The study of low density, ultracold atomic Fermi gases is a promising avenue to understand fermion superfluidity from first principles. One technique currently used to bring Fermi gases in the degenerate regime is sympathetic cooling through a reservoir made of an ultracold Bose gas. We discuss a proposal for trapping and cooling of two-species Fermi-Bose mixtures into optical dipole traps made from combinations of laser beams having two different wavelengths. In these bichromatic traps it is possible, by a proper choice of the relative laser powers, to selectively trap the two species in such a way that fermions experience a stronger confinement than bosons. As a consequence, a deep Fermi degeneracy can be reached having at the same time a softer degenerate regime for the Bose gas. This leads to an increase in the sympathetic cooling efficiency and allows for higher precision thermometry of the Fermi - Bose mixture.

Ultracold atomic Fermi-Bose mixtures in bichromatic optical dipole traps: A novel route to study fermion superfluidity

ONOFRIO, ROBERTO;
2004

Abstract

The study of low density, ultracold atomic Fermi gases is a promising avenue to understand fermion superfluidity from first principles. One technique currently used to bring Fermi gases in the degenerate regime is sympathetic cooling through a reservoir made of an ultracold Bose gas. We discuss a proposal for trapping and cooling of two-species Fermi-Bose mixtures into optical dipole traps made from combinations of laser beams having two different wavelengths. In these bichromatic traps it is possible, by a proper choice of the relative laser powers, to selectively trap the two species in such a way that fermions experience a stronger confinement than bosons. As a consequence, a deep Fermi degeneracy can be reached having at the same time a softer degenerate regime for the Bose gas. This leads to an increase in the sympathetic cooling efficiency and allows for higher precision thermometry of the Fermi - Bose mixture.
2004
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/125857
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 16
  • OpenAlex ND
social impact