Models describing plasma glucose and insulin concentration of an intravenous glucose tolerance test (IVGTT) allow a noninvasive cost-effective approach to estimate important indexes characterizing the efficiency of glucose-insulin control system, i.e., glucose effectiveness (SG) and insulin sensitivity (SI). To overcome some limitations of the classic single compartment minimal model (1CMM) of glucose kinetics , a two-compartment Bayesian minimal model (2CBMM) has been recently proposed for the standard IVGTT. This study aims to assess 2CBMM ability to describe the insulin-modified IVGTT (IM-IVGTT) which is the protocol of choice since it allows one to study insulinopenic states. Both a full-length IM-IVGTT (240 min) as well as a reduced version (90 min) of it are studied. Results of the maximum a posteriori identification of IM-IVGTT (240 min) in 13 normals agree with those of standard IVGTT, i.e., a 42% decrease (P<0.002) of SG and a 13% increase (P<0.006) of SI with respect to 1CMM. When identified from IM-IVGTT (90 min), 2CBMM not only provides SG and SI estimates 46% lower (P<0.002) and 41% higher (P<0.002) than 1CMM ones respectively, but also seems to overcome some limitations of the 240 min-based identification that probably arise because the minimal model is unable to properly account for the hyperglycemic hormonal response taking place in the second half of IM-IVGTT.

Bayesian two-compartment and classic single-compartment minimal models: comparison on insulin modified IVGTT and effect of experiment reduction

COBELLI, CLAUDIO
2003

Abstract

Models describing plasma glucose and insulin concentration of an intravenous glucose tolerance test (IVGTT) allow a noninvasive cost-effective approach to estimate important indexes characterizing the efficiency of glucose-insulin control system, i.e., glucose effectiveness (SG) and insulin sensitivity (SI). To overcome some limitations of the classic single compartment minimal model (1CMM) of glucose kinetics , a two-compartment Bayesian minimal model (2CBMM) has been recently proposed for the standard IVGTT. This study aims to assess 2CBMM ability to describe the insulin-modified IVGTT (IM-IVGTT) which is the protocol of choice since it allows one to study insulinopenic states. Both a full-length IM-IVGTT (240 min) as well as a reduced version (90 min) of it are studied. Results of the maximum a posteriori identification of IM-IVGTT (240 min) in 13 normals agree with those of standard IVGTT, i.e., a 42% decrease (P<0.002) of SG and a 13% increase (P<0.006) of SI with respect to 1CMM. When identified from IM-IVGTT (90 min), 2CBMM not only provides SG and SI estimates 46% lower (P<0.002) and 41% higher (P<0.002) than 1CMM ones respectively, but also seems to overcome some limitations of the 240 min-based identification that probably arise because the minimal model is unable to properly account for the hyperglycemic hormonal response taking place in the second half of IM-IVGTT.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1336919
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact