We have cloned and sequenced a full-length cDNA for uroporphyrinogen decarboxylase (UROD, EC 4.1.1.37) from tobacco (Nicotiana tabacum L.) and a partial cDNA clone from barley (Hordeum vulgare L.). The cDNA of tobacco encodes a protein of 43 kDa, which has 33% overall similarity to UROD sequences determined from other organisms. We propose that tobacco UROD has an N-terminal extension of 39 amino acid residues. This extension is most likely a chloroplast transit sequence. The in vitro translation product of UROD was imported into pea chloroplasts and processed to ca. 39 kDa. A truncated cDNA, from which the putative transit peptide had been deleted, was used to over-express the mature UROD in Escherichia coli. Purified protein showed UROD activity, thus providing an adequate source for subsequent enzymatic characterization and inhibition studies. Expression of UROD was investigated by northern and western blot analysis during greening of etiolated barley seedlings, and in segments of barley primary leaves grown under day/night cycles. The amount of RNA and protein increased during illumination. Maximum UROD-RNA levels were detected in the basal segments relative to the top of the leaf.

Isolation, sequencing and expression of cDNA sequences encoding uroporphyrinogen decarboxylase from tobacco and barley

TRAINOTTI, LIVIO;
1995

Abstract

We have cloned and sequenced a full-length cDNA for uroporphyrinogen decarboxylase (UROD, EC 4.1.1.37) from tobacco (Nicotiana tabacum L.) and a partial cDNA clone from barley (Hordeum vulgare L.). The cDNA of tobacco encodes a protein of 43 kDa, which has 33% overall similarity to UROD sequences determined from other organisms. We propose that tobacco UROD has an N-terminal extension of 39 amino acid residues. This extension is most likely a chloroplast transit sequence. The in vitro translation product of UROD was imported into pea chloroplasts and processed to ca. 39 kDa. A truncated cDNA, from which the putative transit peptide had been deleted, was used to over-express the mature UROD in Escherichia coli. Purified protein showed UROD activity, thus providing an adequate source for subsequent enzymatic characterization and inhibition studies. Expression of UROD was investigated by northern and western blot analysis during greening of etiolated barley seedlings, and in segments of barley primary leaves grown under day/night cycles. The amount of RNA and protein increased during illumination. Maximum UROD-RNA levels were detected in the basal segments relative to the top of the leaf.
1995
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/121827
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 34
social impact