Tetanus neurotoxin (TeNT) blocks neuroexocytosis via a zinc-endopeptidase activity highly specific for vescicle-associated membrane protein(VAMP)/synaptobrevin. TeNT is the prototype of clostridial neurotoxins, a new family of metalloproteinases. They consist of three domains and the proteolytic activity is displayed by the 50-kDa light chain (L chain). The L chain was isolated here in the native state from bacterial filtrates of Clostridium tetani and its structure was studied via circular dichroism (CD) and fluorescence spectroscopy. The secondary structure content (27% alpha-helix and 43% beta-sheet), estimated by far-ultraviolet CD measurements, was in reasonable agreement with that obtained by standard predictive methods (25% alpha-helix and 49% beta-sheet). Moreover, the hypothetical zinc-binding motif, encompassing residues His-Glu-Leu-Ile-His, was correctly predicted to be in alpha-helical conformation, as also expected on the basis of the geometrical requirements for a correct coordination of the zinc ion. Both near-ultraviolet CD and fluorescence data strongly suggest that the single Trp43 residue is buried and constrained in a hydrophobic environment, likely distant from the zinc ion located in the active-site cleft. The contribution of the bound zinc ion to the overall conformation of TeNT L chain was investigated by different and complementary techniques, including spectroscopic (far- and near-ultraviolet CD, fluorescence, second derivative absorption spectroscopy) as well as proteolytic probes. The results indicate that the zinc ion plays little, if any, role in determining the structural properties of the L chain molecule. Similarly, the metal-free apo-enzyme and the holo-protein share common stability features evaluated in respect to different physico-chemical parameters (pH, temperature and urea concentration). These results parallel those obtained on thermolysin, a zinc-dependent neutral endoprotease from Bacillus thermoproteolyticus, where both conformational and stability properties are unchanged upon zinc removal.
Structural Studies on the Zinc-Endopeptidase Light Chain of Tetanus Neurotoxin
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
DE FILIPPIS, VINCENZO
;SCHIAVO, GIAMPIETRO;TONELLO, FIORELLA;MONTECUCCO, CESARE
	
		
		
	
			1995
Abstract
Tetanus neurotoxin (TeNT) blocks neuroexocytosis via a zinc-endopeptidase activity highly specific for vescicle-associated membrane protein(VAMP)/synaptobrevin. TeNT is the prototype of clostridial neurotoxins, a new family of metalloproteinases. They consist of three domains and the proteolytic activity is displayed by the 50-kDa light chain (L chain). The L chain was isolated here in the native state from bacterial filtrates of Clostridium tetani and its structure was studied via circular dichroism (CD) and fluorescence spectroscopy. The secondary structure content (27% alpha-helix and 43% beta-sheet), estimated by far-ultraviolet CD measurements, was in reasonable agreement with that obtained by standard predictive methods (25% alpha-helix and 49% beta-sheet). Moreover, the hypothetical zinc-binding motif, encompassing residues His-Glu-Leu-Ile-His, was correctly predicted to be in alpha-helical conformation, as also expected on the basis of the geometrical requirements for a correct coordination of the zinc ion. Both near-ultraviolet CD and fluorescence data strongly suggest that the single Trp43 residue is buried and constrained in a hydrophobic environment, likely distant from the zinc ion located in the active-site cleft. The contribution of the bound zinc ion to the overall conformation of TeNT L chain was investigated by different and complementary techniques, including spectroscopic (far- and near-ultraviolet CD, fluorescence, second derivative absorption spectroscopy) as well as proteolytic probes. The results indicate that the zinc ion plays little, if any, role in determining the structural properties of the L chain molecule. Similarly, the metal-free apo-enzyme and the holo-protein share common stability features evaluated in respect to different physico-chemical parameters (pH, temperature and urea concentration). These results parallel those obtained on thermolysin, a zinc-dependent neutral endoprotease from Bacillus thermoproteolyticus, where both conformational and stability properties are unchanged upon zinc removal.| File | Dimensione | Formato | |
|---|---|---|---|
| Eur J Biochem Tetanus Toxin.pdf embargo fino al 31/12/2025 
											Descrizione: Main Text
										 
											Tipologia:
											Published (Publisher's Version of Record)
										 
											Licenza:
											
											
												Accesso gratuito
												
												
												
											
										 
										Dimensione
										1.08 MB
									 
										Formato
										Adobe PDF
									 | 1.08 MB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




