This report presents detailed studies on the morphology, thermal stability, and electrical spectroscopy of 11 aluminum-containing hybrid inorganic-organic polymer electrolytes with the general formula {Al[O(CH2CH2O)8.7]r/(LiClO4)z}n , where 1.85 < r< 2.24 and 0 < z < 1.06. Scanning electron microscopy showed a solid-plastic appearance and a smooth texture on the surface of the bulk materials. Thermogravimetric investigations indicated that the hybrid polymer electrolytes are thermally stable up to about 260°C. Furthermore, a detailed study of the mechanism of ion conduction in these systems was carried out by impedance spectroscopy in the 20 Hz to 1 MHz range and at temperatures varying from 18 to 80°C. It was demonstrated that the {Al[O(CH2CH2O)8.7]r/(LiClO4)z}n materials conduct ionically by a charge-transfer mechanism mainly regulated by segmental motion and fast ion-hopping processes between equivalent coordination sites distributed along polyether chains. The "anion trapping'' ability of the aluminum atoms toward perchlorate contributes greatly to the conductivity performance of the {Al[O(CH2CH2O)8.7]r/(LiClO4)z}n networks. Finally, the best conductivity observed in these materials is 1.66x10-5 S/cm at 25°C.

New Inorganic-Organic Polymer Electrolytes based on PEG400 and Al[OCH(CH3)2]3 (part II): Morphology, Thermal Stability and Conductivity Mechanism

DI NOTO, VITO;
2004

Abstract

This report presents detailed studies on the morphology, thermal stability, and electrical spectroscopy of 11 aluminum-containing hybrid inorganic-organic polymer electrolytes with the general formula {Al[O(CH2CH2O)8.7]r/(LiClO4)z}n , where 1.85 < r< 2.24 and 0 < z < 1.06. Scanning electron microscopy showed a solid-plastic appearance and a smooth texture on the surface of the bulk materials. Thermogravimetric investigations indicated that the hybrid polymer electrolytes are thermally stable up to about 260°C. Furthermore, a detailed study of the mechanism of ion conduction in these systems was carried out by impedance spectroscopy in the 20 Hz to 1 MHz range and at temperatures varying from 18 to 80°C. It was demonstrated that the {Al[O(CH2CH2O)8.7]r/(LiClO4)z}n materials conduct ionically by a charge-transfer mechanism mainly regulated by segmental motion and fast ion-hopping processes between equivalent coordination sites distributed along polyether chains. The "anion trapping'' ability of the aluminum atoms toward perchlorate contributes greatly to the conductivity performance of the {Al[O(CH2CH2O)8.7]r/(LiClO4)z}n networks. Finally, the best conductivity observed in these materials is 1.66x10-5 S/cm at 25°C.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1343910
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 18
  • OpenAlex ND
social impact