To identify the structural features required for regulation of the mitochondrial permeability transition pore (PTP) by ubiquinone analogs (Fontaine, E., Ichas, F., and Bernardi, P. (1998) J. Biol. Chem. 40, 25734–25740), we have carried out an analysis with quinone structural variants. We show that three functional classes can be defined: (i) PTP inhibitors (ubiquinone 0, decylubiquinone, ubiquinone 10, 2,3-dimethyl-6-decyl-1,4-benzoquinone, and 2,3,5-trimethyl-6-geranyl-1,4-benzoquinone); (ii) PTP inducers (2,3-dimethoxy-5-methyl-6-(10-hydroxydecyl)-1,4-benzoquinone and 2,5-dihydroxy-6- undecyl-1,4-benzoquinone); and (iii) PTP-inactive quinones that counteract the effects of both inhibitors and inducers (ubiquinone 5 and 2,3,5-trimethyl-6-(3-hydroxyisoamyl)- 1,4-benzoquinone). The structure-function correlation indicates that minor modifications in the isoprenoid side chain can turn an inhibitor into an activator, and that the methoxy groups are not essential for the effects of quinones on the PTP. Since the ubiquinone analogs used in this study have a similar midpoint potential and decrease mitochondrial production of reactive oxygen species to the same extent, these results support the hypothesis that quinones modulate the PTP through a common binding site rather than through oxidation-reduction reactions. Occupancy of this site can modulate the PTP open-closed transitions, possibly through secondary changes of the PTP Ca2+ binding affinity.

Three Classes of Ubiquinone Analogs Regulate the Mitochondrial Permeability Transition Pore through a Common Site

BERNARDI, PAOLO;
2000

Abstract

To identify the structural features required for regulation of the mitochondrial permeability transition pore (PTP) by ubiquinone analogs (Fontaine, E., Ichas, F., and Bernardi, P. (1998) J. Biol. Chem. 40, 25734–25740), we have carried out an analysis with quinone structural variants. We show that three functional classes can be defined: (i) PTP inhibitors (ubiquinone 0, decylubiquinone, ubiquinone 10, 2,3-dimethyl-6-decyl-1,4-benzoquinone, and 2,3,5-trimethyl-6-geranyl-1,4-benzoquinone); (ii) PTP inducers (2,3-dimethoxy-5-methyl-6-(10-hydroxydecyl)-1,4-benzoquinone and 2,5-dihydroxy-6- undecyl-1,4-benzoquinone); and (iii) PTP-inactive quinones that counteract the effects of both inhibitors and inducers (ubiquinone 5 and 2,3,5-trimethyl-6-(3-hydroxyisoamyl)- 1,4-benzoquinone). The structure-function correlation indicates that minor modifications in the isoprenoid side chain can turn an inhibitor into an activator, and that the methoxy groups are not essential for the effects of quinones on the PTP. Since the ubiquinone analogs used in this study have a similar midpoint potential and decrease mitochondrial production of reactive oxygen species to the same extent, these results support the hypothesis that quinones modulate the PTP through a common binding site rather than through oxidation-reduction reactions. Occupancy of this site can modulate the PTP open-closed transitions, possibly through secondary changes of the PTP Ca2+ binding affinity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1334015
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 136
  • ???jsp.display-item.citation.isi??? 130
social impact