A structure theorem is proved for finite groups with the property that, for some integer m with m ≥ 2, every proper quotient group can be generated by m elements but the group itself cannot.
Finite groups that need more generators than any proper quotient
LUCCHINI, ANDREA
1998
Abstract
A structure theorem is proved for finite groups with the property that, for some integer m with m ≥ 2, every proper quotient group can be generated by m elements but the group itself cannot.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




