Abstract Toluene diisocyanate contracts guinea-pig bronchial smooth muscle through a mechanism involving capsaicin-sensitive sensory nerves. In the present study, we investigated the effects of toluene diisocyanate, capsaicin and tachykinins on isolated human bronchi. In 44 rings, toluene diisocyanate (0.3 mM) produced a relaxation which averaged 16.9 +/- 1.1%, in ten rings it produced a shortening that was 15.1 +/- 3.3% and in ten preparations it gave no response. A second administration of toluene diisocyanate (0.3 mM) always produced a relaxation (n = 13, 18.1 +/- 3.9%). Capsaicin (0.03 mM) produced shortening in 15 (35 +/- 6.6%) and relaxation in 11 preparations (41 +/- 6.8%), whereas a second administration caused shortening in nine (25.1 +/- 6.1%) and relaxation in 16 rings (36.4 +/- 4.9%). When toluene diisocyanate was given after two consecutive capsaicin administrations, we observed shortening in two rings (10.0 +/- 3.6%), relaxation in ten rings (15.9 +/- 3.6%), and no response in four preparations. To test the role of NK1 and NK2 receptors in these conflicting responses, we performed concentration-response curves to different tachykinins. Substance P, neurokinin A and neurokinin A-(4-10), a specific NK2 receptor agonist, gave a concentration-dependent shortening, with neurokinin A being the most effective and neurokinin A-(4-10) the least. The specific NK1 receptor agonist, [Sar9, Met(O2)11]substance P, produced both shortening and relaxation. We conclude that toluene diisocyanate and capsaicin may produce both shortening and relaxation in isolated human bronchi through NK1 receptors.
THE EFFECTS OF TOLUENE DIISOCYANATE AND OF CAPSAICIN ON HUMAN BRONCHIAL SMOOTH-MUSCLE IN-VITRO
SAETTA, MARINA;MAESTRELLI, PIERO;
1994
Abstract
Abstract Toluene diisocyanate contracts guinea-pig bronchial smooth muscle through a mechanism involving capsaicin-sensitive sensory nerves. In the present study, we investigated the effects of toluene diisocyanate, capsaicin and tachykinins on isolated human bronchi. In 44 rings, toluene diisocyanate (0.3 mM) produced a relaxation which averaged 16.9 +/- 1.1%, in ten rings it produced a shortening that was 15.1 +/- 3.3% and in ten preparations it gave no response. A second administration of toluene diisocyanate (0.3 mM) always produced a relaxation (n = 13, 18.1 +/- 3.9%). Capsaicin (0.03 mM) produced shortening in 15 (35 +/- 6.6%) and relaxation in 11 preparations (41 +/- 6.8%), whereas a second administration caused shortening in nine (25.1 +/- 6.1%) and relaxation in 16 rings (36.4 +/- 4.9%). When toluene diisocyanate was given after two consecutive capsaicin administrations, we observed shortening in two rings (10.0 +/- 3.6%), relaxation in ten rings (15.9 +/- 3.6%), and no response in four preparations. To test the role of NK1 and NK2 receptors in these conflicting responses, we performed concentration-response curves to different tachykinins. Substance P, neurokinin A and neurokinin A-(4-10), a specific NK2 receptor agonist, gave a concentration-dependent shortening, with neurokinin A being the most effective and neurokinin A-(4-10) the least. The specific NK1 receptor agonist, [Sar9, Met(O2)11]substance P, produced both shortening and relaxation. We conclude that toluene diisocyanate and capsaicin may produce both shortening and relaxation in isolated human bronchi through NK1 receptors.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.