A new method for calculating the perturbation spectrum in the framework of Kaula's linear satellite theory (LST) is introduced. The novelty of this approach consists in using recent results on the spectral decomposition of the perturbation frequencies in LST to provide a closed formulation for the amplitude and the phase of each line in the perturbation spectrum. The theory presented here can be applied to perturbations in the elements or in the radial and transverse directions due to the geopotential or to the tides. Separate algorithms are developed for application to orbits with circulating or frozen perigee.

The Gravitational Perturbation Spectrum in Linear Satellite Theory

CASOTTO, STEFANO
1995

Abstract

A new method for calculating the perturbation spectrum in the framework of Kaula's linear satellite theory (LST) is introduced. The novelty of this approach consists in using recent results on the spectral decomposition of the perturbation frequencies in LST to provide a closed formulation for the amplitude and the phase of each line in the perturbation spectrum. The theory presented here can be applied to perturbations in the elements or in the radial and transverse directions due to the geopotential or to the tides. Separate algorithms are developed for application to orbits with circulating or frozen perigee.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11577/122197
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact