A simulative wear test for hot and warm forging tools is presented which has been developed by the Authors with the twofold purpose of (i) verifying the applicability of wear micro-mechanical models in simulation of hot and warm bulk metal forming operations using FEM codes and (ii) evaluating wear parameters by an inverse numerical technique. In its simple configuration, the test embodies many of the tribosytems encountered in industrial forging operations and relevant tool wear and failure mechanisms, such as abrasion, thermal fatigue as well as permanent deformation of tool surface. The paper focuses on the design of the test configuration and the description of testing and measuring apparatuses, including those for temperatures and heat transfer coefficient determination. Validation of the test through test runs and determination of wear profile on tools end the paper.
Wear in hot and warm forging: design and validation of a new laboratory test
BARIANI, PAOLO FRANCESCO;BERTI, GUIDO;
1996
Abstract
A simulative wear test for hot and warm forging tools is presented which has been developed by the Authors with the twofold purpose of (i) verifying the applicability of wear micro-mechanical models in simulation of hot and warm bulk metal forming operations using FEM codes and (ii) evaluating wear parameters by an inverse numerical technique. In its simple configuration, the test embodies many of the tribosytems encountered in industrial forging operations and relevant tool wear and failure mechanisms, such as abrasion, thermal fatigue as well as permanent deformation of tool surface. The paper focuses on the design of the test configuration and the description of testing and measuring apparatuses, including those for temperatures and heat transfer coefficient determination. Validation of the test through test runs and determination of wear profile on tools end the paper.File | Dimensione | Formato | |
---|---|---|---|
1996CIRP_WEAR.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Accesso gratuito
Dimensione
906.02 kB
Formato
Adobe PDF
|
906.02 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.