |Λ•| → Λ∅

induced by the natural augmentation on the quotient

|Λ•| =

 ⊔
I⊂{1,...,N}

ΛI ×∆I

 / ∼,

where (K, g) ∼ (K ′, g′) if and only if K ′ = ϕIJ(K) and g′ = eIJ(g), and similarly for

the other cubical spaces.

We then construct a surjective map

ϕ : |Λ•| → |Λ•|

as follows: let (K, g) ∈ ΛI ×∆I and let [K, g] be its corresponding class in |Λ•|. Then
by conditions 3 and 4, for each Ki, i ∈ I, there is a unique family Xk(i) containing Ki.

We define ϕ([K, g]) as the class in |Λ•| of the element (L, h) ∈ ΛJ ×∆J where

J := {k(i)| i ∈ I},

L :=
∏
k∈J

Lk; Lk = Ki for any i s.t. k(i) = k,

h : J → [0, 1] , h(k) :=
∑

i∈I|k(i)=k

g(i).

Similarly, define a surjective map

φ : |X •| → |X•|.

We consider the spaces |Λ•|, |X •| with the quotient topology under the equivalence

relation ∼ of the direct topology of the ΛI ,X I , and on |Λ•|, |X•| the topology induced

by ϕ, φ, respectively.
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Proposition 3.1 ([Gor05]). The geometric realization |X•| → X∅ = Σ is a homotopy

equivalence and induces an isomorphism on the Borel-Moore homology groups.

From the theory of cubical spaces [PS08, Section 5.3], the Borel-Moore homology

of the spaces XI has a mixed Hodge structure which will naturally be induced on the

Borel-Moore homology of |X•|, and to that of Σ.

The geometric realizations constructed above admit increasing filtrations. Precisely,

Fili|Λ•| := Im (|Λ•|i| ↪→ |Λ•|) ,

where |Λ•|i| is the geometric realization of the cubical spaces restricted to the index set

i, and analogously for |X•|. Define then locally closed subsets

Φi := Fili|Λ•|\Fili−1|Λ•|, Fi := Fili|X•|\Fili−1|X•|.

Proposition 3.2 ([Tom05b]). The filtration Fili|X•| defines a spectral sequence that con-

verges to the Borel-Moore homology of Σ, whose E1
p,q-term is isomorphic to H̄p+q(Fp;Q).

Finally, as we have already mentioned, the Borel-Moore homology of each stratum

Fi can be computed by considering their description as fiber bundles over the family Xi.

Proposition 3.3 (Gor05). 1. For any i = 1, . . . , N, the stratum Fi is a complex

vector bundle of rank di over Φi, which is a locally trivial fibration over Xi.

2. If Xi consists of configurations of m points, the fiber of Φi over any K ∈ Xi is a

(m−1)-dimensional open simplex, which changes orientation under the homotopy

class of a loop in Xi interchanging a pair of points in K.

3. If XN = {Z}, FN is the open cone with vertex a point (corresponding to the

configuration Z), over FilN−1|Λ•|.

3.1 A generalized version of Leray-Hirsch theorem

The moduli spaces Nn we are interested in are actually related to a geometric quo-

tient. Although this will be made more precise later, let us present the theorem of Peters

and Steenbrink that we have already mentioned in the introduction. They proved in-

deed that the Leray-Hirsch theorem can be extended from fiber bundles to geometric

quotients by reductive groups.
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Let G be an affine reductive algebraic group acting on X, with finite stabilizers. For

any x ∈ X, denote by ρx : G → X the orbit map and by ϕ : X → X/G the geometric

quotient. The cohomology ring H•(G) is well known: it is an exterior algebra generated

by classes ηi of odd degree 2ri − 1 with i = 1, . . . , rankG.

Theorem 3.4 ([PS03, Theorem 3]). Suppose that, for all i = 1, . . . , rankG, there are

subschemes Yi ⊂ Σ of pure codimension ri in V whose fundamental classes map to a

non-zero multiple of ηi under the composition

H̄2(v−ri)(Yi)→ H̄2(v−ri)(Σ)
∼−→ H2ri−1(X)

ρ∗−→ H2ri−1(G).

Denote the image of [Yi] in H•(X;Q) by yi, then the map a ⊗ ηi 7→ ϕ∗a ⌣ yi, a ∈
H•(X/G;Q) extends to an isomorphism of graded Q-vector spaces

H•(X/G;Q)⊗H•(G;Q)
∼−→ H•(X;Q).

4 Homological lemmas and configuration spaces

We close this first chapter with some homological lemmas which will be repeatedly

used in our following computations, in order to compute the Borel-Moore homology of

the families Xi that we have defined in the previous section. The families Xi consist of

configuration spaces, so let us first give some definitions and properties for the case of

configurations of a finite number of points on a given variety.

Definition 5. Let Z be a projective variety. The space of ordered configurations of k

points in Z is defined as

F (Z, k) = Zk\
⋃

1≤i<j≤k

{(z1, . . . , zk) ∈ Zk|zi = zj}.

The quotient by the natural action of the symmetric group Sk is denoted by B(Z, k)

and it is the space of unordered configurations of k points in Z.

In the next chapter, we will consider configurations spaces in Z = P2\{P} with P a

fixed point in P2. In this case, we will need to give a further definition.

Definition 6. Fix P ∈ P2. A configuration of k points in P2\{P} will be called general

if its points are in general position, i.e. no three points lie on the same line and no
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two points lie on the same line through P. The open subsets of F (P2\{P}, k) and

B(P2\{P}, k) consisting of general configurations will be denoted by F̃ (P2\{P}, k) and
B̃(P2\{P}, k), respectively.

Recall also from the previous section, and in particular from Proposition 3.3 that,

for families consisting of a finite set of points, the fiber of the bundle Φi → Xi may be

non-orientable. In these cases we will have to consider the Borel-Moore homology in

some local system of rank 1. More precisely,

Definition 7. For any subset Y ⊆ B(Z, k), the local system±Q over Y is the one locally

isomorphic to Q that changes its sign under any loop defining an odd permutation in

a configuration from Y. We will denote by H̄•(Y ;±Q) the Borel-Moore homology of Y

with twisted coefficients, or the twisted Borel-Moore homology of Y, and by P̄ (Y ;±Q)

its Hodge-Grothendieck polynomial, defined as in (I.1).

Moreover, the Borel-Moore homology of configuration spaces on a projective variety

can be deduced from that of configuration spaces defined over an N -dimensional affine

or projective space, which are well known.

Lemma 4.1 ([Vas99, Lemma 2]). a. H̄•(B(CN , k);±Q) is trivial for any k ≥ 2.

b. H̄•(B(PN , k);±Q) = H•−k(k−1)(G(k,C
N+1);Q), where G(k,CN+1) is the

Grassmann manifold of k-dimensional subspaces in CN+1. In particular

H̄•(B(PN , k);±Q) is trivial if k > N + 1.

From this, it is not difficult to recover the Borel-More homology of other configuration

spaces.

Remark 3. In particular, the twisted Borel-Moore homology of a configuration space

B(X, k) can immediately be read off from Lemma 4.1 for any space X which admits a

stratification whose strata are affine spaces. Such a stratification induces a stratification

on B(X, k), whose strata record the number of points in each stratum of X.

Lemma 4.2 ([Tom05a, Lemma 2.14]). The Hodge-Grothendieck polynomial of

H̄•(B(C∗, k);±Q) is tk +L−1tk+1 for any k ≥ 1. If we consider the action of S2 on C∗

induced by τ 7→ 1
τ
, we have that the Borel-Moore homology classes of even degree are

invariant and those of odd degree are anti-invariant.

Lemma 4.3. The Hodge-Grothendieck polynomial of H̄•(B(P2\{P}, 2);±Q) is L−3t6.

H̄•(B(P2\{P}, k);±Q) is trivial for k ≥ 3.
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Proof. P2\{P} can be decomposed into the disjoint union of spaces S1, S2, isomorphic

respectively to C2 and C. Then, to any configuration of points in B(P2\{P}, k) we

can associate an ordered partition (a1, a2), where ai is the number of points contained

in Si. We consider each possible partition of k as defining a stratum in B(P2\{P}, k),
and order each strata by lexicographic order of the index of partition. All strata with

any ai ≥ 2 have no twisted Borel-Moore homology by Lemma 4.1.a, so the second part

of the Lemma is proved. When k = 2, the only admissible partition is (1, 1) that is a

stratum isomorphic to C3, hence it has twisted Borel-Moore homology Q(3) in degree

6 and trivial homology in all other degrees.

Lemma 4.4. The Hodge-Grothendieck polynomial of H̄•(F̃ (P
2\{P}, 2);Q) is L−4t8 +

L−3t6.

Proof. By definition, F̃ (P2\{P}, 2) consists of pairs of points, lying on a line not passing

through P. The space of lines not passing through P is (P2\{P})∨ ∼= C2. Therefore

F̃ (P2\{P}, 2) is a C2-bundle over the space of ordered pairs of points on a line, i.e.

F (P1, 2). The Borel-Moore homology of the base space is Q(2) in degree 4, Q(1) in

degree 2 and zero in all other degrees. Then, the Borel-Moore homology of F̃ (P2\{P}, 2)
is Q(4) in degree 8, Q(3) in degree 6 and zero in all other degrees.

Lemma 4.5. The Hodge-Grothendieck polynomial of H̄•(F̃ (P
2\{P}, 3);Q) is L−6t12 +

L−5t11 + L−4t9 + L−3t8.

Proof. The space F̃ (P2\{P}, 3) consists of triples of points, each contained on a distinct

line through P, such that there is no line containing all of them. In other words,

F̃ (P2\{P}, 3) is the complement of the space Y1 of triples of points all lying on a line

not passing through P, in the space Y2 of triples of points all lying on distinct lines

through P. The space Y1 is a C2-bundle over F (P1, 3) and its Borel-Moore homology

is Q(5) in degree 10, Q(3) in degree 7 and zero in all other degrees. The space Y2 is,

instead, a C3-bundle over F ((P )∨, 3) ∼= F (P1, 3). Its Borel-Moore homology is Q(6) in

degree 12, Q(4) in degree 9 and zero in all other degrees. Finally, by considering the

Gysin exact sequence induced by the inclusion F̃ (P2\{P}, 3) = Y2\Y1 ↪→ Y2, we have

that the Borel-Moore homology of F̃ (P2\{P}, 3) is Q(6) in degree 12, Q(5) in degree

11, Q(4) in degree 9, Q(3) in degree 8 and zero in all other degrees.

Lemma 4.6. There are isomorphisms

H̄•(B̃(P2\{P}, 2);±Q)
∼−→ H̄•(B(P2\{P}, 2);±Q)
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H̄•(B̃(P2\{P}, 3);±Q)
∼−→ H̄•(B(P2\{P}, 3);±Q)

induced by the natural inclusions.

Proof. Let us consider the inclusions B̃(P2\{P}, k) ↪→ B(P2\{P}, k), k = 2, 3. The

complement B(P2\{P}, 2)\B̃(P2\{P}, 2) is the space of pairs of points lying on the

same line through P : it is fibered over (P )∨ ∼= P1 with fiber isomorphic to B(C, 2).

On the other hand, B(P2\{P}, 3)\B̃(P2\{P}, 3) is the union of 3 locally closed strata:

the space of triples lying on the same line not passing through P, the space of triples

lying on the same line through P, and the space consisting of triples where exactly 2

points lie on the same line through P. These fiber spaces have fibers B(P1, 3), B(C, 3)

and B(C, 2) × C2, respectively. By Lemma 4.1 all these fibers have trivial twisted

Borel-Moore homology.

Lemma 4.7 ([Gor05, Corollary 3.5]). Let p : N ′ → N be a finite sheeted covering

of manifolds, and let L be a local system of coefficients on N ′. Then H̄•(N
′,L) =

H̄•(N, p(L)), where p(L) denotes the direct image of the system L.

Let us, once more, stress the fact that our aim is to compute the Borel-Moore ho-

mology of families of singular configurations of elements in our discriminant. Hence

we will need to compute the Borel-Moore homology of configurations of k points on a

Hirzebruch surface Fn, for any n ≥ 0, and this can be deduced from the above lemmas

by Remark 3.

In fact, Fn can be stratified into two affine cells, one isomorphic to P2\{P} ∼= A2∪A1

and the other isomorphic to P1 ∼= A1 ∪A0. Then, as a consequence of Lemma 4.1, we

have

Lemma 4.8. For n ≥ 0,

H̄i(B(Fn, 1);±Q) =



Q, i = 0,

2Q(1), i = 2,

Q(2), i = 4,

0, otherwise;
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H̄i(B(Fn, 2);±Q) =



2Q(1), i = 2,

2Q(2), i = 4,

2Q(3), i = 6,

0, otherwise;

H̄i(B(Fn, 3);±Q) =



Q(2), i = 4,

2Q(3), i = 6,

Q(4), i = 8,

0, otherwise;

H̄i(B(Fn, 4);±Q) =

Q(4), i = 8,

0, otherwise;

H̄•(B(Fn, k);±Q) = 0, ∀k ≥ 5.

Note also that the twisted Borel-Moore homology groups computed above agree

with the ones computed by Tommasi in [Tom05b, Lemma 2.13] for F0
∼= P1 ×P1.

Finally let us consider the case of families corresponding to configurations containing

curves. These types of families give no contribution to the Borel-Moore homology of

the discriminant.

Lemma 4.9 ([Tom05b, Lemma 2.17]). Let Z be a projective variety and suppose we

have the following families of configurations in Z :

X1 =B(Z, 1);

X2 ={{p, q} ∈ B(Z, 2) : p, q ∈ l, l a line in Z};

X3 ={{p, q, r} ∈ B(Z, 3) : p, q, r ∈ l, l a line in Z};

X4 ={lines in Z}.

Construct the cubical space Λ•, its geometric realization and the filtration as in section

3. Then the space Φ4 has trivial Borel-Moore homology.

As it has already been discussed in [Tom05b, Remark 1.18 and Lemma 2.19], a

slight modification of the above lemma gives us an analogous result also for families
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of singular configuration consisting of the union of a rational curve and a fixed finite

number of points and of the union of two rational curves, meeting at one point.





Chapter II

Rational cohomology of T5

This chapter is based on [Zhe21a].

1 Introduction and results

Let us recall once more that for g = 3, 4, the rational cohomology of Tg has already

been computed by Looijenga in [Loo93] for g = 3, and by Tommasi in [Tom05b] for

g = 4. In these two cases, Tg coincides withMg\Hg, where Hg is the moduli space of

smooth hyperelliptic curves of genus g. For g = 3, any non-hyperelliptic curve admits

infinitely many pencils of degree 3, while, for g = 4, any non-hyperelliptic curve admits

either one or two of them.

On the other hand, when g ≥ 5 a non-hyperelliptic curve is not necessarily trigo-

nal. In particular, T5 represents the first case where the cohomology of Tg cannot be

automatically deduced from that of Hg andMg. In fact,M5 can be decomposed into

the disjoint union of the moduli spaces of hyperelliptic curves H5, of trigonal curves

T5, and the one parametrizing curves that are the complete intersection of three lin-

early independent smooth quadric hypersurfaces in P4, which will be denoted by Q5.

Therefore, knowing the rational cohomology of T5 represents an advance not only in the

understanding of that of M5, which is unknown at present, but hopefully also of the

cohomology of Tg, for any g ≥ 5.

What is known about Tg ∪ Hg until now is mostly due to the works of Stankova,

Bolognesi and Vistoli. Stankova computed in [SF00] the rational Picard group of the

closure T g ⊆ Mg, while Bolognesi and Vistoli computed in [BV12] the integral Picard

27
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group of Tg∪Hg. Later, Patel and Vakil established that the rational Chow ring A∗
Q(Tg)

is generated by a single class in codimension 1, [PV15a].

More recently, for g = 5, Wennink, in [Wen20], counted the number of points of T5
over any finite field Fq with q points:

|T5(Fq)| = q11 + q10 − q8 + 1.

By [vdBE05], [Ber08, Theorem 3.2], this determines the Euler characteristic of T5 in

K0(HSQ), the Grothendieck group of rational Hodge structures.

We will refine Wennink’s result and compute the rational cohomology of T5 with its

mixed Hodge structure.

Theorem 1.1. The rational cohomology of T5 is

H i(T5;Q) =



Q, i = 0;

Q(−1), i = 2;

Q(−3), i = 5;

Q(−11), i = 12;

0, otherwise;

where Q(−k) denotes the Tate Hodge structure of weight 2k.

The whole rational cohomology of T5 can also be expressed in terms of its Hodge-

Grothendieck polynomial. By Theorem 1.1, then

P (T5;Q) = L11t12 + L3t5 + Lt2 + 1,

where L denotes the class of the Tate Hodge structure Q(−1).
Moreover, since the moduli space Hg, g ≥ 2, has always the rational cohomology of

a point, we can also prove the following
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Corollary 1.2. The rational cohomology of T5 ∪H5 is

H i(T5 ∪H5;Q) =



Q, i = 0;

Q(−1), i = 2;

Q(−2), i = 4;

Q(−3), i = 5;

Q(−11), i = 12;

0, otherwise.

Theorem 1.1 and Corollary 1.2 are consistent with the known results on the co-

homology of M5. In particular, the maximal weight class of the cohomology of T5
can be identified with the top weight cohomology class of M5, described by Chan,

Galatius and Payne in [CGP21] and [CGP20]. They proved indeed that the cohomol-

ogy H4g−6(Mg;Q) is non-zero for g = 5 and that, by studying the dual complex of the

boundary divisor inMg, the top graded piece on the cohomology ofM5 is such that

dimGrW6g−6H
i(M5;Q) =

1, i = 14;

0, i ̸= 14.

The stratification ofM5

T5 ∪H5
closed
↪→ M5

open
←↩ Q5

induces a Gysin exact sequence in Borel-Moore homology

· · · → H̄k+1(Q5;Q)→ H̄k(T5 ∪H5;Q)→ H̄k(M5;Q)→ H̄k(Q5;Q)→ . . .

Since Q5 is affine and dimQ5 = 12, [FL08, Theorem 4.1], H̄10(M5;Q) = H̄10(T5;Q),

and Poincaré duality gives H14(M5;Q) = H12(T5;Q).

This also determines part of the cohomology ofM5 :

Corollary 1.3. H14(M5;Q) = Q(−12) and H i(M5;Q) = 0 for any i ≥ 13, i ̸= 14.

The proof of Theorem 1.1 relies on Gorinov-Vassiliev’s method, presented in the

previous chapter.
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2 Moduli space T5 from a geometric quotient

In this section we define our moduli space T5 as the quotient of the complement of a

discriminant by the action of an algebraic group. We recall from (I.4) that any trigonal

curve of genus g may be embedded, via the canonical embedding, in a Hirzebruch surface

Fn as a divisor of class

C ∼ 3En +
g + 3n+ 2

2
Fn,

where En is the exceptional divisor and Fn is the class of any fiber of the ruling and the

Maroni invariant n has to satisfy g ≡ n mod 2 and 0 ≤ n ≤ g+2
3
.

Thus, for g = 5, the Maroni stratification consists of only one stratum and any

trigonal curve lies on the Hirzebruch surface F1, as an element of the linear system

|3E1 + 5F1|. We will also drop the subscript and simply write E,F, in the rest of this

chapter. The Hirzebruch surface F1 is the blow up of the projective plane at one point.

There is an additional equivalent description of trigonal curves of genus 5.

Proposition 2.1. There is a one-to-one correspondence between isomorphism classes

of trigonal curves of genus 5 and of projective plane quintics having exactly one ordinary

node or cusp.

Proof. Given a trigonal curve C, and hence a g13, one can show that the linear system

|K−D| is a base point free g25, where D ∈ g13 and K is the canonical divisor. This defines

a morphism C → P2 such that the image has degree 5, with precisely one singularity of

delta invariant 1.

Conversely, a plane projective curve of degree 5 with one singularity that is a node

or a cusp has arithmetic genus 5, and each line through the singular point meets the

curve in three other points, counting multiplicity, defining a g13.

Let us then consider a projective plane quintics having exactly a node or a cusp and

let P ∈ P2 denote this singular point. Let Z = F1 and define V to be the vector space of

global sections of OZ(3E + 5F ). Let X be the open subset of sections defining smooth

curves and the discriminant Σ is the complement of X in V .

The vector space V is isomorphic to the vector space of polynomials defining plane

curves of degree 5 having at least a singular point at P. Therefore its dimension is

18. Indeed, the dimension of the vector space of polynomials defining plane quintics is

dimC [x0, x1, x2]5 = 21. A polynomial f ∈ C [x0, x1, x2]5 is singular at a point P ∈ P2 iff
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∂f
∂xi

(P ) = 0, i = 0, 1, 2. Hence the dimension of the vector space of polynomials defining

plane quintics with a fixed singularity is 21− 3 = 18.

This can be also proved as follows. Let us consider a general plane quintic having at

least a node or a cusp at the point P that we will blow up. Without loss of generality

we may assume P = [1, 0, 0] . The plane quintic curve is then defined by a polynomial

f ∈ C [x0, x1, x2] having degree ≤ 3 with respect to the variable x0. For any such curve

we can consider a projection with center P : fix a line l not passing through P , for

instance l := {[0, y1, y2]}, and take the map sending all points of the curve distinct from

P to the point of intersection between the line connecting the point to P and l.

The preimage of any point through this map is given by points of the curve on the

same line through P , which has parametric equation

r :


x0 = t0

x1 = t1y1

x2 = t1y2

, [t0, t1] ∈ P1.

Since any line through P corresponds to a line of the ruling in the blow up, any curve

we want to consider can be embedded in the blow up via the mapping

[t0, t1y1, t1y2] ↪→ [t0, t1y1, t1y2]× [y1, y2]

and it has to satisfy f(t0, t1y1, t1y2) = 0. Therefore it has equation

t21(t
3
0g2(y1, y2) + t20t1g3(y1, y2) + t0t

2
1g4(y1, y2) + t31g5(y1, y2)),

where each gi is a homogeneous polynomial of degree i. Counting the number of

parameters will indeed give 18.

The automorphism group of the homogeneous coordinate ring of BlPP
2 is the set of

automorphisms of the graded ring C [x0, x1, x2] that fix the point that is blown up, i.e.

G =



∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗

 ∈ GL3

 ⊃ C∗ ×GL2.
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Note that ignoring the second and the third entry in the first row of each of the matrices

in G means contracting the vector space C [x1, x2]1
∼= C2 to a point. Therefore G is

homotopy equivalent to C∗ ×GL2.

Note also that G contains the normal unipotent subgroup

1 ∗ ∗
0 1 0

0 0 1

 ∈ GL3

 ,

hence it is not reductive and we cannot construct our moduli space as a GIT quotient by

G. However, we can consider its reductive part C∗ × GL2, consider the stack quotient

[X/(C∗ ×GL2)] and compute its cohomology, or equivalently the cohomology of its

coarse moduli space, the affine quotient variety X/(C∗×GL2). The space X/(C
∗×GL2)

parametrizes isomorphism classes of pairs (C,L), with C a trigonal curve of genus 5 and

L its unique g13, plus a hyperplane section H corresponding to the line l not meeting P

that we defined before, when computing the dimension of V . By duality, H is a point

in C2, therefore [X/(C∗ ×GL2)] is a C2-bundle over T5, in the orbifold sense, and they

have the same rational cohomology.

We will first consider the reductive subgroup {1}×GL2 ⊂ C∗×GL2 and the quotient

stack [X/GL2]. Then, we will compute its cohomology by using the generalized version

of the Leray-Hirsch theorem. Finally, we will consider the orbifold C∗-bundle

[X/GL2]
C∗
−→ [X/(C∗ ×GL2)] ,

and deduce the cohomology of the base space from the Leray spectral sequence associ-

ated to this bundle.

Let us stress once more that a quotient stack and its underlying coarse moduli space

have the same rational cohomology, therefore, by abuse of notation, we will drop the

brackets.
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2.1 Generalized Leray-Hirsch theorem

We want to prove that there exists an isomorphism of graded Q-vector spaces with

mixed Hodge structures

H•(X/GL2;Q)⊗H•(GL2;Q) ∼= H•(X;Q).

By Theorem I.3.4 it suffices to prove the surjectivity of the orbit map on cohomology

ρ∗ : H i(X;Q) H i(GL2;Q)
∼ = ∼ =

H̄2 dimV−i−1(Σ;Q) H̄2 dimM−i−1(D;Q),

where M denotes the space of 2 × 2 matrices and D the discriminant of GL2 in M.

We know that the cohomology of GL2 has generators in degrees i = 1, 3, and the

generators of H̄•(D;Q) are [D] ∈ H̄6(D;Q) and [R] ∈ H̄4(D;Q), where we can assume

R to be the subvariety of matrices with only zeros in the first column. Moreover,

from the spectral sequence that will be exhibited in Table II.4, H̄34(Σ;Q) = ⟨[Σ]⟩, and
H̄32(Σ;Q) = ⟨[Σ1] , [Σ2]⟩, where Σ1 is the subspace in V of polynomials defining curves

having a singular point on E, and Σ2 is the subspace in V of polynomials defining a

singularity on a fixed line of the ruling F.

Let us consider the extension ρ̃ :M → V of the orbit map ρ : GL2 → X. Fix f ∈ X
and consider the image of an element in R :

A =

(
0 b

0 d

)
7→ A · f(x0, x1, x2) = f(x0, bx2, dx2) = α(b, d)x22h3(x0, x2),

where α(b, d) is some constant and h3 is the product of 3 lines through the point [0, 1, 0] .

So, elements of R are mapped to polynomials whose zero loci are the union of a

double line of the ruling of fixed equation y2 = 0 and three lines through a point of the

ruling ([t0, t1, 0] , [1, 0]). Similarly, elements in D are mapped to curves which are the

union of any double line of the ruling and three lines through a point of that ruling.

Hence we can deduce that ρ∗([Σ]) is a non-zero multiple of [D] , while the preimage

of [R] through ρ∗ must be a non-trivial linear combination of [Σ1] , [Σ2] , proving the

surjectivity of the map in cohomology.
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3 Application of Gorinov-Vassiliev’s method

In this section we apply Gorinov-Vassiliev’s method, introduced in section I.3, proving

thus Theorem 1.1. First of all, we produce a list of all the possible configurations of

singularities of genus 5 curves in BlPP
2, meeting the exceptional divisor E at least

twice. To do so, we recall that we are considering curves in F1 which are elements of

the linear system |3E + 5F |.
Since all singularities are obtained as degenerations of nodes, we will first consider

only such singularities. Assume that the curve is irreducible. By computing the arith-

metic genus we get an upper bound for the number of singularities. For instance, by

the genus formula, we have that

g(3E + 5F ) = 1 +
1

2
((3E + 5F )2 + (3E + 5F ) ·K) = 5,

where K is the canonical divisor on F1. So we can have at most 5 ordinary double points.

Then, we will consider all the possible ways in which the curve can be reducible.

Here we will have to take into account not only the singularities of each irreducible

component, but also all the intersections between them.

Finally, we will consider all the possible degenerations of the singularities obtained

in this way (points can be on the exceptional divisor or points in general position can

become collinear, etc...) and all the subsets of finite configurations.

For any configuration of singularities, the elements in V which are singular at least

at that configuration form a vector space and we can compute its codimension. By or-

dering all the configurations obtained by increasing codimension, and then by increasing

number of points, we will get a list of configurations indexed by (j). By defining Xj as

the space of configurations of type (j) we will get a sequence of families of configurations

that will satisfy conditions 1-7 in List I.1. We denote by cj the codimension in V of the

vector space of elements which are singular at least at the configuration of type (j).

For the complete list see List A.1. Here we report instead only a shorter version

of this list. We can omit, for instance, all configurations containing rational curves.

These, in fact, give no contribution to the Borel-Moore homology of the discriminant

by Lemma I.4.9. We also combine similar configurations that give no contribution.

In the following, we call a configuration of points general if it is a configuration of

points in general position, where no point is contained in E and no two points lie in the
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same line of the ruling. When we consider configurations containing both ‘general’ and

‘not general’ points, we also require the general points to be in general position with

respect to the others. However, we allow the general points to belong to the same lines

of the ruling defined by points that are on E, in the same configuration space. Indeed, in

this case, the configuration space in which k general points are defined is B(P2\{P}, k),
as in the case without points on E.

For each item below, we write in square brackets the codimension cj of the vector

space of elements in V, which are singular at least at the corresponding configuration.

We will also use the following notation:

line of the ruling it is an element in |F |,
i.e. the strict transform of a line in P2 passing through P ;

line it is an element in |E + F |,
i.e. the strict transform of a line in P2 not passing through P ;

conic CP it is an element in |E + 2F |,
i.e. the strict transform of a conic in P2 passing through P ;

conic C it is an element in |2E + 2F |,
i.e. the strict transform of a conic in P2 not passing through P.

1. A point on the exceptional divisor E; [3]

2. A general point; [3]

3. Two points on E; [5]

4. Two (or three) points on a line of the ruling; [6 (7)]

5. A point on E + a general point; [6]

6. Two general points; [6]

7. Three points or more on E; [6]

8. Two points on E + a general point; [8]

9. A point (that can be either on E, or general) + two (or three) points on a line of

the ruling; [9 (10)]

10. A point on E + two general points;[9]

11. Three (or four) points on a line L; [9 (10)]

12. Three (or resp. four, five) general points; [9 (12, 15)]

13. A point on E + two (or three) points on a line F of the ruling + the point of

intersection between F and E; [9 (10)]

14. Three points on E + a general point; [9]

15. Two points on E + two (or three) points on a line of the ruling; [10 (11)]
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16. Two points on E + two (or three) points on a line F of the ruling + the point of

intersection between F and E; [10 (11)]

17. Two points on E + two general points; [11]

18. Three points on E + two (or three) points on a line of the ruling; [11 (12)]

19. Three points on E + two (or three) points on a line F of the ruling + the point

of intersection between F and E; [11 (12)]

20. Two points on each of two lines of the ruling (or resp. two points on a ruling and

three points on the other one, or three points on each of two rulings); [12 (13, 14)]

21. Two general points + two (or three) points on a line of the ruling; [12 (13)]

22. A point (that can be either on E, or general) + three (or four) points on a line L;

[12 (13)]

23. A point on E + three (or four) general points; [12 (15)]

24. A point on E + two (or three) points on a line F of the ruling + a general point;

[12 (13)]

25. A point on E + two (or three) points on a line F of the ruling + a general point

+ the point of intersection between F and E; [12 (13)]

26. Three points on E + two general points; [12]

27. Two points on E + three (or four) points on a line L; [14 (15)]

28. Two points on E + three general points; [14]

29. Two points on a line F of the ruling + three points on a line L; [14]

30. Two points on a line F of the ruling + three points on a line L + the point of

intersection between F and L; [14]

31. Five (or six) points on a conic CP (C); [14 (17)]

32. Two points on each of two lines F1, F2 of the ruling + the intersection points with

E + a point on E; [14]

33. Two points on each of two lines + the point of intersection; [15]

34. Two points on each of two lines of the ruling (or two points on a ruling and three

on the other one) + a general point; [15 (16)]

35. A point on E + two general points + two or more points on a line of the ruling;

[15]

36. Three general points + two (or three) points on a line of the ruling; [15 (16)]

37. A point on E + a general point + three (or four) points on a line; [15 (16)]

38. Two general points + three (or four) points on a line; [15 (16)]

39. Three points on E + three (or four) points on a line; [15 (16)]



3 . Application of Gorinov-Vassiliev’s method 37

40. Three points on E + three general points; [15]

41. Two points on E + two general points + two points on a line F of the ruling +

the point of intersection between E and F ; [16]

42. Five points on a conic CP + a general point; [17]

43. Three points on E + four points on a conic CP ; [17]
44. Two points on a ruling F + three points on a line L + the intersection point

between F and L + a general point; [17]

45. Three points on each of two rulings + a general point; [17]

46. Three points on each of two lines + the point of intersection; [17]

47. 7 points: three points of intersection between two conics CP and C ′P , one of which
is on E + four points of intersection with a line; [17]

48. 7 points: three points of intersection between two conics CP and C ′P , none of which
are on E + four points of intersection with a line; [17]

49. 7 points: four points of intersection between two conics C, CP + three points of

intersection with a line of the ruling; [17]

50. 8 points: a point on E + two points on each of two rulings F1, F2 + the points of

intersection between F1 and E, and F2 and E + a general point; [17]

51. 8 points: two points on E + three points on a line L + the intersection points of

a line F of the ruling with E and L + another point on F ; [17]

52. 8 points: three points of intersection of two conics CP and C ′P , each meeting a line

F of the ruling and E at one point + the point of intersection between F and E;

[17]

53. 8 points: two points of intersection between two lines F1, F2 of the ruling and a

line L + 6 points of intersection with a conic C meeting each line at two distinct

points; [17]

54. 8 points: three points of intersection between a line F of the ruling and two lines

L1, L2 + five points of intersection with a conic CP meeting each line twice and F

only once, outside E; [17]

55. 8 points: three points of intersection between a line F of the ruling and two lines

L1, L2 + five points of intersection with a conic CP meeting each line twice and F

at the intersection point with E; [17]

56. 9 points: four points of intersection between E, two lines F1, F2 of the ruling and

a line L + five points of intersection with a conic CP meeting L twice and E, F1,

F2 once; [17]
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57. 9 points: three points of intersection between E and three lines F1, F2, F3 of the

ruling + 6 points of intersection with a conic C meeting each Fi at two distinct

points; [17]

58. 9 points: the points of intersection between two lines of the ruling and three

general lines; [17]

59. 10 points: the points of intersection between E, three lines of the ruling and two

lines; [17]

60. The whole BlPP
2. [18]

3.1 Non-trivial configurations

Since simplicial bundles are non-orientable, we will consider the Borel-Moore homol-

ogy with coefficients in the local system ±Q.
We also recall from Lemmas I.4.1 and I.4.3 that configurations with at least three

points on a rational curve, configurations with at least two points on a rational curve

minus a point, and configurations with at least three general points give no contribution.

Thus, among the first 41 configurations, only the following have non-trivial Borel-Moore

homology:

(A) A point on E. [3]

(B) A general point. [3]

(C) Two points on E. [5]

(D) A point on E + a general point. [6]

(E) Two general points. [6]

(F) One general point + two points on E. [8]

(G) Two general points + one point on E. [9]

(H) Two general points + two points on E. [11]

We will also prove in Subsection II.3.3 that there are only four other configurations

having non-trivial Borel-Moore homology:

(I) 7 points: configuration 47. [17]

(J) 7 points: configuration 48. [17]

(K) 8 points: configuration 55. [17]

(L) Whole BlPP
2. [18]
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Recall that we are studying singular configurations of curves that are equivalent to

plane projective quintics having at least one singularity. So, we can deduce their Borel-

Moore homology by considering their equivalent description in the projective plane.

This equivalent description is obtained by fixing a point P that is the one that, when

blown-up, will give us the corresponding curve in F1.

Note that the configuration spaces that we will consider in the following are empty

unless they are defined as the singular locus of the plane quintics that will be described.

Columns (A)-(H)

From Proposition I.3.3, if Xj consists of configurations of m points, then the stratum

Fj is a C18−cj × ∆̊m−1-bundle over Xj, where ∆̊m−1 is an (m − 1)-dimensional open

simplex. Therefore we get the following results.

The space FA is a C15-bundle over XA
∼= P1.

The space FB is a C15-bundle over XB
∼= P2\{P}.

The space FC is a C13 × ∆̊1-bundle over XC
∼= B(P1, 2).

The space FD is a C12 × ∆̊1-bundle over XD
∼= P1 ×P2\{P}.

The space FE is a C12 × ∆̊1-bundle over XE
∼= B(P2\{P}, 2).

The space FF is a C10 × ∆̊2-bundle over XF
∼= P2\{P} ×B(P1, 2).

The space FG is a C9 × ∆̊2-bundle over XG
∼= B(P2\{P}, 2)×P1.

The space FH is a C7 × ∆̊3-bundle over XH
∼= B(P2\{P}, 2)×B(P1, 2).

Column (I)+(J)

Each configuration in XI is defined as the singular locus of the blow up at P of a

plane quintic defined by two irreducible and reduced conics tangent at P and a line

meeting the conics at four distinct points, as in Figure II.1.

P

AB

S1
R1

R2
S2

Figure II.1: Configuration of type (I).
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On the other hand, configurations of type (J) arise from blowing up P, where P is

now one of the four points of intersection between two irreducible and reduced conics

that, together with a line not meeting the conics at any of the points of intersection,

define the plane projective quintic curve in Figure II.2.

BA

CP

R2
S2

R1S1

Figure II.2: Configuration of type (J).

By noticing that the configuration space XI is contained in the closure of XJ (by

allowing one of the points A,B,C to lie on the exceptional divisor E of F1) we can

consider a bigger configuration space containing both of them, which we will denote by

XI+J .

The space XI+J consists of 7 singular points A,B,C,R1, R2, S1, S2. The points

A,B,C are in general position, also with respect to P , and only one of them is al-

lowed to lie on E, i.e to coincide with P. The points R1, R2, S1, S2 are four distinct

points of intersection between two distinct conics passing through A,B,C, P and a line

l not passing through any of these points.

We can fiber XI+J over the space parametrizing the points A,B,C and the choice of

the line:

XI+J → B := {({A,B,C}, l) : A,B,C, l as in the description above}.

The fiber of this map, which we denote by Z, will then be the space of pairs of conics

passing through the four points and not tangent to the line. Note that Z is exactly the

same fiber space considered in [Gor05, Section 4.2] in Column 38.

As both conics have to satisfy 4 linear independent conditions (that consist either in

the passage through 4 distinct points or 3 points plus the tangency condition), each of

them is uniquely determined by a point on the line l. We denote these points by S1, R1,

as in the figures. Recall that there are exactly two conics in the pencil with base locus

A+B+C+P that are tangent to l. Let T1, T2 be the points of intersection between l and
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the two tangent conics. Any other conic will meet l at two distinct points. Exchanging

these two intersection points defines an involution on l ∼= P1 that fixes T1, T2, and by

choosing an appropriate coordinate system we can assume that T1 = [1, 0], T2 = [0, 1]

and that the involution will be [1, t] 7→ [1,−t] .
Therefore we can set S1 = [1, t], S2 = [1,−t], R1 = [1, s], R2 = [1,−s] and the space

Z parametrizing the two conics of the configuration will be a quotient of

(t, s) ∈ Z̃ := C2\({t = 0} ∪ {s = 0} ∪ {s = t} ∪ {s = −t}).

We note that {t = 0}∪ {s = 0}∪ {s = t}∪ {s = −t} is the disjoint union of four copies

of C∗ and one point, so we have that the Borel-Moore homology of Z̃ is H̄4(Z̃) = Q(2),

H̄3(Z̃) = 4Q(1), H̄2(Z̃) = 3Q and H̄q(Z̃) = 0 for any q ≤ 1 or q ≥ 5.

To get the Borel-Moore homology of Z, we need first to consider the following invo-

lutions of Z̃ :

i : (t, s) 7→ (s, t) exchanges the two points S1 and R1, hence the two conics;

j : (t, s) 7→ (1
t
, 1
s
) exchanges 0 and ∞. Therefore it acts as the involution on l that

exchanges the two tangency points;

k : (t, s) 7→ (t,−s) exchanges R1 and R2. (Note that k has the same action on homol-

ogy as k′ : (t, s) 7→ (−t, s) so we can consider only one of them).

By studying the action of i, j, k on the stratification of C2\Z̃ into four copies of C∗

and a point, we obtain:

Lemma 3.1. The action of i, j, k on the Borel-Moore homology classes of Z̃ is as given

in Table II.1.

Table II.1

i j k

degree 4 + + +

degree 3 + + +

+ + −
+ − +

− − +

degree 2 + − +

+ − −
− + +
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Proof. We consider the following classes of degree 2 in ({t = 0}∪{s = 0}∪{s = t}∪{s =
−t}):
[t = 0] + [s = 0] ,

[t = 0]− [s = 0] ,

[s = t] + [s = −t] ,
[s = t]− [s = −t] .
By computing the actions of i, j, k we get the signs written in row ‘degree 3 ’. To get the

signs for the row ‘degree 2 ’ we recall that the Borel-Moore homology of each copy of C∗,

with the local system induced by the involution that exchanges 0↔∞, is S2 in degree 2

and S12 in degree 1, so, the signs for the involutions i, k will be the same, while we need to

invert the sign for the involution j. Note that there should be a class that is invariant for

all i, j, k, but this is the class of the point defining ({t = 0}∪{s = 0}∪{s = t}∪{s = −t})
together with four copies of C∗.

Recall that by exchanging the two conics we are actually exchanging the points R1

with S1, and R2 with S2. So, in order to get the Borel-Moore homology of Z from that

of Z̃, we have to consider the invariant classes with respect to the involution i. On the

other hand, if we exchange R1 with R2, the two conics are not necessarily swapped. So,

we also require the classes to be anti-invariant with respect to the action of k.

By Table II.1, H̄q(Z) is Q in degree 2, Q(1) in degree 3, and zero in all other degrees.

Therefore, the spectral sequence of the bundleXI+J → B will have two rows, determined

by the homology classes of the base space:

in degree 3: defined by the Borel-Moore homology of B with constant coefficients;

in degree 2: defined by the Borel-Moore homology of B with non-constant coeffi-

cients J .

Here, the system of coefficients is determined by the action of the involution j on the

corresponding class in H̄•(Z). In fact, by moving the line l around one of the three

points A,B,C, the points T1, T2 are exchanged.

To compute the Borel-Moore homology of the base space B, we consider a covering B̃,
where the points A,B,C are ordered. Thus, there is a natural action of the symmetric

group S3 on B̃ and we can recover the Borel-Moore homology of B by taking the S3-

anti-invariant classes of the Borel-Moore homology of B̃.
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H̄•(B̃;Q) : Note that B̃ can be thought of as a fiber space over the space parametriz-

ing three lines through P, and the line l, not passing through P, which is

F (P1, 3) × C2. Denote by rA, rB, rC the three lines containing the points

A,B,C, respectively. After an appropriate change of coordinates, we may

assume

rA : x2 = 0, rB : x1 = 0, rC : x1 − x2 = 0, l : x0 = 0.

Then, the fiber of B̃ over (rA, rB, rC , l) is the space parametrizing the points

A,B,C and can be identified with a subset in C3: the point (u, v, w) ∈ C3

corresponds to the choices

A = [1, u, 0] , B = [1, 0, v] , C = [1, w, w] .

We need then to remove the locus where the three points are collinear, which

is a quadric cone of equation uw + vw − uv = 0.

Thus, H̄•(B̃;Q) is invariant with respect to the involution u ↔ v, and by

noticing that this involution corresponds to the exchange of a couple of points

among A,B,C, it is also invariant with respect to the S3-action.

H̄•(B̃;J ) : In order to compute the Borel-Moore homology of B̃ with non-constant co-

efficients, we will consider the subsets

B̃J
open

⊆ B̃ and B̃I
closed

⊆ B̃,

where

B̃J = {((A,B,C), l) ∈ B̃|A,B,C ̸= P}

defines configurations of type (J), and

B̃I = {((A,B,C), l) ∈ B̃| one of A,B,C is equal to P}

defines those of type (I).

Consider the projection onto the triples (A,B,C),

B̃J
YJ−→ {(A,B,C)|P /∈ AB,BC,AC;A,B,C not collinear},
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where YJ ∼= P2\{four lines in general position}. By studying the preimage

of YJ in the double cover of P2 ramified along four lines we notice that there

is one only class in its Borel-Moore homology with non-constant coefficients,

that is Q(1) in degree 2, and it is S3-invariant.

Similarly,

B̃I
YI−→ {(A,B,C)| one of A,B,C belongs to E},

where YI ∼= P2\{three lines in general position, one with mult. 2}. Here,

because of the double component, the covering is not normal, and its normal-

ization is the double cover of P2, ramified over the two simple lines. The fiber

YI and its double cover have the same homology with rational coefficients,

thus the Borel-Moore homology with non-constant coefficients is trivial.

Finally, by considering the Gysin exact sequence associated to inclusions

B̃I
closed
↪→ B̃

open
←↩ B̃J

we get that H̄•(B̃;J ) also has no S3-anti-invariant classes.

Since both homologies have only S3-invariant classes, the Borel-Moore homology

of B, both with constant and non-constant coefficients, will be trivial. Therefore we

can conclude that the whole configuration space, and consequently FI+J , has trivial

Borel-Moore homology.

Column (K)

Configurations of type (K) are the singular locus of the blow up at P of a conic

tangent to a line at P and two other lines in the projective plane. Note that we can

assume the conic to be irreducible, since we have already considered the reducible case

that is configuration 59. Let us define the space of configurations of the same type with

the only exception that we let P free in P2 : K := {(P, f) ∈ P2×P(Σ)|f has a node in P

and its singular points define a configuration of type (K)}. Then we can consider the
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space XK as the fiber of the bundle

K → P2

(P, f) 7→ P.

Let us consider such a configuration. In the projective plane, this is defined by the

point P , the intersection point of a conic C through P , its tangent at P , and 2 general

lines r, s, not meeting at P or any other point of the conic. We denote by Ei, i = 1, . . . , 4

the four points of intersection of the two lines and the conic, and by A,B the intersection

points with the tangent line to the conic. We label the points as in the following figure.

s

r

M P

B

A

E1 E3

E4 E2

Figure II.3: Configuration of type (K).

Up to projective transformations, we may assume the Ei to be the projective frame

of P2 : E1 = [1, 0, 0] , E2 = [0, 1, 0] , E3 = [0, 0, 1] , and E4 = [1, 1, 1] . Then we can

consider another fiber bundle

K PGL3−−−→ Y,

where Y := {(P,A,B)|P ∈ P2\
⋃
EiEj; {A,B} = TPC∩(r∪s)}, and TPC is the tangent

line of C at the point P. Note that, once we have fixed the points P, Ei, i = 1, . . . , 4,

and hence the lines r, s and the conic, the points A,B are uniquely determined.

Thus, Y is isomorphic to the space P2\
⋃
EiEj, that is isomorphic to the moduli

spaceM0,5 of genus 0 curves with 5 marked points. In fact, for n ≥ 3,

M0,n = {(t0, . . . , tn−3) ∈ (P1)n−3|ti ̸= 0, 1,∞, and ti ̸= tj}.
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By the equivariant Hodge-Euler characteristic of M0,5, which is computed in [Get95],

we have that the Borel-Moore homology ofM0,5 is generated by the following classes:

Q(2)⊗ S5 in degree 4;

Q(1)⊗ S3,2 in degree 3;

Q⊗ S3,12 in degree 2;

where by − ⊗ Sλ we mean that we are considering the local system of coefficients

corresponding to the irreducible representation of S5, associated to the partition λ

of 5. On Y there is a natural action of the dihedral group D4, that is the group of

symmetries of a square, defined by the points Ei. So, when computing its Borel-Moore

homology, we need to consider local systems of coefficients defined by the action of

D4. The action of D4 can be embedded in the symmetric group S4 by sending each

symmetry to the corresponding permutation of vertices. Restricting to S4, we get the

following representations:

S5 → S4

S3,2 → S3,1 ⊕ S2,2 (II.1)

S3,12 → S3,1 ⊕ S2,12 .

We then consider the character table of D4, plus the lines of the character table of S4

corresponding to the irreducible representations in (II.1), that can be found in [Ser77],

displayed in Table II.2.

Table II.2: Character table of D4 and some irreducible characters of S4.

e (12)(34) (1324) (12) (13)(24)
ψ1 1 1 1 1 1
ψ2 1 1 1 -1 -1
ψ3 1 1 -1 1 -1
ψ4 1 1 -1 -1 1
χ 2 -2 0 0 0
S4 1 1 1 1 1 =ψ1

S3,1 3 -1 -1 1 -1 =χ+ ψ3

S2,2 2 2 0 0 2 =ψ1 + ψ4

S2,12 3 -1 1 -1 -1 =χ+ ψ2

Hence we can write the Borel-Moore homology groups ofM0,5 asD4- representations:

Q(2)⊗ ψ1 in degree 4;

Q(1)⊗ (ψ1 + ψ3 + ψ4 + χ) in degree 3;
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Q⊗ (ψ2 + ψ3 + χ⊕2) in degree 2.

Now, we only need to consider the term involving the representation that corresponds

to a local system of coefficients obtained by the restriction of ±Q on π1(B(P2, 8)) = S8

to the fundamental group of our configuration space, represented in Figure II.3. As we

noticed before, the latter group is D4 ⊂ S8. In fact, it has to fix the points P,M and the

points A,B are uniquely determined by the choice of the points Ei, whose permutations

define the symmetric group S4 ⊂ S8. Since we also require E1, E2 ∈ r and E3, E4 ∈ s
we get indeed D4. So the local system we are looking for is the restriction of the sign

representation of S8 to D4 whose trace can be computed as follows.

e: Clearly the identity will be mapped to +1;

(12)(34): the element (12)(34) acts by exchanging the two points on each of the two

lines: E1 ↔ E2, E3 ↔ E4 and thus will give a +1;

(1324) : the element (1324) corresponds to a rotation by π/2 of the Ei that is an odd

permutation of the Ei. It also interchanges the two lines and hence the points

A,B, giving a +1;

(12) : the element (12) is the transposition of two points on the same line, moving

no other point, so it will be mapped to -1;

(13)(24) : finally, the element (13)(24) corresponds to the symmetry with respect to

the dashed line, that is an even permutation. This interchanges again the

two lines, and hence A,B, giving -1.

By comparing this to the character table of D4, we get that the local system we

want to consider is the one defined by the representation ψ2, that we will denote by

W . Hence the Borel-Moore homology of Y with coefficients in W is Q in degree 2

and zero in all other degrees. We can compute the Borel-Moore homology of K just by

tensoring that of Y with the one of PGL3. The latter can be computed by duality from

its cohomology: H̄16(PGL3;Q) = Q(8), H̄13(PGL3;Q) = Q(6), H̄11(PGL3;Q) = Q(5),

H̄8(PGL3;Q) = Q(3), and it is zero in all other degrees. Therefore, H̄18(K;Q) = Q(8),

H̄15(K;Q) = Q(6), H̄13(K;Q) = Q(5), H̄10(K;Q) = Q(3), and it is zero in all the other

degrees.

Finally we compute the Borel-Moore homology of XK from the fibration

K → P2.
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Since P2 is simply connected, there is a first quadrant spectral sequence

E2
p,q = H̄p(P2)⊗ H̄q(XK)⇒ H̄p+q(K;Q),

14 Q(6) Q(7) Q(8)

13 Q(5) Q(6) Q(7)

12

11 Q(4) Q(5) Q(6)

10 Q(3) Q(4) Q(5)

9

0 1 2 3 4

where the differentials d22,10, d
2
4,10, d

2
2,13, d

2
4,13 must all be isomorphisms in order to obtain

the Borel-Moore homology of the total space that we computed above. Therefore, since

the space FK is a C × ∆̊7-bundle over XK , the Hodge-Grothendieck polynomial of

H̄•(FK ;Q) must be L−7t23 + L−6t22 + L−5t20 + L−4t19.

Column (L)

As a consequence of Proposition I.3.3, FL is an open cone and its Borel-Moore ho-

mology can be obtained from the spectral sequence in Table II.3.

Table II.3

12 Q(6)
11 Q(5)
10
9 Q(4)
8 Q(3)
7
6
5
4
3 Q(3) Q(4) Q(4)
2 Q(2) Q(3) Q(3)
1 Q(1) Q(2)2 Q(3)
0 Q(1) Q(1) Q(2)
-1 Q Q(1)

A B C D E F G H K

Its columns coincide with those of the main spectral sequence, which is the one

converging to H̄•(Σ;Q), shifted by twice the dimension of the complex vector bundle
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that defines each column. The space V \Σ is affine of dimension 18, hence H i(V \Σ) ∼=
H̄35−i(Σ) must be trivial for any i > 18. For this reason, the differential d1H,3 : E

1
H,3 →

E1
G,3 is non-trivial, and in the second page of the spectral sequence all differentials in

the columns (A)− (G) are also non-trivial.

We can then conclude that the Hodge-Grothendieck polynomial of H̄•(FL;Q) is

L−6t22 + L−5t21 + L−4t19 + L−3t18.

3.2 Main spectral sequence

The first page of the spectral sequence converging to H̄•(Σ,Q) is given in Table II.4.

Table II.4

32 Q(17)
31 Q(16)
30 Q(16)
29 Q(15)
28
27 Q(15)
26 Q(14) Q(15)
25 Q(14)2

24
23 Q(13)
22 Q(13)
21 Q(13)
20 Q(12)
19 Q(12)
18
17 Q(11)
16
15
14 Q(7)
13 Q(6)
12 Q(6)
11 Q(5) Q(5)
10 Q(4)
9 Q(4)
8 Q(3)

A B C D E F G H K L

Following Section II.2.1, the cohomology of X must contain a copy of the cohomology

of GL2. So, all differentials in Table II.4 are trivial. Applying then the isomorphism
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induced by the cap product with the fundamental class of the discriminant

H̃•(X;Q) ∼= H̄35−•(Σ;Q)(−18)

we compute the whole cohomology of X and that of X/GL2. The Hodge-Grothendieck

polynomial of the cohomology of X/GL2 is L12t13 + L11t12 + L4t6 + L3t5 + L2t3 + 1.

We finally consider the fibration

X/GL2 → X/(C∗ ×GL2).

There is a first quadrant cohomology spectral sequence starting with E2 and converging

to H•(X/GL2;Q):

Ep,q
2 = Hp(X/(C∗ ×GL2);H

q(C∗;Q))⇒ Hp+q(X/GL2;Q).

Since we know the cohomology of the total space and of the fibre, we can compute the

cohomology of the base space from the second page of the spectral sequence represented

in Table II.5, with non-trivial differential d0,12 : E0,1
2 → E2,0

2 because the term Q(−1) is
not appearing in the cohomology of X/GL2.

Table II.5

1 Q(−1) Q(−2) Q(−4) Q(−12)
0 Q Q(−1) Q(−3) Q(−11)

0 1 2 3 4 5 6 7 8 9 10 11 12

The choice of this spectral sequence is due to [CL21a, Theorem 1.1]. An alternative spec-

tral sequence would give two additional classesQ(−2) ∈ H3(T5;Q),Q(−2) ∈ H4(T5;Q),

but this is impossible since the rational Chow ring of T5 is trivial in degree bigger or

equal than 2.

Therefore, the Hodge-Grothendieck polynomial of the cohomology of the base space,

and hence of the moduli space of trigonal curve of genus 5, is L11t12 + L3t5 + Lt2 + 1.

3.3 Trivial configurations

As we promised in the computation of the spectral sequences in Tables II.3 and II.4,

we now consider the remaining configurations and prove that they have trivial twisted
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Borel-Moore homology.

Configurations (42)-(43)

Both these configurations are equivalent to the configurations of singularities of a

plane quintic that is the union of a conic and a singular cubic. To be more precise, in

the first type, the two curves meet each other at 6 distinct points and P is any of the

points of intersection, while in the second one they intersect at the singular point of the

cubic, that is P.

P
P

Figure II.4: Configurations of type (42)-(43).

Both configuration spaces can be fibered over the space of conics through P. If we

denote the conic by C, the fibers will be respectively isomorphic to B(C\{P}, 5) and

B(C\{P}, 4). They both have trivial twisted Borel-More homology by Lemma I.4.1.

Configurations (44)-(45)-(46)

These configurations are all obtained by blowing up a singular point in the configu-

ration of type 37 in [Gor05], defined by the intersection points of two lines and a cubic

curve in P2 having one singular point. To be more precise, configurations of these types

correspond to the blow up at P , where P has to be an ordinary double point.

In the first type, P is defined as the point of intersection between a line and the

cubic, in the second one, it is the point of intersection between the two lines, and finally

it is the singular point of the cubic. Note that, in the first two configuration spaces, the

cubic need not to be irreducible: it can decompose into three concurrent lines or into the

union of a conic and a line tangent to it. However, this cannot happen for configuration

(46), otherwise P would not be an ordinary double point. The two reducible cases,

with P not an ordinary double point, define configurations (59) and (55), respectively.

Configuration (55) was already considered as configuration (K), while configuration (59)

will be considered later.
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r

s

P
r

s
P

r

s

P

Figure II.5: Configurations of type (44)-(45)-(46).

Configuration spaces of type (44), (45), (46) can then all be fibered over the space

parametrizing the two lines r, s. The fibers are isomorphic to the quotient of B(C∗, 2)×
B(C, 3), B(C, 3)×B(C, 3) and B(C, 3)×B(C, 3), respectively, by the involution given

by exchanging the two lines. Since they have all trivial twisted Borel-Moore homology,

the homology of the configuration spaces will be trivial as well.

Configuration (49)

Configurations of type (49) are obtained by the same plane curve considered for type

(J), where P is defined as the point of intersection of a conic and the line.

P

Q

BA

CD

Figure II.6: Configuration of type (49).

Then X(49) can be fibered over B̃(P2\{P}, 4) ∋ {A,B,C,D}. Once these points

are fixed, we notice that the conic C passing also through P is uniquely determined.

Therefore the fiber Y is itself a fiber bundle over the space L ∼= P1\{5 points} of lines
not passing through any of the points A,B,C,D and not tangent to C. The fiber Z is

defined as the space of conics, passing through {A,B,C,D}, not tangent to l ∈ L and

different from C.
The space Z is isomorphic to P1\{0, 1,∞} ∼= C\{0, 1}. Moreover, determining a

conic in Z is equivalent to choosing a point in l that is different to P,Q and the 2 points

of tangency T1, T2 in l. Thus, H̄•(Z,±Q) is Q in degree 1 and 0 in all other degrees.

Note also that, when moving l around A, for instance, the points of tangency in l are
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swapped. Therefore π1(L) acts on H̄1(Z,±Q) anti-invariantly and the Borel-Moore

homology of the fiber Y is defined by that of L with non-trivial coefficient system:

H̄•(L; H̄1(Z)) = Q, in degree 0.

Finally, notice that we are considering a local system on L that changes its sign under

the action of any loop in P1 around any point removed. Therefore any γ ∈ B̃(P2\{P}, 4)
transposing a pair of points must act on the fiber as the multiplication by -1. This means

that the local system induced by the fiber on B̃(P2\{P}, 4) is ±Q and by Lemmas I.4.3

and I.4.6 the twisted Borel-Moore homology of X(49) will be trivial.

Configurations (50)-(51)

In all the following configuration spaces P has to be a triple point. More precisely,

they are defined by blowing up the following curves at P.

P P

Figure II.7: Configurations of type (50)-(51).

We can fiber the configuration spaces over the space parametrizing the pairs of lines.

The fiber spaces will be then isomorphic to a quotient of B(C, 2) × B(C, 2) and C∗ ×
B(C, 3), respectively, and they both have trivial twisted Borel-Moore homology.

Configuration (52)

As above, P must be again a triple point. In particular, configurations of type (52)

are defined by two distinct conics meeting at P and three additional points A,B,C, and

a line l through P, not meeting any of A,B,C.

Then, the configuration space can be fibered over the space B̃(P2\{P}, 3) ×
(P1\{3 points}) ∋ {({A,B,C}, l)}, parametrizing the intersection points between the

two conics and the choices for the line l. Once we have fixed l, two points on it will
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P A

C B

Figure II.8: Configuration of type (52).

uniquely determine the two conics. Hence, the fiber space will be B(C, 2) whose Borel-

Moore homology will be considered with constant coefficients. In fact, when we exchange

the two conics we are actually exchanging 2 couples of points in the configuration space:

the two points lying on the line, and the two points of intersection between the excep-

tional divisor and the strict transforms of the two conics. On the other hand, there

is a natural action of S3 on the base space. By noticing that both factors have no

S3-anti-invariant classes in their homologies1, the total space will have trivial twisted

Borel-Moore homology.

Configurations (53)-(54)

These configurations are obtained by blowing up a point of intersection between two

lines and a point of intersection between a line and a conic, respectively, in the set of

9 distinct points in P2 defined as follows. Three points A,B,C are in general position,

defined as the intersection points of three distinct lines. The other six points are defined

as the intersection points between the three lines AB,BC,AC and a conic not tangential

to the lines. This is configuration 39 in [Gor05].

P

BC

P = A

C B

A

Figure II.9: Configurations of type (53)-(54).

1For the factor B̃(P2\{P}, 3) this follows by Lemmas I.4.3 and I.4.6. While for the second fac-
tor, this can be deduced by computing the Borel-Moore homology of P1\{3 points} in terms of S3-
representations, that is S3(1) in degree 2 and S2,1 in degree 1.
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As in [Gor05], we want to fiber both configuration spaces over the spaces parametriz-

ing the points of intersection between the three lines. When we choose P as one of these

points, e.g. A, the total space will be fibered over B(P2\{P}, 2) instead of B(P2, 3).

On the other hand, when P is the intersection point between the conic and a line, the

configuration space is fibered over a quotient of B(P2\{P}, 2)×C∗ ∋ ({B,C}, A). The
fiber space, denoted by Y in [Gor05], will be in both cases the same, i.e. a fiber bundle

over B(C∗, 2) × B(C∗, 2), the configuration space of 2 points on each of AB,BC, ex-

cluding A,B,C, with fiber isomorphic to C∗ minus a point. Therefore it will have the

same Borel-Moore homology, which is Q in degree 5, Q(1)2 in degree 6, Q(2) in degree

7 and zero in all other degrees.

However we will have to consider the action of the fundamental group of the new

base space that is either B(P2\{P}, 2), or it contains it as a factor of a product. The

fundamental group will then be the restriction of the symmetric group S3 to {B,C}:
S2. Thus, we only need to consider local systems of coefficients corresponding to the

restrictions of the representations of S3: trivial and sign representation will restrict

respectively to trivial and sign representation on S2, while the 2-dimensional irreducible

representation restricts to the direct sum of the trivial and sign representation.

We have that P̄ (B(P2\{P}, 2),Q) = L−4t8 and P̄ (B(P2\{P}, 2),±Q) = L−3t6, by

Lemmas I.4.3, I.4.4 and I.4.7. So we will get a similar E2-term of the spectral sequence,

with the only difference that the action of S2 on H̄6(Y ;±Q) = Q(1)2 now must be

reducible.

7 Q(5)

6 Q(4) Q(5)

5 Q(4)

6 7 8 9 10

The differentials d28,5 : E
2
8,5 → E2

6,6, d
2
8,6 : E

2
8,6 → E2

6,7 must be non-trivial because other-

wise we would get non-trivial classes in the main spectral sequence whose corresponding

cohomology is not divisible by that of GL2, contradicting section II.2.1. Therefore, also

these configuration spaces have trivial twisted Borel-Moore homology.

Configurations (56)-(57)

These configuration spaces are the configurations of singularities obtained by blowing

up the following curves at P.
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P
P

Figure II.10: Configurations of type (56)-(57).

Consider first configurations of type (56). Similarly to configurations (53), (54), we

fiber the space over the points of intersection between the lines, that is B̃(P2\{P}, 2).
These two points, together with P, uniquely determine the three lines. The other 4

points left, together with P , will uniquely determine the conic. The fiber space is then

isomorphic to the quotient of C∗×C∗×B(C∗, 2) by the involution exchanging the first

two factors. Thus it has twisted Borel-Moore homology equal to Q in degree 4 and

Q(1) in degree 5. The fundamental group of the base space acts by exchanging the two

points, and thus induces an S2-action on the line not passing through P that is the one

described in Lemma I.4.2. Therefore, the Borel-Moore homology class in degree 5 must

be anti-invariant under such an action, while the class in degree 4 will be invariant. By

applying Lemmas I.4.3, I.4.4 and I.4.6 we have that the second page of the spectral

sequence must have the following form:

5 Q(4)

4 Q(4)

6 7 8

where the differential will be an isomorphism.

The second configuration space can be fibered over the space parametrizing the three

lines through P. Since it suffices to fix 5 points on those lines to determine the conic,

the fiber space will be a quotient of B(C, 2) × B(C, 2) × C, which has trivial twisted

Borel-Moore homology.

Configurations (58)-(59)

These configuration spaces are both defined by 5 lines in the projective plane. The

first is obtained by blowing up any of the singular points of 5 lines in general position,
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while the second one is obtained by blowing up the point of intersection of three concur-

rent lines, in a plane quintic defined by such three lines and two additional lines meeting

at a point outside the other lines.

P

P

Figure II.11: Configurations of type (58)-(59).

We can fiber both configuration spaces over the set of lines meeting at P, thus:

X(58) → B(P1, 2) and X(59) → B(P1, 3).

The fiber spaces will then be the spaces of the remaining lines defining the configuration

that are, respectively, B(C2, 3) and B(C2, 2), by duality. Both have trivial twisted

Borel-Moore homology by Lemma I.4.1.





Chapter III

Stable cohomology of Tg

This chapter is based on [Zhe21b].

1 Introduction and results

In this chapter, we give a description of the stable rational cohomology of Tg by

studying the loci of trigonal curves lying on each Hirzebruch surface, hence each stratum

in the Maroni stratification. We will use again Gorinov-Vassiliev’s method [Vas99],

[Gor05], [Tom05b], which reduces the computation of the cohomology of complements

of discriminants to the study of a filtration on a geometric realization of the discriminant,

based on a classification of its singular loci. In particular we won’t consider the whole

classification, but only the families of singular configurations having low codimension in

the vector space in which the discriminant is defined.

Our starting point will be the result in [Zhe21a], where we computed the rational

cohomology of the moduli space of trigonal curves of genus 5. For g = 5, in fact, all

trigonal curves lie on the first Hirzebruch surface F1 as smooth divisors. However, F1

and the other Fn’s contain other trigonal curves of higher genera. For higher values of

g, the classification of the singular loci of such curves is more complicated, but we will

see that the families of singular configurations we will consider have a description which

is analogous to the one we had for g = 5. This will allow us to compute the cohomology

of trigonal curves lying on Fn in a certain range.

59
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We will exhibit the procedure for any Hirzebruch surface of degree n ≥ 0 in order

to compute the stable cohomology of the locus of trigonal curves lying on it, defined as

Nn := {[C] ∈ Tg|C has Maroni invariant n}.
We prove first that the cohomology of each Nn stabilizes and compute it in the stable

range.

By considering then the spectral sequence associated to the Maroni stratification of

Tg, we show that almost all the cohomology classes of all strata Nn are canceled by

non-trivial differentials in the E1 and E2 pages.

We finally obtain a description of the stable cohomology of Tg, for g sufficiently large.

Precisely,

Theorem 1.1. The rational cohomology of Tg, in degree i <
⌊
g
4

⌋
, is

H i(Tg;Q) =



Q, i = 0;

Q(−1), i = 2;

Q(−2), i = 4;

0, otherwise.

Remark 4. Note that, if g ≡ 2mod 4, the above description of the rational cohomology

of Tg holds for i ≤
⌊
g
4

⌋
.

In [PV15a] Patel and Vakil proved that the rational Chow ring A∗
Q(Tg) coincides

with its tautological ring, denoted R∗
Q(Tg), which is defined as the subring generated by

the pullback of the tautological classes in A∗
Q(Mg). In particular, they proved that it is

generated by a single class in codimension 1, the kappa class κ1. Then, our main result

also implies that

Corollary 1.2. For g, i as above,

H i(Tg;Q) =

R
i/2
Q (Tg), i even;

0, i odd.

Remark 5. For g = 3, 4, 5, H•(Tg;Q) is completely known from [Loo93], [Tom05b],

[Zhe21a], respectively. However, in none of these cases the cohomology ring is tautolog-

ical.
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From the proof of our main result, we can also deduce the stable cohomology of the

moduli space T †
g of framed triple covers, i.e. the moduli space parametrizing pairs (C, α)

with C a smooth curve of genus g and α a degree 3 map from C to a fixed P1. Notice

that T †
g is the underlying moduli space of the stack H†

3,g, defined in [PV15a].

Corollary 1.3. Let g ≥ 6, the rational cohomology of T †
g , in degree i <

⌊
g
4

⌋
, is

H i(T †
g ;Q) =



Q, i = 0;

Q(−1), i = 2;

Q(−3), i = 5;

Q(−4), i = 7;

0 otherwise.

Remark 6. Let us remark that our results are in contradiction with [PV15a, Theorems

A and B]. For a sufficiently large g, the rational Chow ring of T †
g is strictly smaller than

that of Tg, which has a different description from the one given by Patel and Vakil. In

fact, there was an error in the last section of their preprint concerning relations between

kappa classes, which has been corrected by Canning and Larson in [CL21a].

The chapter is organized as follows. In section 2 we introduce the main ingredients

that we will need in order to prove the results that we have just stated. Then, in section

3 we will apply Gorinov-Vassiliev’s method to our setting and we prove in section 4

that the generalized Leray-Hirsch theorem can be applied. Finally, we give a proof of

Theorem 1.1 and of Corollary 1.3 in section 5.

2 Trigonal curves as divisors in Fn and codimensions

of spaces of sections

In this section we introduce the notation and some results that we will use throughout

this chapter. Recall once more from Prop I.2.2 that any trigonal curve of genus g can

be embedded in a Hirzebruch surface Fn as a divisor of class

C ∼ 3En +
g + 3n+ 2

2
Fn,

with Maroni invariant n, such that g ≡ nmod 2 and 0 ≤ n ≤ (g + 2)/3.
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Definition 8. Define Vd,n to be the vector space of global sections of OFn(3En + dFn).

The discriminant locus Σd,n ⊂ Vd,n is the closed subset of sections defining singular

curves and Xd,n is its complement in Vd,n.

There is an explicit way to compute the dimension of Vd,n. Recall that a further

description of a Hirzebruch surface Fn, with n ≥ 1, is given by blowing up the weighted

projective space P(1, 1, n) at its singular point [0, 0, 1]:

Fn = Bl[0,0,1]P(1, 1, n),

where P(1, 1, n) = ProjC [x, y, z] such that deg x = deg y = 1 and deg z = n.

Then, a polynomial f defining a trigonal curve of degree d in P(1, 1, n) is of the form:

f(x, y, z) = αd−3n(x, y)z
3 + βd−2n(x, y)z

2 + γd−n(x, y)z + δd(x, y) = 0 (III.1)

where αd−3n(x, y), βd−2n(x, y), γd−n(x, y), δd(x, y) are homogeneous polynomials in the

coordinates x, y, of degrees d− 3n, d− 2n, d− n, d respectively, with d ≥ 3n.

We can visualize the coefficients in the following figure:

d− 3n+ 1 • . . . . . . •
d− 2n+ 1 • • . . . • •
d− n+ 1 • • . . . . . . • •
d+ 1 • • . . . . . . . . . • •

(III.2)

where the j-th row, j = 1, . . . , 4, corresponds to the coefficients of monomials xaybz3−j+1

with a + b = d− n(3− j + 1). Counting the number of parameters we get that vd,n :=

dimCVd,n = 4d + 4 − 6n, when n ≥ 1. Note that this also agrees when n = 0 : Vd,0

is isomorphic to the vector space of polynomials of bidegree (3, d), with d = g+2
2
, on

P1 ×P1, i.e.

Vd,0 ∼= C [x0, x1, y0, y1]3,d
∼= C4(d+1).

We now want to consider elements in Vn,d which are singular at configuration spaces

B(Fn, N), discussed in section I.4. Since we are dealing with projective surfaces, re-

quiring any polynomial f ∈ Vn,d to be singular at any fixed point in Fn will impose 3

linearly independent conditions. If we require f to be singular at a configuration of N
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points we expect the number of imposed conditions to be 3N and we will prove that

this is indeed what happens when d is sufficiently large with respect to N.

Lemma 2.1. Fix N ≥ 1. For any n ≥ 0, the restriction of

{(f, p1, . . . , pN) ∈ Vd,n ×B(Fn, N)|p1, . . . , pN ∈ Sing(f)} π−→ B(Fn, N)

to the locus where at most two points pi lie on the same line of the ruling is a vector

bundle of rank vd,n − 3N provided d ≥ 2N + 3n− 1 holds.

Remark 7. Before proving the lemma, note that we can further simplify the assumption

that no more than two points lie on the same line of the ruling, by considering only

the case where they all belong to distinct lines of the ruling. Clearly, curves which are

singular at pairs of points in the same line of the ruling are easier to treat and they

can be reduced to curves of smaller degree which are singular at points lying on distinct

lines of the ruling. The reason behind this is that, in both cases, the vector subspaces

in Vd,n of curves which are singular at these points have the expected codimension.

In fact, let us consider first a set of N = 2k points consisting of k couples of points

on k distinct lines of the ruling. It is easy to show that the vector subspace of curves

which are singular at these 2k points is non-empty for d ≥ 3
2
(k+n)− 1, which is always

satisfied when d ≥ 2N + 3n− 1, and it is given exactly by all polynomials of the form

ℓ1 · · · ℓkg, (III.3)

where ℓ1, . . . , ℓk are the equations of the k lines of the ruling containing the 2k points

and g is a section of OFn(3En + (d − k)Fn), vanishing at the 2k prescribed points.

Then, counting parameters as we have done in (III.2), the vector subspace generated by

these polynomials has dimension 4(d− k) + 4− 6n− 2k, which is non-negative by the

assumption d ≥ 3
2
(k + n)− 1, hence it has codimension 6k = 3N in Vd,n.

This also holds if we consider a set of N points consisting of 2k points, defined as

above, together with h points, each lying on a distinct line of the ruling, all different

from the k lines of the ruling containing the 2k points. In this case the vector subspace of

curves which are singular at these N points is given exactly by polynomials of the form

(III.3), where we further require g to be singular at the h points. As we will prove below,

this last assumption will increase the codimension by 3h and thus the codimension in

Vd,n of the vector subspace generated by these polynomials will be 6k + 3h = 3N.
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Proof. By the above remark, we will assume that all pi’s lie on distinct lines of the

ruling. Following the proof of [Tom20, Lemma 4], let us fix a set of N distinct points

{p1, . . . , pN} ⊂ Fn. Assume first that n ≥ 1, and consider the evaluation map

C [x, y, z]d
ev−→M3,N(C)

which assigns to each f(x, y, z) = α(x, y)z3+β(x, y)z2+γ(x, y)z+δ(x, y) in the weighted

polynomial ring C [x, y, z]d, with deg x = deg y = 1 and deg z = n, a 3×N matrix whose

i-th column is defined by 


∂f/∂x(pi)

∂f/∂y(pi)

∂f/∂z(pi)

 if pi ∈ Fn\En;


∂α/∂x0(pi)

∂α/∂y0(pi)

β(pi)

 if pi ∈ En;

where x0, y0 denote the coordinates in En
∼= {([0, 0, 1] , [x0, y0]) ∈ {[0, 0, 1]} × P1} ⊂

Bl[0,0,1]P(1, 1, n) ∼= Fn. The evaluation map is a linear map and its kernel is exactly the

fiber of π over {p1, . . . , pN}. Therefore, in order to prove the lemma, it is sufficient to

show that ev is surjective for d ≥ 2N + 3n− 1.

Consider first the case where p1 ∈ Fn\En. After an appropriate change of coordinates

we may assume that p1 = [1, 0, 0] . Fix a degree r ≥ 3n+1 and consider the polynomials

φ0 = xrℓ22 · · · ℓ2N ,

φ1 = xr−1yℓ22 · · · ℓ2N ,

φ2 = xr−nzℓ22 · · · ℓ2N .

where ℓ2, . . . , ℓN are the equations of the lines of the ruling containing p2, . . . , pN . All

φi vanish with multiplicity 2 at p2, . . . , pN and hence they are all sent to matrices with

trivial entries outside the first column. Moreover, since p1 ̸∈ ℓi, for i ≥ 2, then

ℓ2 · · · ℓN(p1) = a0 ̸= 0;
∂ℓ2 · · · ℓN

∂x
(p1) = Na0;

∂ℓ2 · · · ℓN
∂y

(p1) = a1 ̸= 0.
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and the evaluations on such polynomials are

ev(φ0) =


ra20 + 2Na20 0 . . .

2a1 0 . . .

0 0 . . .

 ,

ev(φ1) =


0 0 . . .

a20 0 . . .

0 0 . . .

 ,

ev(φ2) =


0 0 . . .

0 0 . . .

a20 0 . . .

 .

Hence ev(φ0), ev(φ1), ev(φ2) are linearly independent generators for the subspace in

M3,N(C) of matrices with zeros outside the first column.

Next, consider the case where p1 ∈ En : it is of the form ([0, 0, 1] , [x0, y0]) ∈
Bl[0,0,1]P(1, 1, n), and we may assume p1 = ([0, 0, 1] , [1, 0]), after an appropriate change

of coordinates. We now define

φ0 = xr−3nz3ℓ22 · · · ℓ2N ,

φ1 = xr−3n−1yz3ℓ22 · · · ℓ2N ,

φ2 = xr−2nz2ℓ22 · · · ℓ2N ,

where ℓ2, . . . , ℓN are defined as in the previous case. The evaluations on these polyno-

mials now are

ev(φ0) =


(r + 2N − 3n)a20 0 . . .

2a0a1 0 . . .

0 0 . . .

 ,

ev(φ1) =


0 0 . . .

a20 0 . . .

0 0 . . .

 ,
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ev(φ2) =


0 0 . . .

0 0 . . .

a20 0 . . .

 ,

which are again linearly independent generators for the subspace inM3,N(C) of matrices

with zeros outside the first column.

Hence, we have proved that all matrices in M3,N(C) with trivial entries outside

the first column belong to the image of ev and by symmetry this can be generalized

to all the other columns, proving the surjectivity of ev. This has been proved using

polynomials φi which have degree d ≥ r + 2(N − 1) ≥ 2N + 3n − 1. This bound is

actually sharp: if En is a component of the curve, then we can refer to (III.2): by

counting the number of parameters of a polynomial f defining a curve having En as a

component and N distinct singular points on En, we get that d ≥ 2N+3n−1, as desired.

Finally, when n = 0, recall that Vd,0 ∼= C [x0, x1, y0, y1]3,d , hence any polynomial f ∈
C [x0, x1, y0, y1]3,d is homogeneous of degree 3 in the variables x0, x1 and homogeneous of

degree d in the variables y0, y1, at the same time. By definition, f is singular at a point

p if and only if ∂f
∂x0

(p) = ∂f
∂x1

(p) = ∂f
∂y0

(p) = ∂f
∂y1

(p) = 0, and these are actually three

independent conditions. In fact, if we denote p = ([X0, X1] , [Y0, Y1]) the coordinates

of p ∈ P1 × P1, then f(x0, x1, Y0, Y1) = g(x0, x1) ∈ C [x0, x1]3 and f(X0, X1, y0, y1) =

h(y0, y1) ∈ C [y0, y1]d . By Euler’s formula both on g and h, the vanishing of any three

partial derivatives forces also the fourth one to be zero.

So we can define the evaluation map as

C [x0, x1, y0, y1]3,d
ev−→M3,N(C)

f 7→


∂f/∂x0(p1) . . . ∂f/∂x0(pN)

∂f/∂x1(p1) . . . ∂f/∂x1(pN)

∂f/∂y0(p1) . . . ∂f/∂y0(pN)

 .

Notice that, since E0 is now a line of the ruling distinct from the one containing F0,

there is no need to discuss if p1 ∈ E0 or not. Choose coordinates such that p1 =

([1, 0] , [1, 0]) ∈ P1 ×P1 and define

φ0 = xr0ℓ
2
2 · · · ℓ2N , φ1 = xr−1

0 x1ℓ
2
2 · · · ℓ2N , φ2 = xr−1

0 y0ℓ
2
2 · · · ℓ2N ,
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where r ≥ 1 and ℓ2, . . . , ℓN are again the equations of the lines of a ruling containing

p2, . . . , pN . One can check that the evaluations on these polynomials are again linearly

independent generators for the subspace in M3,N(C) of matrices with zeros outside

the first column, hence ev is again surjective and the polynomials φi now have degree

d ≥ r + 2(N − 1) ≥ 2N − 1, which agrees with what we have proved for n ≥ 1.

3 Vassiliev’s spectral sequence

In this section, we compute the first columns of the Vassiliev’s spectral sequence,

hence the stable part of the cohomology of Xd,n.

First of all, recall that the rational cohomology of Xd,n is equivalent to the Borel-

Moore homology of Σd,n by Alexander duality, (I.9):

H̃•(Vd,n\Σd,n;Q) ∼= H̄2vd,n−1−•(Σd,n;Q)(−vd,n).

Then, in order to compute the Borel-Moore homology of Σd,n we apply Gorinov-

Vassiliev’s method, which consists in constructing a simplicial resolution of Σd,n,

admitting a filtration such that the Borel-Moore homology of the strata define a

spectral sequence converging to that of Σd,n.

Precisely, assume that d ≥ 2N + 3n − 1, let I ⊂ N = {1, . . . , N} and define the

N -cubical spaces of section I.3 as {χI}I⊂N , {χI}I⊂N , where, if I = {i1, . . . , ir} such that

ij ̸= N for any j = 1, . . . , r,

χI := {(f, y1, . . . , yr) ∈ Vd,n ×
r∏

j=1

B(Fn, ij)|y1 ⊂ · · · ⊂ yr ⊂ Sing(f)},

χ∅ := Σd,n, and χI∪{N} := {(f, y1, . . . , yr) ∈ χI |f ∈ ΣN};

χI := {(f, y1, . . . , yr) ∈ Vd,n ×
r∏

j=1

B(Fn, ij)|y1 ⊂ · · · ⊂ yr ⊂ Sing(f)},

χ∅ := Σd,n, and χI∪{N} := {(f, y1, . . . , yr) ∈ χI |f ∈ ΣN};
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where ΣN denotes the Zariski closure of the locus in Σd,n of polynomials defining curves

with at least N distinct singular points. We then construct its geometric realization

|χ•| =

 ⊔
I⊂{1,...,N}

χI ×∆I

 / ∼,

as in section I.3, and define the increasing filtration

Fili|χ•| := Im (|χ•|i| ↪→ |χ•|) ,

with locally closed subsets

Fi := Fili\Fili−1.

By I.3.2, the filtration Fili defines a spectral sequence, called the Vassiliev’s spectral

sequence. This spectral sequence converges to the Borel-Moore homology of Σd,n, whose

E1
p,q-term is isomorphic to H̄p+q(Fp;Q).

Then, in order to compute the Borel-Moore homology of the discriminant Σd,n we

need to consider first the Borel-Moore homology of each Fi. By construction, we have

that

Fi =

 ⊔
I⊂{1,...,N};max I=i

χI ×∆I

 / ∼ .

When i < N, by Proposition I.3.3, Fi is a non-orientable simplicial bundle over χ{i}

with fiber isomorphic to the interior of a (i− 1)-dimensional simplex.

Moreover, by Lemma 2.1, since we are working under the assumption that d ≥ 2N +

3n− 1 holds, χ{i} is a complex vector bundle over B(Fn, i) of rank vd,n− 3i. Putting all

together we obtain an explicit formula for the Borel-Moore homology of Fi for i < N,

namely

H̄•(Fi;Q) = H̄•−2vd,n+6i−i+1(B(Fn, i);±Q)⊗Q(vd,n − 3i), (III.4)

which can be computed by Lemma I.4.8. In particular, for any n ≥ 0, the configuration

spaces B(Fn, k) have all the same twisted Borel-Moore homology, which is trivial for

k > 4. Thus, among the first N − 1 strata, only F1, . . . , F4 contribute non-trivially to

the Borel-Moore homology of Σd,n. They correspond to the following classification of

singular configurations:

(1) One point, [3] ;
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(2) Two points, [6];

(3) Three points, [9];

(4) Four points, [12] .

By the formula (III.4) and by Lemma I.4.8, we compute the Borel-Moore homology

of the associated strata and we get that the first columns of the E1-page of the spectral

sequence will look as the ones represented in Table III.1.

Table III.1

2vd,n − 3 Q(vd,n − 1)
2vd,n − 4
2vd,n − 5 Q(vd,n − 2)2

2vd,n − 6
2vd,n − 7 Q(vd,n − 3) Q(vd,n − 3)2

2vd,n − 8
2vd,n − 9 Q(vd,n − 4)2

2vd,n − 10
2vd,n − 11 Q(vd,n − 5)2 Q(vd,n − 5)
2vd,n − 12
2vd,n − 13 Q(vd,n − 6)2

2vd,n − 14
2vd,n − 15 Q(vd,n − 7)
2vd,n − 16
2vd,n − 17 Q(vd,n − 8)
2vd,n − 18

1 2 3 4 . . .

Remark 8. Notice that this does not agree with the first 5 columns of the spectral

sequence obtained in [Zhe21a, Table 3]. Indeed, for g = 5, we have that the inequality

d ≥ 2N + 2 is not satisfied when N ≥ 2, hence the corresponding configurations do not

have the expected codimension.

Remark 9. For n = 0, the spectral sequence agrees with the first 4 columns of the

spectral sequence in [Tom05b, Table 3], twisted by Q(vd,0 − 16) in degree 2(vd,0 − 16).

When i = N , recall that

FN =

 ⊔
I⊂{1,...,N};max I=N

χI ×∆I

 / ∼ .
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Following [Tom14, Lemma 18] we can further stratify the stratum FN as the union of

locally closed substrata

ϕ0 =
(
χ{N} ×∆{N}

)
/ ∼, ϕl =

(
χI∪{N} ×∆I∪{N}

)
/ ∼; 1 ≤ l ≤ N − 1.

Then, for any of these substratum we have natural maps

ϕ0 → χ{N}, ϕl → χ{l,N},

where ϕ0
∼= χ{N} by definition of ∼, and the fiber of ϕl → χ{l,N} is the interior of a

l-dimensional simplex: it is a cone over the fiber of Fl → χ{l}, which by [Gor05, Theorem

3 and Lemma 1] is again the interior of a (l − 1)-dimensional simplex.

Moreover, for any f ∈ ΣN , the projections (f, p1, . . . , pN) → f , (f, p1, . . . , pN) 7→
(f, p1, . . . , pl) define surjections

{(f, p1, . . . , pN) ∈ Vd,n ×B(Fn, N)|p1, . . . , pN ∈ Sing(f)} → χ{N},

{(f, p1, . . . , pN) ∈ Vd,n ×B(Fn, N)|p1, . . . , pN ∈ Sing(f)} → χ{l,N},

where the domain, by the assumption that d ≥ 2N + 3n − 1 and by Lemma 2.1, is a

vector bundle of rank vd,n− 3N over B(Fn, N), which has dimension 2N. Therefore, we

have that

dimR ϕ0 ≤ 2vd,n − 2N and dimR ϕl ≤ 2vd,n − 2N + l; 1 ≤ l ≤ N − 1.

Then, since the largest dimensional stratum is ϕN−1, we have dimR FN =

dimR ϕN−1 ≤ 2vd,n−N − 1. So the Borel-Moore homology of FN must vanish in degree

k ≥ 2vd,n − N. As a consequence, when considering the whole spectral sequence, we

have that, for k ≥ 2vd,n − N, the Borel-Moore homology of Σd,n is defined only by the

strata F1, . . . F4. By Alexander duality, this means that the cohomology of Xd,n is given

by that of the strata F1, . . . F4, for k < N ≤ d−3n+1
2

.

4 Group action on Hirzebruch surfaces

In this section we compute the rational cohomology of each stratum of the Maroni

stratification, by considering the action of the automorphism group of Fn for any n ≥ 0.
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Let Gn denote the automorphism group of Fn. When n ≥ 1, Gn is isomorphic

to Aut(P(1, 1, n)), which is the group of automorphisms of the weighted graded ring

C [x, y, z] with deg x = deg y = 1 and deg z = n, fixing the singular point [0, 0, 1]. Such

automorphisms are of the form 
x 7→ a1x+ a2y

y 7→ b1x+ b2y

z 7→ cz + q(x, y),

where a1, a2, b1, b2, c ∈ C are such that c(a1b2 − a1b2) ̸= 0 and q ∈ C [x, y]n . Note that

C [x, y]n
∼= Cn+1 is contractible, therefore Gn is homotopy equivalent to the reductive

group C∗ ×GL2.

The coarse moduli space Xd,n/(C
∗×GL2) parametrizes isomorphism classes of triples

(C,L,H), where C is a trigonal curve of genus g = 2d− 3n− 2, L is the linear system

defining its trigonal structure and H a hyperplane section of Fn. Thus Xd,n/(C
∗×GL2)

is an orbifold Cn+1-bundle over Nn = {[C] ∈ Tg|C has Maroni invariant n}, and we

can deduce the stable rational cohomology of the latter from that of Xd,n/(C
∗ ×GL2).

Let us observe that, when n ≥ 1, a generalized version of the Leray-Hirsch theorem

can be applied to H•(Xd,n;Q) in order to recover the rational cohomology of Xd,n/GL2

from that of Xd,n and of GL2.

Proposition 4.1. For n ≥ 1, there is an isomorphism of graded Q-vector spaces with

mixed Hodge structures

H•(Xd,n/GL2;Q)⊗H•(GL2;Q) ∼= H•(Xd,n;Q).

Proof. By Theorem I.3.4 it is sufficient to prove the surjectivity of the map on coho-

mology

ρ∗ : H̄2vd,n−i−1(Σd,n;Q) ∼= H i(Xd,n;Q)→ H i(GL2;Q) ∼= H̄2 dimM−i−1(D;Q),

induced by the orbit map ρ : GL2 → Xd,n, where M is the space of 2× 2 matrices and

D is the discriminant in M.
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The generators of H̄•(D;Q) are [D] in degree 6 and [R] in degree 4, where R ⊂ D

is the subvariety of matrices with zeros in the first column. From [Zhe21a, Section 3.1]

we already know that, for n = 1, ρ∗ is surjective: the preimages of the generators [D]

and [R] are a non-zero multiple of the class [Σd,n] ∈ H̄2vd,1−2(Σd,1;Q) and a non-trivial

linear combination of the classes
[
Σ

(1)
d,n

]
,
[
Σ

(2)
d,n

]
∈ H̄2vd,1−4(Σd,1;Q), respectively, where

Σ
(1)
d,n is the subspace of polynomials in Vd,n which are singular at a point on En and Σ

(2)
d,n

is the subspace of polynomials in Vd,n which are singular at a point on a line of a ruling.

From Table III.1, we observe that the class in degree 2vd,n − 2 and the two classes in

degree 2vd,n − 4 appear in each Vassiliev’s spectral sequence, with n ≥ 1, therefore ρ∗

must be surjective for any n ≥ 1.

In fact, by recalling that elements of Vd,n are polynomials of the form (III.1), if we

consider the extension of the orbit map D → Σd,n, and the subvariety R, the latter acts

on Vd,n by (
0 c1

0 c2

)
· f(x, y, z) = C(c1, c2)y

d−3ng(y, z),

for a fixed f ∈ Xd,n, where C(c1, c2) ∈ C and g is a weighted polynomial in C [y, z]3n ,

with deg y = 1, deg z = n.

Thus, elements in R are sent to polynomials defining curves which are union of the

line of the ruling of equation y = 0, with multiplicity d − 3n, and some other curve of

lower degree passing through a point of this line of the ruling. Similarly elements in

D will be sent to polynomials defining curves that are union of some line of the ruling,

with multiplicity d−3n, and another curve meeting this line of the ruling at some point.

Therefore the preimages of [D] and [R] through ρ∗ must be a non-zero multiple of [Σd,n]

and a non-trivial linear combination of
[
Σ

(1)
d,n

]
,
[
Σ

(2)
d,n

]
, respectively, as predicted.

With the above result, we are now able to give a description of the rational cohomol-

ogy of Nn, in degree i ≤
⌊
d−3n

2

⌋
.
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Proposition 4.2. The rational cohomology of Nn, for n ≥ 1 and in degree i ≤
⌊
d−3n

2

⌋
,

is either

H i(Nn;Q) =



Q, i = 0,

Q(−1), i = 2,

Q(−3), i = 5,

Q(−4), i = 7,

0, otherwise;

(III.5)

or

H i(Nn;Q) =



Q, i = 0,

Q(−1), i = 2,

Q(−2), i = 3,

Q(−2), i = 4,

Q(−3), i = 5,

Q(−4), i = 7,

0, otherwise.

(III.6)

The rational cohomology of N0, in degree i ≤
⌊
g+2
4

⌋
, is

H i(N0;Q) =


Q, i = 0,

Q(−3), i = 5,

0, otherwise.

(III.7)

Proof. Consider first the case n ≥ 1. By applying Proposition 4.1, the rational coho-

mology of the quotient Xd,n/GL2, in degree i ≤
⌊
d−3n

2

⌋
, will be

H i(Xd,n/GL2;Q) =



Q, i = 0;

Q(−2), i = 3;

Q(−3), i = 5;

Q(−5), i = 8;

0, otherwise.

(III.8)
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Consider then the spectral sequence associated to the bundle

Xd,n/GL2
C∗
−→ Xd,n/(C

∗ ×GL2),

which will look either as

Table III.2

1 Q(−1) Q(−2) Q(−4) Q(−5)
0 Q Q(−1) Q(−3) Q(−4)

0 1 2 3 4 5 6 7 8 . . .

or as

Table III.3

1 Q(−1) Q(−2) Q(−3) Q(−3) Q(−4) Q(−5)
0 Q Q(−1) Q(−2) Q(−2) Q(−3) Q(−4)

0 1 2 3 4 5 6 7 8 . . .

where in both spectral sequences the differentials must be non-trivial because of

(III.8).

Both spectral sequences also imply that H2(Nn;Q) is generated by the Euler class

ξ of the C∗-bundle, which is a non-zero multiple of κ1, by [PV15a]. Moreover, the

spectral sequence represented in Table III.3 would imply that H4(Nn;Q) is generated

by κ1 · ξ = ακ21 ̸= 0.

Hence, the choice of the spectral sequence corresponds to verify if κ21 = 0 holds in

H4(Nn;Q) and we cannot determine this a priori. Thus, from Tables III.2 and III.3 we

obtain two possible description of the cohomology of Nn, which are (III.5) and (III.6),

respectively.

Here, notice that the stable range i ≤
⌊
d−3n

2

⌋
is the same obtained for

H i(Xd,n/GL2;Q). Indeed, if we had a non-trivial class in E
⌊ d−3n

2 ⌋,0
2 in Tables III.2

and III.3, then additional non-trivial classes would also appear in H i(Xd,n/GL2;Q),

for i ≤
⌊
d−3n

2

⌋
.

Finally, when n = 0, the group G0 acting on F0 is different from those we have

considered when n ≥ 1. However, also in this case a generalized version of Leray-

Hirsch theorem can be applied. Indeed, G0 is exactly the group considered in [Tom05b,
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Section 3.1]. Precisely G0 is a reductive group which is isogenous to C∗ × SL2 × SL2,

whose cohomology is known. The isogeny ι : C∗ × SL2 × SL2 → G0 is an isogeny

between connected algebraic groups and therefore ι induces an isomorphism on rational

cohomology.

Thus, the rational cohomology of Xd,0/G0 has already been computed in [Tom05b,

Section 3.7] and by applying the generalized version of Leray-Hirsch theorem we get

(III.7).

Remark 10. From the rational cohomology of T5, computed in chapter II, we can estab-

lish that, when g is odd, the cohomology of the stratum N1 is described by (III.5). This

is due to the fact that N1 is open in Tg and the fundamental class of its complement is

a non-zero multiple of κ21. Therefore, from the description of the rational Chow ring of

T5 in [CL21a, Theorem 1.1] we can conclude that κ21 = 0 in H4(N1;Q).

5 Maroni stratification

Recall that Tg has a natural stratification by the Maroni invariant, (I.7):

N⌊ g+2
3 ⌋ ⊂ · · · ⊂ Ngmod 2 = Tg,

where Nn = {[C] ∈ Tg|C has Maroni invariant ≥ n} with 0 ≤ n ≤
⌊
g+2
3

⌋
and

g ≡ nmod 2. Notice that Nn = Nn\Nn+2, so we have indeed computed the cohomology

of the strata in the Maroni stratification of Tg, within a certain range.

In order to deduce the cohomology of Tg from that of the strata, we consider the

spectral sequence associated with this stratification. Recall that

dimNn = 2g + 2− n− δ0,n,

so that each Nn+2 has codimension 2 in Nn with the sole exception of N2 ⊂ Tg, which
is a divisor for g even. Moreover, observe from Proposition 4.2 that N0 is the only

stratum having different cohomology from the other strata. Consequently, we will need

to distinguish the cases for g even and odd.
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5.1 Case g even

Suppose first that g is even. We can recover the rational cohomology of Tg, in a

certain range, from the Gysin spectral sequence in Borel-Moore homology induced by

the Maroni stratification (I.7).

Precisely, the E1- page of the spectral sequence is obtained by considering in each

column the Borel-Moore homology of each stratum Nn. We will twist the whole spectral

sequence by Q(− dim Tg) in order to get the fundamental class of Tg in degree 0.

Recall also from Proposition 4.2 that, for n ≥ 2 we have two possible descriptions

for the cohomology of each stratum.

Assume first that the cohomology of each stratum, except N0, in the Maroni strati-

fication is given by (III.5). The corresponding spectral sequence is represented in Table

III.4.

Table III.4

N6 N4 N2 N0

. . . -4 -3 -2 -1 0

Q 0
Q(−1) -1

-2
Q(−2) -3

Q(−3) -4
Q(−3) -5

Q(−4) Q(−4) -6
Q(−5) -7

Q(−5) -8
Q(−6) Q(−6) -9

Q(−7) -10
Q(−7) -11

. . . Q(−8) -12

. . . -13

. . . Q(−9) -14

Let us consider the differentials highlighted in Table III.4. The targets of these

differentials are the 0-th or 2-nd cohomology group of a stratum, which are 1-dimensional

by Proposition 4.2. Hence the differentials in the stable range may only have rank 0 or

1.

To check whether they have rank 1 or not, it suffices to study both the fundamental

class [Nn] and the generator of H2(Nn;Q), if n ≥ 1, for each stratum Nn, in Tg. This
has been already done in [PV15b] and [PV15a].
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Penev and Vakil proved in [PV15b, Theorem 3.3] that any Chow class in Nn is the

restriction of a tautological class onMg. By abuse of notation we will denote both the

tautological class in R•(Mg) and its pullback through the restriction map in R•(Tg) in
the same way.

Patel and Vakil showed indeed that the rational Chow ring of Tg is generated by the

kappa class κ1 and that the fundamental class [Nn] is a multiple of the (n− 1)-th power

of κ1, in [PV15a, Proposition 6.2].

Moreover, for n ≥ 1, the second cohomology group H2(Nn;Q) is generated by the

fundamental class of the locus of curves tangent to En. Therefore the generator of

H2(Nn;Q) must also be a multiple of a power of κ1, precisely of a n-th power.

Then, both the fundamental classes [Nn] and the class generating H2(Nn;Q) must

vanish for n ≥ 4 by [CL21a, Theorem 1.1].

This means that the differentials d1p,q : E
1
p,q → E1

p−1,q and d
2
p,q : E

2
p,q → E2

p−2,q+1 must

all be of rank 1.

Now, assume instead that there exist at least one stratum Nn̄, whose cohomology is

described by (III.6) and denote by n̄ the minimum integer for which this happens.

If n̄ = 2, then the corresponding spectral sequence will look like the one in Table

III.5.

Table III.5

N4 N2 N0

. . . -2 -1 0

Q 0
Q(−1) -1

-2
Q(−2) -3

Q(−3) Q(−3) -4
Q(−3) Q(−3) -5

Q(−4) Q(−4) -6
Q(−5) . . . -7

. . . Q(−5) -8
Q(−6) Q(−6) -9

Thus we get two extra classes Q(−3) in degrees 5 and 6, and the latter must be

algebraic from the discussion on Table III.3. Therefore it must vanish also from by

[CL21a, Theorem 1.1] and means that the differentials highlighted in Table III.5 will be

of rank 1, while the other differentials will behave exactly as in the previous case.
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Similarly this happens for all the next strata whose cohomology is described by

(III.6).

Assume then that n̄ > 2. In this case, the corresponding spectral sequence will look

like the one represented in Table (III.6).

Table III.6

Nn̄+2 Nn̄ Nn̄−2 . . .
. . . − n̄

2 − 1 − n̄
2 − n̄

2 + 1

. . .
Q(−n̄+ 3) −2(n̄− 1) + n̄

2 + 3

−2(n̄− 1) + n̄
2 + 2

Q(−n̄+ 2) Q(−n̄+ 2) −2(n̄− 1) + n̄
2 + 1

Q(−n̄+ 1) −2(n̄− 1) + n̄
2

Q(−n̄+ 1) −2(n̄− 1) + n̄
2 − 1

Q(−n̄) Q(−n̄) −2(n̄− 1) + n̄
2 − 2

Q(−n̄− 1) Q(−n̄− 1) −2(n̄− 1) + n̄
2 − 3

Q(−n̄− 1) Q(−n̄− 1) −2(n̄− 1) + n̄
2 − 4

Q(−n̄− 2) Q(−n̄− 2) −2(n̄− 1) + n̄
2 − 5

Q(−n̄− 3) −2(n̄− 1) + n̄
2 − 6

Q(−n̄− 3) −2(n̄− 1) + n̄
2 − 7

The two additional classes that we might have here are Q(−n̄− 1) in degrees 2n̄+1

and 2n̄+2. The second class is again algebraic, hence it must vanish also from by [CL21a,

Theorem 1.1]. The differentials highlighted in Table III.6 will be of rank 1, while the

other differentials will behave exactly as in the previous case. This can be repeated to

all strata Nn, with n > n̄ when their cohomology is given by (III.6).

Therefore we may conclude that, in degree i < g
4
,

H i(Tg;Q) =



Q, i = 0;

Q(−1), i = 2;

Q(−2), i = 4;

0, otherwise;

where the bound i < g
4
is obtained by recalling from the previous section that the

cohomology of each strata Nn is known in degree lower than d−3n+1
2

, where d = g+3n+2
2

.
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For any 0 ≤ n ≤
⌊
g+2
3

⌋
, we require

i < min

{
2 codimTg Nn +

d− 3n+ 1

2
; 0 ≤ n ≤

⌊
g + 2

3

⌋}
− 1

= min

{
2(n+ 1) +

g + 3n+ 2

4
+
−3n+ 1

2
; 0 ≤ n ≤

⌊
g + 2

3

⌋}
− 1

=
g

4
.

5.2 Case g odd

Consider now the odd genus case. The E1- page of the Gysin spectral sequence

in Borel-Moore homology induced by the Maroni stratification (twisted again by

Q(− dim Tg)), with all strata having cohomology as in (III.5), is represented in Table

III.7.

Table III.7

N7 N5 N3 N1

. . . -4 -3 -2 -1 0

Q 0
-1

Q(−1) -2
Q(−2) -3

-4
Q(−3) Q(−3) -5

Q(−4) -6
Q(−4) -7

Q(−5) Q(−5) -8
Q(−6) -9

Q(−6) -10
Q(−7) Q(−7) -11

Q(−8) -12
. . . Q(−8) -13
. . . . . . -14

For the same reasons discussed in the even genus case, the differentials highlighted

in Table III.7 are all of rank 1.

If we also consider the case where there exist at least one stratum whose cohomology

is as in (III.6), we also have an analogue of the argument discussed in the even genus

case.
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Thus, the stable rational cohomology of Tg, with g odd, coincides with the one

obtained in the even genus case and precisely, in degree i < g−3
4
,

H i(Tg;Q) =



Q, i = 0;

Q(−1), i = 2;

Q(−2), i = 4;

0, otherwise;

where g−3
4

= min
{
2(n− 1) + g+3n+2

4
+ −3n+1

2
; 1 ≤ n ≤

⌊
g+2
3

⌋}
− 1.

Comparing both results, obtained for g even and odd, we get that the rational coho-

mologyH•(Tg;Q) stabilizes to its rational Chow ring, and equivalently to its tautological

ring, for g sufficiently large.

5.3 Stable cohomology of the moduli space of framed triple

covers

Finally, let us conclude by giving the proof of Corollary 1.3.

Proof of Corollary 1.3. Let us revisit the computation of the cohomology of the strata

Nn, which were obtained by considering the quotient spaces Xd,n/Hn, with Hn = C∗ ×
GL2 for any n ≥ 1 and H0 = C∗ × SL2 × SL2.

Taking first the projectivizationPXd,n, and considering then the quotientsPXd,n/C
∗,

for n ≥ 1, and PXd,0/SL2 would give us the rational cohomology, until a certain degree,

of a SL2-cover of Nn that we will denote by N †
n, for any n ≥ 0.

Consider first n = 0. As we have already noticed in section 4, in this case the

generalized version of Leray-Hirsch theorem can be applied to the whole H0 = C∗ ×
SL2 × SL2, meaning that the cohomology of Xd,0 is completely divisible by that of

C∗ × SL2 × SL2. Therefore the rational cohomology of N †
0 is simply the cohomology of
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Xd,0 divided by that of C∗ × SL2 :

H i(N †
0 ;Q) =



Q, i = 0;

Q(−2), i = 3;

Q(−3), i = 5;

Q(−5), i = 8;

0, otherwise;

in degree i ≤
⌊
d
2

⌋
.

For n ≥ 1, the Leray-Hirsch theorem does not apply to the action of the whole group

Hn, but only to the action of GL2 on Xd,n. However, let us recall that N †
n has been

defined as an SL2-cover of Nn. Hence, the cohomology of N †
n is obtained by tensoring

the cohomology of Nn with that of GL2 = SL2 ⋊C∗, and then dividing by cohomology

of C∗. Since we have two descriptions for the cohomology of Nn by Proposition 4.2, we

also get two for N †
n.

H i(N †
n;Q) =



Q, i = 0;

Q(−1), i = 2;

Q(−2), i = 3;

2Q(−3), i = 5;

Q(−4), i = 7;

Q(−5), i = 8;

Q(−6), i = 10;

0, otherwise;

(III.9)
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or

H i(N †
n;Q) =



Q, i = 0;

Q(−1), i = 2;

2Q(−2), i = 3;

Q(−2), i = 4;

2Q(−3), i = 5;

Q(−4), i = 6;

Q(−4), i = 7;

Q(−5), i = 8;

Q(−6), i = 10;

0, otherwise;

(III.10)

in degree i ≤
⌊
d−3n

2

⌋
.

Now, by looking at the Maroni stratification, all these N †
n can be interpreted as

locally closed strata of a moduli space denoted by T †
g , which is a SL2-cover of Tg. The

cohomology of T †
g can be deduced by writing the analogues of Tables III.4 and III.7.

Similarly to what we have done for Tg, let us assume first that the rational cohomology

of all strata are given by (III.9). We will later prove that the same result holds even if

some (or all) strata are described instead by (III.10) .

The spectral sequences associated with the Maroni stratification
{
N †

n

}
of T †

g , for g

even and odd, are represented in Tables III.8 and III.9, respectively.
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Table III.8: Spectral sequence converging to H̄•(T †
g ;Q) for g even.

N †
6 N †

4 N †
2 N †

0

. . . -4 -3 -2 -1 0

Q 0

Q(−1) -1

-2

Q(−2) Q(−2) -3

Q(−3) Q(−3) -4

Q(−3) -5

Q(−4) 2Q(−4) -6

Q(−5) Q(−5) -7

Q(−5) Q(−5) -8

Q(−6) 2Q(−6) Q(−6) -9

Q(−7) Q(−7) -10

Q(−7) Q(−7) -11

Q(−8) 2Q(−8) Q(−8) -12

. . . . . . . . . . . . -13

Table III.9: Spectral sequence converging to H̄•(T †
g ;Q) for g odd.

N †
7 N †

5 N †
3 N †

1

. . . -4 -3 -2 -1 0

Q 0
-1

Q(−1) -2
Q(−2) Q(−2) -3

-4
Q(−3) 2Q(−3) -5

Q(−4) Q(−4) -6
Q(−4) -7

Q(−5) 2Q(−5) Q(−5) -8
Q(−6) Q(−6) -9

Q(−6) Q(−6) -10
Q(−7) 2Q(−7) Q(−7) -11

Q(−8) Q(−8) -12
. . . . . . . . . . . . -13

Let us consider the even genus case. The odd genus case will be analogous.
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We would like to study the differentials in Table III.8 and, in order to do so, let us

consider the Chow ring of T †
g .

Patel and Vakil proved in [PV15a, Prop. 6.1] and [PV15a, Vistoli’s Theorem] that

the Chow ring of T †
g is also generated by the tautological class κ1 and it is related to

that of Tg by

A•(T †
g ) = A•(Tg)/(µ), (III.11)

where µ is a multiple of κ21.

Moreover, by the previous discussion on the cohomology of each stratum N †
n, for

n ≥ 1, the cohomology of N †
n is isomorphic to the tensor product of the cohomology of

Nn and that of SL2.

The differential d1 : E1
0,−3 → E1

−1,−3 must then be of rank 1. Its target class is in

fact the generator of H2(N †
2 ;Q) ∼= H2(N2;Q), hence a multiple of the 2-nd power of κ1

from [PV15a, Prop. 6.1] and the previous discussion on the rank of the differentials in

Table III.4. Thus, by (III.11), this class must vanish.

Similarly, the differentials in the E1-page, such as d1−1,−6, d
1
−2,−9, d

1
−3,−12, . . . , etc.

must also be of rank 1. The target classes are indeed defined by generators of

H2(N †
n;Q) ∼= H2(Nn;Q) which are multiples of (n − 1)-powers of κ1 with n ≥ 4 by

[PV15a, Proposition 6.2], and they must vanish by (III.11) and [CL21a, Theorem 1.1].

Consider then the differentials in the E1-page, having two-dimensional spaces as

targets. Precisely, these classes are tensor products of the generator H2(Nn;Q) by that

of H3(SL2;Q). So, these differentials are also non-trivial by the argument above.

Finally, the differentials in the E1-page, such as d1−1,−4, d
1
−2,−7, d

1
−3,−10, . . . , etc. might

not be of rank 1. In this case, the differentials in the E2-page, having as targets both the

source and the target classes of a trivial differential d1, must be of rank 1. In fact, these

classes are either the generator of the fundamental class of Nn, or its tensor product

by the generator H3(SL2;Q). Therefore they must also vanish by [PV15a, Proposition

6.2].
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In conclusion, for both g even and odd, we have, in degree i <
⌊
g
4

⌋
,

H i(T †
g ;Q) =



Q, i = 0;

Q(−1), i = 2;

Q(−3), i = 5;

Q(−4), i = 7;

0, otherwise.

What is left to do is to show that the same result also holds if any of the strata

N †
n has rational cohomology as in (III.10). We consider again the even genus case and

assume that N †
2 is given by (III.10). The associated spectral sequence is represented in

Table III.10.

Table III.10

N †
6 N †

4 N †
2 N †

0

. . . -4 -3 -2 -1 0

Q 0

Q(−1) -1

-2

Q(−2) Q(−2) -3

Q(−3) 2Q(−3) -4

Q(−3) Q(−3) -5

Q(−4) 2Q(−4) -6

Q(−5) Q(−5) Q(−5) -7

2Q(−5) Q(−5) -8

Q(−6) 2Q(−6) Q(−6) -9

Q(−7) Q(−7) -10

Q(−7) Q(−7) -11

Q(−8) 2Q(−8) Q(−8) -12

. . . . . . . . . . . . -13

Notice that, with respect to Table (III.8), we get four additional classes. Two of which

are a non-zero multiple κ31 and its tensor product by H3(SL2;Q). Thus they must vanish

by (III.11) and [CL21a, Theorem 1.1], meaning that the differentials d10,−4 and d
1
0,−8 have

maximal rank. Consider then the targets of the other differential highlighted in Table
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III.10. From the discussion done for Table (III.8), these must also have maximal rank.

Summarizing, the differentials are such that the additional classes must also vanish.

These argument can be repeated for all the other strata having cohomology described

by (III.10), and generalized to N †
n with n > 2. This yields that the stable cohomology

of T †
g is indeed the one in Corollary 1.3.



Chapter IV

Further stabilization results for

moduli spaces of smooth curves on

a fixed Hirzebruch surface

In this final chapter we want to discuss the stabilization of the cohomology of some

other moduli spaces of curves. More specifically, we generalize the stabilization proved

for the cohomology of Tg to the cohomology of moduli spaces of smooth curves of higher

gonality, embedded in a fixed Hirzebruch surface.

1 Introduction and results

In the previous chapters we have studied the rational cohomology of the moduli

space of smooth curves defining an open subset in the vector space of global sections

H0(Fn;OFn(3En+ dFn)). In particular we proved in chapter III that the cohomology of

this moduli space stabilizes for d→∞.
In this chapter we generalize this stabilization result to other moduli spaces of curves,

defined in a similar way.

In fact, we will still consider curves embedded in a fixed Hirzebruch surface Fn for

some n ≥ 0.

Definition 9. Let V k
d,n := H0(Fn;OFn(kEn + dFn)). Define then Σk

d,n ⊂ V k
d,n to be the

locus of sections defining singular curves on Fn, and X
k
d,n its complement.

87
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Let us also recall that every connected linear algebraic group is isogenous to a re-

ductive group and, in particular, the automorphism group Gn of a Hirzebruch surface

is isogenous to the reductive group Hn for any n ≥ 0, where Hn = C∗ × GL2 if n ≥ 1

and H0 = C∗ × SL2 × SL2.

We can then define the (coarse) moduli space of smooth curves in the linear system

|kEn+dFn| on a fixed Hirzebruch surface Fn as underlying space of the quotientX
k
d,n/Hn,

for any n ≥ 0.

Remark 11. Notice that if k = 3, then V 3
d,n is exactly the vector space denoted Vd,n

in chapter III. Therefore, the stabilization of H•(X3
d,n/Hn;Q) has already been proved.

In this case we saw that X3
d,n/Hn is an orbifold Cn+1-bundle over the Maroni stratum

Nn. Thus X
3
d,n/Hn and Nn have the same cohomology and the stable cohomology of

X3
d,n/Hn is described in Proposition III.4.2.

The main result of this chapter is the following

Theorem 1.1. Fix k > 3, then H i(Xk
d,n/Hn;Q) ∼= H i(X3

d,n/Hn;Q) for i < d−kn+1
2

.

Remark 12. Notice that the above statement agrees with [EW15, Theorem 9.5], in which

Erman and Wood proved that the probability of a curve of bidegree (k, d) on a fixed

Hirzebruch surface to be smooth is independent of k for k ≥ 3 and d→∞.

The stabilization of the cohomology might also hold for k = 2. However this case is

radically different from the other ones. It will be sketchily treated in the last section

and in particular we will prove that, even if the cohomology might stabilize, the stable

ring would be different from that obtained for H•(X3
d,n/Hn;Q).

2 Cohomology of complements of resultants

Before giving a proof of Theorem 1.1, let us consider the case k = 1.

We will prove that, for k = 1, the space X1
d,n/Hn has the rational cohomology of a

point for any n ≥ 0.

Assume first n ≥ 1. Any f ∈ V 1
d,n is of the form f(x, y, z) = α(x, y)z + β(x, y) with

α, β homogeneous polynomials in C [x, y] of degrees d− n and d, respectively.

The polynomial f is singular if and only if α and β are not relatively prime, i.e. if

they share a common factor or equivalently if their resultant is zero.
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In fact, in this case, the discriminant Σ1
d,n is exactly the resultant of the space of

system α(x, y) = 0

β(x, y) = 0

with α and β as above.

Furthermore, the cohomology of the complement of this resultant has already been

computed by Vassiliev in [Vas15, Theorem 2]. More precisely, the space PX1
d,n is exactly

the one denoted by CD\ΣC, with D = 2d+ 2− n, in [Vas15].

Vassiliev’s result establishes that H•(PX1
d,n;Q) is an exterior algebra generated by

two classes in degrees 1, 3. Moreover, the weights of these generators and their product,

in the mixed Hodge structure of H•(PX1
d,n;Q), are 2, 4 and 6, respectively.

Thus, by noticing that the generalized version of Leray-Hirsch theorem applies for

the action of GL2, we have that

H i(X1
d,n/Hn;Q) =

Q, i = 0;

0, otherwise.

Assume then n = 0.

Any f ∈ V 1
d,0 is a bihomogeneous polynomial in C [x0, x1, y0, y1] of bi-degree (1, d),

i.e. it is homogeneous of degree 1 in the variables x0, x1 and of degree d in the variables

y0, y1. If we fix a point [x0, x1] = [X0, X1] ∈ P1, and thus one of the two families of

rulings in P1 × P1, then f is of the form f(X0, X1, y0, y1) = X0g(y0, y1) +X1h(y0, y1),

with g, h ∈ C [y0, y1] homogeneous of degree d.

Recall that the vanishing locus of f is a divisor of class E0+dF0. Hence f is singular

if and only if its vanishing locus contains a line of the ruling, namely the one containing

F0. This is equivalent to require the polynomials g and f to share a common factor.

Therefore, the discriminant in the space of polynomials of the form f(X0, X1, y0, y1)

is again the resultant of a space of systemg(y0, y1) = 0

h(y0, y1) = 0.

By applying again Vassiliev’s result in [Vas15, Theorem 2], the rational cohomology of

the complement of the resultant is exactly that of PX1
d,n with n > 0.
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Finally, we recover the cohomology of PX1
d,0 by looking at the E2-page of the Leray

spectral sequence associated to the projection [x0, x1] 7→ [X0, X1] :

Table IV.1

4 Q(−3) Q(−4)
3 Q(−2) Q(−3)
2
1 Q(−1) Q(−2)
0 Q Q(−1)

0 1 2

Notice that also in this case a generalized version of Leray-Hirsch applies for the

action of SL2 × SL2, therefore the differentials highlighted above have rank 1.

Thus, the rational cohomology of PX1
d,0 is isomorphic to that of SL2 × SL2 and we

obtain the same result as in the n > 0 case:

H i(X1
d,0/H0;Q) =

Q, i = 0;

0, otherwise.

3 Smooth curves of higher gonality

Let us now consider the case k > 3.

Similarly to what we have already seen in the k = 3 case, if for instance n ≥ 1, a

section in V k
d,n is equivalent to a polynomial f of degree d in the weighted ring C [x, y, z],

with deg x = deg y = 1 and deg z = n, of the form

f(x, y, z) = α(x, y)zk + β(x, y)zk−1 + . . .

Assuming that d is large enough with respect to n, the only differences that we may

get from the k = 3 case, when studying the Vassiliev spectral sequence, are determined

by configuration spaces having at least 3 points on the same line of the ruling.

However these configurations have all trivial twisted Borel-Moore homology by

Lemma I.4.1. Hence the first columns of the Vassiliev spectral sequence converging to

the Borel-Moore homology of Σk
d,n are exactly the same ones as in the spectral sequence

converging to the Borel-Moore homology of Σ3
d,n, in Table III.1.

The only difference then is given by the stable range, which will now depend on k.

More precisely, the proof of Theorem 1.1 follows by an analogue of Lemma III.2.1.
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Lemma 3.1. Fix k > 3, N ≥ 1. Then for any n ≥ 0, the restriction of

{(f, p1, . . . , pN) ∈ V k
d,n ×B(Fn, N)|p1, . . . , pN ∈ Sing(f)} π−→ B(Fn, N)

to the locus where no more than two points pi lie on the same line of the ruling is a

vector bundle of rank dimV k
d,n − 3N provided d ≥ 2N + kn− 1 holds.

Remark 13. By the same reasons explained in Remark III.7, also in this case it is

sufficient to prove the above lemma for N points {p1, . . . , pN} ⊂ Fn, all lying on distinct

lines of the ruling.

Proof. For n = 0 the claim follows from exactly the same argument of Lemma III.2.1,

also for n = 0.

Assume then n > 0. Similarly to the proof of Lemma III.2.1, we fix a set of N distinct

points {p1, . . . , pN} ⊂ Fn, all lying on distinct lines of the ruling. Then, let us consider

the evaluation map

C [x, y, z]d
ev−→M3,N(C)

defined exactly in the same way.

Consider first the case where p1 ∈ Fn\En, with p1 = [1, 0, 0] , after an appropriate

change of coordinates. Define then the polynomials φi’s exactly as in the proof of Lemma

III.2.1, with r ≥ kn+1. The polynomials φi have degree d ≥ 2N +kn−1, and it is easy

to check that their images through the evaluation map are again linearly independent

generators for the subspace in M3,N(C) of matrices with zeros outside the first column.

On the other hand, if p1 belongs to the exceptional divisor, and it is of the form

p1 = ([0, 0, 1] , [1, 0]) ∈ Bl[0,0,1]P(1, 1, n), after an appropriate change of coordinates, we

define

φ0 = xr−knzkℓ22 · · · ℓ2N ,

φ1 = xr−kn−1yzkℓ22 · · · ℓ2N ,

φ2 = xr−(k−1)nzk−1ℓ22 · · · ℓ2N .

The polynomials φi have again degree d ≥ 2N + kn− 1, and their images through the

evaluation map are again linearly independent generators for the subspace in M3,N(C)

of matrices with zeros outside the first column.

By generalizing this to all other columns, this proves the surjectivity of the evaluation

map, and thus the statement for n > 0.
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Finally, let us observe that, also in this case, the generalized version of Leray-Hirsch

theorem applies for the action of GL2 on Xk
d,n, if n > 0, and for the action of all H0 on

Xk
d,0.

This also follows from the fact that the first columns of the Vassiliev’s spectral

sequence, converging to the Borel-Moore homology of Σk
d,n, are exactly the ones in the

spectral sequence converging to the Borel-Moore homology of Σ3
d,n, provided that the

lemma above applies.

Taking then the quotient by the action of C∗, when n ≥ 1, yields Theorem 1.1.

Precisely, we have that, for k ≥ 3 and n ≥ 1, the rational cohomology of Xk
d,n/Hn, in

degree i < d−kn+1
2

, is either

H i(Xk
d,n/Hn;Q) =



Q, i = 0,

Q(−1), i = 2,

Q(−3), i = 5,

Q(−4), i = 7,

0 otherwise;

or

H i(Xk
d,n/Hn;Q) =



Q, i = 0,

Q(−1), i = 2,

Q(−2), i = 3,

Q(−2), i = 4,

Q(−3), i = 5,

Q(−4), i = 7,

0, otherwise;

while the rational cohomology of Xk
d,0/H0, in degree i < d−1

2
, is

H i(Xk
d,0/H0;Q) =


Q, i = 0,

Q(−3), i = 5,

0, otherwise.
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4 Hyperelliptic case

In this final section, we discuss the case k = 2.

In the previous one, we proved that for k > 3, the stable cohomology ring of Xk
d,n/Hn

is the same as the one found for k = 3 in chapter III, with tighter stable range. This was

motivated by the fact that, when applying Gorinov-Vassiliev’s method, configuration

spaces not having the expected codimension were those with at least 3 points on the

same line of the ruling and these have trivial twisted Borel-Moore homology by [Vas99,

Lemma 2].

On the contrary, for k = 2, configurations not having the expected condimension are

also those with two points on the same line of the ruling. These do not have trivial

twisted Borel-Moore homology, therefore we do not expect a similar behavior.

In fact we can compute the first columns in the Vassiliev’s spectral sequence and show

that these are different to the ones found for k ≥ 3. Moreover, we cannot determine

if the cohomology stabilizes, but, if this is the case, we expect the stable ring to be

supported on an infinite number of degrees.

Let f ∈ V 2
d,n. Configurations with 2 points on the same line of the ruling will have

codimension 5 instead of 6. Notice also that (2En+dFn) ·Fn = 2, hence we cannot have

more that 2 singular points on each ruling (if the curve is irreducible): if we do have

two distinct singular points on a line of the ruling, then the curve must be reducible

with that line of the ruling as a component.

Thus, we can distinguish our singular points between couples of points belonging

to the same line of the ruling and single points on distinct lines of the ruling. We will

indeed define the configurations of singularities in Gorinov-Vassiliev’s method according

to this distinction.

Definition 10. A configuration of points in Fn is of type (h, l) if it is defined by h

couples of points on h distinct lines of the ruling, plus l points on l distinct lines of the

ruling, different from the previous h ones.

The corresponding configuration space will be denoted by Xh,l.

Remark 14. When n = 0, we are considering the ruling containing F0.

From this definition, the configuration space Xh,l consists of 2h+ l points. Moreover,

the codimension of the vector subspace in V 2
d,n of elements being singular at least at Xh,l

is 5h+ 3l.
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These configuration spaces are fiber spaces

Xh,k → F (P1, h+ l), (IV.1)

with fiber B(P1, 2)h × (P1)l.

As usual, we want to compute the Borel-Moore homology of Xh,l with twisted coef-

ficients. Since the h lines of the ruling contain 2 points, the local system of coefficients

that we have to consider on the base space is the one induced by the trivial represen-

tation on Sh and the by the sign representation on Sl, which is the representation

Sh,1l ⊕ Sh+1,1l−1 of Sh+l.

In the following we will compute the Vassiliev’s spectral sequence converging to

H̄•(Σ
2
d,n;Q) for small values of h+ l, precisely for h+ l ≤ 2.

Here is the list the families Xh,l with h + l ≤ 2 ordered by increasing codimension

[ch,l] and increasing number of points.

(0, 1) One point, [3].

(1, 0) Two points on the same line of the ruling, [5].

(0, 2) Two points on distinct lines of the ruling, [6].

(1, 1) Three points, two of which on the same line of the ruling, [8] .

(2, 0) Four points, two on each of two lines of the ruling, [10] .

The computation of the Borel-Moore homology of the associated strata is obtained

as usual, by recalling that, if Xh,l consists of configurations of 2h + l points, then the

stratum Fh,l is a CdimV 2
d,n−ch,l × ∆̊2h+l−1-bundle over Xh,l, where ∆̊2h+l−1 is an (2h+ l−

1)-dimensional open simplex.

Columns (0, 1), (1, 0)

The space F0,1 is a CdimV 2
d,n−3-bundle over X0,1

∼= Fn.

The space F1,0 is a CdimV 2
d,n−5 × ∆̊1-bundle over X1,0

B(P1,2)−−−−→ P1.

Column (0, 2)

The space F0,2 is a CdimV 2
d,n−6 × ∆̊1-bundle over X0,2

P1×P1

−−−−→ F (P1, 2).
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As we noticed above, we need to compute the Borel-Moore homology of X0,2 with

twisted coefficients. The Borel-Moore homology of the fiber P1 × P1 is defined by 4

classes. Three of these are invariant with respect to the involution exchanging the two

copies of P1, and only one of them is anti-invariant. Therefore, we need to consider

H̄•(F (P
1, 2);±Q) for the invariant classes and H̄•(F (P

1, 2);Q) for the anti-invariant

one. Precisely, the twisted Borel-Moore homology of X0,2 can be deduced from the

following spectral sequence.

Table IV.2

4 Q(3)

3

2 Q(2) Q(3)

1

0 Q(1)

2 4

Column (1, 1)

The space F1,1 is a CdimV 2
d,n−8 × ∆̊2-bundle over X1,1

B(P1,2)×P1

−−−−−−−→ F (P1, 2).

Since the induced representation of the trivial representation of S1 in S2 is the

regular representation, we need to consider, for each non-trivial class of the Borel-Moore

homology of the fiber, that of the base space with the local system of coefficients induced

by both trivial and sign representations.

Column (2, 0)

The space F2,0 is a CdimV 2
d,n−10 × ∆̊3-bundle over X2,0

B(P1,2)2−−−−−→ F (P1, 2).

Here, as we already explained, we will consider the Borel-Moore homology of

F (P1, 2) with coefficients Q.

Putting all together, the first columns of the E1-page of the spectral sequence will

look as the ones represented in Table IV.3 (twisted by Q(− dimV 2
d,n)).

Notice that the resulting cohomology is divisible by that of GL2 and this agrees

with the fact that the generalized version of Leray-Hirsch theorem can be applied for

the action of GL2 on X2
d,n.
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Table IV.3

−3 Q(−1)
−4
−5 2Q(−2)
−6
−7 Q(−3) Q(−3)
−8 2Q(−3)
−9 Q(−4)
−10 Q(−4) Q(−4)
−11
−12 Q(−5) 2Q(−5)
−13
−14 Q(−6) Q(−6)

(0, 1) (1, 0) (0, 2) (1, 1) (2, 0)

Observe also that, since all Hirzebruch surfaces have the same cellular decomposition,

for n = 0, the corresponding spectral sequence is given by Table IV.3 as well. Moreover,

as in the case k ≥ 3, here the generalized version of Leray-Hirsch theorem can be applied

for the whole H0. This forces the differentials in the E1-page represented in Table IV.3

to have maximal rank.

Therefore we have, in degree i < 8,

H i(X2
d,0/H0;Q) =

Q, i = 0,

0, otherwise;
(IV.2)

while for n > 0, after considering the C∗-bundle X2
d,n/GL2 → X2

d,n/Hn, we have

H i(X2
d,n/Hn;Q) =


Q, i = 0,

Q(−1), i = 2,

0 otherwise.

(IV.3)

Here, the bound i < 8 will be explained later.

As predicted, the resulting cohomology ring is different from that of H•(Xk
d,n/Hn;Q).

Furthermore, we do not expect it to be zero after a certain degree.

Indeed, the Borel-Moore homology of the strata corresponding to h + l ≥ 3 are

not trivial a priori and they can be computed from (IV.1) and the Sh+l-equivariant

isomorphism between F (P1, h+ l) andM0,h+l × PGL2.

We will limit ourselves to compute the strata corresponding to h+ l = 3 in order to
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verify that, in degree i < 8, there are indeed no other classes than the ones in (IV.2) and

(IV.3). The corresponding columns in the spectral sequence will look like the following.

Table IV.4

−10 Q(−6)
−11
−12 Q(−7)
−13 Q(−8)
−14 Q(−8)
−15 Q(−9)
−16 Q(−9)
−10 Q(−10)
−11
−12 Q(−11)

(0, 3) (1, 2) (2, 1) (3, 0)

We see that, in fact, the first non-trivial class is in degree 8 and the other columns

with respect to h + l > 3 would also give contributions in degree i ≥ 8 since the

corresponding codimension gets higher as h+ l grows.





Appendix

A Configurations of singularities for a genus 5 trig-

onal curve

Here we produce the complete list of families of configurations in Σ1 satisfying the

conditions in List I.1.

In the following, c denotes the codimension in V1 of the vector subspace of elements

that are singular at least at the corresponding configuration and n is the number of

points defining the configuration.

List A.1: List of configurations of singularities for a genus 5 trigonal curve

Description c n

1. A point on E; 3 1

2. A general point; 3 1

3. Two points on E; 5 2

4. Two points on a line F of the ruling; 6 2

5. A point on E + a general point; 6 2

6. Two general points; 6 2

7. Three points on E; 6 3

8. Three points on a line F of the ruling; 7 3

9. Four points on E 7 4

10. The exceptional divisor E; 7

11. Two points on E + a general point; 8 3

12. A line of F the ruling; 8

99
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13. A point on E + two points on a line F of the ruling; 9 3
14. A general point + two points on a line F of the ruling; 9 3
15. A point on E + two general points; 9 3
16. Three general points; 9 3
17. Three collinear points; 9 3
18. A point on E + two points on a line F of the ruling + {E ∩ F}; 9 4
19. Three points on E + a general point; 9 4
20. Two points on E + two points on a line F of the ruling; 10 4
21. A point on E + three points on a line F of the ruling; 10 4
22. A general point+ three points on a line F of the ruling ; 10 4
23. Four collinear points; 10 4
24. Two points on E + two points on a line F of the ruling + {E ∩ F}; 10 5
25. A point on E + three points on a line F of the ruling + {E ∩ F}; 10 5
26. Two points on E + two general points; 11 4
27. Three points on E + two points on a line F of the ruling; 11 5
28. Two points on E + three points on a line F of the ruling; 11 5
29. Three points on E + two points on a line F of the ruling + {E ∩ F}; 11 6
30. Two points on E + three points on a line F of the ruling + {E ∩ F}; 11 6
31. A line of the ruling + a general point; 11
32. A general line; 11
33. Two points on each of two lines of the ruling; 12 4
34. Two points on a line of the ruling + two general points; 12 4
35. A point on E + three collinear points; 12 4
36. A general point + three collinear points; 12 4
37. A point on E + three general points; 12 4
38. Four general points; 12 4
39. A point on E + two points on a line F of the ruling +

a general point; 12 4
40. A point on E + two points on a line F of the ruling +

a general point + {E ∩ F}; 12 5
41. Three points on E + two general points; 12 5
42. A point on E + three points on a line F of the ruling +

a general point; 13 5
43. Three points on a line of the ruling + two general points; 13 5
44. Three points on a line of the ruling + two points on another ruling; 13 5
45. Two points on E + two points on a line F of the ruling +

a general point; 13 5
46. A point on E + four collinear points; 13 5
47. A general point+ four collinear points; 13 5
48. A point on E + three points on a line F of the ruling +

a general point + {E ∩ F}; 13 6
49. Two points on E + two points on a line F of the ruling +

a general point + {E ∩ F}; 13 6
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50. Two points on E + three collinear points; 14 5
51. Two points on E + three general points; 14 5
52. Two points on a line of the ruling + three collinear points; 14 5
53. Five points on a non-degenerate conic; 14 5
54. Two points on a line of the ruling + three collinear points +

the point of intersection; 14 6
55. Three points on each of two rulings; 14 6
56. Two points on each of two rulings F1, F2 + a point on E +

{E ∩ F1} +{E ∩ F2}; 14 7
57. A line of the ruling + two general points; 14
58. A general line + a general point; 14
59. A general point + two points on each of two lines of the ruling; 15 5
60. A point on E + two general points + two points on a line of the ruling; 15 5
61. Three general points + two points on a line of the ruling; 15 5
62. A point on E + a general point + three collinear points; 15 5
63. Two general points + three collinear points; 15 5
64. Two points on each of two intersecting lines + the point

of intersection; 15 5
65. A point on E + four general points; 15 5
66. Five general points; 15 5
67. Three points on E + three collinear points; 15 6
68. Three points on E + three general points; 15 6
69. Two points on E + four collinear points; 15 6
70. Two lines of the ruling; 15
71. A line of the ruling + a general line; 15
72. A non-degenerate conic; 15
73. Three points on a line of the ruling + two points on another ruling +

a general point 16 6
74. Three points on a line of the ruling + three general points; 16 6
75. A point on E + a general point + four collinear points; 16 6
76. Two general points + four collinear points; 16 6
77. Two points on E + two points on a ruling F + two general points +

{E ∩ F}; 16 7
78. Three points on E + four collinear points; 16 7
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79. Six points on a non-degenerate conic; 17 6
80. Five points on a non-degenerate conic + a general point; 17 6
81. Three points on E + four points on a non-degenerate conic. 17 7
82. Two points on a line F of the ruling + three points on a line L +

a general point + {F ∩ L}; 17 7
83. Three points on each of two lines of the ruling + a general point; 17 7
84. Three points on each of two intersecting lines +

the point of intersection; 17 7
85. Three points of intersection between two non-degenerate conics,

one of which is on E + four points of intersection with a line; 17 7
86. Three points of intersection between two non-degenerate conics,

none of which are on E + four points of intersection with a line; 17 7
87. Four points of intersection of two non-degenerate conics +

three points of intersection with a line of the ruling; 17 7
88. A point on E + two points on each of two rulings F1, F2 +

a general point + {E ∩ F1} +{E ∩ F2}; 17 8
89. Two points on E + three points on a line L +

a point on a line F of the ruling + {E ∩ F} + {F ∩ L}; 17 8
90. Three points of intersection of two conics, each meeting

a line F of the ruling and E at one point + {E ∩ F}; 17 8
91. Two points of intersection between two lines F1, F2 of the ruling and

a line L + 6 points of intersection with a non-degenerate conic
meeting each line at two distinct points; 17 8

92. Three points of intersection between a line F of the ruling and two
lines L1, L2 + five points of intersection with a non-degenerate conic
meeting each line twice and F only once, outside E; 17 8

93. Three points of intersection between a line F of the ruling and
two lines L1, L2 + five points of intersection with a non-degenerate
conic meeting each line twice and F at {E ∩ F}; 17 8

94. Four points of intersection between E, two lines F1, F2 of the ruling
and a line L + five points of intersection with a non-degenerate
conic meeting L twice and E, F1, F2 once; 17 9

95. Three points of intersection between E and three lines F1, F2, F3

of the ruling + 6 points of intersection with a non-degenerate conic
meeting each ruling at two distinct points; 17 9

96. The points of intersection between two lines of the ruling and three
general lines; 17 9

97. The points of intersection between E, three lines of the ruling and
two intersecting lines; 17 10

98. A line of the ruling + 3 general points; 17
99. A line + 2 general points; 17
100. The whole BlPP

2 18
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Mathématiques, volume 14, pages 395–434, 2005.

[Har77] Robin Hartshorne. Algebraic geometry, volume 52. Springer-Verlag, New

York-Heidelberg, 1977.

[Har83] John Harer. The second homology group of the mapping class group of an

orientable surface. Inventiones Mathematicae, 72(2):221–239, 1983.

[Har84] Joe Harris. On the Kodaira dimension of the moduli space of curves, II. The

even-genus case. Inventiones mathematicae, 75(3):437–466, 1984.

[Har85] John Harer. Stability of the homology of the mapping class groups of ori-

entable surfaces. Annals of Mathematics, 121(2):215–249, 1985.
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