Abstract In order to investigate whether the oxidant airborne pollutant nitrogen dioxide (NO2) affects airway smooth muscle responsiveness, the contractile response of guinea pig main bronchi after in vitro exposure to 2.5 ppm of nitrogen dioxide was studied. Main bronchi were cannulated and exposed for 2 or 4 h to a constant flow of either NO2 or air. After exposure, bronchial rings were obtained and placed in a 37 degrees C jacketed organ bath filled with Krebs-Henseleit solution. Concentration-response curves were performed for acetylcholine (10(-9)-10(-3) M), substance P (10(-9)-10(-4) M), and neurokinin A (10(-10)-10(-5) M), and voltage-response curves (12-28 V) were performed for electrical field stimulation. There was no significant difference in either the smooth muscle maximal contractile response, or sensitivity between the bronchi exposed to NO2 and those exposed to air. We conclude that in vitro exposure to 2.5 ppm of NO2 does not alter airway smooth muscle responsiveness in guinea pigs.
IN-VITRO EXPOSURE OF GUINEA-PIG MAIN BRONCHI TO 2-CENTER-DOT-5 PPM OF NITROGEN-DIOXIDE DOES NOT ALTER AIRWAY SMOOTH-MUSCLE RESPONSE
SAETTA, MARINA;MAESTRELLI, PIERO;
1995
Abstract
Abstract In order to investigate whether the oxidant airborne pollutant nitrogen dioxide (NO2) affects airway smooth muscle responsiveness, the contractile response of guinea pig main bronchi after in vitro exposure to 2.5 ppm of nitrogen dioxide was studied. Main bronchi were cannulated and exposed for 2 or 4 h to a constant flow of either NO2 or air. After exposure, bronchial rings were obtained and placed in a 37 degrees C jacketed organ bath filled with Krebs-Henseleit solution. Concentration-response curves were performed for acetylcholine (10(-9)-10(-3) M), substance P (10(-9)-10(-4) M), and neurokinin A (10(-10)-10(-5) M), and voltage-response curves (12-28 V) were performed for electrical field stimulation. There was no significant difference in either the smooth muscle maximal contractile response, or sensitivity between the bronchi exposed to NO2 and those exposed to air. We conclude that in vitro exposure to 2.5 ppm of NO2 does not alter airway smooth muscle responsiveness in guinea pigs.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.