An enhanced version of a mixed field-based formulation for magnetostatics previously developed by the authors is presented and its features are discussed. The formulation minimises the residual of the constitutive equation, and exactly imposes Maxwell’s equations with Lagrange multipliers. Finite elements satisfying the physical continuity properties for both the magnetic and the magnetic induction fields are used in the numerical approximation. The possibility of decoupling the formulation in two separate sets of equations is discussed. A preconditioned iterative method to solve the final algebraic linear system is presented. Finally, a very natural refinement indicator is defined to guide an adaptive mesh refinement procedure.

An adaptive mixed formulation for 3D magnetostatics

ALOTTO, PIERGIORGIO;
2000

Abstract

An enhanced version of a mixed field-based formulation for magnetostatics previously developed by the authors is presented and its features are discussed. The formulation minimises the residual of the constitutive equation, and exactly imposes Maxwell’s equations with Lagrange multipliers. Finite elements satisfying the physical continuity properties for both the magnetic and the magnetic induction fields are used in the numerical approximation. The possibility of decoupling the formulation in two separate sets of equations is discussed. A preconditioned iterative method to solve the final algebraic linear system is presented. Finally, a very natural refinement indicator is defined to guide an adaptive mesh refinement procedure.
2000
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/120384
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact