The redundancy of the multiresolution representation has been clearly demonstrated in the case of fractal images, but it has not been fully recognized and exploited for general images. Recently, fractal block coders have exploited the selfsimilarity among blocks in images. In this work, we devise an image coder in which the causal similarity among blocks of different subbands in a multiresolution decomposition of the image is exploited. In a pyramid subband decomposition, the image is decomposed into a set of subbands that are localized in scale, orientation, and space. The proposed coding scheme consists of predicting blocks in one subimage from blocks in lower resolution subbands with the same orientation. Although our prediction maps are of the same kind of those used in fractal block coders, which are based on an iterative mapping scheme, our coding technique does not impose any contractivity constraint on the block maps, This makes the decoding procedure very simple and allows a direct evaluation of the mean squared error (MSE) between the original and the reconstructed image at coding time. More importantly, we show that the subband pyramid acts as an automatic block classifier, thus making the block search simpler and the block matching more effective, These advantages are confirmed by the experimental results, which show that the performance of our scheme is superior for both visual quality and MSE to that obtainable with standard fractal block coders and also to that of other popular image coders such as JPEG.

Image-coding by block prediction of multiresolution subimages

RINALDO, ROBERTO;CALVAGNO, GIANCARLO
1995

Abstract

The redundancy of the multiresolution representation has been clearly demonstrated in the case of fractal images, but it has not been fully recognized and exploited for general images. Recently, fractal block coders have exploited the selfsimilarity among blocks in images. In this work, we devise an image coder in which the causal similarity among blocks of different subbands in a multiresolution decomposition of the image is exploited. In a pyramid subband decomposition, the image is decomposed into a set of subbands that are localized in scale, orientation, and space. The proposed coding scheme consists of predicting blocks in one subimage from blocks in lower resolution subbands with the same orientation. Although our prediction maps are of the same kind of those used in fractal block coders, which are based on an iterative mapping scheme, our coding technique does not impose any contractivity constraint on the block maps, This makes the decoding procedure very simple and allows a direct evaluation of the mean squared error (MSE) between the original and the reconstructed image at coding time. More importantly, we show that the subband pyramid acts as an automatic block classifier, thus making the block search simpler and the block matching more effective, These advantages are confirmed by the experimental results, which show that the performance of our scheme is superior for both visual quality and MSE to that obtainable with standard fractal block coders and also to that of other popular image coders such as JPEG.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/126605
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 83
  • ???jsp.display-item.citation.isi??? 59
social impact