Benzene and toluene have been proposed previously as dopants in atmospheric pressure photoionization (APPI) experiments on compounds exhibiting ionization energies higher than the energy of photons used for irradiation. Their low ionization energies lead to their easy photoionization and the ions so formed lead to the ionization of analytes through charge exchange. However, some measurements have shown that some protonation reactions also take place, and a series of experiments was undertaken to investigate this unexpected behavior. It was shown that, when benzene is irradiated in the APPI source, the odd-electron molecular ions of phenol, diphenyl ether and phenoxyphenol are produced in high yield, together with protonated diphenyl ether and protonated phenoxyphenol. These results have been confirmed by deuterium labelling and MSn experiments. A possible mechanism is proposed, based on a radical attack by benzene molecular ions on oxygen molecules present inside the APPI source, analogous to that proposed in the literature for phenyl radicals. Similar results have been obtained with toluene, proving that APPI is able to activate a series of reactions leading to highly reactive species which are highly effective in promoting ionization of molecules with ionization energies higher than the photon energy.

Atmospheric pressure photoionization mechanisms. 2. The case of benzene and toluene

MAROTTA, ESTER;
2003

Abstract

Benzene and toluene have been proposed previously as dopants in atmospheric pressure photoionization (APPI) experiments on compounds exhibiting ionization energies higher than the energy of photons used for irradiation. Their low ionization energies lead to their easy photoionization and the ions so formed lead to the ionization of analytes through charge exchange. However, some measurements have shown that some protonation reactions also take place, and a series of experiments was undertaken to investigate this unexpected behavior. It was shown that, when benzene is irradiated in the APPI source, the odd-electron molecular ions of phenol, diphenyl ether and phenoxyphenol are produced in high yield, together with protonated diphenyl ether and protonated phenoxyphenol. These results have been confirmed by deuterium labelling and MSn experiments. A possible mechanism is proposed, based on a radical attack by benzene molecular ions on oxygen molecules present inside the APPI source, analogous to that proposed in the literature for phenyl radicals. Similar results have been obtained with toluene, proving that APPI is able to activate a series of reactions leading to highly reactive species which are highly effective in promoting ionization of molecules with ionization energies higher than the photon energy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1356344
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 69
  • ???jsp.display-item.citation.isi??? 68
social impact