A structure theorem is proved for finite groups with the property that, for some integer m with m ≥ 2, every proper quotient group can be generated by m elements but the group itself cannot.

Finite groups that need more generators than any proper quotient

LUCCHINI, ANDREA
1998

Abstract

A structure theorem is proved for finite groups with the property that, for some integer m with m ≥ 2, every proper quotient group can be generated by m elements but the group itself cannot.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/127569
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 50
  • OpenAlex ND
social impact