On the basis of an original protocol, we have synthesized several complexes of the type [Pd(eta(3)-C(3)H(3)R(2))(LL')]ClO(4) (R = H, Me; L, L' = PPh(3), P(OEt)(3), 2,6-dimethylphenylisocyanide, t-butylisocyanide, 1,3-dimesitylimidazolidine, 1,3-dimesitylimidazol-2-ylidene). The complexes, some of which are completely new species, were fully characterized and their behaviour in solution was studied by means of (1)H NMR. The reactions of the complexes bearing the symmetric allyl moiety [Pd(eta(3)-C(3)H(5))(LL')]ClO(4) with piperidine in the presence of the olefin dimethylfumarate were followed under kinetically controlled conditions. Formation of allyl-amine and of the palladium(0) derivatives [Pd(eta(2)-dmfu)(LL'] was observed. The reaction rates k(2) proved to be strongly dependent on the ancillary ligand nature and allowed a direct comparison among the electronic characteristics of the ligands. The reactivity trend determined appears to be mainly influenced by the capability of the ancillary ligands in transferring electron density to the metal centre and consequently on the allyl fragment.
Synthesis, characterization, dynamics and reactivity toward amination of eta3-allyl palladium complexes bearing mixed ancillary ligands. Evaluation of the electronic characteristics of the ligands from kinetic data
DOLMELLA, ALESSANDRO
2011
Abstract
On the basis of an original protocol, we have synthesized several complexes of the type [Pd(eta(3)-C(3)H(3)R(2))(LL')]ClO(4) (R = H, Me; L, L' = PPh(3), P(OEt)(3), 2,6-dimethylphenylisocyanide, t-butylisocyanide, 1,3-dimesitylimidazolidine, 1,3-dimesitylimidazol-2-ylidene). The complexes, some of which are completely new species, were fully characterized and their behaviour in solution was studied by means of (1)H NMR. The reactions of the complexes bearing the symmetric allyl moiety [Pd(eta(3)-C(3)H(5))(LL')]ClO(4) with piperidine in the presence of the olefin dimethylfumarate were followed under kinetically controlled conditions. Formation of allyl-amine and of the palladium(0) derivatives [Pd(eta(2)-dmfu)(LL'] was observed. The reaction rates k(2) proved to be strongly dependent on the ancillary ligand nature and allowed a direct comparison among the electronic characteristics of the ligands. The reactivity trend determined appears to be mainly influenced by the capability of the ancillary ligands in transferring electron density to the metal centre and consequently on the allyl fragment.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.