We use standard tools of the theory of dynamical systems such as phase plots, bifurcation diagrams and basins of attraction to analyse and understand the dynamic behaviour of a typical aerofoil section under dynamic stall conditions. The structural model is linear and the aerodynamic loading is represented by the Leishman-Beddoes semi- empirical dynamic stall model. The loads given by this model are non- linear and non-smooth, therefore we have integrated the equation of motion using a Runge-Kutta-Fehlberg (RKF45) algorithm equipped with event detection. We perform simulations of the motion for a range of Mach numbers and show that the model is very sensitive to small variations. This is evidenced by the presence in the bifurcation diagram of co-existing attractors or, in other words, by the existence of more than one steady-state motion for a given Mach number. The mecha- nisms for the appearance and disappearance of the co-exisiing attractors are elucidated by analysing the evolution of their basins of attraction as the Mach number changes.

Remarks on the nonlinear dynamics of a typical aerofoil section in dynamic stall

GALVANETTO, UGO;
2007

Abstract

We use standard tools of the theory of dynamical systems such as phase plots, bifurcation diagrams and basins of attraction to analyse and understand the dynamic behaviour of a typical aerofoil section under dynamic stall conditions. The structural model is linear and the aerodynamic loading is represented by the Leishman-Beddoes semi- empirical dynamic stall model. The loads given by this model are non- linear and non-smooth, therefore we have integrated the equation of motion using a Runge-Kutta-Fehlberg (RKF45) algorithm equipped with event detection. We perform simulations of the motion for a range of Mach numbers and show that the model is very sensitive to small variations. This is evidenced by the presence in the bifurcation diagram of co-existing attractors or, in other words, by the existence of more than one steady-state motion for a given Mach number. The mecha- nisms for the appearance and disappearance of the co-exisiing attractors are elucidated by analysing the evolution of their basins of attraction as the Mach number changes.
2007
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/119096
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact